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1 Introduction

Strongly correlated electrons at finite density remain a deep and interesting puzzle, en-
countered in various quantum-many body systems, from condensed matter to heavy ion
physics to astrophysics. Apart from some special cases, Fermi liquids are the only inter-
acting fermionic systems at finite density where we have good control. A breakthrough
was provided by the application of AdS/CFT to finite density large N -matrix fermionic
systems. This allowed new strongly coupled IR fixed points characterized by an emergent
Lifshitz scaling with dynamical critical exponent z to be discovered.1 Though many of
such results were found in bottom-up holographic models where only bosonic operators are
tracked, there is reason to believe that any holographic finite density systems must also
have microscopic fermionic degrees of freedom. Indeed a number of these holographically
discovered fixed points have now been independently confirmed as Sachdev-Ye-Kitaev-like
large N quantum spin-liquid fermionic ground states, where the additional microscopic
description allows valuable extra insights into the workings of these novel states of matter.

1At finite N these fixed points may be not be true IR fixed points but intermediate scale attractors in
the RG flow.
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In holography these new ground states are qualitatively understood to arise as a
deconfined phase of an underlying microscopic theory with the confined phase corresponding
to a conventional Fermi liquid; see [1]. A dozen years ago this was a hotly debated topic
and it was found that the prototypical deconfined state, characterized by the AdS2, z =∞
near horizon dynamics of AdS Reissner-Nordstrom (RN) black holes and an associated
multitude N of non-Fermi-liquid Fermi surfaces [2–4] in the Thomas-Fermi limit of N →∞
indeed transitions at low temperatures to a charged Tolman-Oppenheimer-Volkov electron
star [5–9]. These states are partially confined-partially deconfined in that they still have a
finite z Lifshitz horizon; for a review and the transport responses of these states, see [10, 11].

However, away from the Thomas-Fermi limit a holographic description of a direct single
Fermi-surface deconfined non-Fermi-liquid-to-confined Fermi-liquid T = 0 quantum phase
transition has so far not yet been found. In the bulk, this problem corresponds to solving an
Einstein-Maxwell-Dirac system in a self-consistent way, accounting for the backreaction of
fermions on geometry, but keeping the number of Fermi surfaces finite or specifically keeping
only one. The distinct puzzle here is that the signal of the putative instability towards
confinement at low temperature — a log-oscillatory response in the single fermion spectral
function [4] — occurs at a distinct point in parameter space from the one where the first
stable Fermi surface is located (figure 1). In [12] an electron star model is introduced where
N is finite but still very large; this hinted at a first order rather than a continuous transition.
Approaching the question from the other side, a holographic description of confined single
Fermi surface Fermi-liquid was constructed in [13] by enforcing confinement through a hard
wall IR cut-off [13]. This confirmed that confinement-deconfinement is the correct viewpoint
of the quantum phase transition, but did not yet include the gravitational backreaction. The
most comprehensive study to date is the attempt at quantum electron star model of [14, 15]
which regulates the system by putting it on a sphere and then tries to carefully remove
this regularization procedure for a self-consistent solution of the Einstein-Maxwell-Dirac
equations in the asymptotic AdS background.

The simple hard-wall solution of [13] already illustrates the fundamental problem. In
the presence of an occupied Fermi surface the gravitational backreaction is uncontrolled,
see [14, 15]. These subsequent papers then address this by a second cut-off for the
backreaction, and then attempt to remove both cut-offs in a precarious balancing act.
In the present paper we address this in a different way. We construct a fully gravitionally
backreacted single-Fermi surface solution confined through a soft rather than a hard wall.
From the gravitational point of view this soft wall determines the deep interior boundary
conditions of the fermionic wave functions instead of the horizon geometry. As illustrated in
detail in [14, 15] at the technical level the puzzle is that with the vanishing of the horizon
(signalling deconfinement) at the quantum phase transition, not only must one find a new
self-consistent (confining) IR geometry, but also an associated set of self-consistent boundary
conditions for the fermion wave-function.

Because the confining boundary conditions suppress the fermion wave function in the
IR, there is also no associated backreaction in the deep IR, which remains AdS. This
confined regulated quantum electron star (rQES) is therefore the fermionic analogue of the
Horowitz-Roberts-Gubser-Rocha AdS4-to-AdS4 groundstate/domain wall for holographic
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Figure 1. A schematic representation of the phase diagram of holographic fermions, where q and
m are the charge and the mass (related to the scaling dimension in field theory ∆ = 3/2 +m) of the
bulk fermion respectively. Along the line q = m/

√
2, determined by the Schwinger pair production

threshold, the quantum phase transition ought to happen between the Reissner-Nordström black
hole describing the strange metal phase and the quantum electron star solution (no black hole)
corresponding to a metallic phase. However, this line is not identical to boundary of the regime
where the Reissner-Nordström system supports stable Fermi surfaces as probed through the Reissner-
Nordström spectral functions. The electron star (fluid) model requires taking the limit q,m→ 0
where both critical lines become indistinguishable. To understand the transition at finite q,m is the
motivation for our approach. Adapted from [4].

superconductors [16, 17]. This solution (just like our soft wall confining electron star
solution) describes a system that flows from a conformal pure AdS UV to an intermediate
ordered holographic superconductor (Fermi liquid) state with a gap in the sense that below
that gap it returns to the renormalized conformal theory and low energy excitations cannot
disturb the ordered state. As is well-known the generic holographic superconductor ground
state is not AdS4-to-AdS4 but of the Lifshitz type [18]. It is the technical difficulties
described above that guided us to first construct this Horowitz-Roberts-Gubser-Rocha type
solution. We leave the full Lifshitz quantum electron star for future work. One natural way
to construct the latter is that, rather than trying to remove the soft-wall regulator, one can
also make it dynamical, similar to the electron star study in [19].

We do confirm that within the class of non-dynamical soft-wall solutions this gapped
confined holographic Fermi liquid is the thermodynamically preferred state over the decon-
fined Reissner-Nordström metallic state for appropriate charge and mass of the fermion.
Because we are not yet able to remove the regulator we do not yet solve the puzzle of
figure 1 directly.

The outline of the paper is the following. In section 2 we present the gravity setup
and the regulated quantum electron star (rQES) solution. In section 3, we present the
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properties of our rQES solution, i.e. the gapped confined Fermi liquid: we show it is the
thermodynamically preferred solution in a certain range of parameters, and demonstrate
the existence of the infinitely long-lived quasiparticle peaks in the spectrum of the boundary
theory. In section 4, we present some considerations about removing the confining soft wall.
Section 5 sums up the conclusions together with some musings on further directions of work
and the physical meaning of our results.

2 A confined quantum electron star: set-up

The minimal bottom-up gravity dual of a strongly correlated electron system is the Einstein-
Maxwell-Dirac system [2–4]. The new element of our setup is the phenomenological
soft-wall-like regulator inspired by bottom-up AdS/QCD [20]. The regulator is a fixed
non-dynamic scalar field, which neither backreacts on the metric itself nor does it feel the
backreaction by the fermions. This is again in line with AdS/QCD models. Therefore,
the geometry starts as pure AdS in the UV, in the interior it is influenced by the gauge
and matter fields and deviates from AdS, and in far IR all matter fields are exponentially
damped by the confining potential. However, in contrast to most hard/soft-wall models we
will let the potential only damp the matter sector and not the gravitational sector. The
action of the system is:

S =
∫

d4x
√
−g

[
L2

2κ2 (R+ 6)− L2

4 FµνF
µν + L3Lf [Ψ,Φ]

]
(2.1)

where κ is the gravitational coupling constant; and L is set to L = 1 in the remainder. The
Dirac Lagrangian is:

Lf = Ψ̄
[
eµAΓA

(
∂µ + 1

4ω
BC
µ ΓBC − iqAµ

)
−
(
m+ M̂Φ

)]
Ψ (2.2)

where Ψ̄ = iΨ†Γ0, eµA is the vierbein, ΓA are the gamma matrices in four dimensions, and
ωABµ is the spin connection. The regulator is fully encoded in an effective mass contribution
M̂(z)Φ(z) for the Dirac field, with Φ(z) a non-dynamical scalar field whose profile we shall
choose later. Inspired by [21], we will consider two types of the confining potential:

M̂ =

−ez3Γ3 , the potential preserves chirality ,
z14 , the potential breaks chirality .

(2.3)

Here z, both as index and a variable, refers to the radial coordinate of the AdS space.
We will assume a radially symmetric metric which is asymptotically AdSd+1 with d = 3,
parametrized as:

ds2 = −f(z)h(z)
z2 dt2 + dxidxi

z2 + dz2

z2f(z) . (2.4)

The radial coordinate is defined for z ≥ 0, where z = 0 is the location of AdS boundary
(UV). Development of a horizon at finite z is in principle signified by the appearance of a
zero of the function f : f(zH) = 0. At zero temperature (the only case we consider), the
space extends to infinity, 0 ≤ z ≤ ∞.

– 4 –
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Our choice to let the wall only confine the fermion-matter sector (together with the
absence of backreaction by the confining scalar) implies that at finite chemical potential but
zero bulk fermion density, the thermodynamically preferred solution is the regular charged
(RN) black hole, though pure AdS with a constant electrostatic potential is also a solution.

For a certain value of the charge q of the fermion, it will be thermodynamically preferred
to store all charge in an occupied bulk fermionic state, i.e. nonzero bulk density nc ≡ 〈Ψ†Ψ〉,
rather than a Reissner-Nordström black hole. Now the precise radial profile of the scalar
Φ(z) becomes important. The original AdS/QCD papers used a quadratic scalar, behaving
in the IR as Φ ∼ z2 [22], which ensures confinement while still being smooth. Another form
found in the literature is a profile which flattens out to a constant in the IR [23]. At the
same time the UV completion of the scalar field has to ensure that its contribution to the
Dirac equation decays quickly enough for small z to reproduce the equation of motion in
pure AdS in the limit z → 0. The forms that satisfy all the requirements and which we find
numerically convenient are

Φ(z) = λz2, quadratic scalar

Φ(z) = λ
zα

zα0 + zα
, flat scalar.

(2.5)

The amplitude of the scalar (i.e. the measure of the “hardness” of the wall) is parametrized
by λ, and z0 is the scale at which the scalar begins to flatten (in the second, flat scalar
model). The choice of α is merely that of computational convenience and we choose α = 4.
Similarly, we will consistently choose z0 = 2 throughout the rest of this paper.

2.1 Einstein-Maxwell-Dirac equations

From the action we obtain the Maxwell equation and two convenient linear combinations
of the tt and zz components of the Einstein equations. With the ansatz that only At 6= 0,
and that all functions only depend on z, compatible with homogeneity and isotropy, they
reduce to

A′′t (z)− h′(z)
2h(z)A

′
t(z) =

√
h(z)n(z) ,

1 + z

3f
′(z)− f(z) = z2

3f(z)h(z)ρ(z) + z4

12h(z)A
′
t(z)2 ,

h′(z) = −zh(z)p(z)− z

f(z)2 ρ(z) .

(2.6)

Compatible with the symmetries the current vanishes J i = 0, the charge density J0 is
denoted as J0 = n(z)/

√
−g = z4n(z)/

√
h(z), and the stress tensor is parametrized as

(Tf )µν = diag(ρ(z), p⊥(z), p⊥(z), p(z)), (2.7)

where p⊥(z) is the pressure in the transverse x, y directions.
The ii components of the Einstein equations are both equal to

zh(z)
[
−z3A′t(z)2 +

(
3zf ′(z)− 4f(z)

)
h′(z) + 2zf(z)h′′(z)

]
+

+ 2h(z)2 [z (zf ′′(z)− 4f ′(z)− 2βzp⊥(z)
)

+ 6f(z)− 6
]
− z2f(z)h′(z)2 = 0 .

– 5 –
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They are not independent, however. Denoting the Einstein field equations as Eµν ≡
Gµν − Tµν and the Maxwell equation as EM ≡ ∇µFµν − Jν , one can show that2

Exx = L̂ · E − 1
2z∇µT

µν , (2.8)

where L̂ · E ≡ A1∂zEtt + A2∂zEzz + A3EM + A4f
′(z)Ett + Ezz (A5f

′(z) +A6h
′(z) +A7)

is a linear combination of both {Ett, Ezz, EM} and their derivatives and Tµν is the total
stress-energy tensor associated with the matter content of the theory. The stress-tensor
is covariantly conserved if the matter sector is on-shell, i.e. obeys its equations of motion.
Thus

Eon-shell
xx = ∇µTµν = 0 (2.9)

It is therefore sufficient to solve the three equations (2.6) together with the matter sector.
The charge, energy and pressure densities n(z), ρ(z), p(z) are determined by the occupied

fermionic states in the AdS bulk space. Importantly, we will compute them solely from
microscopic considerations: we do not assume anything like a fluid limit or a specific form
of the equation of state. We compute them from the Dirac Lagrangian, within the one-loop
Hartree correction to the background. This is discussed in detail in the next subsection.

We will now proceed to derive the equation of motion for the Dirac field. From (2.2),
the equation reads:

eµAΓA
(
∂µ + 1

4ω
BC
µ ΓBC − iqAµ

)
Ψ =

(
m+ M̂(z)Φ

)
Ψ . (2.10)

It is known that the spin connection in this type of metric can be eliminated by rescaling
the fermion [2, 24]:

Ψ = (−gzz det gµν)−
1
4 ψ̃ =

(
f(z)h(z)
z2d

)− 1
4
ψ̃ ≡ a(z)ψ̃. (2.11)

In addition, it is convenient to eliminate any singular terms from the fermionic wavefunction.
Since our solutions are smooth in the interior as we shall see, the only singularity is the
branch cut in the UV behaving as zm. We thus rescale one more time

ψ̃ = zmψ ≡ b(z)ψ. (2.12)

In most cases we will use the rescaled form and write the equations for ψ. So far this is
all independent of the gamma matrix representation. In order to simplify the equations of
motion, we now employ the representation

Γµ =
(

0 γµ

γµ 0

)
, Γ3 =

(
1 0
0 −1

)
, (2.13)

with µ ∈ {0, 1, 2}, γ0 = iσ2, γ1 = σ1, γ2 = σ3 and σ1,2,3 are the usual Pauli matrices.
Homogeneity and isotropy along the t, x, y directions allow us to take the energy ω and
momentum k ≡ kx as good quantum numbers, so the Dirac bispinor is expressed as

ψ = e−iωt+ikx (ψ1(z), χ1(z),−iχ2(z), iψ2(z))T . (2.14)
2This is essentially ∇µGµν = ∇µTµν .

– 6 –
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As in [13, 24], this yields two (equivalent) decoupled systems for the two independent
components, for ψ1,2 and χ1,2, corresponding to the spin degeneracy of our system. We will
focus on the ψi components for which the Dirac equation reads[

∂z + ε+Φ + m

z

(
1− 1√

f(z)

)]
ψ1(z)−

[
k√
f(z)

+ ω + qAt

f(z)
√
h(z)

]
ψ2(z) = 0[

∂z + ε−Φ + m

z

(
1 + 1√

f(z)

)]
ψ2(z) +

[
ω + qAt

f(z)
√
h(z)

− k√
f(z)

]
ψ1(z) = 0 .

(2.15)

where ε+ = ε−= 1 corresponds to the chiral-preserving potential and ε+ =−ε−=−1/
√
f(z)

corresponds to the chiral-breaking potential.

2.2 Fermion densities and backreaction

The fermionic densities and pressures are obtained microscopically, from the Dirac La-
grangian (2.2):

ρ = 〈Ψ†et0Γ0(−iω − iqAt)Ψ〉 ,
n = −〈Ψ†Ψ〉 . (2.16)

The components of the pressure p⊥, p are likewise formally equal to

p⊥ = 〈Ψ̄iex1kxΓ1Ψ〉,
p = 〈Ψ̄ez3Γ3∂zΨ〉. (2.17)

The expectation value 〈. . .〉 in (2.16)–(2.17) is the quantum-mechanical expectation value,
i.e. one solves the Dirac equation with appropriate boundary conditions (see below) and
sums over the quantum numbers in the appropriate range. The quantum numbers are the
radial modes `, and momenta kx, ky in the x, y-directions which determine the on-shell
energy in terms of a dispersion relation ω = E`(k). The role of the confining potential is
essential here: it quantizes the radial number `. Each discrete radial mode corresponds to
a separate Fermi surface [2–4, 8, 9, 13]. As emphasized in the Introduction, we seek a state
where only a single Fermi surface is occupied. This must be the lowest radial mode. Note
that despite occupying a single mode, this mode still contains a thermodynamically large
number of states counted by the x, y-momenta. Each radial mode is thus a fluid of fermions.

We will ignore the subtleties of the zero-point energy and the Dirac sea; in principle
these are absorbed in a renormalization of the cosmological constant and the AdS radius;
see however [14, 15] for a more detailed treatment. Then, in terms of the solutions to the
Dirac equation, formally the expressions for the density are

n(z) = 2q
z3
√
f(z)

a(z)2b(z)2∑
k,`

Θ(−E`(k))
(
ψ†1;`,k(z)ψ1;`,k(z)+ψ†2;`,k(z)ψ2;`,k(z)

)
ρ(z) = a(z)2b(z)2et0(z)(−iω−iqAt(z))

∑
k,`

Θ(−E`(k))
(
ψ†1;`,k(z)ψ1;`,k(z)+ψ†2;`,k(z)ψ2;`,k(z)

)
p(z) = a(z)2b(z)2ez3(z)

∑
k,`

Θ(−E`(k))
(
ψ†1;`,k∂zψ2;`,k−ψ†2;`,k∂zψ1;`,k

)
(2.18)

– 7 –
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Choice of initial 
background

Solve the Dirac 
equations

Compute the 
Hartree densities

Backreact on the 
background

Figure 2. Iteration algorithm used to compute the rQES solution.

where the step-function Θ(x) selects the positive energy states. Note that due to the
antisymmetry of the two spin components, the derivatives of the scaling factors a(z), b(z)
cancel out in the expression for p.

2.2.1 The self-consistent Hartree calculation

We solve the system (2.6), (2.15) in the one-loop Hartree approximation. As a reminder,
the Hartree correction is the local single-particle diagram (vacuum bubble), ignoring anti-
particles, i.e. ignoring the contribution from the Dirac sea. We do not take into account
the Fock correction. In flat space, the Hartree correction is trivial [25]: in terms of the
causal fermionic propagator GR it equals limt→0−

∫
dωd2k GR(ω, k)e−iωt = δµ,3 merely

renormalizing the chemical potential. In curved space however, the local chemical potential
is µloc(z) = At(z)

√
−gtt(z), with a nontrivial radial profile, thus the correction δµ(z) is also

variable along z and therefore it can have nontrivial physical effects.
The Hartree approximation then proceeds by computing this one-loop Hartree correction

self-consistently. One starts with an ansatz for the background, solves the Dirac equation
in this background, computes the one-loop Hartree densities in the assumption that they
are small, updates the background and iterates to convergence as in figure 2.

2.3 Boundary conditions on the Einstein-Maxwell sector

The Einstein-Maxwell equations (2.6) require four boundary conditions in total (two for
At(z) and one for each of the metric functions f(z), h(z)). The UV boundary conditions are

At(zUV) = µ , the chemical potential.
f(zUV) = h(zUV) = 1 , AdS4 asymptotics.

(2.19)

The fourth boundary condition we impose is given by our demand that we seek a state
where all the charge is contained in occupied fermionic states.4 The confining potential
ensures that the fermionic wavefunctions are localized at a finite value in the radial direction.

3The infinitesimal time separation t→ 0− is really the point-splitting regularization, as the integral of
GR at coincident points in spacetime generally diverges; the sign of t is dictated by the contour choice for
the retarded propagator [25].

4There could be interpolating solutions with both a charged horizon and a charge in occupied fermionic
states. We will not seek for those here as the presence of the charged Reissner-Nordstrom like horizons
should imply the continued presence of log-oscillatory instabilities.
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Thus by construction the charge density will vanish in the deep AdS interior. From this
follows that the fourth boundary condition is ∂zAt(zIR) = 0. Formally zIR = ∞; in our
numerical computation it will be finite but large, and we have checked that our results do
not depend on its value.

In practice, we solve the boundary value problem by shooting from the IR. We impose
directly the condition ∂zAt(zIR) = 0 as well as the condition ∂zf(zIR) = 0. The latter
indirectly encodes our demand that we seek a T = 0 solution; recall that for a black hole
solution ∂zf(zhorizon) ∼ T . Then we use the free value At(zIR) and h(zIR) to shoot for
At(zUV) = µ, h(zUV) = 1 at the boundary. From the equation of motion for f(z) one
obtains automatically that f(zIR) = 1 once we fall on the right branch; for the same reason
one can also use f(zIR) = 1 as an IR boundary condition if one demands in addition that
there is no energy density or electric field in the deep interior.

2.4 Boundary conditions for the fermions

The UV boundary conditions for the appropriate solutions to the Dirac equation are
straightforward. Near the AdS boundary the rescaled field behaves as

ψ1(z → 0) ∼ A`(ω, k)ω − k − µq2m− 1 z1−2m +B`(ω, k) + . . . ,

ψ2(z → 0) ∼ A`(ω, k) z−2m +B`(ω, k)ω + k − µq
2m+ 1 z + . . . .

(2.20)

On-shell solutions are normalizable, i.e. A`(ω, k) = 0. This agrees with the AdS/CFT
dictionary, where a finite A`(ω, k) would imply an external source for the fermions for a
specific band ` and energy ω, k. Demanding normalizability A`(ω, k) = 0 instead, implicitly
translates in a dispersion relation ω(k) = E`(k).

The IR boundary conditions for the fermions require a more detailed discussion. Firstly,
for the fermionic wavefunctions, the amplitude is set by normalization of each wavefunction
to unity. For each radial mode ` this implies∫

dz
√
−g|ψi;`,k(z)|2 <∞. (2.21)

For finite temperature backgrounds this is usually not an issue as the horizon is parametrically
at finite distance and finite IR boundary conditions, together with the UV-condition that the
un-normalizable fall-off vanish, guarantees a finite integral. For the T = 0 background we
consider here, the interior is parametrically at infinite distance and finiteness of the integral
can only follow from bounded behavior of the wavefunction. Since the spin components are
not independent, it is sufficient to demand ψ1;`(z →∞)→ 0, i.e., the leading component
should vanish in the interior.

It is well known in AdS/CFT that it is then the simultaneous requirement of a UV and an
IR boundary condition that determines the spectrum of the small excitations. This spectrum
can still be continuous or discrete; we address this directly below. Formally, however, the
normalization together with two boundary conditions make the system overconstrained and
one must search for accidental solutions. We again do so by shooting from the interior to
search for parameters where the UV conditions are also satisfied.

– 9 –
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The shooting condition we use is the ratio ψ2/ψ1, which still leaves the freedom to
normalize the norm (2.21) to unity, and which we do after the solution is found.

2.4.1 Effective potentials and confinement

Pure T = 0 AdS — representing a deconfined phase of the strongly coupled boundary
theory — has a continuum spectrum of normal modes computed in the way described above.
The system must be considered in a different phase or have its IR dynamics modified by
a confining potential to discretize the spectrum; this spectrum may still be ungapped or
gapped. We will now demonstrate that the chiral-breaking soft-confining potential supports
a discrete Fermi surface, i.e. a tower of bound states at discrete energies, for momenta up to
some kF , the Fermi momentum. The spectrum is also gapped. A convenient way to see the
effect of this potential is to transform the Dirac equation to the Schrödinger form [4, 9, 10]:

χSch(z) = e
1
2

∫ z
0 duP(u) ,[

∂2
z − V (z)

]
χSch(z) = 0 ,

V (z) = 1
2P
′(z) + 1

4P(z)2 −Q(z) , (2.22)

where the coupled equations (2.15) were decoupled into two second order equations, each
taking the form

ψ′′(z) + P(z)ψ′(z) +Q(z)ψ(z) = 0 , (2.23)

with the indices 1,2 on ψ, χSch(z), V omitted.
In principle, the Schrödinger potential is itself a function of the background spacetime

and electrostatic potential f(z), h(z), At(z) and can be fully determined only by calculating
numerically the full solution. However, we can give a qualitative estimate whether it is
confining or not by studying its asymptotics. Since the bulk remains asymptotically AdS4,
we have V (z → 0) ∼ 1

z2 . In pure AdS4 the IR behavior would be VAdS-IR(z → ∞) =
−(ω + µq)2 + k2 + m(m + 1)/z2 + O(1/z3) (figure 3).5 This now gets modified by the
confining potential due to the scalar Φ(z). Making the ansatz that the confining potential
in the deep IR for z →∞ suppresses exponentially all sources in the Einstein and Maxwell
equations for large z, i.e. the geometry in the deep IR is again an (emergent) AdS4 geometry,
the leading order IR behavior of the potential is then schematically

VAdS−IR = V (z →∞)+(ε−−ε+)
[
−φ
′(z)
2z + φ(z)(4m+ 2) + (ε− − ε+)φ(z)2

4z2 +
]

+O(1/z3) .

(2.24)
Note that the chiral-preserving solution ε+ = ε− = 1 leads to a vanishing contribution

and therefore does not lead to fermionic bound states. In contrast the chiral-breaking
solution ε+ = −ε− = −1/

√
f(z) = −1 +O(1/z) in an AdS4 IR does lead to a potentially

bounding potential depending on the choice of Φ(z). For this reason, we will work solely
with the chiral-breaking scalar field.

5We are interested in k2 < (ω + µq)2 since the potential is otherwise confining even in AdS4 with no
regulator, as discussed in [26]. We will discuss this later.
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Figure 3. Comparison of the Schrödinger potentials for ψ1(z) for the two types of confining potential:
chiral-breaking quadratic (green), chiral-breaking flat (red) and chiral-preserving quadratic (blue).
The dashed black line indicates the truncation of spacetime which happens in the hard wall model
of [13] at z = 7. Only the chiral-breaking potential and the hard wall allow for bound states.
Parameters are {m,µq, k, ω} = {0.1, 1.05, 0,−0.027}. The scalar parameters are λ = 0.1 for the two
quadratic scalars and λ = 1 for the flat scalar.

Figure 3 shows the behavior of the Schrödinger potential for the various profiles of the
scalar field and regulation schemes. With a chiral-breaking regulator, we indeed see that
the infrared behavior of the potential is dominated by the large z behavior of each profile.
The final choice of which scalar field profile to use is determined by the convergence of
the iteration scheme. We numerically found the quadratic profile to be unstable while the
flat profile leads to an emergent AdS4 in the infrared. Specifically for the chiral-breaking
confining potential with flat asymptotics the Schrödinger potential in the deep IR becomes

V (z → zIR)=− ω2
IR + λ2

IR + k2
IR +O(1/z) ≡ VIR +O(1/z) , (2.25)

where we have used that f(z), h(z), At(z) become constant in the emergent AdS4 IR and

we have defined ωIR ≡
ω + qAt(zIR)
f(zIR)

√
h(zIR)

, λIR ≡
λ√
f(zIR)

and kIR ≡
k√
f(zIR)

.

In the IR limit, the Schrödinger equation becomes[
∂2
z − VIR

]
χSch(z) = 0 , (2.26)

which is solved by

χSch(z) = χSch+(z)e
√
VIRz + χSch−(z)e−

√
VIRz . (2.27)

We see from (2.27) that, for frequencies such that VIR > 0, the solutions have a growing
and a decaying branch. The decaying branch clearly confines the wavefunction. This is
the one we shall choose. This leads to the following IR form for our original Dirac fermion
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components
ψIR

1,2(z) = cIR
1,2(z)e−

√
VIRz , (2.28)

where the ratio of the coefficients is fixed by the Dirac equation (2.15):

ψIR
2 (z)

ψIR
1 (z)

= cIR
2 (z)
cIR

1 (z)
= 1
ωIR + kIR

[
m

z

( 1√
fIR
− 1

)
+
√
VIR + λIR

]
(2.29)

and the normalization of the wavefunction to unity sets the remaining overall scale.
With these IR boundary conditions the equations (2.15) are solved by shooting from

zIR to zUV.
The confinement imposed by both IR and UV boundary conditions leads to a discrete

and gapped spectrum which defines a band structure (see figure 6 later). The fall-off of the
wavefunction both at the AdS boundary and the interior also implies an absence of any
backreaction in those regions. Once backreaction is included the resulting solutions will
therefore be AdS4-to-AdS4 domain wall solutions, as we will show in the next section.

As a last remark, equation (2.25) gives us a simple way to view the effect of the
chiral-breaking flat potential. As has been pointed out in [4, 26], in AdS4 with constant
electrostatic potential where λ = 0, the potential is deconfining for modes with |ωIR| > |kIR|
and confining for modes such that |ωIR| < |kIR|. The addition of a flat profile means that
now modes with |kIR| ≤ |ωIR| <

√
k2

IR + λ2
IR, which previously were not bound states,

also become confined. This allows the existence of a window ω−(k) < ω < ω+(k), with
ω±(k) ≡ qAt(zIR)±

√
k2

IR + λ2
IR where a discrete set of (gapped) modes can be populated.

3 Regulated quantum electron star: thermodynamics and spectrum

Now that the problem is well-posed, we can follow the algorithm in figure 2 and construct a
fully backreacted regulator-confined T = 0 quantum electron star. Choosing the chirality-
breaking flat regulator the resulting solution is shown in figure 4. This is by construction
an AdS4-to-AdS4 domain wall solution. Just like the analogous domain wall solutions
for the holographic superconductor [16–18], it has a UV AdS4 and an IR AdS4 with the
same radius but different effective speed of light. This can be checked by considering the
diffeomorphism-invariant ratios vIR/vUV and LIR/LUV which are equal to

LIR
LUV

=
√
R(z → zUV)
R(z → zIR) = 1 , vIR

vUV
≡ v(z → zIR)
v(z → zUV) =

√
h(z → zIR)
h(z → zUV) < 1 in our solution .

(3.1)
Here R(z) is the Ricci scalar and v(z) =

√
h(z) is deduced from the null vector d

dtX
µ(z)

where Xµ(z) ≡ {t, 0, v(z)t, 0} is a x-directed trajectory. Therefore, our solution obeys the
c-theorem since the effective speed of light in the dual field theory is lower in the IR than
in the UV, as discussed in detail in [17].

In accordance with our discussion in the Introduction, the chemical potential is chosen
such that only the lowest radial mode of the fermionic wavefunction is occupied. The
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Figure 4. Iterative backreactions on the background fields (f(z), h(z), At(z)) and their associated
currents (n(z), ρ(z), P (z)) with the same parameters as in figure 5. In total 5 iterations are
performed, denoted by the color scale from green (first iteration) to red (last iteration). For these
values {m,µq, λ} = {0.1, 0.9, 1} only the first iteration differs significantly from the final solution,
and the other curves are visually barely distinguishable from each other; for higher q convergence
rapidly becomes slower.

associated matter content shows that a localized distribution of fermions in the mid-
infrared region is characterized by a stable finite density of fermions with total charge
Q = −A′t(z → 0).

With the chirality-breaking flat potential the convergence is in fact quite fast at low
density. The Hartree algorithm provides a discrete sequence of fields (f (n), h(n), A

(n)
t ) as we

iterate from n = 1, 2, . . .. We can introduce a criterion for the convergence of the solution
using the IR parameters used for shooting

εn =
√
f (n)(zIR)2 +A

(n)
t (zIR)2 + h(n)(zIR)2 . (3.2)

Convergence is obtained if (∆ε)n ≡ εn−εn−1
n→∞−−−→ 0. For a small occupation number/charge

figure 5 shows that the solution already stabilizes after three iterations; for large occupation
numbers the convergence rapidly becomes much slower. We have checked that the solution
is not sensitive to the choice of the numerical cutoffs {zUV, zIR}.

3.1 Thermodynamics

For a large q/m ratio we expect that the quantum electron star at a given chemical potential
µ is the thermodynamically preferred solution over the extremal Reissner-Nordström solution.
In order to study the thermodynamics of the regulated quantum electron star, we need to
compute its free energy. It consists of two parts. There is a direct saddle point contribution
from the regularized Euclidean action:

SE =
∫

d4x
√
gE

[ 1
2κ2 (R+ 6)− 1

4F
2
]

+
∮
z=ε

d3x
√
h(−2K + 2γ) , (3.3)

where gE is the Euclidean metric, h is the induced metric on a hypersurface normal to a
radial (z) slice, pointing outwards, K is the trace of the extrinsic curvature and γ = 2 is
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Figure 5. Convergence in terms of the logarithm of the difference in the IR between the n-th
and n + 1-st iteration log |(∆ε)n| for a rQES with {m,µq, λ} = {0.1, 0.9, 1}. The convergence is
exponentially fast and the agreement is very good already around the 3rd iteration.

required to make the AdS free energy vanish. The imaginary time at temperature T is
compactified with the radius β = 1/T , the integral in the x–y plane produces the (infinite)
volume Vol2, and the radial integration is performed to some UV cutoff ε, yielding

SE = βVol2
∫

dz√gE
[ 1

2κ2 (R+ 6)− 1
4F

2
]

+ βVol2
√
h(ε)(−2K(ε) + 2γ) . (3.4)

This accounts for the contribution of the bosonic fields. The Dirac action vanishes on-shell
and therefore does not contribute to this part. It does have a one-loop contribution to the
free energy density

f ≡ SE
βVol2

+ fDirac . (3.5)

Here fDirac represents the fermionic contribution. Following [13, 24, 27, 28], at T = 0 we
can simply sum the energies along the filled band of fermions (above the Dirac sea). This is
the internal energy shifted by the chemical potential. For our normal modes, this leads to
the expression

fDirac =
∑
`

∫
kdk
2π Θ(−E`(k))Θ(E`(k)− µq)E`(k) =

∫
kdk
2π Θ(−E1(k))E1(k)

where in the last line we have made explicit that we choose our chemical potential such
that only states of the lowest electronic radial mode E`=1 will be occupied. One must first
choose the potential strength λ such that the Schrödinger potential supports at least one
normalizable mode. At the same time, it is only these normalizable modes that can be
populated. If there is only one band in the window of existence of normalizable modes
[ω−(k), ω+(k)], i.e.,E`=1(k) < ω+(k) < E`=2(k), then increasing the chemical potential
beyond that upper limit will not populate further normalizable modes. Our rQES is in this
sense not plagued by the usual large-N Fermi surfaces artifact.
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Figure 6. First electronic band for {m,µq, λ} = {0.1, 0.9, 1}, for the AdS4 background with
constant electrostatic potential (blue) and the backreacted solution (red). The lines are a fit to the
form (3.6).

It is furthermore quite easy to show that both before and after accounting for backre-
action the band structure follows a similar form as in pure AdS4 [13]

E`(k) = −E0 +
√
k2 + k2

0 , (3.6)

where kF ≡
√
E2

0 − k2
0 and the parameters E0, k0 are most easily found by fitting from the

numerical dispersion curves, as in figure 6.
Note that fDirac is negative semi-definite. This does not mean, however, that the

occupied state is automatically thermodynamically preferred. The backreaction also changes
the bosonic saddle point contribution compared to its original AdS4 value f(AdS4) = 0.
Adding both contributions we compare to the RN free energy

f (RN) = −4 + z2
hµ

2

4z3
h

= − µ3

6
√

3
at T = 0 . (3.7)

Because the regulator does not act on the background sector, the Reissner-Nordström free
energy is unaffected by it.

Figure 7 shows the free energy of the rQES as a function of the charge µq for a fixed
mass m and confining potential strength λ. As q increases, the rQES grows, so we need
to compute more and more modes. This becomes more and more time consuming. By
constructing an interpolating curve based on low q rQES solutions (using the points until
µq ' 1.2), we can estimate where the solution becomes thermodynamically preferred and
verify this with a fewer number of large q datapoints (µq = 1.4 and µq = 1.58). We see
that at µq = µqc ' 1.56, the rQES becomes thermodynamically preferable over the RN
background.
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Figure 7. Plot of the free energy density for rQES at {µ,m, λ} = {0.75, 0.1, 1} as a function of the
fermionic charge µq (blue dots) and the reference RN black hole free energy (red dashed line); the
thin blue line and the red triangle are to guide the eye to the transition point. Since RN has no
fermions its free energy curve is flat, i.e. does not depend on the fermion charge. The first-order
phase transition from RN to rQES happens at the intersection of the two lines. Since the calculations
for larger µq values are costly, we only compute two points for µq > 1.5 and interpolate.

In figure 8(a), we show that this transition point evolves linearly with the fermion
mass m for fixed q and λ. Based on this finding, we can sketch a thermodynamic phase
diagram for our model in figure 8(b). The critical charge satisfies an approximate relation
qc(m;λ) ≈ c0(λ) + c1(λ)mµ with c0 and c1 dependent on λ. It is tempting to compare this
to the confounding phase diagram based on RN holography alone. For pure RN holography
it is surmised [29] that the superradiant instability of the RN black hole toward an electron
star (seen in the spectrum as log-periodic oscillations) sets in at q =

√
3m. This should

correspond to the limit λ → 0. As λ decreases we therefore expect the phase-boundary
to pivot anti-clockwise. This comparison should be done with care, because the smaller
λ becomes, the harder it is to observe bands that can be occupied — see the section on
removing the regulator below. Another way to see this is that the effective Schrödinger
potential in the extremal RN black hole for ω = k = 0 (the onset of instability) has no
linear term in m: VRN ∼ −4q2 + 2m2. Hence we cannot extrapolate freely to λ = 0.

3.2 Spectrum of the rQES

To confirm our results, we consider the fermionic spectral function on rQES backgrounds. As
a reminder, the spectral function is defined as the trace of the imaginary part of the retarded
propagator: A(ω, k) = Im TrGR(ω, k). In holography the type of propagator is defined by
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Figure 8. (a) Transition point µqc as a function of m and its linear fit, for λ = 1. (b) Sketch of the
phase diagram of the rQES. The black line indicates a first order transition between the regulated
Reissner-Nordström and the rQES, occuring when their free energies cross.

the boundary conditions in the interior. Therefore the only difference with computing the
normalizable Dirac solutions is the choice of appropriate boundary conditions.

Considering that we have an emergent AdS4 geometry in the IR, we can use the known
prescription for infalling boundary conditions in pure AdS, i.e. the presence of a Poincaré
horizon [30]. Accounting for the confining potential, these are

ψ1(z →∞) =


e−z
√

k2
IR , if ω2

IR < k2
IR + λ2

IR ,

eiz
√
−k2

IR , if Re[ωIR] >
√
k2

IR + λ2
IR ,

e−iz
√
−k2

IR , if Re[ωIR] < −
√
k2

IR + λ2
IR ,

(3.8)

where ωIR, kIR, λIR were defined by (2.25), kIR =
(
ωIR,

√
k2

IR + λ2
IR, 0

)
and k2

IR = −ω2
IR +

k2
IR + λ2

IR = VIR. As we saw with the normal modes, the IR boundary condition for ψ2 can
be obtained using the Dirac equation and the boundary condition for ψ1. After imposing
these boundary conditions, the retarded propagator is then computed as

GR(ω, k) = B/A = lim
z→0

z−2mψ1(z)
ψ2(z) , (3.9)

where A and B are the coefficients in the UV expansion of the spinor (2.20).
Inside the gap (ω2

IR < k2
IR +λ2

IR) the IR boundary conditions are the same for the probe
fermions as for the bulk normalizable modes – the wavefunction should fall off for z →∞,
which yields A = 0 for the normal mode frequencies ω = E`(k). Therefore, the propagator
will present a pole along the bands of the background. Moreover, since the fermionic
wavefunctions and thus also the Green’s functions are real inside the domain where bound
states exist, the spectral function will vanish there. Thus, we expect to see ImGR(ω, k) = 0
for ω ∈ [ω− (k) , ω+ (k)], except when ω = E`(k) where a pole should appear.

This general structure of the spectral function including the gap for ω− ≤ ω ≤ ω+
can be seen in figure 9. The data here and in the remainder of this section is computed
for {µ, q,m, λ} = {3/4, 1.2, 1/10, 1}. Inside the gap (white area), the spectral weight of
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Figure 9. Spectral function ImGR(ω, k) for {m,µq, λ} = {0.1, 0.9, 1}. The gap appears in white
and is well delimited by ω±(k) (red dashed lines). The normal mode bands have been superimposed
to show the infinitely long-lived modes, see figure 10. Outside the gap, there is no particle (normal
mode) but a continuum shaped by the remnant of the UV conformal branch cuts. Since the
regulator and the chemical potential explicitly break conformality, we do not reproduce the pure
AdS Lorentz-invariant spectrum for any finite value of ω and k.

excitations is indeed zero to numerical accuracy except at the positions of the normal modes
of the background fermions. The latter are computed directly from the solution of the
background Dirac equation (green lines in figure 9), as they cannot be seen numerically in the
spectral function because they are infinitely long-living modes which show in the spectrum
as Dirac delta peaks. Being infinitely narrow on the real axis, they can only be detected
in the complex-ω plane. Representing schematically the normal mode located at ω? by
ImG(ω = Re(ω)) = Zδ(ω− ω?) where Z is the peak weight (wavefunction renormalization),
we have, for complex ω:

ImGR(ω, k) = −Z Imω − Imω?

(Reω − Reω?)2 + (Imω − Imω?)2 . (3.10)

When Reω = Reω?, this simplifies to

ImGR(ω, k) = − Z

Imω − Imω?
. (3.11)

We check this picture against the numerics first in figure 10(A), where the absolute value of
the spectral function in complex frequency plane shows the typical structure of a string of

– 18 –



J
H
E
P
0
8
(
2
0
2
2
)
2
2
2

Figure 10. (A) Absolute value of the fermionic spectral function for different values of momentum.
The plot is cropped for values below 100 to highlight the quasiparticle peaks. (B and C) Comparison
of the poles in the spectrum (blue circles), identified in (A), to the first electron band of the
background (red triangles). The real parts (B) of both sets agree perfectly; the imaginary parts (C)
are both zero to high accuracy. All this data is computed for {m,µq, λ} = {0.1, 0.9, 1}.

poles (for various momentum values) lying on the real axis. The relation (3.11) is then used
to identify the dispersion relation of the pole ω?(k) by fitting ImGR(ω, k). We find, with
no big surprise, a perfect agreement with the normal mode excitations E1(k) corresponding
to the first electron band, as seen in figure 10(C) and (D). A similar picture is found for
the first hole band E−1(k) and this yields the spectrum inside the gap, plotted in figure 9.

In figure 11 we compare the spectral function at finite µ for our regulated quantum
electron star (blue data points) to the fermionic spectral function in a pure AdS4 background
with finite chemical potential, either with (green line) and without (red line) regulation by
the confining scalar. The comparison is given at k = 0 (left) and k = 1 (right). The Dirac
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Figure 11. (Confined) Dirac spectral function (blue points) in the rQES background for k = 0 (left)
and k = 1 (right), compared with the standard/unconfined (red dashed line) and regulated/confined
(green dashed line) Dirac spectral function in AdS with finite electrostatic potential.

spectrum in AdS4 is well-known [30]:

GR(ω,k) =


2

ω2−k2
Γ(1/2−m)
Γ(1/2+m)

[
− i2

(
ω2−k2

)]2m+1 [
ωγ0−kγ1

]
if ω > k ,

2
ω2−k2

Γ(1/2−m)
Γ(1/2+m)

[
i

2
(
ω2−k2

)]2m+1 [
ωγ0−kγ1

]
if ω <−k .

(3.12)

It has a conformal branch-cut at ω = k and a gap for ω2 < k2. For AdS4 with finite
electrostatic potential, one merely needs to replace ω → ω + µq in the previous expression.
Adding confining potential by turning on the chirality-breaking flat scalar widens the gap
to (ω + µq)2 < k2 + λ2; in particular the gap is open also at k = 0. The rQES solution
outside the gap exhibits qualitatively the same spectral function as that of the confined
Dirac spectrum in pure AdS4 but for renormalized IR values ωIR, kIR, λIR given in (2.25).
It is important to emphasize that none of the modes in this continuum are normalizable
and thus do not contribute when building the bulk rQES, even when µq is large enough
that ω+(k) < 0. This is guaranteed by our choice of UV boundary conditions.

4 Towards a self-confining quantum electron star

4.1 Comparison to the holographic superconductor

By construction the confinement in our setup gives an AdS4-to-AdS4 solution. With the fully
backreacted solution in hand we can also understand what the field theory dual describes.
The confining regulator scale λ gaps the field theory fermion spectral function. Considering
then the RG flow from the IR emergent conformal field theory towards the UV, this means
that as one increases the energy scale it takes a finite distance for occupiable fermion states
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to be encountered. This can also be seen in the band structure of figure 6. At this scale the
theory deforms away from the strict conformal theory up to the scale µ beyond which it is
no longer energetically favorable to occupy more states. The flow up the RG then continues
towards the UV AdS4 fixed point.

In the more usual flow from the UV to the IR this is not a natural RG trajectory.
The generic IR will not be a non-trivial conformal field theory. Nevertheless, within
holography such AdS4-to-AdS4 domain walls are well-known. Especially in the search for
the holographic dual of the holographic superconductor ground state, Horowitz and Roberts
and independently Gubser and Rocha have found AdS4-to-AdS4 domain walls (in some
cases with logarithmic corrections) in a finite parameter range [16, 17]; the other solution
found is the Lifshitz geometry. It was later understood that Lifshitz rather than an AdS4
IR is the generic holographic superconductor ground state [17, 18], but this is only seen
with the inclusion of a stabilizing quartic potential.

In detail of course the solutions are different. The Horowitz-Roberts-Gubser-Rocha
holographic superconductor ground states do not need an additional confining scalar. They
can also be obtained classically without the need for a one-loop Hartree mean field. This
is due to the fact that the bosonic field already couples quadratically to the electrostatic
potential At. A fermion only couples linearly, but its one-loop contribution can couple at
all orders. This is why for fermionic systems one needs to go to one-loop.

4.2 Confinement in the rQES solution

Given that the Horowitz-Roberts-Gubser-Rocha AdS4-to-AdS4 solutions do not need a
confining potential, and that the more generic holographic superconductor Lifshitz solutions
are known, it is a natural question why we do not try to remove the soft-confining regulator
alltogether. There was in fact a concerted effort to do so several years ago [5, 9, 12], culminat-
ing in the QES model of [14, 15]. The latter two articles show in detail how the presence of
the gap and the discretized spectrum are crucial to construct any type of quantum fermionic
backreacted solution, i.e. where one or a small finite number of radial modes are occupied.
Any attempt to remove the confining potential results in a uncontrolled continuum spectrum.

It is precisely this insight that was the starting point for our confining potential. What
we have furthermore shown, is that even then there are several severe technical hurdles
to overcome to construct a converging fully backreacted confined quantum electron star
solution. At the same time the general insight still holds. Our infrared boundary conditions
crucially depend on the coupling to the scalar Φ(z) to extend the domain of existence of
normalizable modes of AdS4 all the way to k = 0. The parameter λ, as we previously noted,
acts as a momentum shift in this domain such that a mode at k = 0 will behave as a mode
at keff = λ and therefore normalizable modes with |ω + µq| < λ will be found. These can
be populated and will condense in the bulk. Turning off the potential, even slowly, will
invariably lead to a lack of normalizable modes at the lowest momenta and will bring us
back to a situation similar to that of AdS4.

One sliver of hope would be that the domain wall solution itself, after convergence, can
support a well in the Schrödinger potential such that a regulator is no longer necessary. We
have therefore looked at this (figure 12) by comparing the Schrödinger potential for a k = 0,
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Figure 12. Comparison of the Schrödinger potential for the AdS4 (blue) and AdS4-to-AdS4 (red)
solutions with (dashed) and without (solid) regulator, for {m,µq, k, ω} = {0.1, 1.05, 0,−0.027}.

ω = E1(0) mode in the confined quantum electron star AdS4-to-AdS4 background with and
without the confining potential. Without a potential, however, the AdS4-to-AdS4 quantum
electron star domain wall solution is not confining. We do see that Vdomain wall(z →∞) >
VAdS which means the wedge of existence of normalizable modes is indeed wider in the
domain wall solution than in the AdS4 solution. Yet, the modes with sufficiently small
momenta (including k = 0) are always outside the wedge.

This therefore leads us to believe a true QES would not remove the regulator but must
incorporate it into the model, i.e. make the scalar field a dynamical dilaton which couples
to the Dirac fermion and drives the geometry from one fixed point to another.

5 Discussion and conclusions

In this paper we have constructed a self-consistent model of a single band confined holo-
graphic Fermi liquid. The crucial technical problem, the infrared divergence brought about
by the fermionic wavefunctions, is solved by controlling it by hand. We control the far
infrared by the means of a scalar regulator, equivalent to a soft-confining potential. The
confinement is drastic and 100%: our regulated quantum electron star is dual to a gas
of infinitely-long living particles with zero self-energy. In the limit where we compute, it
is a single-band Fermi-gas rather than a Fermi-liquid.6 At higher energies, the spectrum
switches to the featureless continuum inherited from the UV conformal field theory (though
it is not conformally invariant due to the presence of the confining potential).

6This holds at zero temperature. At finite temperature a black hole horizon would form, causing inevitably
some dissipation even in the presence of the confinement.
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The regulated quantum electron star is the thermodynamically preferred solution over
the Reissner-Nordström background for µq/m > (µq/m)critical. The transition is first order,
which means that the there is no continuous exchange of charge from the RN solution to
the bulk Fermi sea. Instead all the charge is carried by the infinitesimally small rQES. This
is somewhat different from the conundrum that we mention in the Introduction: the onset
of a log-oscillatory signal in the spectral function signaling a putative instability and the
presence of normalizable solutions. The first order transition is essentially unrelated to the
RN horizon instability.

Although it is not yet clear how the rQES is related to the final state after the
conjectured continuous quantum phase transition which destroys the Reissner-Nordström
black hole horizon signalled by the log-oscillatory instability, we nevertheless feel it is a step
in the right direction, bringing us closer to the full unregulated quantum electron star. The
reasons are the following:

1. It is now much clearer what a healthy Fermi liquid should do on the gravity side: it
should self-consistently form a geometry which yields such an effective potential for the
Dirac fermion that it is just confined enough not to diverge in far IR but not so much
that the bulk Fermi sea dies out in the far IR, failing to influence the low-energy physics.

2. We have inspected in some detail the spectrum and the phenomenology of the dual
confined Fermi liquid. Although our confining bulk construction is somewhat more
natural in holography — it just uses a non-dynamical rather than a dynamical scalar
— than the hard-wall model [13], and it now allows us to compute the backreaction,
qualitatively the field-theory side description is only marginally improved. Similar
to the hard-wall model, the occupied fermions have vanishing self-energy. The main
effect of the backreaction is to understand how this confined Fermi gas emerges in an
RG-flow from the UV conformal field theory. In the likely event that an unregulated
(confining) quantum electron star — supported for instance by a dynamical rather
than a non-dynamical scalar (such as the fluid electron star in [19]) — has a Lifshitz
IR rather than an AdS4 IR, possible decay into the Lifshitz horizon could provide
a finite lifetime and an honest Fermi liquid.

3. Unlike the global AdS radius regulator of [15] which cannot be easily sent to infinity,
our scalar can at least in principle be made dynamical. That would be a perfectly
natural holographic model, given the ubiquity of non-minimally coupled scalars in
top-down holographic actions. Therefore, a very natural line of further research is
to turn this construction into a fully dynamical Einstein-Maxwell-Dirac-scalar system,
similar to the fluid approach of [19].

Apart from the natural next step — making the dilaton dynamic — a number of other
directions of work open up. It would be useful to understand the relation of our work to
the AdS/QCD studies, some of which employ a similar type of scalar (soft wall) to impose
confinement. The role of the Fock correction (the one-loop exchange diagram) is also not
clear yet, and may be important for a fully self-regulating solution and/or a finite self-energy.
Finally, the most characteristic property of rQES — the domain-wall-type solution with
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an infrared AdS4, is analogous to the domain-wall holographic superconductor solutions of
Horowitz-Roberts-Gubser-Rocha [16, 18, 31]. Based on those results and the macroscopic
electron star with dynamical dilaton studied in [19], it strongly suggests that Lifshitz IR
quantum electron stars must also exist.
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