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bulk. Within gauge/string duality, such strings apparently correspond to complicated op-

erators which either do not move on Regge trajectories, or move on subleading trajectories

with an unusual slope. Depending on the energy scale, the out-of-time-ordered correlation

functions of these operators may still obey the bound 2πT , or they may violate it like the

bulk exponent. We do not know exactly why the bound on chaos can be modified but the

indication from the gauge/string dual viewpoint is that the correlation functions of the

dual gauge operators never factorize and thus the original derivation of the bound on chaos
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1 Introduction

Sharp results like inequalities and no-go theorems are often the cornerstones of our under-

standing of physical phenomena. Besides being appealing and captivating, they are easy to

test as they provide a sharp prediction on a certain quantity, and we can often learn a lot

by understanding the cases when such bounds need to be generalized or abandoned. The

upper bound on the Lyapunov exponent (the rate of the growth of chaos), derived in [1]

inspired by hints found in several earlier works [2–7], is an example of such a result, which

is related to the dynamics of nonstationary correlation functions and provides insight into

the deep and important problem of thermalization and mixing in strongly coupled systems.
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It is clear, as discussed also in the original paper [1], that there are cases when the bound

does not apply: mainly systems in which the correlation functions do not factorize even at

arbitrarily long times, and also systems without a clear separation of short timescales (or

collision times) and long timescales (or scrambling times). A concrete example of bound

violation was found in [8] for a semiclassical system with a conserved angular momentum

(inspired by the Sachdev-Ye-Kitaev (SYK) model [9–12]) and in [13], again for a SYK-

inspired system. In the former case, the reason is clear: the orbits that violate the bound

are precisely those that cannot be treated semiclassically, so the violation just signals that

the model used becomes inaccurate; in the latter case things are more complicated and the

exact reason is not known. Finally, in [14] systematic higher-order quantum corrections to

the bound are considered. The bound is in any case a very useful benchmark, which can

tell us something on long-term dynamics of the system at hand, i.e. if some bound-violating

mechanisms are at work or not.

Although the bound on chaos is mainly formulated for field theories in flat spacetime,

it has an intimate connection to gravity: the prediction is that fields with gravity duals

saturate the bound. This makes dynamics in asymptotically anti-de Sitter (AdS) space-

times with a black hole particularly interesting: they have a field theory dual,1 and black

holes are conjectured to be the fastest scramblers in nature [2, 3], i.e., they minimize the

time for the overlap between the initial and current state to drop by an order of magni-

tude. Some tests of the bound for the motion of particles in the backgrounds of AdS black

holes and an additional external potential were already made [15]; the authors find that

the bound is systematically modified for particles hovering at the horizon and interacting

with higher spin external fields. When the external field becomes scalar, the exact bound

by Maldacena, Shenker and Stanford is recovered (as shown also in [16]).

The idea of this paper is to study the bound on chaos in the context of motion of

strings in AdS black hole geometries. Asymptotically AdS geometry is helpful not only

because of the gauge/gravity duality, but also for another reason: AdS asymptotics pro-

vide a regulator, i.e., put the system in a box, making its dynamics more interesting (in

asymptotically flat space, most orbits immediately escape to infinity with no opportunity

to develop chaos). Now why consider strings instead of geodesics? Because geodesics are

not the best way to probe the chaos generated by black holes: we know that geodesics

in AdS-Schwarzschild, AdS-Reissner-Nordstrom and AdS-Kerr backgrounds (and also in

all axially symmetric and static black hole geometries) are integrable, and yet, since the

horizon in all these cases has a finite Hawking temperature, there should be some ther-

malization and chaos going on. The logical decision is therefore to go for string dynamics,

which is practically always nonintegrable in the presence of a black hole. We look mainly

at the Lyapunov exponents and how they depend on the Hawking temperature. We will

see that the bound of [1] is surprisingly relevant here, even though the bound was formu-

lated for field theories with a classical gravity dual, whereas we look at the bulk dynamics

of strings, which go beyond the realm of Einstein gravity. At first glance, their Lyapunov

exponents should not saturate (let alone violate) the bound; in fact, at first glance, it is not

1Of course, one should be careful when it comes to details; it is known that for some field contents in

the bulk the boundary theory does not exist.
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obvious at all how to relate the Lyapunov exponent of classical bulk orbits to the result [1],

which defines the Lyapunov exponent in terms of the out-of-time ordered correlation func-

tions (OTOC).2 An important discovery in relation to this issue was made in [17], where

the authors consider a holographically more realistic string (open string dual to a quark in

Brownian motion in a heath bath), compute the Lyapunov exponent in dual field theory,

and find that it exactly saturates the bound. However, their world-sheet theory, i.e., their

induced metric itself looks somewhat like gravity on AdS2; therefore, close connection to

the Einstein gravity result is understandable. Our situation is different not only because

the ring string configurations have worldsheet actions very different from Einstein gravity

but also because we look mainly at the Lyapunov exponents of the bulk orbits.3 We will

eventually look also at the OTOC in dual field theory and find that the “quantum” Lya-

punov exponents do not in general coincide with the classical bulk values. However, the

subject of OTOC functions is more complicated as it requires one to consider the backre-

action on the background, and studying the behavior of the ring string in such backreacted

geometry is in general more difficult than for the open string od [17]. Therefore, we mostly

leave the OTOC and quantum Lyapunov exponent for future work.

At this point we come to another question, distinct but certainly related to the chaos

bound: the story of (non)integrability in various curved spacetimes. For point particles (i.e.,

motion on geodesics) it is usually not so difficult to check for integrability, and symmetries

of the problem usually make the answer relatively easy. However, integrability in string

theory remains a difficult topic. Most systematic work was done for top-down backgrounds,

usually based on the differential Galois theory whose application for string integrability

was pioneered in [19]. Systematic study for various top-down configurations was continued

in [20–22]; [21] in particular provides the results for strings in a broad class of brane

backgrounds, including Dp-brane, NS1 and NS5 brane configurations. The bottom line is

that integrable systems are few and far apart, as could be expected. Certainly, AdS5 ×
S5 is an integrable geometry, as could be expected from its duality to the (integrable)

supersymmetric Yang-Mills field theory. In fact, direct product of AdS space and a sphere

is integrable in any dimension, which is obvious from the separability of the coordinates.

But already a marginal deformation destroys integrability; a specific example was found

analytically and numerically in [23], for the β-deformation of super-Yang-Mills and its

top-down dual. More information can be found, e.g., in the review [24].

The first study of integrability in a black hole background was [25], where the

nonintegrability of string motion in asymptotically flat Schwarzschild black hole back-

ground was shown. In [26] the first study for an AdS black hole background (AdS-

Schwarzschild) was performed, putting the problem also in the context of AdS/CFT corre-

spondence. In [27] the work on top-down backgrounds was started, considering the strings

2In addition, the scrambling concept of [2, 4–7] is more complex; it is about the equilibration of the black

hole and its environment after something falls in. In other words, it necessarily includes the perturbation of

the black hole itself. We do not take into account any backreaction so we cannot compute the scrambling

time, only the Lyapunov exponent.
3Another example where the bound is modified (by a factor of 2) in a theory that goes beyond Einstein

gravity is [18].
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on the AdS×T 1,1 geometry generated in a self-consistent top-down way. For the top-

down AdS-Sasaki-Einstein background the nonintegrability was proven analytically [19].

Finally, AdS-soliton and AdS-Reissner-Nordstrom were also found to be nonintegrable

in [28, 29]. So most well-known in AdS/CFT have nonintegrable string dynamics: AdS-

Schwarzschild, AdS-Reissner-Nordstrom, AdS soliton and AdS-Sasaki-Einstein.4 Other

results on (non)integrability can be found in [30–33]; the list is not exhaustive.

Apart from the usual spherical static black holes (neutral and charged), we consider also

non-spherical horizons with constant curvature. Among them are also the zero-curvature

black branes, with infinite planar horizons, which are most popular in applied holography.

But it is known that more general horizons can be embedded in AdS space (in general

not in Minkowski space). Such black holes are usually called topological black holes, first

constructed in [34–37] and generalized in [38]. The term topological is in fact partly mis-

leading, as the backgrounds considered in some of the original papers [35] and also in our

paper are not necessarily of higher topological genus: besides spherical and planar hori-

zons, we mainly consider an infinite, topologically trivial hyperbolic horizon with constant

negative curvature (pseudosphere).5

The reader might wonder how important the non-spherical black holes are from the

physical viewpoint. In fact, as shown in the aforementioned references, they arise naturally

in spaces with negative cosmological constant, i.e., in AdS spaces, for example in the col-

lapse of dust [39], and the topological versions are easily obtained through suitable gluings

(identifications of points on the orbit of some discrete subgroup of the total symmetry

group) of the planar or pseudospherical horizon. Another mechanism is considered in [34],

where topological black holes are pair-created from instanton solutions of the cosmolog-

ical C-metric (describing a pair of black holes moving with uniform acceleration). More

modern work on constant-curvature black holes and some generalizations can be found

in [40–42], and AdS/CFT correspondence was applied to topological black holes in [43].

But our main motivation for considering non-spherical black holes is methodological, to

maximally stretch the testing ground for the chaos bound and to gain insight into various

chaos-generating mechanisms. In hindsight, we find that hyperbolic are roughly speaking

most chaotic, because moving on a manifold of negative curvature provides an additional

chaos-generating mechanism, in addition to the black hole.

The plan of the paper is the following. In the next section we write down the equations

of motion for a closed string in static black hole background, inspect the system analyti-

cally and numerically and show that dynamics is generically non-integrable. In the third

section we compute the Lyapunov exponents numerically and estimate them analytically,

formulating a generalized bound in terms of the local temperature and the string winding

number. The fourth section is a rather speculative attempt to put our results in the context

of the dual field theory and the derivation of the original bound from [1]; we will also try

to clarify the relation of the bulk classical Lyapunov exponent to the decay rates of OTOC

functions in dual field theory. The last section sums up the conclusions.

4In [26, 29] it was shown that Reissner-Nordstrom black holes in asymptotically flat space are also

nonintegrable.
5In fact, constant-curvature black holes would be a more suitable term than topological black holes.
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2 String dynamics in static black hole backgrounds

A constant curvature black hole in N + 1 spacetime dimensions is a geometry of constant

curvature with the metric [34–36]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dσ2

N−1

f(r) = r2 + k − 2m

rN−2
+

q2

r2N−4
, (2.1)

where dσ2
N−1 is the horizon manifold, which has curvature k, and m and q define the

mass and charge of the black hole. It is a vacuum solution of the Einstein equations with

constant negative cosmological constant and thus interpolates to AdS space with radius

1. From now on let us stick to N = 3 unless specified otherwise. For k = 1 we have the

familiar spherical black hole. For k = 0 we get the planar horizon (black brane) popular

in AdS/CFT applications.6 Finally, for k = −1 the horizon is an infinite hyperbolic sheet

(pseudosphere), with the symmetry group SO(2, 1).7 Notice that k can always be rescaled

together with the coordinates on σ2 thus we only consider k = −1, 0, 1. The metric of the

horizon surface takes the form

dσ2
2 = dφ2

1 + sink2φ1dφ
2
2, (2.2)

with sink(x) = sinx for k = 1, sink(x) = x for k = 0 and sink(x) = sinh(x) for k = −1.

A closed string with tension 1/α′ on the worldsheet (τ, σ) with target space Xµ and

the metric Gµν is described by the Polyakov action:

S = − 1

2πα′

∫
dτdσ

√
−hhabGµν(X)∂aX

µ∂bX
ν + εabBµν(X)∂aX

µ∂bX
µ. (2.3)

In our black hole backgrounds we always have Bµν = 0 so we can pick the gauge hab =

ηab = diag(−1, 1). This gives the Virasoro constraints

Gµν

(
ẊµẊν +X ′µX ′ν

)
= 0, GµνẊ

µX ′ν = 0, (2.4)

where we introduce the notation Ẋ ≡ ∂τX,X
′ ≡ ∂σX. The first constraint is the Hamil-

tonian constraint H = 0. We consider closed strings, so 0 ≤ σ ≤ 2π. From the second

constraint the following ansatz is consistent (of course, it is not the only one possible):

T = T (τ), R = R(τ), Φ1 = Φ1(τ), Φ2 = nσ. (2.5)

We denote the (dynamical) target-space coordinates Xµ(τ, σ) by capital letters T , R,Φ1,Φ2,

to differentiate them from the notation for spacetime coordinates t, r, φ1, φ2 in the met-

ric (2.1). The form (2.5) was tried in most papers exploring the integrability and chaos

6With periodic identifications on σ2 one gets instead a toroidal horizon.
7If we identify the points along the orbits of the little group of SO(2, 1), we get a genus g surface with

g ≤ 2, and the horizon becomes compact and topologically nontrivial, hence the term topological black

holes for this case.
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of strings [19, 25–29]. It is not an arbitrary ansatz: the winding of Φ2 follows from the

equations of motion, i.e., from the fact that Φ2 is a cyclic coordinate, leading to the solution

Φ̈2 = 0. Since Φ2 has trivial dynamics, from now on we will denote Φ ≡ Φ1. The equations

of motion follow from (2.3):

∂τ

(
f Ṫ
)

= 0⇒ E ≡ f Ṫ = const. (2.6)

R̈+
f ′

2f
(E2 − Ṙ2) + fR

(
Φ̇2 − n2sink2Φ

)
= 0 (2.7)

Φ̈ +
2Ṙ

R
Φ̇ +

n2

2
sink(2Φ) = 0. (2.8)

Clearly, the stationarity of the metric yields the first integral E with the informal meaning

of mechanical energy for the motion along the R and Φ coordinates (it is not the total

energy in the strict sense). The system is more transparent in Hamiltonian form, with the

canonical momenta PT = −E = −f Ṫ , PR = Ṙ/f, PΦ = R2Φ̇:8

H =
f

2
P 2
R +

1

2R2
P 2

Φ +
n2

2
R2sink2Φ− E2

2f
= 0, (2.9)

the second equality being the Virasoro constraint. We thus have a 2-degrees-of-freedom

system (due to the integral of motion E, i.e., the cyclic coordinate T ), with a constraint,

effectively giving a 1.5-degrees-of-freedom system, moving on a three-dimensional manifold

in the phase space (R,PR,Φ, PΦ). Notice that the motion along a geodesic is obtained

for n = 0; in this case, the system is trivially separable and becomes just motion in a

central potential. For nonzero n, the Hamiltonian (2.9) is not separable and the system is

nonintegrable.9 On the other hand, for a point particle all constant-curvature black holes

have a full set of integrals of motion leading to the integrability of geodesics: for the sphere,

the additional integrals (besides E) are L2 and Lz from SO(3), and for the pseudosphere

these are K2 and Kz from SO(2, 1). For the planar black hole we obviously have Px,y,

the momenta, as the integrals of motion. Of course, if we consider compactified surfaces,

the symmetries become discrete and do not yield integrals of motion anymore. Therefore,

truly topological black holes are in general nonintegrable even for geodesics.10

8In this and the next section we put α′ = 1/π, as we only consider classical equations of motion, which

are independent of α′. In section 4, when calculating the quantities of the dual gauge theory, we restore α′

as it is related to the ’t Hooft coupling, a physical quantity.
9One can prove within Picard-Vessiot theory that no canonical transformation exists that would yield

a separable Hamiltonian, so the system is nonintegrable. We will not derive the proof here, as it is not

very instructive; the nonintegrability of the spherical case was already proven in [26, 29], and the existence

of nonzero Lyapunov exponents will de facto prove the nonintegrability for the other cases. One extra

caveat is in order for the planar case. For k = 0 and sinkΦ = Φ, the Hamiltonian is still not separable,

and dynamics is nonintegrable. One could change variables in the metric (2.1) as (φ1, φ2) 7→ (φ′1 =

φ1 cosφ2, φ
′
2 = φ1 sinφ2), and the string with the wrapping Φ′2 = nσ would provide an integrable system,

with the separable Hamiltonian H ′ = f
2
P 2
R+ 1

2R2P
2
Φ′ + n2

2
R2− E2

2f
. But that is a different system from (2.9):

even though a change of variables is clearly of no physical significance, the wrapping Φ′2 = nσ is physically

different from Φ2 = nσ. Integrability clearly depends on the specific string configuration.
10For special, fine-tuned topologies and parameters, one finds integrable cases (even for string motion!)

but these are special and fine-tuned; we will consider these cases elsewhere as they seem peripheral for our

main story on the chaos bound.
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Figure 1. Poincare section (R,PR) for orbits starting at the apparent horizon (removed for a

distance of 10−4 from the event horizon), at increasing temperatures T = 0.00, 0.05, 0.10, for a

planar black hole with m = 1 and charge parameter q determined by the temperature. The

coordinate and momentum are in units of AdS radius.

2.1 Fixed points and near-horizon dynamics

For a better overall understanding of chaos in string motion, let us sketch the general trends

in dynamics first. For spherical black holes, this job was largely done in [26, 29, 44] and for

similar geometries also in [27, 28]. We will emphasize mainly the properties of near-horizon

dynamics that we find important for the main story.

Typical situation can be grasped from figure 1, where the Poincare sections of orbits

starting near the horizon are shown for increasing temperatures of the horizon, as well as

figures 2 and 3 where we show typical orbits in the x− y plane for different temperatures

and initial conditions.

1. Higher temperatures generally increase chaos, with lower and lower numbers of peri-

odic orbits (continuous lines in the Poincare section in figure 1) and increasing areas

covered with chaotic (area-filling) orbits. This is also obvious from the figure 2.

2. Orbits closer to the horizon are more chaotic than those further away; this will be

quantified by the analysis of the Lyapunov exponents. This is logical, since the

equations of motion for strings in pure AdS space are integrable, and far away from

the horizon the spacetime probed by the string becomes closer and closer to pure

AdS. An example of this behavior is seen in figure 3(A).

3. The previous two trends justify the picture of the thermal horizon as the generator

of chaos. However, for an extremal or near-extremal hyperbolic horizon there is a

slight discrepancy — in this case, moving away from the horizon increases the chaos.

In other words, there is yet another mechanism of chaos generation, independent of

the temperature and not located precisely at the horizon, which is subleading and

not very prominent, except when it is (almost) the only one, i.e., when the horizon

is (near-)extremal. This is demonstrated in figure 3(B).

When we come to the consideration of the Lyapunov exponents, we will identify the horizon-

induced scrambling and the chaotic scattering as the chaos-inducing mechanisms at work

for r → rh and for intermediate r, respectively.

Consider now the radial motion from the Hamiltonian (2.9). Radial motion exhibits an

effective attractive potential E2/2f which diverges at the horizon. The Φ-dependent terms
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Figure 2. Thermal horizon as the generator of chaos. We show the orbits in the vicinity of the

spherical (A) and hyperbolic (B) horizon, at T = 0.01 (left) and T = 0.10 (right); obviously, hot

horizons generate more chaos than cold ones. The light blue dot is the initial condition of the orbit

(the position of the point on the string with Φ = 0 at τ = 0).
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Figure 3. Thermal horizon and hyperbolic scattering as generators of chaos. In (A) and (B), we

show the orbits in the vicinity of the spherical and hyperbolic horizon, respectively, at the small

temperature T = 0.01 and starting at increasing distances from the horizon. In (A), the further

from the horizon, the more regular the orbit becomes. But in the hyperbolic geometry (B), the

thermally-generated chaos is negligible; instead, the orbit becomes chaotic as it explores larger and

larger area of the hyperbolic manifold. Hence for hyperbolic horizons, an additional, non-thermal

generator of chaos exists: it is the hyperbolic scattering. Light blue dots are again the initial

positions of the string origin (Φ = 0).

– 8 –



J
H
E
P
1
2
(
2
0
1
9
)
1
5
0

proportional to R2 and 1/R2 are repulsive and balance out the gravitational attraction to

some extent but they remain finite for all distances. For R large, the repulsion proportional

to n2 dominates so for large enough distances the string will escape to infinity. For inter-

mediate distances more complex behavior is possible: the string might escape after some

number of bounces from the black hole, or it might escape after completing some (non-

periodic, in general) orbits around the black hole. The phase space has invariant planes

given by (R,PR,Φ, PΦ) = (R0 + Eτ,E/f0, Nπ, 0), with R0 = const. and f0 ≡ f(R0) and

N an integer. It is easy to verify this solution by first plugging in Φ̇ = 0 into (2.8) to find

Φ; eq. (2.7) and the constraint (2.9) then reduce to one and the same condition Ṙ2 = E2.

We discard the solution with the minus sign (with R = R0 − Eτ) as R is bounded from

below. Pictorially, this solution means that a string with a certain orientation just moves

uniformly toward the black hole and falls in, or escapes to infinity at uniform speed, all

the while keeping the same orientation. Besides, there is a trivial fixed point at infinity,

(R,PR,Φ, PΦ) = (∞, 0, Nπ, 0), found also in [26, 29].

We are particularly interested if a string can hover at a fixed radial slice R = r0 =

const.. Let us start from the spherical case. Inserting R = r0, Ṙ = 0 into eq. (2.8) leads

to the solution in terms of the incomplete Jacobi sine integral sn (Jacobi elliptic function

of the first kind, Jacobi E-function), and two integration constants to be determined. The

other equation, (2.7), is a first-order relation for Φ acting as a constraint. Solving it gives

a Jacobi elliptic function again, with one undetermined constant, and we can match the

constants to obtain a consistent solution:

sin Φ(τ) = sn

(
E
√
|f ′0|√

2r0f0
τ,

2n2r0f
2
0

E2|f ′0|

)
. (2.10)

The value of r0 is found from the need to satisfy also the Hamiltonian constraint. The

constraint produces a Jacobi elliptic function with a different argument, and the matching

to (2.10) reads

2f(r0) + r0f
′(r0) = 0. (2.11)

This turns out to be a cubic equation independent of the black hole charge, as the terms

proportional to q cancel out. It has one real solution, which is never above the horizon.

The solution approaches the horizon as f ′(r0), approaches zero, and r = rh is obviously a

solution of (2.11) for f ′(rh) = 0. However, the r → rh limit is subtle in the coordinates we

use because some terms in equations of motion diverge, so we need to plug in f(r) = 0 from

the beginning. Eqs. (2.6), (2.8) then imply Ṙ = E, i.e., there is no solution at constant R

except for E = 0. This is simply because the energy is infinitely red-shifted at the horizon,

i.e., E scales with f (eq. (2.6)), thus indeed unless Ṫ → ∞, which is unphysical, we need

E = 0. Now solving eq. (2.7) gives the same solution as before, of the form sn(C1τ, C2),

with undetermined constants C1,2, which are chosen so as to establish continuity with the

solution (2.10). For an extremal horizon of the from f ∼ a(r − r2
h) ≡ aε2, a smooth and

finite limit is obtained by rescaling E 7→ Eε2. Now expanding the sn function in ε produces

simply a linear function at first order in ε:

Φ(τ) = Eτ/
√
ar0 +O

(
ε3
)
. (2.12)
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Therefore, a string can hover at the extremal horizon, at strict zero temperature, when

its motion (angular rotation) becomes a simple linear winding with a single frequency.

Such an orbit is expected to be linearly stable, and in the next section we show it is also

stable according to Lyapunov and thus has zero Lyapunov exponent. Finally, from (2.7)

and (2.11) the radial velocity Ṙ in the vicinity of a non-extremal horizon behaves as:

Ṙ2 ≈ E2 + 4πTrh(r − rh)2, (2.13)

meaning that Ṙ grows quadratically as the distance from the horizon increases. This will

allow us to consider near-horizon dynamics at not very high temperatures as happening at

nearly constant radius: the string only slowly runs away.

For a hyperbolic horizon the calculation is similar, changing sin 7→ sinh in the solu-

tion (2.10). The constraint (2.11) is also unchanged (save for the sign of k in the redshift

function), and the final conclusion is the same: the string can only balance at the zero

temperature horizon (but now such a horizon need not be charged, as we mentioned previ-

ously). The zero temperature limit is the same linear function (2.12). For a planar horizon

things are different. For Ṙ = 0, we get simply harmonic motion Φ = C1 cosnτ +C2 sinnτ ,

which is consistent with the constraint H = 0. But eq. (2.7) implies exponential motion

instead, D1 sinhnτ + D2 coshnτ . Obviously, there is no way to make these two forms

consistent. Accordingly, no hovering on the horizon (nor at any other fixed radial slice)

is possible for a planar black hole. But the same logic that lead to (2.13) now predicts

oscillating behavior:

R(τ) ≈ E2 + 4πTrh(r − rh)2
(
n2 cos2 nτ − sin2 nτ

)
. (2.14)

Therefore, even though there are no orbits at all which stay at exactly constant R, we

now have orbits which oscillate in the vicinity of the horizon forever. Averaging over long

times now again allows us to talk of a string that probes some definite local temperature,

determined by the average distance from the horizon.

The point of this (perhaps tedious and boring) qualitative analysis of possible orbits

is the following. No orbits at fixed distance from the horizon are possible, but at low

temperatures a string that starts near the horizon will spend a long time in the near-

horizon area. Therefore, we can study the influence of the low-temperature horizon as the

main chaos-generating mechanism by expanding the variational equations for the Lyapunov

exponents in the vicinity of the horizon, This we shall do in the next section.

3 Lyapunov exponents and the bound on chaos

In general, Lyapunov exponents are defined as the coefficients λ of the asymptotic ex-

ponential divergence of initially close orbits; in other words, of the variation δX of a

coordinate X:

λ ≡ lim
t→∞

lim
δX(0)→0

1

t
log
|δX(t)|
|δX(0)|

, (3.1)

and the variation is expected to behave as δX ∼ δX(0) exp(λt) for t large and δX(0)

small enough in practice. This definition makes sense for classical systems; in quantum
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mechanics, the linearity of the state vector evolution guarantees zero exponent but the

intuition that initially small perturbations eventually grow large in a strongly coupled

system remains when we look at appropriately defined correlation functions, like the OTOC

used in [1]. We should first make the following point clear. In a classical nonlinear system,

the presence of deterministic chaos leads to positive Lyapunov exponents even in absence

of temperature or noise. Quantum mechanically, as we explained, the linearity of evolution

means that exponential divergence is only possible in a thermal state, and this situation

leads to the temperature bound on the Lyapunov exponents. This is easy to see upon

restoring dimensionful constants, when the bound from [1] takes the form λ ≤ 2πkBT/~,

and indeed in a classical system where ~→ 0 no bound exists. In the context of our work,

which effectively reduces to the classical Hamiltonian (2.9) which has no gravitational

degrees of freedom, it is not a priori clear if one should expect any connection to the

bound on chaos: instead of a QFT correlation function or its gravity dual, we have classical

dynamics, and the Hawking temperature of the black hole is not the local temperature

probed by the string. But we will soon see that analytical and numerical estimates of λ

nevertheless have a form similar to the chaos bound of [1].

Before we proceed one final clarification is in order. One might worry that the Lya-

punov exponents are gauge-dependent, as we consider equations of motion in terms of the

worldsheet coordinate τ , and for different worldsheet coordinates the variational equations

would be manifestly different; in other words, the definition (3.1) depends on the choice of

the time coordinate (denoted schematically by t in (3.1)). Indeed, the value of λ clearly

changes with coordinate transformations, however it has been proven that the positivity

of the largest exponent (the indicator of chaos) is gauge-invariant; the proof was derived

for classical general relativity [45] and carries over directly to the worldsheet coordinate

transformations. This is all we need, because we will eventually express the τ -exponent in

terms of proper time for an inertial observer, making use of the relation Ṫ = −E/f . This

could fail if a coordinate change could translate an exponential solution into an oscillating

one (because then λ drops to zero and it does not make sense to re-express it units of

proper time); but since we know that cannot happen we are safe.

3.1 Variational equations and analytical estimates of Lyapunov exponents

3.1.1 Thermal horizon

Consider first a thermal black hole horizon at temperature T , with the redshift func-

tion behaving as f = 4πT (r − rh) + O
(

(r − rh)2
)

. Variational equations easily follow

from (2.6)–(2.7):

δR̈− E2

(R− rh)2
δR− 4πT

(
Φ̇2 − n2sink2Φ

)
δR− 8πT (R− 2rh)RΦ̇δΦ̇

+4πn2TRsink(2Φ)δΦ = 0 (3.2)

δΦ̈ + n2sink(2Φ) +
2

rh
Φ̇δṘ = 0, (3.3)

with on-shell solutions R(τ),Φ(τ). This system looks hopeless, but it is not hard to extract

the leading terms near the horizon which, as we explained, makes sense at low temperatures.
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Therefore, we start from the solutions (2.10), (2.12), (2.14), adding a small correction

(r0,Φ (τ))→ (r0 + ∆R (τ) ,Φ(τ) + ∆Φ (τ)). Then we expand in inverse powers of r0 − rh,

and express the angular combinations Φ̇2±sink2Φ making use of the constraint (2.9). When

the dust settles, the leading-order equations simplify to:

δR̈−
(

16 (πT )3 n
2

E2
(r0 − rh)− 32 (πT )3 Cn

E2φ0
(r0 − rh)2

)
δR = 0 (3.4)

δΦ̈ + n2〈cosk2(2Φ)〉δΦ = 0, (3.5)

where C = C(k,E) is a subleading (at low temperature) correction whose form differs for

spherical, planar and hyperbolic horizons. From the above we read off that angular motion

has zero Lyapunov exponent (the variational equation is oscillatory, because 〈cosk2(2Φ)〉 ≥
0) but the radial component has an exponent scaling as

λ̃(T ) ∼ 4
√

(πT )3(r0 − rh)
n

E

(
1− (r − rh)

C

φ0n

)
. (3.6)

Now we have calculated the Lyapunov exponent in worldsheet time τ . The gauge-invariant

quantity, natural also within the black hole scrambling paradigm, is the proper Lyapunov

exponent λ, so that 1/λ is the proper Lyapunov time for an asymptotic observer. To relate

λ̃ to λ, we remember first that the Poincare time t is related to the worldsheet time τ

through (2.6) as |dt| ∼ E/f × dτ . Then we obtain the proper time as tp = t
√
−g00 = t

√
f ,

where near the thermal horizon we can write f ≈ 4πT (r − rh). This gives11

λ(T ) ∼ 2πTn

(
1− ε C

φ0n

)
. (3.7)

At leading order, we get the estimate 2πTn, with the winding number n acting as correction

to the original bound.

3.1.2 Away from the horizon

At intermediate radii we can do a similar linear stability analysis starting from f ∼ r2 +

k + A/r where A is computed by series expansion (with just the AdS term r2 + k in f ,

without the leading black hole contribution A/r, we would trivially have integral motion

and zero λ; but this approximation applies at large, not at intermediate distances). In

this case the equations of motion yield R ∼ τ
√
E2 − 1, and the variational equations, after

some algebra, take the form

δR̈− 2

R
(k +R2)δΦ̇ + E

(
3kR2

R2 + k
+ 1

)
δR = 0. (3.8)

One can show again that δΦ̇ is always bounded in absolute value, thus the third term

determines the Lyapunov exponent. The exponent vanishes for k > −1/3 (because the

equations becomes oscillatory) and for k ≤ −1/3 we get

λ ∼
√
−(3k + 1)E. (3.9)

11We introduce the notation ε ≡ r − rh.
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Since the curvature only takes the values −1, 0, 1, the prediction (3.9) always holds for

hyperbolic horizons. Notice that this same term (the third term in (3.8)) appears as

subleading in the near-horizon expansion, so we can identify it with C(k,E) and write (3.7)

as λ(T ) ∼ 2πTn (1− ε|(3k + 1)E|/ (φ0n)). This holds for any k, and we see that C ≤ 0;

thus the bound is only approached from below as it should be.

In absence of negative curvature, i.e., for k > 0, we have vanishing C at leading or-

der in 1/R but subleading contributions still exist, so both the slight non-saturation of

the limit 2πTn near-horizon (for small ε) and a parametrically small non-zero Lyapunov

exponent at intermediate distances will likely appear, which we see also in the numerics.

That the motion is chaotic on a pseudosphere (negative curvature) is of course no sur-

prise; it is long known that both particles and waves have chaotic scattering dynamics on

pseudospheres [46]. We dub this contribution the scattering contribution to the Lyapunov

exponent, as opposed to the scrambling contribution. It is largely independent of temper-

ature and largely determined by the geometry of the spacetime away from the horizon.

3.1.3 Extremal horizon

For an extremal horizon we replace f by f ∼ a(r − rh)2 = aε2, and plug in this form into

the variational equations. Now the result is (for concreteness, for the spherical horizon)

δR̈−
(

a2ε4r2
hn

2

2aεrh − 2aε2

)
δR = 0 (3.10)

δΦ̈ + n2〈cosk(2Φ)〉δΦ = 0, (3.11)

leading to a vanishing exponent value:

λ̃(T ) ∼
√
arh/2nε

3/2 → 0. (3.12)

Obviously, this also means λ = 0 — there is no chaos at the extremal horizon. This is

despite the fact that the string motion in this case is still nonintegrable, which is seen

from the fact that no new symmetries or integrals of motion arise in the Hamiltonian in

this case. The horizon scrambling is proportional to temperature and does not happen at

T = 0, but the system is still nonintegrable and the chaos from other (scattering) origins

is still present. In particular, the estimate (3.8)–(3.9) remains unchanged.

The estimates (3.7), (3.9), (3.12) are the central sharp results of the paper. We can

understand the following physics from them:

1. At leading order, we reproduce (and saturate) the factor 2πT of the Maldacena-

Shenker-Stanford bound, despite considering classical dynamics only.

2. The bound is however multiplied by the winding number n of the ring string. The

spirit of the bound is thus preserved but an extra factor — the winding number —

enters the story.

3. Taking into account also the scattering chaos described by (3.9), the results are in

striking accordance with the idea of [2]: there are two contributions to chaos, one
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proportional to the black hole temperature and solely determined by the scrambling

on the horizon, with the universal factor 2πT expected from the concept of black

holes as the fastest scramblers in nature, and another determined by the (slower)

propagation of signals from the horizon toward the AdS boundary, which we call the

scattering term, as it is determined also by dynamics at large distances.

4. For a particle (n = 0), we correctly get λ = 0, as the geodesics are integrable.

5. The temperature appearing in (3.7) is always the Hawking temperature of the black

hole T .

In the next section, when we consider the AdS/CFT interpretation, we will try to shed

some more light on where the modification of the bound 2πT 7→ 2πTn comes from.

3.1.4 Lyapunov time versus event time

In the above derivations we have left one point unfinished. We have essentially assumed

that R(τ) ≈ const. = r and treated the difference ε = r − rh as a fixed small parameter.

This is only justified if the local Lyapunov time 1/λ̃ is much shorter than the time to

escape far away from rh and the horizon, or to fall into the black hole. In other words, it

is assumed that the Lyapunov time is much shorter than the “lifetime” of the string (let

us call it event time tE). Now we will show that this is indeed so. For the spherical black

hole, upon averaging over the angle Φ, we are left with a one-dimensional system

Ṙ2 +R2f(R)
E2f ′(R)

Rf2(R)
= E2, (3.13)

which predicts the event time as

tE ∼
∫ rh,∞

r0

dR√
|E − Ef ′(R)Rf2(R)|

≈ πrh√
2

1√
4πTεn

≈ πrh√
2
× λ̃−1

ε
. (3.14)

In other words, the event times are roughly by a factor 1/ε longer than Lyapunov times,

therefore our estimate for λ should be valid. In (3.14), we have considered both the

infalling orbits ending at rh, and the escaping orbits going to infinity (for the latter, we

really integrate to some r∞ > r0 and then expand over 1/r∞). An orbit will be infalling or

escaping depending on the sign of the combination under the square root, and to leading

order both cases yield a time independent of r0 (and the cutoff r∞ for the escaping case).

The hyperbolic case works exactly the same way, and in the planar case since R(τ) oscillates

the event time is even longer (as there is no uniform inward or outward motion). For

extremal horizons, there is no issue either as r = rh is now the fixed point.

3.1.5 Dimensionful constants

One might wonder what happens when dimensionful constants are restored in our results

for the Lyapunov exponents like (3.7) or (3.9): the original chaos bound really states

λ ≤ 2πkBT/~, and we have no ~ in our system so far. The resolution is simple: the role

of ~ is played by the inverse string tension 2πα′, which is obvious from the standard form
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of the string action (2.3); the classical string dynamics is obtained for α′ → 0. Therefore,

the dimensionful bound on chaos for our system reads λ = 2πkBTn/2πα
′ = kBTn/α

′.

Another way to see that α′ takes over the role of ~ in the field-theory derivation [1] is

that the weight in computing the correlation functions for a quantum field is given by the

factor exp
(
−1/~

∫
L
)
, whereas for a string the amplitudes are computed with the weight

exp
(
−1/2πα′

∫
L
)
. In the next section, we will also look for the interpretation in the

framework of dual field theory. In this context, α′ is related to the number of degrees of

freedom in the gauge dual of the string, just like the Newton’s constant GN is related to

the square of the number of colors N2 in the gauge dual of a pure gravity theory. But the

issues of gauge/string correspondence deserve more attention and we treat them in detail

in section 4.

3.2 Numerical checks

We will now inspect the results (3.7), (3.9), (3.12) numerically. Figure 4 tests the basic pre-

diction for the horizon scrambling, λ ≈ 2πTn at low temperatures: both the n-dependence

at fixed temperature (A), and the T -dependence at fixed n (B) are consistent with the

analytical prediction. All calculations were done for the initial condition Ṙ(0) = 0, and

with energy E chosen to ensure a long period of hovering near the horizon. The tempera-

tures are low enough that the scattering contribution is almost negligible. In figure 5 we

look at the scattering term in more detail. First we demonstrate that at zero temperature,

the orbits in non-hyperbolic geometries are regular (A): the scattering term vanishes at

leading order, and the scrambling vanishes at T = 0. In the (B) panel, scattering in hy-

perbolic space at intermediate radial distances gives rise to chaos which is independent of

the winding number, in accordance to (3.7). To further confirm the logic of (3.7), one can

look also at the radial dependence of the Lyapunov exponent: at zero temperature, there

is no chaos near-horizon (scrambling is proportional to T and thus equals zero; scattering

only occurs at finite r−rh), scattering yields a nonzero λ at intermediate distances and the

approach to pure AdS at still larger distances brings it to zero again; at finite temperature,

we start from λ = 2πTn near-horizon, observe a growth due to scattering and fall to zero

approaching pure AdS.

4 Toward a physical interpretation of the modified bound

4.1 Dual gauge theory interpretation

The ring string wrapped along the σ coordinate is a very intuitive geometry from the

viewpoint of bulk dynamics. However it has no obvious interpretation in terms of the

gauge/gravity duality, and the Hamiltonian (2.9) itself, while simple-looking, is rather

featureless at first glance: essentially a forced nonlinear oscillator, it does not ring a bell

on why to expect the systematic modification of the Maldacena-Shenker-Stanford bound

and what the factor n means. Thus it makes sense to do two simple exercises: first, to

estimate the energy and spin of the operators corresponding to (2.5) to understand if it has

to do with some Regge trajectory; second, to consider some other string configurations,

with a more straightforward connection to the operators in gauge theory. Of course, finite
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Figure 4. (A) Logarithm of the relative variation of the coordinate R, for a spherical AdS-Reissner-

Nordstrom black hole, for a fixed temperature T = 0.04 and increasing winding numbers n =

1, 2, 3, 4, 5, 6 (black, blue, green, red, magenta, orange). Full lines are the numerical computational

of the function log (δX (τ) /δX (0)) = λτ , so their slopes equal the Lyapunov exponents λ. Dashed

lines show the analytically predicted bound log δX = 2πTnτ + logX0. Numerically computed

variations almost saturate the bounds denoted by the dashed lines. The calculation for n = 1 is

stopped earlier because in this case the orbit falls in into the black hole earlier than for higher n.

(B) Same as (A) but for a hyperbolic AdS-Schwarzschild black hole, at fixed n = 1 and increasing

temperature T = 0.050, 0.075, 0.100, 0.125, 0.150 (black, blue, green, red, magenta), again with

analytically predicted bounds shown by the dashed lines. For the two highest temperatures (red,

magenta) the computed slopes are slightly above the bound probably because the near-horizon

approximation does not work perfectly well. The short-timescale oscillations superimposed on

the linear growth, as well as the nonlinear regime before the linear growth starts in the panel

(A) are both expected and typical features of the variation δR (Lyapunov exponents are defined

asymptotically, for infinite times).

temperature horizons are crucial for our work on chaos, and saying anything precise about

the gauge theory dual of a string in the black hole background is extremely difficult; we

will only build some qualitative intuition on what our chaotic strings do in field theory,

with no rigorous results at all.

Let us note in passing that the ring string configurations considered so far are almost

insensitive to spacetime dimension. Even if we uplift from the four-dimensional spacetime

described by (t, r, φ1, φ2) to a higher-dimensional spacetime (t, r, φ1, φ2, . . . φN−2), with the

horizon being an N − 2-dimensional sphere/plane/pseudosphere, the form of the equations

of motion does not change if we keep the same ring configuration, with Φ1 = Φ1(τ, σ),Φ2 =

nσ,Φ3 = const., . . .ΦN−2 = const. — this is a solution of the same eqs. (2.6)–(2.8) with the

same constraint (2.9). The difference lies in the redshift function f(r) which depends on

dimensionality. This, however, does not change the main story. We can redo the calculation

of the radial fixed point from the second section, to find a similar result — a string can

oscillate or run away/fall slowly in the vicinity of a horizon, and the variational equations

yield the same result for the Lyapunov exponent as before. It is really different embeddings,

i.e., different Polyakov actions, that might yield different results.

4.1.1 Operators dual to a ring string?

We largely follow the strategy of [47] in calculating the energy and the spin of the string

and relating them to the dual Yang-Mills theory. In fact, the ring string is quite close to
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Figure 5. (A) Logarithm of the radial variation δR for near-horizon orbits with n = 1, 2, 3, 4, 5, 6

(black, blue, green, red, magenta, orange) in a planar extremal Reissner-Nordstrom geometry. All

curved asymptote to a constant, i.e., (almost) zero slope, resulting in λ ≈ 0. (B) Same as previ-

ous for an extremal hyperbolic black hole. Now the Lyapunov exponent is nonzero, and equal for

all winding numbers: in absence of thermal scrambling, the chaos originates solely from scatter-

ing, which is independent of n. (C) The Lyapunov exponent in zero-temperature hyperbolic black

hole background for n = 1 and r = rh, 1.1rh, 1.2rh, 1.3rh (black, blue, green, red) starts at zero (no

scrambling, no scattering), grows to a clear nonzero value for larger radii due to scattering, and again

falls to zero for still larger distances, as the geometry approaches pure AdS (D) Lyapunov exponent

in T = 0.02 hyperbolic black hole background for n = 1 and r = rh, 1.1rh, 1.2rh, 1.3rh, 1.4rh, 1.5rh
(black, blue, green, red, magenta, orange) starts at the scrambling value (black), reaches its max-

imum when both scrambling and scattering are present (blue, green) and then falls to zero when

AdS is approached (red, magenta, orange).

what the authors of [47] call the oscillating string, except that we allow one more angle to

fluctuate independently (thus making the system nonintegrable) and, less crucially, that

in [47] only the winding number n = 1 is considered.

Starting from the action for the ring string (2.3), we write down the expressions for

energy and momentum:

E =
1

2πα′

∫
dτ

∫
dσPT =

E

α′

∫ φ2

φ1

dΦ

Φ̇
(4.1)

S =
1

2πα′

∫
dτ

∫
dσPΦ =

1

α′

∫ φ2

φ1

dΦ

Φ̇
R2(Φ)Φ̇, (4.2)

where the second worldsheet integral gives simply
∫
dσ = 2π as R,Φ do not depend on σ,

and we have expressed dτ = dΦ/Φ̇; finally, the canonical momentum is conserved, PT = E,
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and in the expression for the spin we need to invert the solution Φ(τ) into τ(Φ) in order to

obtain the function R(Φ). We are forced to approximate the integrals. Expressing Φ̇ from

the Hamiltonian constraint (2.4), we can study the energy in two regimes: small amplitude

φ0 � π which translates to E/T � 1, and large amplitude φ0 ∼ π, i.e., E/T ∼ 1. For

these two extreme cases, we get:

E ≈
4r0

√
f(r0)

α′
φ0 =

4E

α′n
, φ0 � π (4.3)

E ≈ πE

α′n
, φ0 ∼ π (4.4)

For the spin similar logic gives

S ≈ 8r0E

α′
√
f(r0)

φ0 =
8E2

α′n

1

f(r0)
≈ 8E2

α′n

1

4πTε
, φ0 � π (4.5)

S ≈ 4E2

α′n

√
2f ′(r0)r0

f3(r0)
≈ 8E2

α′n

√
2π

4πTε
, φ0 ∼ π. (4.6)

The bottom line is that in both extreme regimes (and then presumably also in the inter-

mediate parameter range) we have E ∝ E/α′n and S ∝ E2/α′nTε; as before ε = r − rh
and it should be understood as a physical IR cutoff (formally, for r → rh the spin at finite

temperature diverges; but we know from section 2 that in fact no exact fixed point at con-

stant r exists, and the average radial distance is always at some small but finite distance ε).

Therefore, we have E2 ∝ S/α′nTε.
The presence of temperature in the above calculation makes it hard to compare the

slope to the familiar Regge trajectories. But in absence of the black hole, when f(r) = 1,

we get

E = 4E/α′n, S = 8E2/α′n⇒ E2 = 2S/α′n. (4.7)

For n = 1, this is precisely the leading Regge trajectory. For higher n the slope changes, and

we get a different trajectory. Therefore, the canonical Lyapunov exponent value λ = 2πT

precisely corresponds to the leading Regge trajectory. We can tentatively conclude that

the winding string at finite temperature describes complicated thermal mixing of large-

dimension operators of different dimensions and spins, and these might well be sufficiently

nonlocal that the OTOC never factorizes and the bound from [1] does not apply.

4.1.2 Planetoid string

In this subsubsection we consider so-called planetoid string configurations, also studied

in [47] in the zero-temperature global AdS spacetime and shown to reproduce the leading

Regge trajectory in gauge theory. This is again a closed string in the same black hole

background (2.1) but now the solution is of the form12

T = eτ, R = R(σ), Φ1 = Φ1(τ), Φ2 = Φ2(σ), (4.8)

12The authors of [47] work mostly with the Nambu-Goto action but consider also the Polyakov formulation

in the conformal gauge; we will stick to the Polyakov action from the beginning for notational uniformity

with the previous section. For the same reason we keep the same coordinate system as in (2.1).
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where the auxiliary field e is picked so as to satisfy the conformal gauge, and any additional

coordinates Φ3,Φ4, . . . and Θ1,Θ2, . . . are fixed. The Lagrangian

L = − 1

2f

(
R′
)2 − e2

2
f +

R2

2

(
−Φ̇2

1 + sin2 Φ1Φ′22

)
(4.9)

has the invariant submanifold Φ1 = ωτ,Φ2 = const. when the dynamics becomes effectively

one-dimensional, the system is trivially integrable and, in absence of the black hole, it is

possible to calculate exactly the energy and spin of the dual field theory operator. This is

the integrable case studied in [47, 48], and allowing Φ2 to depend on σ seems to be the only

meaningful generalization, because it leads to another submanifold of integrable dynamics

with R = r0 = const., Φ2 = nσ and the pendulum solution for Φ1:

sin Φ1(τ) = sn

(
`τ,−n

2

`2

)
, (4.10)

where `2 = Φ̇1
2 − n2 sin2 Φ1 is the adiabatic invariant on this submanifold. With two

integrable submanifolds, a generic orbit will wander between them and exhibit chaos. The

variational equations can be analyzed in a similar fashion as in the previous section. Here,

the chaotic degree of freedom is Φ1(τ), with the variational equation

δΦ̈1 − Φ′22 cos(2Φ1) = 0, (4.11)

which in the near-horizon regime yields the Lyapunov exponent

λ = 2πTn, (4.12)

in the vicinity of the submanifold (4.10). In the vicinity of the other solution (Φ1 =

ωτ,Φ2 = const.), we get λ = 0. Chaos only occurs in the vicinity of the winding string

solution, and the winding number again jumps in front of the universal 2πT factor.

Now let us see if this kind of string reproduces a Regge trajectory. In the presence of

the black hole the calculation results in very complicated special functions, but we are only

interested in the leading scaling behavior of the function E2(S). Repeating the calculations

from (4.1)–(4.2), we first reproduce the results of [47] in the vicinity of the solution Φ1 = ωτ :

for short strings, we get E ∼ 2/ωT,S ∼ 2/ω2T 2 and thus E2 ∝ 2S, precisely the result for

the leading Regge trajectory. Now the Regge slope does not depend on the temperature

(in the short string approximation!). This case, as we found, trivially satisfies the original

chaos bound (λ = 0, hence for sure λ < 2πT ). In the vicinity of the other solution, with

R = r0, things are different. Energy has the following behavior:

E ∼ 8π

α′
T

n
, `� 1 (4.13)

E ∼ 8π2

α′
T

`
, `� 1. (4.14)

For the spin, the outcome is

S ∼ 2r2
0

α′
`

n
, `� 1 (4.15)

S ∼ 2r2
0

α′
, `� 1, (4.16)
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so in this case there is no Regge trajectory at all, i.e., no simple relation for E2(S) because

the scale r0 and the quantity ` show up in the E2(S) dependence even at zero temperature.

In conclusion, the strings that can violate the chaos bound have a strange Regge

behavior in the gauge/string duality, in this case in a more extreme way than for the ring

strings (even for n = 1 no Regge trajectory is observed). The strings which have λ = 0

and thus trivially satisfy the bound on the other hand obey the leading Regge trajectory.

4.2 The limits of quasiclassicality

One more thing needs to be taken into account when considering the modification of the

chaos bound. Following [8], one can suspect that the violating cases are not self-consistent

in the sense that they belong to the deep quantum regime when semiclassical equations

(in our case for the string) cease to be valid and quantum effects kill the chaos. For a ring

string this seems not to be the case. To check the consistency of the semiclassical limit,

consider the energy-time uncertainty relation ∆E∆t ≥ 1. The energy uncertainty is of the

order of E/α′n as we found in (4.3)–(4.4), and the time uncertainty is precisely of the order

of the Lyapunov time 1/2πTn; the uncertainty relation then gives E ≥ 2πTn2α′. On the

other hand, we require that the spin S should be large in the classical regime: S � 1. This

implies E2 � 4πTεnα′ or, combining with the uncertainty relation, Tn3α′ � ε. Roughly

speaking, we need to satisfy simultaneously Tn2 ≤ 1/α′ and Tn3 � ε/α′, which is perfectly

possible: first, we need to have small enough α′ (compared to Tn2), as could be expected for

the validity of the semiclassical regime; second, we need to have sufficiently large n/ε� 1,

which can be true even for n = 1 for small ε, and for sure is satisfied for sufficiently large n

even for ε ∼ 1. In conclusion, there is a large window when the dynamics is well-described

by the classical equations (and this window even grows when n � 1 and the violation of

the chaos bound grows).

4.3 Ring string scattering amplitude and the relation to OTOC

So far our efforts to establish a field theory interpretation of a ring string in black hole

background have not been very conclusive, which is not a surprise knowing how hard it is in

general to establish a gauge/string correspondence in finite-temperature backgrounds and

for complicated string geometries. Now we will try a more roundabout route and follow

the logic of [4–6], constructing a gravity dual of the OTOC correlation function, which

has a direct interpretation in field theory; it defines the correlation decay rate and the

scrambling time of some boundary operator. In [17] this formalism was already applied to

study the OTOC of field theory operators (heavy quarks) dual to an open string in BTZ

black hole background, hanging from infinity to infinity through the horizon in eikonal

approximation. That case has a clear interpretation: the endpoints of the string describe

the Brownian motion of a heavy quark in a heath bath. As we already admitted, we do not

have such a clear view of what our case means in field theory, but we can still construct the

out-of-time ordered correlator corresponding to whatever complicated boundary operator

our string describes.

We will be delibarately sketchy in describing the basic framework of the calculation

as it is already given in great detail in [4–6]. The idea is to look at the correlation func-

– 20 –



J
H
E
P
1
2
(
2
0
1
9
)
1
5
0

tion 〈〈V̂x1(t1)Ŵx2(t2)V̂x3(t3)Ŵx4(t4)〉〉 of some operators V,W at finite temperature (hence

the expectation value 〈〈(. . .)〉〉 includes both quantum-mechanical and thermal ensemble

averaging). The time moments need not be ordered; we are often interested in the case

<t1 = <t3 ≡ 0,<t2 = <t4 = t.13 This correlation function corresponds to the scattering

amplitude between the in and out states of a perturbation sourced from the boundary. The

propagation of the perturbation is described by the bulk-to-boundary propagators K. The

perturbation has the highest energy at the horizon since the propagation in Schwarzschild

time becomes a boost in Kruskal coordinates, and the pertubation, however small at the

boundary, is boosted to high energy in the vicinity of the horizon. In the Kruskal coordi-

nates defined the usual way:

U = −e
t−r∗
2rh , V = e

t+r∗
2rh , r∗ =

∫ ∞
r

dr

f(r)
, (4.17)

the scattering amplitude becomes

D =

4∏
i=1

∫
d2pi

∫
d2xiK

∗(p3;x3)K∗(p4;x4)K(p1;x1)K(p2;x2)out〈pU3 , pV4 ;x3, x4|pU1 , pV2 ;x1, x2〉in.

(4.18)

The propagators are expressed in terms of the Kruskal momenta pi = (pUi , p
V
i ) and the

coordinates xi = (x1
i , x

2
i ) in the transverse directions. The in-state is defined by (pU3 , x

3)

at U = 0, and by (pV4 , x
4) at V = 0, and analogously for the out-state. The form of the

propagators is only known in the closed form for a BTZ black hole (in 2+1 dimensions), but

we are happy enough with the asymptotic form near the horizon. For simplicity, consider a

scalar probe of zero bulk mass, i.e., the conformal dimension ∆ = D, and at zero black hole

charge, i.e., for a Schwarzschild black hole. The propagator then behaves as (ω̃ ≡ ω/4πT ):

K(pU , pV ) ∼ π

sinh
(
π
T

) 1− e−πω̃

Γ (−ıω̃) Γ (ıω̃)

e−ıω̃t

(pU )1+ıω̃ + (pV )1−ıω̃ e
ı(pUV+pV U). (4.19)

The task is thus to calculate the amplitude (4.18) with the propagators (4.19). In the

eikonal approximation used in most of the literature so far, the problem boils down to

evaluating the classical action at the solution. However, it is not trivial to justify the

eikonal approximation for a ring string. Let us first suppose that the eikonal aproximation

works and then we will see how things change if it doesn’t.

4.3.1 Eikonal approximation

If the energy in the local frame near the horizon is high enough, then we have approximately

pU1 ≈ pU3 ≡ p, pV2 ≈ pV4 ≡ q so that pV1 ≈ pU2 ≈ pV3 ≈ pU4 ≈ 0, and for a short enough

scattering event (again satisfied if the energy and thus the velocity is high enough) the

coordinates are also roughly conserved, therefore the amplitude 〈out|in〉 is diagonal and

can be written as a phase shift exp(ıδ). The point of the eikonal approximation is that the

13In the Schwinger-Keldysh finite-temperature formalism the time is complex, with the imaginary time

axis compactified to the radius of the inverse temperature.
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shift δ equals the classical action. The action of the ring configuration is

S =
1

2πα′

∫
dτ

∫
dσ

(
R2

2

(
Φ̇2

1 − n2 sin2 Φ1

)
+
Ṙ2

2f
+
f

2
Ṫ 2

)
. (4.20)

We will consider again the string falling slowly in the vicinity of the horizon (see eqs. (2.10)–

(2.14)) and put Ṙ → 0, R(τ) ≈ r0, r0 − rh � rh. Now we need to pass to the Kruskal

coordinates and then introduce the new variables T = (V +U)/2, X = (V −U)/2. In these

coordinates the near-horizon geometry in the first approximation is Minkowskian and we

can easily expand around it as required for the eikonal approximation. The action and the

energy (to quartic order in the fluctuations) are now

S =
1

2πα′

∫
dτ

∫
dσ

[
1

2

(
−Ṫ2 + Ẋ2 + r2

0Φ̇2 + r2
0n

2 sin Φ2
)(

1 +
T2 −X2

2

)]
(4.21)

E =
1

2πα′

∫
dτ

∫
dσ

Ṫ
(1− T2 +X2)2

. (4.22)

As a sanity check, for n = 0 the fluctuations of the (T, X) variables in the action (4.21) are

the same as in [17], although we use a different worldsheet parametrization. The dynamics

of the angle Φ crucially depends on the winding number. One consequence is that the

on-shell action is nontrivial already at quadratic order. For the solution (2.10) — the

slowly-moving near-horizon string — we can assume Ṫ, Ẋ � Φ̇, so the equations of motion

yield as approximate on-shell solutions

T = T0e
ınr0τ/

√
2, X = X0e

−ınr0τ/
√

2, (4.23)

so that, as the perturbation dies out, the string approaches the locus T0 = 0⇒ U = −V ⇒
t→∞. Inserting (4.23) into (4.21), we obtain, after regularizing the action:

S(0) =
nr0

2α′
T2

0 + . . . (4.24)

E(0) =

√
2

α′
T0 + . . . . (4.25)

Therefore, S(0) =
(
E(0)

)2 × nrhα′/4 (where we have plugged in r0 ≈ rh): the action is

proportional to the square of energy, which equals E2 = pq in the center-of-mass frame.

This is perfectly in line with the fast scrambling hypothesis. Plugging in δ = S(0) into the

amplitude in (4.18) and rescaling

T13 ≡ e2πTt1 − e2πTt∗3 , T24 ≡ e−2πTt∗4 − e−2πTt2 (4.26)

pU =
p

ı

1

T13
, pV =

q

ı

1

T24
(4.27)

we obtain:

D = N4
ω

(
e2πTt1 − e2πTt∗3

)2 (
e−2πTt∗4 − e−2πTt2

)2
∫
dp

p2

∫
dq

q2
e
−p−q−ı pq

T13T24

α′nrh
4 , (4.28)
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with Nω containing the first two factors in (4.19) which only depend on ω and T . Introduc-

ing the change of variables p = Q sin γ, q = Q cos γ, we can reduce (4.28) to an exponential

integral. With the usual contour choice for OTOC =ti = −εi,<t1 = <t3 = 0,<t2 = <t4 = t,

we end up at leading order with

D ∼ 1 + 2ıα′nrhe
2πTt ⇒ λOTOC ∼ 2πT, t∗ ∼

1

2πT
log

1/α′

nrh
. (4.29)

Therefore, the Lyapunov time as defined by the OTOC in field theory precisely saturates

the predicted bound 2πT , and in the eikonal approximation is not influenced by the winding

number n. On the other hand, the scrambling time t∗ is multipled by a factor of log(1/α′n)

(the horizon radius can be rescaled to an arbitrary value by rescaling the AdS radius, thus

we can ignore the factor of rh). The factor 1/α′ appears also in [17] and plays the role of

a large parameter, analogous to the large N2 factor in large-N field theories: the entropy

of the string (the number of degrees of freedom to be scrambled) certainly grows with

1/α′. For a ring string, this factor is however divided by n, as the number of excitations

is reduced by the implementation of the periodic winding boundary condition. Therefore,

the winding of the ring string indeed speeds up the chaotic diffusion, by speeding up the

scrambling. However, the faster scrambling is not seen in the timescale of local divergence

which, unlike the classical Lyapunov exponent, remains equal to 2πT ; it is only seen in the

timescale on which the perturbation permeates the whole system.

In conclusion, the violation of the Maldacena-Shenker-Stanford limit for the bulk Lya-

punov exponent in AdS space in the eikonal approximation likely corresponds to a decrease

of scrambling time in dual field theory, originating from reduction in the number of degrees

of freedom.

4.3.2 Beyond the eikonal approximation: waves on the string

What is the reason to worry? Even if the scattering is still elastic and happens at high

energies and momenta (therefore the overlap of the initial and final state is diagonal in the

momenta), it might not be diagonal in the coordinates if the string ocillations are excited

during the scattering. These excitations might be relevant for the outcome.14 However, the

quantum mechanics of the string in a non-stationary background is no easy matter and we

plan to address it in a separate work. In short, one should write the amplitude (4.18) in the

worldsheet theory and then evaluate it in a controlled diagrammatic expansion. For the

black hole scrambling scenario, the leading-order stringy corrections are considered in [6];

the Regge (flat-space) limit is the pure gravity black hole scrambling with the Lyapunov

exponent 2πT and scrambling time determined by the large N . We need to do the same

for the string action (4.21) but, as we said, we can only give a rough sketch now.

14With an open string hanging from the boundary to the horizon as in [17] this is not the case, since

it stretches along the radial direction and the scattering event — which is mostly limited to near-horizon

dynamics because this is where the energy is boosted to the highest values — remains confined to a small

segment of the string, whereas any oscillations propagate from end to end. However, a ring string near the

horizon is wholly in the near-horizon region all the time, and the string excitations may happilly propagate

along it when the perturbation reaches the area UV ≈ 0.

– 23 –



J
H
E
P
1
2
(
2
0
1
9
)
1
5
0

The amplitude (4.18) is given by the worldsheet expectation value

A =
∏
i

∫
d2zi〈V̂ (z1, z̄1)Ŵ (z2, z̄2)V̂ (z3, z̄3)Ŵ (z4, z̄4)〉 (4.30)

with the action (4.20), or (4.21) in the target-space coordinates (T, X) accommodated

to the shock-wave perturbation. Here, we have introduced the usual complex worldsheet

coordinates z = τ + ıσ, z̄ = τ − ıσ. We thus need to compute a closed string scattering

amplitude for the tachyon of the Virasoro-Shapiro type, but with nontrivial target-space

metric and consequently with the vertex operators more complicated than the usual plane-

wave form. This requires some drastic approximations. We must first expand the non-

Gaussian functional integral over the fields T(z, z̄), X(z, z̄), Φ(z, z̄) perturbatively, and

then we can follow [6] and [49] and use the operator-product expansion (OPE) to simplify

the vertex operators and decouple the functional integral over the target-space coordinates

from the worldsheet integration. First we can use the worldsheet reparametrization to fix

as usual z1 = ∞, z2 = z, z3 = 1, z4 = 0. The most relevant regime is that of the highly

boosted pertrubation near the horizon, with |z| ∼ 1/s. At leading order in the expansion

over T, X, the action (4.21) decouples the Gaussian functional integral over the (T, X)

coordinates from the pendulum dynamics of the Φ coordinate. We can just as easily use

the (U, V ) dynamics, with 1/2(Ṫ2− Ẋ2) 7→ −2U̇ V̇ ; this is just a linear transformation and

the functional integral remains Gaussian. The states in U and V coordinates are just the

plane waves with p1 = p3 = p, p2 = p4 = q, but the Φ states are given by some nontrivial

wavefunctions ψ(Φ). Alltogether we get

A=

∫
d2z

∫
DUDVDΦexp

[
− 1

2πα′

∫
d2z′

(
−2U̇ V̇ +r2

h

(
Φ̇2+n2 sin2 Φ

))]
V̂1Ŵ2V̂3Ŵ4

V̂1,3 = g(U1,3)e∓ıpU1ψ∓(Φ1,3), Ŵ2,4 = g(V2,4)e∓ıqV2,4ψ∓(Φ2,4), (4.31)

where we denote by the index i = 1, 2, 3, 4 the coordinates depending on zi and the coordi-

nates in the worldsheet action in the first line depend on z′ which is not explicitly written

out to save space. The higher-order metric corrections in U and V give rise to the weak non-

plane-wave dependence of the vertices on U and V , encapsulated in the functions g above.

We will disregard them completely, in line with considering the decoupled approximation

of the metric as written explicitly in the action in (4.31). The functional integral over U, V

is easily performed but the Φ-integral is formidable. However, for small |z|, we can expand

the ground state solution (2.10) in z, z̄, which corresponds to the linearized oscillatory be-

havior and the functional integral becomes Gaussian: Φ̇2 + n2 sin2 Φ 7→ Φ̇2 + n2Φ2. With

the effective potential for the tachyon Veff(Φ) = n2Φ2, the worldsheet propagator takes

the form

GΦ(z, z̄, z′, z̄′) = K0(n|z − z′|) ∼ log
n|z − z′|2

2
. (4.32)

For the plane wave states we take the ansatz ψ(Φ) = eı`Φ, where ` = l−ıν, with l ∈ Z being

the angular momentum and 0 < ν � 1 the correction from the interactions (fortunately

we will not need the value of ν). The worldhseet propagator for the flat (U, V ) coordinates
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has the standard logarithmic form. Now we use the fact that 1/|z| ∼ s = pq to expand the

vertices for Ŵ2 and Ŵ4 in OPE. The OPE reads

: Ŵ2Ŵ4 :∼ exp
(
ıqz∂V2 + ıqz̄∂̄V2

)
exp

(
ı`z∂Φ2 + ı`z̄∂̄Φ2

)
|z|
−2− 2πα′

r2
h

(`2−n2/2)
, (4.33)

which follow from the action of the Laplace operator on the state eı`Φ. This finally gives

A= const.×
∫
d2z : Ŵ2Ŵ4 : exp

(
−πα

′

2
pq log |1−z|2

)
exp

[
πα′

r2
h

`2
(
GΦ (z)+GΦ (1−z)

)]
.

(4.34)

The above integral results in a complicated ratio of the 1F1 hypergeometric functions and

gamma functions. We still have three possible poles, as in the Virasoro-Shapiro amplitude.

In the stringy regime at large pq, the dominant contribution must come from ` ∼ l = 0,

for the other pole brings us back to the purely gravitational scattering, with S ∝ pq,

whereby the local scrambling rate remains insensitive to n, as we have shown in the eikonal

approximation. The stringy pole yields the momentum-integrated amplitude

D ∼
∫
dp

p2

∫
dq

q2
exp

[
−p− q −

(
pqe−2πTt

)1+πα′

r2
h

n2
]
∼ 1 + const.× e2πT(1+πα′n2)

λOTOC ∼ 2πT
(
1 + πα′n2

)
, (4.35)

showing that the Lyapunov scale 2πT is modified (we again take rh = 1 for simplicity).

We conclude that in the strong stringy regime the Lyapunov exponent in dual field theory

behaves as 2π(1 + πα′n2)T , differing from the expected chaos bound for nonzero winding

numbers n. Thus, if the classical gravity eikonal approximation does not hold, the mod-

ification of the bulk Lyapunov exponent also has an effect on the OTOC decay rate in

field theory.

Once again, the above reasoning has several potential loopholes: (1) we completely

disregard the higher-order terms in the metric, which couple that radial and transverse

dynamics (2) we assume only small oscillations in Φ (3) we disregard the corrections to

vertex operators (4) we disregard the corrections to the OPE coefficients. These issues

remain for future work.

5 Discussion and conclusions

Our study has brought us to a sharp formal result with somewhat mystifying physical

meaning. We have studied classical chaos in the motion of closed strings in black hole

backgrounds, and we have arrived, analytically and numerically, at the estimate λ = 2πTn

for the Lyapunov exponent, with n being the winding number of the string. This is a

correction by the factor of n of the celebrated chaos bound λ ≤ 2πT . However, one

should think twice before connecting these things. From the bulk perspective, what we

have is different from classical gravity — it includes string degrees of freedom, and no

gravity degrees of freedom. Therefore, the fast scrambler hypothesis that the black holes

in Einstein gravity exactly saturate the bound is not expected to be relevant for our system
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anyway, but the question remains why the bound is modified upwards instead of simply

being unsaturated (in other words, we would simply expect to get λ < 2πT ). The twist

is that the Lyapunov exponent in the bulk is related to but in general distinct from the

Lyapunov exponent in field theory, usually defined in terms of OTOC. Apparently, one just

should not uncritically apply the chaos bound proven for the correlation function decay

rates in flat-space quantum fields to worldsheet classical string dynamics.

Therefore, it might be that the field theory Lyapunov time does not violate the bound

at all. The timescale of OTOC decay for a field theory dual to the fluctuating string is

calculated in [17]: OTOC equals the expectation value of the scattering operator for bulk

strings with appropriate boundary conditions. The field-theory Lyapunov time is then

determined by the phase shift of the collision. In particular, [17] finds the saturated bound

λ = 2πT as following from the fact that the phase shift is proportional to the square of

the center-of-mass energy. On the other hand, [6] predicts that the Lyapunov exponent is

lower than the bound when stringy effects are considered. We have done first a completely

classical calculation of OTOC and have found, expectedly perhaps, that the 2πT bound

is exactly obeyed. Then we have followed the approximate scheme of [49] to include the

one-loop closed string tachyon amplitude as the simplest (and hopefully representative

enough?!) stringy process. For a ring string background, this gives an increased value for

the field-theory Lyapunov rate, yielding some credit to the interpretation that complicated

string configurations encode for strongly nonlocal operators, which might indeed violate

the bound. But as we have explained, the approximations we took are rather drastic. We

regard a more systematic study of loop effects in string chaos as one of the primary tasks

for future work.

To gain some more feeling on the dual field theory, we have looked also at the Regge

trajectories. In one configuration, the strings that violate the bound n times are precisely

those whose Regge trajectory has the slope n times smaller than the leading one (and thus

for n = 1 the original bound is obeyed and at the same time we are back to the leading Regge

trajectory). In another configuration, the strings that violate the bound describe no Regge

trajectory at all. However, it is very hard to say anything precise about the gauge theory

operators at finite temperature. Deciphering which operators correspond to our strings

is an important but very ambitious task; we can only dream of moving toward this goal

in very small steps. What we found so far makes it probable that complicated, strongly

non-local operators correspond to the bound-violating strings, so that (as explained in

the original paper [1]) their OTOC cannot be factorized and the bound is not expected

to hold.15

15In relation to the gauge/string duality it is useful to look also at the gauge theories with Nf flavors

added, which corresponds to the geometry deformed by Nf additional D-branes in the bulk. In [50] it was

found that the system becomes nonintegrable in the presence of the flavor branes (expectedly, as it becomes

non-separable), but the Lyapunov exponent does not grow infinitely with the number of flavors, saturating

instead when the number of colors Nc and the number of flavors become comparable. This is expected, as

the D3-D7 brane background of [50] formally becomes separable again when Nf/Nc →∞ (although in fact

this regime cannot be captured, the calculation of the background ceases to be valid in this case). In our

case the winding number n is a property of the string solution, not geometry, and the Hamiltonian (2.9)

seems to have no useful limit for n→∞, thus we do not expect the estimate 2πTn will saturate.
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Preparing the final version of the paper, we have learned also of the work [52] where

the n-point OTOCs are studied following closely the logic of [1] and the outcome is a factor

of n enlargement, formally the same as our result. This is very interesting but, in the light

of the previous paragraph, we have no proof that this result is directly related to ours. It

certainly makes sense to investigate if the winding strings are obtained as some limit of

the gravity dual for the n-point correlations functions. We know that n-point functions

in AdS/CFT are a complicated business. The Witten diagrams include bulk propagators

carrying higher spin fields that might in turn be obtained as string excitations. Just how

far can one go in making all this precise we do not know for now.

In relation to [15, 16] one more clarifying remark should be given. In these works,

particles in the vicinity of the horizon are found to exhibit chaos (either saturating the

bound or violating it, depending on the spin of the background field). At first glance, this

might look inconsistent with our finding that for n = 0, when the string degenerates to

a particle, no chaos occurs; after all, we know that geodesic motion in the background of

spherically symmetric black holes is integrable, having a full set of the integrals of motion.

But in fact there is no problem, because in [15, 16] an additional external potential (scalar,

vector, or higher-spin) is introduced that keeps the particle at the horizon, balancing out

the gravitational attraction. Such a system is of course not integrable anymore, so the

appearance of chaos is expected. The modification of the bound in the presence of higher-

spin fields might have to do with the findings [51] that theories with higher-spin fields can

only have gravity duals in very restricted situations (in particular, higher spin CFTs with

a sparse spectrum and large central charge or, roughly speaking, massive higher spin fields,

are problematic).

Another task on the to-do list, entirely doable although probably demanding in terms

of calculations, is the (necessarily approximate) calculation of the black hole scattering

matrix, i.e., the backreactrion of the black hole upon scattering or absorbing a string,

along the lines of [7]. In this paper we have worked in the probe limit (no backreaction),

whereas the true scrambling is really the relaxation time of the black hole (the time it

needs to become hairless again), which cannot be read off solely from the Lyapunov time;

this is the issue we also mentioned in the Introduction, that local measures of chaos like the

Lyapunov exponent do not tell the whole story of scrambling. Maybe even a leading-order

(tree-level) backreaction calculation can shed some light on this question.
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Figure 6. Check of the Hamiltonian constraint H = 0 during an integration for the spherical,

planar and hyperbolic black hole (black, blue, red respectively), at temperature T = 0.01 (left)

and T = 0.10 (right). The accuracy of the constraint is a good indicator of the overall integration

accuracy, it is never above 10−6 and has no trend of growth but oscillates.

A Summary of the numerics

We feel it necessary to give a short account of the numerical methods used. The string

equations of motion (2.6)–(2.8) present us with a system of two ordinary second-order

differential equations with a constraint. This numerical calculation is not very difficult, and

it would be trivial if it were not for two complicating factors. First, the constraint itself

is the main complication; it is non-holonomic and cannot be easily eliminated. Second,

the system is rather stiff, with Ṙ in particular varying for several orders of magnitude.

We did the integration in the Mathematica package, using mostly the NDSolve routine,

and controlling both the relative and the absolute error during the calculations. The

constraint problem is solved serendipitously by ensuring that the initial conditions satisfy

the constraint and then adjusting the required absolute and relative error tolerance so that

the constraint remains satisfied. A priori, this is a rather unlikely way to succeed but we

find it works in most cases. Only in a few integrations we needed to write a routine which

shoots for the condition H = 0 at every timestep, using the NDSolve routine in the solver;

the shooting itself we wrote using the tangent method which is handier for this problem

than the built-in routines. The usual analytic way, making use of the Lagrange multipliers,

seems completely unsuitable for numerical implementation in this problem. In figure 6 we

show the evolution of the constraint for a few examples, demonstrating the stability of the

integration. We have also checked that the functions R(τ),Φ(τ) converge toward definite

values as the precision and accuracy (relative and absolute error per step) are varied.
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