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1 Introduction

Chaos in string theory has traversed the way from an arcane and little-noticed topic to
a mainstream field, thanks to the ideas of fast scrambling and black holes as the fastest
scramblers in nature [1], the Maldacena-Shenker-Stanford (MSS) maximum chaos bound for
strongly coupled field theories with black hole duals [2] and the notion of out-of-time ordered
correlators (OTOC) [3–5] and their applications in the physics of chaotic strongly coupled
systems [6–8]. An important motor of the field is also the connection to recent progress on the
black hole information problem [9–12] and the related puzzle of factorization [13–20]. In [21] it
was demonstrated for the first time that the MSS scale characterizes also the time-disordered
correlation functions on a string worldsheet, provided that the induced metric has a horizon
and thus mimics black hole physics. The guiding idea through all these topics is of course the
AdS/CFT duality, the unifying principle of many topics in string theory and gravity. Our
primary interest thus lies in the dynamics in asymptotically AdS backgrounds.

Among the many questions which have opened up, there is one seemingly technical but
in fact physically important subtlety. Several papers have reported the saturation of the
bound 2πT for bulk orbits of particles [22, 23], or its slight modification/generalization for
fields [22] and strings [24–30]; the systematic answer to the question of the bulk Lyapunov
exponent is given in [31]. However, a very simple question arises: why should there ever be
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an MSS-like bound for bulk Lyapunov exponents? The OTOC exponent and its MSS bound
λ = 2πT in principle have no simple relation to the classical bulk motion and its Lyapunov
exponent: the former is a property of a time-dependent correlation function in dual CFT,
determined by a 4-wave scattering amplitude in the bulk, and the latter is the solution of
a bulk equation of motion, for a single orbit, with no scattering and thus no OTOC-like
interpretation in the bulk. This relates to a more general question: what is the CFT dual of
a bulk orbit (and its Lyapunov instability exponent)? Some important work was done on this
issue [32–37], and the outcome is that a bulk particle is dual to a shock wave perturbation
of the dual CFT. But many details are still missing; in particular, the answer cited above
holds for a geodesic with both endpoints on the AdS boundary; it is less clear what the
CFT dual is for an orbit not reaching the boundary.

Paradoxically, a string in the bulk, specifically an open string, is perhaps an easier
case for study. It is long known that a static or dragging string, with one endpoint in
the interior and the other on the boundary, is dual to a heavy quark in the quark-gluon
plasma of the supersymmetric Yang-Mills gauge theory [38, 39]. Likewise, an open string
with both endpoints on the boundary represents a quark-antiquark pair [40–44], and encodes
information on the confinement mechanism. It is thus a convenient framework to pose our
main question: what is the meaning of the bulk Lyapunov exponent and what does it have
to do with the MSS bound?

In this work we give a partial answer to the question and demonstrate it by a number
of case studies involving bosonic open strings in various backgrounds.1 There is, in fact,
no unique answer to the question of the CFT dual to a bulk Lyapunov exponent: just as
various string configurations have various field theory duals (a quark, a bound pair of quarks,
an EPR pair, an accelerating quark. . . ), likewise the Lyapunov stability of these different
solutions will have different meanings. Furthermore, on the string worldsheet there are two
coordinates thus we have two Lyapunov exponents, with different CFT meanings.

We also find that the MSS form of the exponent is really a red herring: in the strict
infinite-coupling, infinite-N limit and with maximal symmetry, 2πT becomes a natural scale
which has to appear in all fluctuation equations. As soon as we decrease symmetry (e.g.
by considering a D1-D5-p bound state in the bulk that breaks rotational invariance) or
include stringy effects, the bulk exponent (as well as OTOC [5] and other CFT correlation
functions) undergo corrections, and do not coincide anymore (neither among themselves
nor with the MSS bound). Recent work on universal near-horizon symmetries [45, 46] has
shone additional light on the issue, allowing us to view the MSS scale as the fundamental
property of black hole horizons, so it can appear in any CFT correlator which is sensitive
to temperature T , i.e. which probes the energy scales smaller than T . The puzzle of “why
2πT pops out everywhere” is thus a fake issue: it disappears as soon as leading corrections
or broken symmetries are taken into account.

The sharpest finding of our analysis is that the bulk Lyapunov exponents of a probe
string in fact reproduce the quasi-normal mode (QNM) spectrum of the black hole or black

1While the dynamics of a superstring would be an interesting problem to study, in this work we stick solely
to the bosonic sector. This is enough to understand the principles, and also to model holographically the
dynamics of a heavy quark in Yang-Mills plasma.
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string background; in other words, they correspond to the thermal decay rate. Since this rate
is also determined by the temperature times an O(1) factor, we feel that this also provides
an explanation for the origin of an MSS-like expression in bulk dynamics. It also clearly
spells out that the relation of bulk instability scale to OTOC-ology and chaos in dual CFT
is fake. In terms of the relation to QNM, our work is a stringy generalization of a similar
result for geodesics [47, 48] and scalar waves [49, 50].

The plan of the paper is the following. In section 2 we study the simplest possible case:
open string in AdS-Schwarzschild background, where the basic message already appears — the
bulk Lyapunov exponent is 2πT but it is not related to chaos. In section 3 we demonstrate the
same findings on more general background. In section 4 we address the dynamics of the string
probe in the D1-D5-p and related backgrounds. Here we do a more detailed study, comparing
the bulk variational equations to the retarded correlators dual to the string fluctuations, and
finding that the bulk Lyapunov instability really described the quasinormal modes and hence
the thermal decay rate in field theory. The final section sums up the conclusions.

2 Open string in AdS-Schwarzschild background

Our goal is to study the linear stability and fluctuations of classical solutions for the static
open string stretching from the boundary to the horizon of an AdS black hole, the well-known
simple holographic probe for a heavy quark in quark-gluon plasma.2 Therefore, we write
down the string action, derive the equations of motion and variational equations. Throughout
the paper we consider only the bosonic sector of the string. Most of the time we will use
the Polyakov action, but sometimes we will switch to the Nambu-Goto action, depending
on the problem at hand.

2.1 Setup and radial fluctuations

Dynamics of a string in D + 1-dimensional AdS-Schwarzschild spacetime with the time
coordinate t, radial coordinate r, transverse spatial coordinates xi (i = 1, . . . D − 1) and
the horizon at rh:

ds2 ≡ Gµν(x)dxµdxν = r2
(
−h(r)dt2 + dx⃗2

)
+ dr2

r2h(r) , h(r) = 1−
(
rh

r

)D

, (2.1)

can be described by the Polyakov action for the string:

SP = − 1
2πα′

∫
dτdσ ηαβ∂αX

µ∂βX
νGµν(X). (2.2)

Here and in the rest of the paper α, β, · · · ∈ {τ, σ} and µ, ν, · · · ∈ {t, r, x⃗} stand for worldsheet
and spacetime indices respectively. Latin indices i, j, · · · count the transverse coordinates
x1, . . . xD−2. As we know [38], the equations of motion are consistent with the following ansatz:

t = t(τ), R = R(σ), X1 = X1(τ, σ), Xj = Xj(τ), j = 2, . . . , D − 1, (2.3)

2In fact, to be precise, a heavy colored particle in super-Yang-Mills plasma.
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describing a string stretching from the horizon at rh to the boundary at r = ∞. It is easiest
to impose the flat worldsheet metric and solve for the Virasoro constraints together with
the equations of motion:

ẗ(τ) = 0, Ẍj(τ) = 0, j = 2, . . . , D − 1 (2.4)

− 2h3(R)R4(σ)−
(
R(σ)h′(R) + 2h(R)

)
R′2(σ) + 2h(R)R(σ)R′′(σ)+

+ h2(R)R4(σ)

−R(σ)h′(R) + 2

X ′
1

2(τ, σ) + Ẋ1
2(τ, σ) +

D−1∑
j=2

Ẋj
2(τ)

 = 0, (2.5)

2R′(σ)X ′
1(τ, σ) +R(σ)

(
X ′′

1 (τ, σ)− Ẍ1(τ, σ)
)
= 0, (2.6)

R′2(σ)
R4(σ) + h(R)

−h(R)ṫ2(τ) +X ′
1

2(τ, σ) + Ẋ1
2(τ, σ) +

D−1∑
j=2

Ẋj
2(τ)

 = 0, (2.7)

X ′
1 · Ẋ1 = 0. (2.8)

The equations for t, X2, . . . , XD−1 (2.4) are trivially satisfied when these are functions linear
in τ , thus we can set t = τ and Xj = const. Moreover, the second constraint (2.8) requires
X1 to depend on one variable only. For now we choose X1 = X1(σ), i.e. the static open
string/heavy quark (later on we will study both space- and time-dependent fluctuations).
Now the remaining equation for R(σ) (eq. (2.5)), together with the nontrivial Virasoro
constraint (2.7), also decouples from X1(σ) and simplifies to the following form

4h3(R)R3(σ) + h2(R)h′(R)R4(σ) + h′(R)R′2(σ)− 2h(R)R′′(σ) = 0. (2.9)

The same equation can be derived from the effective Lagrangian, obtained by first substituting
the trivial solutions t = τ and Xj = 0, ∀j ̸= 1 into the Polyakov Lagrangian, and then
making use of the Virasoro constraint (2.7) to eliminate X ′

1
2:

Leff = −h2(R)− f(R)R′2(σ)− h(R)X ′
1

2(σ)√
f(R)h(R)

. (2.10)

This Lagrangian has the worldsheet energy as its integral of motion and is thus integrable,
as we will argue more rigorously in the following section.

2.1.1 Variational equations and Lyapunov exponents

We will now write down the variational equation corresponding to the on-shell equation of
motion (2.9). We will find that the solution to the variational equation is an exponential
function, which defines the Lyapunov exponent the usual way. The unusual detail is the
fact that both R(σ) and its variation δR(σ) depend on the spatial coordinate σ. Studying
the spatial dependence of the worldsheet field and calling it dynamics as we do might be
controversial; so is the term Lyapunov exponent for the growth exponent of the variation
δR(σ). The important difference between σ and τ dynamics is that the worldsheet time
is unbounded and one can define asymptotic quantities as it is usually done for the Lya-
punov exponent (defining it as the limit of small initial variation and long-time evolution
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λ = limt→∞ limδx(0)→0 log (δx (t)) /t, for some generic coordinate x). The extent of the σ
coordinate is finite and there is no analogue to limt → ∞. Therefore, while we talk all the time
of Lyapunov exponents, we really study what is often called finite-time Lyapunov indicator
in the context of time evolution, i.e. the exponent defined locally rather than asymptotically.
This is however often assumed as a matter of course: the bulk Lyapunov exponent (in time)
computed, e.g. in [22, 26, 47], is also the finite-time quantity.

We are mainly interested in studying the variation near the horizon. To that end, we
substitute R(σ) 7→ r0 + εδR(σ) into eq. (2.9), expand it in ε small to linear order, and finally
take the limit r0 → rh.3 This yields the near-horizon variational equation:

δR′′ −D2r2
hδR = 0. (2.11)

The solution is thus δR ∝ e±2λLσ with a pair of Lyapunov exponents of equal magnitude and
with opposite signs, as it has to happen in a Hamiltonian system. The exponent formally
coincides with the MSS bound:

λL = Drh

2 = 2πT. (2.12)

The reason why we define the Lyapunov exponent with a factor of 2, i.e. through δR ∝ e±2λLσ

instead of δR ∝ e±λLσ is that the same expression appears also in the OTOC growth, and
follows from the definition of OTOC on the thermal circle. Here, for bulk equations of motion,
this argument is irrelevant (these are different quantities!) but we nevertheless want to stay
consistent with the definition of the MSS bound as we want to compare the two situations.

We have shown that the exponent is 2πT regardless of the spacetime dimension or
any other parameters save the temperature. While it is tempting to call this “maximal
chaos in the bulk”, we will soon show that this system is not chaotic at all. Therefore we
should interpret λL not as a measure of chaos (neither in the bulk nor in CFT) but as
some characteristic scale related to the near-horizon physics, that will likely correspond to
relaxation time of some perturbations around a thermal horizon. Toward the end of the
paper we will make this precise.

2.2 Integrability of the static open string

Here we prove that the simplest open string configuration — a static open string at the
horizon of the AdS-Schwarzschild geometry — is integrable, unlike the motion of a closed
winding string which is nonintegrable in the presence of a black hole [51, 52]. We emphasize
that this does not imply integrability of the open string for generic boundary conditions.

We will preform the same type of analysis that is done in [51], exploiting the Kovacic
algorithm [51, 53–56]. The algorithm can be described as follows: (1) find a family of solutions

3The order of limits is important because of the coordinate singularity at the horizon. If we immediately
put R(σ) 7→ rh + εδR(σ) we end up with an equivalent variational equation which is however nonlinear :
δR′′ − δR′2/(2δR) − (D2/2)r2

hδR = 0; the nonlinearity stems from the vanishing of a term in the on-shell
equation at the horizon, so that a linear expansion in ε yields an equation which is not necessarily linear in
δR and its derivatives. If we try to expand the Lagrangian Leff and then solve the equation which follows
from the leading correction to Leff (quadratic in ε), the coefficients of this equation diverge at r = rh. Again,
all of this is merely about the coordinate system we use; we could work in Kruskal-Szekeres coordinates and
avoid the problem.
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to the equations of motion defining an invariant plane in the parameter space (2) write down
the normal variational equation (NVE) for the invariant plane (3) solve the NVE so obtained
and check whether it is expressible in terms of Liouvillian functions; these are the elementary
functions (powers, exponentials, trigonometric functions and their inverses), rational functions
of such elementary functions, and their integrals.4

We want to show the integrability of the system described by the effective Lagrangian in
eq. (2.10). One obvious invariant plane is the R−X1 plane for a straight string solution:

R(σ) = rh, X1(σ) = const. ≡ Xc. (2.13)

One can see that this plane is invariant simply by observing that the canonical momentum
corresponding to the off-plane motion is zero: p′X = ∂Leff/∂X1 = 0. The corresponding
NVE along the X1-direction is trivial: δX ′′

1 = 0, yielding the conclusion that the system is
integrable. We have seen that the system nevertheless exhibits an exponential growth of
the in-plane variation with a positive Lyapunov exponent in the near-horizon region. By
itself this is not surprising: a local instability can lead to a growing mode even in a trivially
integrable system, the simplest example being the inverse chaotic oscillator [57]. This is
similar to findings of [31] where it is noted that horizons are really sources of instability in the
bulk. Even integrable systems can display local instability in the vicinity of thermal horizons.

We need to make one thing clear. The integrability of the static open string La-
grangian (2.10) that we have demonstrated in no way conflicts the established nonintegrability
of string motion in black hole and D-brane backgrounds proved in [51, 55]. The fact that a
ring string in these backgrounds is nonintegrable, as found in the aforementioned references, is
enough to prove the nonintegrability of string motion in these geometries in general, and this
likely holds also for open strings with sufficiently complicated boundary conditions. On the
other hand, the existence of special solutions and boundary conditions which are integrable
(and therefore certainly nonchaotic) is perfectly possible also in a nonintegrable system.

3 Open string in other backgrounds

In order to further corroborate the universality of the result (2.12), we will repeat exactly
the same analysis for two more backgrounds: (1) a general hyperscaling-violating metric and
(2) a black Dp brane. The former is quite relevant for many holographic purposes, the latter
does not in general have a holography dual (as its asymptotic geometry is in general not
AdS) but it does appear as a sector in various backgrounds (and of course the AdS throat
of the D3 brane provides the simplest and most famous top-down AdS/CFT construction).
This endeavour might look like mere stamp collecting but it has a purpose: to show that the
result is not special to AdSS metric and also to show (from the Dp case) that by itself it has
nothing to do with holography or AdS asymptotics — it is all about thermal horizons.

4One can find the reasoning behind this algorithm in the literature. In brief, the existence of such a solution
is equivalent to the solvability of the identity component G0 of the Galois group; conversely, their nonexistence
is equivalent to G0 being not solvable, and hence non-Abelian. Non-Abelian nature of G0 tells us that no
complete system of integrals of motion in involution exists, therefore the system is nonintegrable.
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3.1 General hyperscaling-violating background

In our first example we closely follow the idea of [31] and study bulk motion in a broad
class of bulk geometries: hyperscaling-violating horizons at finite temperature, constructed
in [58–61] as gravity duals of effective field-theories with scaling and long-range entanglement,
thought to be ubiquitous in quantum-many body systems. In [31], it is shown that the bulk
geodesics, i.e. particle orbits also have the 2πT Lyapunov exponent in a large part of the
parameter space though not everywhere; here we show that static strings/holographic heavy
quarks always yield 2πT . The background metric reads

ds2 =−r2z− 2θ
D−2 f(r)dt2+ 1

f(r)r2+ 2θ
D−2

dr2+r2dx⃗2, f(r)= 1−
(
rh

r

)D−2+z−θ

, (3.1)

and depends on two parameters, the Lifshitz exponent5 z that measures the anisotropy of
space versus time scaling (so that Lorentz-invariant backgrounds correspond to z = 1) and the
hyperscaling exponent θ which measures the deviation from the dimensional scalinig of free
energy and roughly corresponds to long-range-entangled degrees of freedom. By definition,
the temperature of the horizon at rh is found as:

4πT = − g′tt(rh)√
gtt(rh)grr(rh)

= (D − 2− θ + z)rzh. (3.2)

We can easily redo the same analysis as for the AdSS configuration, keeping the same
ansatz (2.3) and the equations of motion analogous to (2.4)–(2.8). When everything is said
and done, we obtain the near-horizon variational equation

δR′′(σ)− (D − 2− θ + z)2r2z
h δR(σ) = 0, (3.3)

which, according to (3.2), implies again λL = 2πT with the ansatz δR ∼ exp(2λLσ).

3.2 Dp brane and related backgrounds

3.2.1 Extremal black Dp brane

Consider first the single Dp brane geometry in 10 spacetime dimensions. To the best of our
knowledge no systematic work was done on string dynamics in brane backgrounds, except
for the general proofs of nonintegrability in [51, 55] and of course the near-brane limit of
the D3 brane when the asymptotics becomes AdS. The metric reads

ds2 = ηµνdx
µdxν

f2(r) + f2(r)
(
dr2 + r2dΩk

)
, µ = 0, . . . p (3.4)

f(r) =
(
1 + Q

rn

)m

, n = 7− p, k = 8− p,m = 1
4 . (3.5)

Here, r is the radial coordinate, xµ are the directions on the brane, while dΩk is the k-sphere
with coordinates Φ1, . . .Φk. The string configuration we consider is completely analogous

5We denote the Lifshitz exponent by z rather than the usual z, as z will be used for the radial coordinate
z = 1/r. Likewise ζ is taken by another coordinate to be used in section 4.
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to the static open string studied previously in AdS black hole backgrounds:

t = t(τ), X1 = x1, . . . Xp = xp,

R = R(σ), Φ1 = ϕ1, . . . Φk = ϕk (3.6)

Therefore, our string configuration is only nontrivial in the directions transverse to the brane,
and reduced to a point on the k-sphere (i.e., in longitudinal directions). In appendix A we
show that more general ansätze are possible; but for our purposes, eq. (3.6) is perfectly
sufficient. For the time direction we can again choose t(τ) = τ . We have one nontrivial
Virasoro constraint which, upon plugging into the equation of motion, yields:

R′′ + 2f ′(R)
f(R)5 −

(R′)2 f ′ (R)
(
−f (R)4 +QRp−7 + 1

)
f(R)5 = 0. (3.7)

We have some analytical control over the eq. (3.7) and its variational equation for small R,
i.e. near the brane, when we expand R(σ) = ϵ+ δR(σ). The variational equation then reads

δR′′ − ϵ5−p

√
(7− p)(6− p)

2Q δR = 0, (3.8)

where R ∼ ϵ, i.e. the small parameter is the distance from the brane; since this limit means
ϵ → 0, the bulk Lyapunov exponent vanishes. We will see the opposite situation with
black Dp branes, in the presence of a thermal horizon. The solution (3.8) is obviously only
sensible for p ≤ 5 but for p > 5 the same conclusion is reached, only the expansion in r

large (ϵ small) is different.

3.2.2 Non-extremal black Dp brane

We will now consider a non-extremal black brane, the finite-temperature generalization of
the extremal solution at temperature T :6

ds2 = −h(r) dt2

f2(r) +
dx⃗2

f(r)2 + f2(r)
(
dr2

h(r) + r2dΩ2
k

)
(3.9)

f(r) =
(
1 + Q

rn

)m

, h(r) = 1−
(
rh

r

)4
, n = 7− p, k = 8− p, m = 1

4 (3.10)

1
T

= 4πf(rh)√
h′(rh)(h(r)/f2(r))′

∣∣
r=rh

=
4πrh

√
1 +Qrp−7

h

p+ 1 . (3.11)

In the limit rh → 0 (equivalently, T = 0) the black brane becomes the previously studied
extremal black brane. The coordinates are the same as in the extremal solution (3.5). The
dΩk sector is insensitive to temperature, which can be seen from the fact that its metric is
independent of the redshift function h. The effect of the thermal horizon is thus seen solely

6For concreteness we again assume p ≤ 5 but, just like for the extremal brane, the generalization for p > 5
is easy.
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in the equation of motion for R (after plugging in the Virasoro constraint as usual):

R′′−

f ′(R)
(
−f (R)4+QRp−7+1

)
f(R)5 + h′(R)

2h(R)

R′2−h(R)(f (R)h′ (R)−4h(R)f ′ (R))
2f(R)5 =0.

(3.12)
Following the same logic as before, we find the near-horizon variational equation:

δR′′ − (p+ 1)2

r2
h +Qrp−5

h

δR = 0. (3.13)

Looking for a solution of a form ∼ exp(2λLσ) and using eq. (3.11), we find that λL = 2πT .
The ubiquitous 2πT is present even if the metric is asymptotically flat, as thermal horizons
generate instability, whatever the faraway asymptotics. The holographic meaning of this
instability is theory-dependent, and in general does not exist when there is no AdS region.

3.2.3 From AdSp+2 × Sk throat to flat space

Following [51, 62, 63], we can consider a modification of the Dp brane geometry at zero or
finite temperature to obtain a metric interpolating from an AdSp+2×Sk throat (near-brane) to
flat space in the far region; such solutions appear as solutions of supergravity and interpolate
between different vacua. The expressions for the metric remain the same as before (eq. (3.5)
at T = 0 or eq. (3.10) at T > 0) but the parameters are:

m = 1
n
, p, n, k arbitrary. (3.14)

One can easily check that indeed for Q→ 0 or equivalently r → rh (including the case rh = 0
for the extremal brane) we obtain AdSp+2 × Sk and for Q→ ∞ or equivalently r → ∞ we
get flat space (in fact, its product with the k-sphere). We proceed along the same lines as
before, hence we only give the end results. The variational equation reads

δR′′ −
(
p+ 1
rh

)2 (
1 +Qrp−7

h

) 4
p−7 δR = 0, (3.15)

which yields once again λL = 2πT , computing the temperature by definition, similar as in
eq. (3.11). Now we can however obtain an analytic solution also in the far region, which
interpolates to R × Rp+1 × Sk. Writing R(σ) = 1/ϵ + δR(σ) with ϵ → 0, we get the
variational equation

δR′′ + 2(8− p)Qϵ9−pδR = 0, (3.16)

yielding λL = 0 as the coefficient of δR is positive (hence the dynamics is oscillatory rather
than exponentially growing), and in addition it drops to zero as we reach infinity.

All these examples strongly suggest that the 2πT exponent (with the same value, but
different meaning from the MSS bound for CFT chaos) for the unstable saddle point in bulk
motion is present if and only if the geometry has a static thermal horizon, holographic or not.
In the next section we will see that the presence of rotation changes the outcome. This will
lead us to the general conclusion: that the bulk near-horizon Lyapunov exponent is universal
for a given symmetry class of the metric. For maximally symmetric horizons (isotropic and
static) the result is always 2πT , which is argued in detail also in [46], on the basis of [45].
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3.2.4 Numerical solutions

Although the equations we solve so far are quite elementary, it is always nice to have a
numerical check too. Therefore, in this subsubsection we solve the equations of motion
numerically; also, this is the only way to look at the string in whole space.7 We will
see explicitly that the system is integrable and yet that the variational equations have
exponentially growing solutions.

We will look at the D3 black brane, The aim is thus to solve eq. (3.12) and its variational
equation for p = 3.8 In order to do so, it is more convenient to use the coordinate z = 1/r,
so that the equation of motion for the new worldsheet field Z(σ) becomes

Z ′′ − Z ′2

Z
− h′(Z)Z ′2

2h(Z) − h2(Z)Z3

f4(Z)

(
1− Z

(2f ′(Z)
f(Z) + h′(Z)

2h(Z)

))
= 0. (3.17)

We impose Dirichlet conditions at the brane and Neumann conditions at the other end
(open strings should be attached to branes but they can float freely in the asymptotically
flat outer region). Once we have the solutions Z(σ) we substitute the solution into the
variational equation:

δZ ′′ − (2h(Z) + Zh′(Z))Z ′

Zh(Z) δZ ′ + 1
2Z2

[
Z ′2

(
2h2(Z) + Z2h′2(Z)− h(Z)Z2h′′(Z)

)
h2(Z)

− 20v2h2(Z)Z6f ′2(Z)
f6(Z) + 4v2h(Z)Z5 (3f ′(Z) (2h(Z) + Zh′(Z)) + h(Z)Zf ′′(Z))

f5(Z)

−
v2Z4

(
6h2(Z) + Z2h′2(Z) + h(Z)Z (8h′(Z) + Zh′′(Z))

)
f4(Z)

]
δZ = 0. (3.18)

For δZ the meaningful boundary condition is the fixed (and small) difference between the
on-shell trajectory and its clone at the brane (δZ(σ = 0) = ϵ) and the Neumann condition
at infinity (since the strings float freely so does the difference between to string profiles).
The outcome is given in figure 1. Along with the radial profiles of the string for different
temperatures, we plot the near-horizon values of the numerically computed Lyapunov exponent
λ

(n)
L = log (δZ (σ0) /ϵ) /2, where σ0 is some near-brane cutoff (we want the Lyapunov exponent

near the brane thus σ0 should cut off the far-from-brane part).9 The numerics is reasonably
close to the analytic result, providing an additional confirmation.

4 Open string in D1-D5-p black string background

So far we have explored the bulk instability of open strings in black hole and black brane
backgrounds and we have found the saturation of a fake MSS bound — fake as it is unrelated
to chaos (the configuration we consider is even integrable, though a more involved setup likely

7Remember we have no analytic control at intermediate distances, far from both the brane/horizon and
the infinity/AdS boundary (depending on the geometry).

8The value p = 3 is chosen as the D3 brane is particularly relevant for applications, having also the AdS
throat, but the numerics works the same way for any p.

9Of course, we have checked that the results do not strongly depend on σ0.
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Figure 1. Radial profile Z(σ) (A) and the numerical Lyapunov exponent λ(n)
L = log (δZ (σ0) /ϵ) /2

(B) for the static open string in thermal black brane background, for a range of temperatures T . We
take σ0 = 0.2 for the cutoff but values between 0.1 and 0.5 yield similar results. We compare the
numerical result for the Lyapunov exponents to the analytic estimate (i.e., the chaos bound) and find
reasonable agreement.

would not be such). Now we will interpret this finding and relate it to the thermal correlators
and quasi-normal modes in a theory which is particularly interesting as we know something
not only about the (super)gravity solution and the dual large-N field theory, but also about
the microscopics: the D1-D5-p black string [64–69]. This setup is celebrated for being the
first black hole solution in string theory for which the entropy was computed by counting
the microscopic degrees of freedom, obtaining for a horizon area A the famous Bekenstein-
Hawking result S = A/4 [65]. Another famous result is the calculation of the greybody
factor in [64], the logical macroscopic extension of the entropy calculation. To remind, the
greybody factor is obtained in [64] as the absorption cross section for a wavepacket in the
black string background. In holographic setups, where the relevant near-horizon dynamics
is dual to a two-dimensional CFT, the absorption cross section can be obtained from the
imaginary part of the retarded Green’s function.

Our idea here is twofold. First, we study the Lyapunov stability in D1-D5-p background
— this will yield some surprises as the geometry has a global rotation with angular velocity Ω;
so far we have only studied static geometries. Second, we will relate the Lyapunov exponent
to the retarded propagator in dual field theory and pinpoint what it tells us about the
meaning of bulk instability.

4.1 Holography of the D1-D5-p system: a reminder

The background describing the D1-D5-p black string reads

ds2 = 1√
f(r)

(
−dt2 + dx2

5 +
r2

0
r2 (coshΣdt+ sinhΣdx5)2

)
+

+
√
f(r)

(
dr2

h(r) + r2
(
dψ2 + sin2 ψ

(
dθ2 + sin2 θdϕ2

)))
, (4.1)

f(r) =
(
1 + r2

1
r2

)(
1 + r2

5
r2

)
, h(r) = 1− r2

0
r2 . (4.2)

As usual, t and r are the time and radial coordinate respectively, ψ, θ and ϕ are the angles on
the 3-sphere, and xi (i = 1, . . . 5) are the Cartesian coordinates in the plane. This is a classical
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solution of ten-dimensional type IIB supergravity compactified on T 5 ∼= T 4 × S1 [64, 70]. It
is charged under the Ramond-Ramond field of the corresponding theory; since D1 and D5
branes are magnetically dual to each other we get electric and magnetic charges that are
related to the radii r1 and r5, respectively.10 There is also an additional charge associated to
the p-momentum along D1-brane, i.e. the Kaluza-Klein (KK) mode on S1, related to factors
of r2

0 cosh2 Σ in the metric (4.1)–(4.2). In the dilute gas regime these three charges satisfy [64]:

r0, r0 sinhΣ ≪ r1, r5. (4.3)

The solution is anisotropic and rotating for Σ ̸= 0 as we see from the presence of non-vanishing
tx5-component in the metric (4.1), implying that we now have the left and right temperature:

TL = r0e
Σ

2πr1r5
, TR = r0e

−Σ

2πr1r5
. (4.4)

We may further define the “average” (Hawking) temperature T as 1/T = (1/TL + 1/TR)/2.
This temperature and entropy are given by

1
T

= 2πr1r5 coshΣ
r0

, S = 2π2r1r5r0 coshΣ
4 . (4.5)

We will need a few more features of this solution. The first is that in the extremal case
(T, S ∝ r0 = 0), also known as the extremal D1-D5 bound state system, the near-horizon
geometry becomes AdS3 ×S3. We can show this by performing the coordinate transformation
t → t/εL, r → εLr, x5 → x5/εL in the metric (4.1), where L2 = r1r5: in the limit ε → 0
we recover the AdS3 × S3 geometry

ds2
NHE ≈ r2

L2

(
−dt2 + dx2

5

)
+ L2dr

2

r2 + L2dΩ2
3. (4.6)

On the other hand in the near-extremal case (r0 → 0, Σ → ∞), the p-momentum survives
and we still have the full D1-D5-p system, with a near-horizon geometry of the rotating
Banados-Teitelboim-Zanelli (BTZ) black hole:

ds2
NHNE ≈ r2

L2

(
−dt2 + dx2

5

)
+ L2 dr2

r2 − r2
0
+ r2

0
L2 (coshΣdt+ sinhΣdx5)2 + L2dΩ2

3. (4.7)

The procedure to derive this is the same as in the extremal case, except that now we also
need to take r0 → εLr0. In order to translate the metric (4.7) into the standard coordinates
for BTZ black holes we have to perform an additional coordinate transformation:

r2 = w2 − w2
−, w+ = r0 coshΣ, w− = r0 sinhΣ. (4.8)

For convenience we will write down the metric of the rotating BTZ in these coordinates:

ds2
BTZ =−

(w2−w2
+)(w2−w2

−)
L2w2 dt2+ L2w2dw2

(w2−w2
+)(w2−w2

−)
+w2

L2

(
w+w−
w2 dt+dx5

)2
. (4.9)

The angular velocity is given by Ω = w−/Lw+ = tanhΣ/L.
10One can think of these charges also as representing the number of copies in the stack of D1 branes

compactified on S1 along the x5 direction, and in the stack of D5 branes wrapping the whole T 4 ×S1 manifold.
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From the above it is clear that the dual CFT lives in 1+1 spacetime dimension and
encodes the physics of the AdS3 × S3 sector: in the holographic regime the large-r flat
asymptotics of the geometry (4.1) have to decouple. The classical gravity solution of course
corresponds to the strongly coupled regime in CFT, however some direct comparisons were
made (and count among the famous early tests of AdS/CFT) in the weakly-coupled regime
where the CFT is approachable from field theory side [67, 69, 71, 72] and some basic results
from gravity side (like thermodynamics) still hold for reasons of continuity. In this regime
the CFT has an orbifold point [71, 72] which acts as UV deformation, driving the theory
toward a weakly coupled regime. This is seen in gravity as the deformation of the metric
away from the near-brane region (AdS3 or BTZ). Therefore, we understand, at least to some
extent, the UV physics and the meaning of the UV deformation of the theory.

4.2 Radial fluctuations

We consider a static open string in D1-D5-p background stretching from interior to the
boundary just like in previous examples. In particular, we postulate the following string
configuration

t(τ, σ) = τ, R(τ, σ) ≡ R(σ),
Ψ(τ, σ) ≡ ψ(τ), Θ(τ, σ) ≡ π/2, Φ(τ, σ) ≡ ϕ(τ), X5(τ, σ) ≡ X5(σ). (4.10)

The τ -dependent degrees of freedom {Ψ,Φ} decouple. The remaining fields R and X5 also
decouple from each other, since we can combine the equation of motion for R with the
nontrivial Virasoro constraint

f(R)R′2(σ)
h(R) +X ′

5
2(σ) +

r2
0

(
v2 cosh2 Σ+ sinh2 ΣX ′

5
2(σ)

)
R2(σ) = 1 (4.11)

to obtain the following equation

2fh2
(
−2r2

0 cosh2 Σ+R2
)
+ f ′h2R

(
−r2

0 cosh2 Σ+R2
)
+

+ f2R2
(
−
(
2h+Rh′

)
R′2 + 2hRR′′

)
= 0. (4.12)

The effective Lagrangian for the coordinates R and X5 takes the form

L = 1√
f(R)

[(
−1 + r2

0 cosh2 Σ
R2

)
− f(R)R′2

h(R) −
(
1 + r2

0 sinh2 Σ
R2

)
X ′

5
2
]
, (4.13)

and reproduces eq. (4.12) when combined with the Virasoro constraint (4.11).
We will assume that we are in the dilute gas regime, like in [64], defined by r0, r0 sinhΣ ≪

r1, r5. This boils down to the condition T ≪ 1/r1, 1/r5. As usual, we can solve the equation
analytically in two distinct regions: (1) near-horizon region r ∼ r0, r0 sinhΣ ≪ r1, r5 and
(2) far region r0, r0 sinhΣ ≪ r ∼ r1, r5.

Expectedly, the system described by the Lagrangian (4.13) is integrable. Applying
the NVE methods, we can choose the invariant plane to be {t = τ,R = r0,Ψ = 0,Θ =
π/2,Φ = 0, X5 = const.}. Since X5 is a cyclic coordinate in (4.13), its conjugate momentum
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is constant: p′X5
= ∂L/∂X5 = 0. Therefore, the R−X5 plane is indeed invariant under the

evolution of the system (along σ). The normal variational equation therefore corresponds
to the variations in the X5-direction, yielding δX ′′

5 = 0. Just like the open string dynamics
on the Schwarzschild horizon, this system is integrable.11 In both cases, the extra integrals
of motion are simply the transverse momenta.

We solve the variational equation of the radial coordinate in (4.12) obtained by perturbing
the horizon solution R(σ) = r0 as R ∼ r0 + δR(σ):

δR′′ − 2a4

r6
0f

2(r0)
δR = 0, (4.14)

a4 ≡ r2
0(r2

1 + r2
5) + 2r2

1r
2
5 + r2

0

(
2r2

0 + r2
1 + r2

5

)
cosh 2Σ (4.15)

Plugging in the expression for f , we find the exponent of the asymptotic growth of the
solution, determined as before by ∼ e2λLσ:

λL = r0
r1r5

√
1 + r2

0(r2
1 + r2

5)
2r2

1r
2
5

cosh(2Σ). (4.16)

The above expression12 can be written in terms of the temperatures (4.4)–(4.5) as:

λL =2πT coshΣ
√
1+π2 (r2

1+r2
2
)(
T 2

L+T 2
R

)
=2πT coshΣ

(
1+π2

2
(
r2

1+r2
5

)(
T 2

L+T 2
R

)
+. . .

)
.

(4.17)
The second equality (expansion in r2

0/
√
r2

1 + r2
5) is the dilute-gas approximation. Importantly,

the Lyapunov exponent does not repeat the universal 2πT (“fake MSS”) result. It depends
on r1 and r5 in addition to T , and its temperature dependence is a nonlinear function. But
the leading term in the expansion has a simple form:

λ
(0)
L ≈ r0

r1r5
= 2πT coshΣ. (4.18)

Therefore, the Lyapunov exponent in the dilute-gas regime “comes close” to the static value
but differs by a factor of coshΣ which equals unity when Σ = 0, i.e. when there is no rotation.
In absence of rotation we return to the 2πT exponent in the dilute-gas regime.

We can translate our result into the standard variables for rotating BTZ solutions. Since
in standard coordinates for BTZ black holes we have Ω = w−/Lw+, using eq. (4.8) it follows
that LΩ = tanhΣ. Therefore, using the identity coshΣ = 1/

√
1− tanh2 Σ, we get

λ
(0)
L = 2πT√

1− L2Ω2
, LΩ ∈ [0, 1). (4.19)

We could express this result in terms of the left and right temperature TL,R, making use
of the relation 2/T = 1/TL + 1/TR ⇒ T = 2TLTR/(TL + TR). However, we do not get

11Again, a more general open string setup would not necessarily be integrable — one has to perform the
Kovacic analysis for every boundary condition (i.e. effective Lagrangian) separately.

12One may worry whether this expression remains finite in the near-extremal limit where we take Σ → ∞.
We should pay attention to the fact that there is a factor of r0 hiding inside the temperature T . In the
near-extremal limit we also take a limit r0 → 0, while keeping r0 cosh Σ fixed.
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a particularly simple or more intuitive form than (4.19), which in fact nicely shows how a
nonzero rotation rate Ω deforms us away from the universal 2πT scaling.

This result should be compared to the ones found in [73, 74], where chaos in dual CFT
was studied by calculating the OTOC correlators of rotating BTZ black holes for a scalar
field and for a probe string respectively. The calculation done in [73] obtains two different
Lyapunov exponents λ±L = 2πT/(1∓ LΩ) in the presence of rotation, one of which is above
the MSS bound and the other one bellow it, presuming that Ω ̸= 0. Our result (4.19) turns
out to be exactly equal to the geometric mean of {λ+

L , λ
−
L}, implying that λ−L < λL < λ+

L .
Both results show that when an additional scale (angular velocity) appears there is no single
“degenerate” exponent anymore, but different response functions receive different corrections.

We note in passing that our near-horizon analysis yields a single Lyapunov exponent,
rather than a Lyapunov spectrum with two (in general different) exponents as one would
expect in this background (and as [73] finds in the rotating BTZ case) — rotation breaks
isotropy so the two directions normal to the invariant plane should be inequivalent. The reason
that we nevertheless only see a single exponent could be that the quanta of p-momentum
in D1-D5-p are only left-moving, thus we only see the Lyapunov exponent associated with
the temperature of the left-moving modes.

The opposite limit when r ≫ r0, r0 coshΣ and r ≫ r1, r5, is treated in the same way
as the asymptotically flat limit of the interpolating geometry in subsubsection 3.2.3: we
have noted that we can think of the six-dimensional black string as an interpolation between
AdS3 × S3 and Minkowski spacetime. The far region corresponds to the latter, hence it
must have zero Lyapunov exponent.

Unlike the examples from previous sections, we have now found some unexpected aspects
of the bulk Lyapunov exponent: dependence on the rotation rate and the complex temperature
dependence away from the dilute-gas limit.13 Now we will relate it to the retarded propagator
of a CFT quasiparticle interacting with the thermal ensemble,14 the natural dual object
to consider.

4.3 Transverse fluctuations

Now we want to study the retarded Green’s function for transverse fluctuations, which
describes thermal motion of quasiparticles in D1-D5 field theory, the more intuitive object to
consider compared to the radial fluctuation. In this case, it is convenient to switch to the
Nambu-Goto formalism and work in the static gauge. A similar calculation was already done
in a slightly different setup [75], where the authors study the bulk dynamics of a fundamental
string in an extremal and near-extremal Reissner-Nordström (RN) black hole background.
Of course, the D1-D5 background will give very different physics.

13There is of course no rigorous reason for the bulk exponent to obey the MSS bound in all cases as it is a
different object, and comparing to [73] we have seen that even though the OTOC exponent also changes in
the presence of rotation the values are different. But still, the fact that (4.17)–(4.18) differ from the results
like [73] suggests there is a difference in underlying physics.

14In the context of D1-D5 CFT it does not make much sense to talk about quarks as the symmetries of the
theory differ from N = 4 SYM.
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The ansatz is now:

t(τ, σ) = τ ≡ t, R(τ, σ) = σ ≡ r,

Ψ(τ, σ) ≡ ψ(t), Θ(τ, σ) ≡ π/2, Φ(τ, σ) ≡ ϕ(t), X5(τ, σ) ≡ X(t, r). (4.20)

We expand X(t, r) in Fourier modes

X(t, r) =
∫
dω

2π e
−iωtXω(r), (4.21)

and the relevant equation of motion obtained by varying the Nambu-Goto action reads

X ′′
ω(r) +

 r2
0

(
−3r2 + r2

0 +
(
r2 − r2

0
)
cosh2 (2Σ)

)
r
(
r2 − r2

0
) (

−2r2 + r2
0 + r2

0 cosh2 (2Σ)
) − f ′(r)

f(r) + h′(r)
2h(r)

X ′
ω(r)

− 2r2ω2f(r)(
−2r2 + r2

0 + r2
0 cosh2 (2Σ)

)
h(r)

Xω(r) = 0. (4.22)

In the special case when there is no rotation (Σ = 0) this equation simplifies to

X ′′
ω(r) +

(
r2

0
r3h(r) −

f ′(r)
f(r) + h′(r)

2h(r)

)
X ′

ω(r) +
ω2f(r)
h2(r) Xω(r) = 0. (4.23)

We will first solve the special case with no rotation; it will give us some useful prior intuition
for the general case. Since the problem can be divided into two regions, we will again employ
the matching procedure in order to gain some analytic control of the equation.

4.3.1 Static AdS: extremal case

Consider first the near-horizon region of the extremal black string, i.e. at temperature T = 0
on the field theory side. In this case the IR geometry is given by eqs. (4.6). The relevant
equation of motion for string fluctuations along the x5-direction in this regime is

X ′′
ω(r) +

4
r
X ′

ω(r) +
(
L2ω

r2

)2

Xω(r) = 0, (4.24)

with general solutions of the form

Xω(r) = A
(
1− iL2ω

r

)
e

iL2ω
r + B 1

2L4ω2r

(
1− ir

L2ω

)
e−

iL2ω
r . (4.25)

Imposing the infalling boundary condition (appropriate for the retarded propagator) at the
horizon requires B = 0. Expanding this solution in the matching region r0 ≪ r ≪ L, we get

Xω(r) = A
(
1 +

(
L2ω

)2
r2

)
. (4.26)

From this we can calculate the retarded Green’s function at T = 0 in the IR region
r0/r, ωL ≪ 1 ≪ L/r:

G(T =0)
R = L4ω2 ⇒ ℑG(T =0)

R = 0. (4.27)
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Figure 2. The effective Schrödinger potential (4.28) for the extremal D1-D5 geometry with L = 1, for
four values of the frequency ω. The static case ω = 0 (red full line) is qualitatively different because
the potential is strongly repulsive: there is no absorption because plan waves coming from infinity
are reflected away. For ω > 0 (blue, green, black dotted lines) the potential is strongly attractive,
diverging as 1/r4 at the origin r = 0. This again implies zero absorption cross section as there are no
solutions behaving as plane waves at infinity.

Therefore, we get a vanishing absorption cross-section in the presence of the horizon, i.e.
ℑG(T =0)

R = 0. So we need to understand why the extremal horizon does not absorb anything
even though it is a horizon (with finite area and finite greybody factor). From the bulk
viewpoint, one way to see the reason is to rewrite the fluctuation equation (4.24) in the
Schrödinger form:

∂2
r X̃ω(r)− Veff(r)X̃ω(r) = 0, Veff(r) =

2r2 − L4ω2

r4 . (4.28)

The effective potential is shown in figure 2 for various values of ω. For ω = 0 a zero
imaginary part could be expected — for ω = 0 the effective potential is positive and
(quadratically) divergent at the horizon, thus there is no absorption, i.e. all incoming waves
are reflected backward.

The nonstatic case ω ̸= 0 is qualitatively different — it has the expected negative
divergence (infinite well) at the extremal horizon r → 0, as we see from eq. (4.28) and figure 2.
However, it is known that the scattering problem for attractive central potentials diverging as
1/rs for s > 2 is not well-defined [76]: such potentials always lead to a wave “falling toward
the center” and the solution to the Schrödinger equation in this case is always localized
around zero — there is no absorption because the infalling plane wave at infinity is not a
consistent boundary condition. We will see in the following section that we can infer this
result for the retarded Green’s function in the extremal case by considering the limit ω ≪ T

of the thermal correlator obtained in a near-extremal case.

4.3.2 Static BTZ: near-extremal case

At low but finite temperatures or equivalently in the near-extremal case we would be interested
in the dynamics of the open string in the metric given by eq. (4.7). Therefore, we look for
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Figure 3. The effective Schrödinger potential (4.30) for a near-extremal D1-D5-p system with
the parameters r0 = 0.1, L = 1, for Lω = 1, 5, 10, 15 (red, blue, green, black). Already from the
expression in eq. (4.30) it is obvious that in the near-extremal case nothing special happens in the
static limit ω = 0. For all frequencies, the potential has the form typical of near-horizon effective
potentials [68, 70], where a high but finite potential barrier is followed by the infinite well at the
horizon r = r0.

the solution of open string equations in BTZ×S3 geometry but (in this subsection) still with
no rotation (Σ = 0). The relevant equation can be written in a compact form reminiscent
of the relativistic wave equation in curved background:

h(r)
r4

d

dr

(
h(r)r4dXω(r)

dr

)
+ L4ω2

r4 Xω(r) = 0. (4.29)

It is again instructive to look at the Schrödinger form of the equation, obtained by plugging
in Xω(r) = h−1/2(r)r−2Ψ(r) into eq. (4.29):(

d2

dr2 − Veff(r)
)
Ψ(r) = 0, Veff(r) =

2r2 − 3r2
0 − L4ω2(

r2 − r2
0
)2 . (4.30)

The second term inside the brackets is the effective Schrödinger potential, plotted in figure 3.
Proceeding further toward the analytic solution to eq. (4.29) it is convenient to transform

the radial variable as

ζ ≡ r2
0
r2 . (4.31)

In order to reduce eq. (4.29) to a hypergeometric differential equation,15 we will make a
further coordinate transformation ζ 7→ 1 − ξ. The equation now reads

X ′′
ω(ξ)−

1
2ξ

2− ξ

1− ξ
X ′

ω(ξ) +
1

ξ2(1− ξ)

(
L2ω

2r0

)2

Xω(ξ) = 0. (4.32)

15Since eq. (4.29) has three regular singular points at r = 0, r0 and ∞, we can be sure that it can be written
in the form of the hypergeometric differential equation.
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We can solve this equation at the horizon ξ = 0, by making the substitution y = − log ξ in
eq. (4.32). The solution at the horizon takes the form Xω ∼ e±iαy = ξ±iα, with α = L2ω/2r0.
The boundary condition at the horizon requires the outgoing modes to vanish, yielding

Xω(ξ) = Ã ξ−iα. (4.33)

In order to get the full near-horizon solution, we plug the ansatz Xω(ξ) = ξ−iαF (ξ) into
eq. (4.32), yielding

ξ(1−ξ)d
2F

dξ2 +
[
1−2iα−

(
1−iα− 1

2−iα
)
ξ

]
dF

dξ
−(−iα)

(
−1
2−iα

)
F (ξ)= 0. (4.34)

We recognize eq. (4.34) as the hypergeometric equation with parameters

a = −iα, b = −1
2 − iα, c = 1− 2iα. (4.35)

The corresponding regular solution reads

F (ξ) = Ã 2F1 (a, b, c; ξ) + B̃ ξ2iα
2F1 (a+ 1− c, b+ 1− c, 2− c; ξ) . (4.36)

We impose the infalling boundary condition (4.33) at the horizon, implying that B̃ = 0,
thus the near-horizon solution becomes

Xω(ξ) = Ã ξ−iα
2F1 (a, b, c; ξ) . (4.37)

We can now use the following identity to express solution (4.37) in terms of functions
depending on ζ, instead of ξ = 1 − ζ:

2F1 (a, b, c; ξ) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1 (a, b, 1 + a+ b− c; ζ)+

+ Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) ζc−a−b

2F1 (c− a, c− b, 1 + c− a− b; ζ) . (4.38)

The matching region r0 ≪ r corresponds to ζ ≪ 1, so we expand eq. (4.38) in small ζ:

2F1 (a, b, c; ξ) ≈
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) +

Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) ζc−a−b. (4.39)

We observe that the full solution in the matching region is of the form

Xω(r) ∝ S̃ r−d+∆ + F̃ r−∆, d = ∆ = 3, (4.40)

which allows us to read off the retarded Green’s function as the ratio F̃/S̃:

G(T )
R (ω) ∝ Γ(c− a)Γ(c− b)

Γ(a)Γ(b) =
Γ
(
1− i ω

2λL

)
Γ
(

3
2 − i ω

2λL

)
Γ
(
−i ω

2λL

)
Γ
(
−1

2 − i ω
2λL

) . (4.41)

We can take the imaginary part of (4.41) to get the absorption cross-section:

σabs = ℑG(T )
R (ω) ∝ α

4 + α3, α = ω

2λL
, λL = 2πT. (4.42)

This is the central result of our calculation — the IR propagator and the absorption cross
section for a heavy quasiparticle excitation. Let us think what this result means:
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1. The only energy scale in the Green’s function is the temperature. This is in line with
the problem of drift of a heavy quark through neutral N = 4 super-Yang-Mills (SYM)
plasma, dual to a dragging string in AdSS background [38, 39, 77] and many subsequent
works in the same setup [78–82]: in this case the quasiparticle does not see the charges
of the D1-D5-p system.16 This can be ascribed to the fact that the additional charges
of the D1-D5-p system are global and the quasiparticle is neutral with respect to them.

2. The form of the propagator (eq. (4.41)) could be expected from the BTZ asymptotics of
the near-extremal geometry [83], as it has the form of conformal quantum mechanics, i.e.
0+1-dimensional CFT [84] (we know that in the near-horizon region of the BTZ geometry
the transverse spatial coordinate decouples and the geometry becomes AdS2 × S, so
that AdS2 gives the 0+1-dimensional CFT).

3. The imaginary part behaving as ∼ ω + ω3 suggests that in addition to the usual drag
force f ∝ ẋ we also have a third-order term f̃ ∝ dx3/dt3. This is in fact expected

— all odd-power terms17 in velocity are allowed symmetry-wise and the leading-order
holographic Green function already captures the first two terms.

4. This result could not be reproduced neither from the static limit (ω = 0) nor from the
extremal limit T = 0 — these two limits are singular, which is expected for the static
limit but somewhat strange for the extremal limit.

As a sanity check we consider the high-frequency limit ω ≫ T where one should recover
the result for the extremal case.18 In this limit we can compare our calculation to the
pure CFT result for the two-point correlation function. We consider a two-point correlation
function in a 2 + 1-dimensional CFT for an operator with scaling dimension ∆: this behaves
as ⟨O∆(t)O∆(0)⟩ ∼ |t|−2∆, i.e. ∼ ω2∆−d, where d is the spacetime dimensionality. For an
operator with a scaling dimension ∆ = 3 living in d = 3 spacetime dimensions, one should
indeed expect ∼ ω3 power-law behavior of the thermal correlator in the high-frequency limit.

4.3.3 Rotating BTZ: near-extremal case

Now we study the rotating BTZ black hole. Compared to the static case, it is considerably
more difficult for calculations. Conceptually, it is also distinct for having different left and
right temperature. Now we cannot write an analytic solution in the whole throat, all the
way to the AdS boundary (i.e., the throat of the D1-D5-p geometry, before the far-region flat
asymptotics kick in), akin to eq. (4.37). Instead, we can only treat the near-horizon limit,
when r → rh or equivalently ζ → 1 (for ζ as defined in eq. (4.31)).

16At least, this is the case in our current setup with no drift; it would be interesting to check if this conclusion
remains in force in presence of drift.

17Even-power terms (like ẋ2) are not expected as their sign is independent of the sign of velocity, i.e. a
proper drag force (opposing the motion) would have to look like −ẋ2sgnẋ but that implies the breaking of
some discrete symmetry which we do not have.

18In this limit we consider wavelengths well below T−1 (ω−1 ≪ T−1) that are insensitive to thermal
fluctuations and thus resemble the behavior for the extremal background geometry.
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The equation of motion for the transverse fluctuations (4.22) can be slightly rewritten as(
1− r2

0
r2

)(
1− r2

0+r2
n

r2

)
X ′′

ω(r)+
4
r

[
1− 3

2

(
1− r2

0
3r2

)
− 5
4

(
1− 2

5
r2

0
r2

)]
Xω(r)+

L4ω2

r4 Xω(r)= 0.

(4.43)
Now we perform the same change of variables as before, y = − log ξ = − log

(
1− r2

0/r
2), so

that y → ∞ at the horizon. Expanding the coefficients to order ξ0 for ξ small or equivalently
to order 1 = (e−y)0 for y large, we get the near-horizon limit of (4.43):(

1 + 2r2
n

r2
0

− ey r
2
n

r2
0

)
X ′′

ω(r) + ey r
2
n

2r2
0
X ′

ω(r) +
L4ω

4r2
0
Xω(r) = 0. (4.44)

The solution that satisfies the infalling boundary condition at the horizon is

Xω(y) ∼ eiδy
2F1

(
iδ,−1

2 + iδ, 1 + 2iδ; eyr2
n

r2
0 + 2r2

n

)
, δ = L2ω

2
√
r2

0 + 2r2
n

. (4.45)

Another way to understand the fact that in the presence of rotation the solution of this type
cannot exist without imposing some approximations is that hypergeometric functions are
the representations of SL(2,R) which is broken by rotation.

In order to obtain the IR propagator (now we cannot obtain analytically the propagator
for general ω values), we expand the above solution in the region far from the horizon, for
r ≫ r0, that is for y small. Using the identity (4.39) this yields

2F1

(
iδ,−1

2 + iδ, 1 + 2iδ; eyr2
n

r2
0 + 2r2

n

)
∼

Γ
(

3
2

)
Γ(1 + 2iδ)

Γ(1 + iδ)Γ
(

3
2 + iδ

) +
Γ (1 + 2iδ) Γ

(
−3

2

)
Γ(iδ)Γ

(
−1

2 + iδ
) (r0

r

)3
.

(4.46)
Identifying the leading term and subleading term as the source and response respectively
we compute the retarded Green’s function in the rotating case:

G(T )
R (ω) ∼

Γ(1− iδ)Γ
(

3
2 − iδ

)
Γ(−iδ)Γ

(
−1

2 − iδ
) (4.47)

It has the same form as the one that we have obtained in previous section in the absence
of rotation (4.41), but with a different λL scale compared to eq. (4.18):

λ
(mod)
L = 2πT coshΣ

√
1 + 2r2

n

r2
0

= λ
(0)
L

√
cosh(2Σ), δ = ω

2λ(mod)
L

. (4.48)

We can interpret this as a modification of energy in the presence of a rotating horizon, i.e.
the Lense-Thirring effect.

4.4 Quasinormal modes and their decay scale

So far, we have found that breaking a global symmetry in IR (introducing rotation) in general
influences the bulk instability scale differently from the way it influences the exponent of
the field-theory OTOC. We have likewise seen that UV deformations (full brane geometry
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deforming the AdS throat) also change the instability scale away from 2πT . It remains
unclear however what exactly the bulk scale is from the CFT viewpoint, and to understand
this we will relate the bulk instability exponent to the quasinormal mode frequencies. For
simplicity we will consider the non-rotating case but all the results that we obtain still hold
also in the presence of rotation with λL → λ

(mod)
L .

Let us first remember that the poles in the retarded Green’s function are related to
transport properties of a thermal field theory. On the gravity side, they correspond to a
spectrum of quasinormal modes [68, 70]. More specifically, the relaxation times in field theory
are given by the imaginary part of the QNM spectrum in the bulk [85, 86]. Since our retarded
Green’s function (4.41) is singular at an infinite number of points in the complex plane, due
to the presence of the gamma functions in the numerator, we can extract the whole QNM
spectrum from it. Singular points are given by c − a = −n or c − b = −n, for n ∈ Z+ (a
set of non-negative integers), thus ωn = −2i(n+ 1)λL or ωn = −2i(n+ 3/2)λL. The union
of the two sets yields the following spectrum:

ωn = −2i(n+ 1)λL, n = 0, 12 , 1,
3
2 , · · · (4.49)

or equivalently

ωm = −i(m+ 1)λL, m = 1, 2, 3, · · · . (4.50)

We write the solution in these two obviously equivalent ways in order to facilitate the
comparison with the literature.19

Another way to derive the QNM spectrum is by definition, as the eigenfrequencies of
the equations of motion with infalling boundary conditions at the horizon and Dirichlet
boundary conditions at the boundary. The latter require the solution at AdS boundary to
vanish.20 The equivalence of the two approaches should be obvious, since the same set of
requirements that force the solution (4.39) to vanish at infinity also describes the poles of
the retarded Green’s function (4.41). This gives us a more intuitive picture of QNM: they
tell us how a local near-horizon instability decays. Therefore, we can think of the inverse of
the Lyapunov exponent λ−1

L as some characteristic timescale for the decay of perturbations
along the open string, that has nothing to do with chaos.

The result summarized in eqs. (4.49)–(4.50) is qualitatively the same as the one obtained
in [85] for scalar perturbations in a nonrotating BTZ black hole background, except that
the spectrum (4.50) also includes half-integer values of n (which is simply due to different
objects being considered: strings vs. scalar field). Similar scaling of the QNM spectrum with
the Lyapunov exponent of some special orbit is known from two classic papers concerning
asymptotically planar black holes:

19The form (4.50) is simpler and more natural but (4.49) has the same form as the scalar QNM solution [85]
that we want to benchmark against.

20In this context we again ignore the asymptotically flat region of the D1-D5-p geometry and only consider
its interior and AdS throat, just as we did when solving the string equations of motion. In an asymptotically
Minkowski spacetime we would require outgoing boundary condition at infinity, very different from the
situation in AdS. This will be important in what follows.
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1. In [47], the imaginary part of the QNM frequencies is determined by the instability of
geodesic motion, i.e. the Lyapunov exponent of a massless particle on the photon sphere,
which acts as an unstable fixed point. This is obtained in the eikonal approximation
when ℜω ≫ ℑω.21

2. In the opposite, high-overtone or overdamped regime, when n ≫ 1 and thus ℜω ≪
ℑω, [50] find that ℑω is proportional to the surface gravity at the horizon, which equals
precisely 2πT .

Our results are clearly obtained in the high-overtone regime since our Green’s functions
satisfy ℑG(T )

R ≫ ℜG(T )
R . Therefore, our result essentially generalizes [50] for an open string in

AdS. Yet, the coefficient itself is obtained as the Lyapunov exponent of an unstable fixed
point, and in that sense generalizes also [47] from the eikonal (photon-sphere dominated)
regime to the high-overtone (horizon-dominated) regime.

We have thus shown that both “easy” regimes (l ≫ 1 and n ≫ 1) can be understood from
classical unstable saddle points, but of course the eikonal regime sees the scattering near the
photon sphere while the overdamped regime (our case) sees the horizon. In this sense, earlier
results on the universal 2πT exponent for geodesics and fields near-horizon [31], bringing the
conclusion about the horizon as the “nest of chaos”, are not in collision with the studies of the
instability on the photon sphere [47, 87, 88] — only that they correspond to different regimes.
It is somewhat surprising that for a special string configuration these results are obtained in
asymptotically AdS backgrounds, as it is well known and discussed already in [47, 50] that
for a geodesic the argument does not easily generalize to AdS asymptotics.

Finally, we should also comment on the field theory interpretation of the quasinormal
modes spectrum that we have just found in the bulk. We already mentioned that an open
string in the bulk stretched from the boundary to the thermal AdSS horizon corresponds to a
heavy quark in thermal plasma of super-Yang-Mills quarks and gluons. Perturbations along
the string describe thermal perturbations in the plasma. Similar holds in the D1-D5 CFT
except that the elementary excitations now cannot be called quarks. We can summarize the
findings above by noting that a Lyapunov exponent is really related to the QNM frequencies,
which describe how local near-horizon instabilities on the string decay. Decay rates of those
instabilities are given by the spectrum of quasinormal modes, so on the field theory side they
describe how the thermal fluctuations in plasma die off. Thus, they predict the thermalization
timescale in the dual CFT.

5 Discussion and conclusions

The initial motivation for this work was a rather technical question: what is the meaning
of bulk chaos in particle and string motion in AdS spaces, and why it typically saturates
the same universal chaos bound as OTOC in field theory. We were led to the study of open
strings (rather than ring strings or particle geodesics) largely by reasons of calculational
simplicity and direct CFT interpretation: a string with one end on the boundary and the

21Here ℜω denotes the orbital frequency (oscillations) and ℑω is the Lyapunov exponent for the unstable
geodesic orbit (damping).
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other in the interior describes the motion of a heavy quark in quark-gluon plasma. The
holographic interpretation is less obvious for other string configurations, and for geodesics
it corresponds to a rather special, high-conformal-dimension limit.

As usual, the chase is almost better than the catch. We have found a number of surprising
properties of bulk dynamics, first and foremost the horizon as an unstable saddle point and
the “fake nest of chaos” with local instability rate exactly equal to 2πT in the static case but
different from it in the rotating black string geometry. But the holographic interpretation
is equally interesting: the universal MSS-like exponent is a red herring, the artifact of the
large-N limit in field theory, i.e. classical bulk dynamics, when temperature is the only scale,
unless some additional symmetry is explicitly broken in IR. This happens in the D1-D5-p
black string, where the rotation breaks the symmetry between left- and right-moving modes.
Just like in [89], the rotating system deforms away from the universal 2πT exponent, and
this shows directly in the correlation functions. We also note that away from the dilute gas
approximation there are additional higher-order temperature corrections to the Lyapunov
exponent — this is the effect of the UV deformation.

We have found the connection between the near-horizon Lyapunov exponent and the
spectrum of quasinormal modes in the high-overtone regime. This gives us an important hint
about the meaning of the bulk Lyapunov exponent: it is an instability scale associated to the
decay of fluctuations along the string due to thermal dissipation, and has nothing to do with
bulk chaos. This resembles two classic results on quasinormal modes of asymptotically flat
black holes: in the eikonal regime the Lyapunov exponent on the photon sphere determines
the quasinormal mode [47], whereas in the overdamped regime (our case) the imaginary part
of the quasinormal mode equals the horizon surface gravity [50]. We have essentially shown
that for near-horizon string orbits the bulk Lyapunov exponent equals the surface gravity
(which generalizes even for a rotating horizon).

Motivated by this connection, one could try to extend some other known results on
geodesic instabilities to the orbits of extended objects like strings. Of primary interest is
the instability on the photon sphere which, apart from the well-known connection with
quasinormal modes, holds the key to several other properties both in asymptotically flat
and in global AdS spaces [90, 91]. However, our setup needs to be substantially modified to
study the photon sphere, which arises as the locus of unstable saddle points for null geodesics
arriving from infinity. An open string in our configuration does not even have a saddle point
on the photon sphere, i.e. one cannot even define the Lyapunov exponent on the photon
sphere unambiguously. Therefore, instead of having a static string, we would need to scatter
an open string along a null geodesic. In that case one would expect the minimal allowed
value for the impact parameter to be of order of the photon sphere size (analogous study for
massless particles is performed in [48]). Such a setup is particularly suitable for the study of
fuzzballs and microstate geometries, since they have no sharp length/energy scale analogous
to a horizon [87, 92]. We would then be probing another branch of the QNMs spectrum,
associated to stringy instabilities around the photon sphere.

One might find it surprising that our open string lives in an integrable sector. This
is likely a consequence of the highly symmetric and simple boundary conditions for which
we prove integrability: a static string at the horizon. It is known that a ring string is
nonintegrable in thermal backgrounds, and also in generic Dp-brane backgrounds (although
some very special cases can be integrable, even at finite temperature, see e.g. [93, 94]). A
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more generic open string configuration is likely also nonintegrable. Essentially, since different
boundary conditions for string motion result in a different effective Lagrangian, the Liouville
integrability has to be checked separately for every configuration. While physically we like
to think of “string motion in a given background”, mathematically the system is integrable
if the Euler-Lagrange equations satisfy certain conditions — and for a string the form of
these equations depends on the string ansatz. Therefore, while a single example is enough
to prove general nonintegrability, proving integrability in the most general case requires
more powerful tools than the Kovacic algorithm. We do not do that: we merely focus on
a single case which turns out to be integrable.

From our results it is clear that the study chaos and scrambling in gauge/string duality
(i.e., beyond classical gravity) is a separate topic, not much touched upon in this work.
Fluctuations of a static straight string stretched from boundary to boundary of a maximally
extended (static and neutral) BTZ black hole are known to lead to the exact MSS value for
the worldsheet OTOC [21]; for a dragging string, butterfly velocity also enters the picture, as
the leading correction to the drag force [95]. Given the high symmetry of these systems, this
is not surprising; when the symmetry is decreased or corrections added to the classical string
solution the value will be modified but there is no reason to believe that the solutions and the
OTOC exponents will be modified in the same way as the bulk exponents, i.e. quasinormal
modes in our setup. Worldsheet scrambling for a rotating BTZ black hole was studied in [74]
and indeed, while the OTOC exponent is modified from the MSS value, it is not the same
as the bulk exponent that we find here. Of course, strings can also model spatiotemporal
chaos if we allows both worldsheet coordinates to fluctuate as in [96].

Finally, the issue of gauge choice might be worth commenting. Our choice to work in
the conformal gauge instead of static gauge most of the time is somewhat unusual. The
static gauge equates the time and radial coordinate with the worldsheet coordinates τ and σ
and thus immediately kills the unphysical (gauge-dependent) degrees of freedom. But the
conformal gauge has several advantages for us: (i) it simplifies many calculations (ii) it allows
us to look at the fluctuations along the holographic RG flow (the radial direction) (iii) it
does not fully fix the reparametrization invariance on the worldsheet, leaving the SL(2,R)
group of global coordinate transformations, but as argued in [45, 46, 97] this group provides
a nice way to understand the appearance of a universal scale and its disappearance when we
determine the boundary conditions for the transverse fluctuations that fully fix the gauge on
the worldsheet. This approach was exploited in full depth in [97] to study quantum chaos,
i.e. OTOC on the worldsheet of the open string.

5.1 Note added: quasi-normal modes, variational equations and the spectral
form factor

At the end we want to comment on another connection between our calculation and the
quasi-normal modes of the black hole (or black string) background. After finishing the first
version of the paper we became aware of the work [98] where it is shown that the partition
function and the spectral form factor of a holographic theory at finite temperature can be
understood as a product over the QNM frequencies ωQNM of the bulk black hole. Specifically,
for a bosonic system at temperature T , one-loop partition function is found in [98] to be

Z = Tre−i ˆ̃KT =
∏

ωQNM

(
1− e−iωQNMT

)−1
. (5.1)
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Here, ˆ̃K is the time-shift operator which acts as a boost near the horizon (where gtt → 0), in
a complexified metric where the radial coordinate is shifted as r 7→ r − iϵ. From (5.1), it is
obvious that ωQNM are just the eigenvalues of ˆ̃K. But Lyapunov exponents are nothing but
the eigenvalues of the Jacobian matrix of the equations of motion — in other words, they
are the eigenvalues of the shift operator but now the shift is along the tangential directions
in phase space. In a given background however, e.g. in a near-horizon region like the BTZ
region of a near-extremal black string, one can choose the gauge so that the Jacobian locally
(but not everywhere) coincides with the time-shift operator K̂; the complexification to ˆ̃K
then just imposes the analytic behavior at the horizon, as one normally does when computing
correlation functions such as GR from subsection 4.3.

The above discussion is obviously not rigorous. It would be interesting to formulate it
in strict terms and see how much one can learn from such a viewpoint.
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A Slightly generalized ansatz for the Dp-brane background

Here we comment on the ansatz for the string configuration in Dp-brane backgrounds in
subsection 3.2. We can have nontrivial dynamics of the string also on the k-sphere provided
we impose some additional constraints which are necessary to preserve the separation of
variables. For example, we can replace the ansatz from eq. (3.6) by

t = t(τ), X1 = x1, . . . X10−k = x10−k,

R = R(σ), Φ1 = Φ1(τ), Φ2 = Φ2(τ), Φ3 = ϕ3, . . . Φk = ϕk (A.1)

Choosing t(τ) = τ as usual, we are left with a constraint (in addition to the Virasoro
constraint) coming from the above ansatz, i.e. the assumption that R only depends on σ:

Φ̇2
1 + sinΦ2

1Φ̇2
2 ≡ ℓ2, (A.2)

where ℓ2 is the conserved squared angular momentum on the k-sphere. The constraints
decouple the dynamics of R from Φ1 and Φ2, so the equation of motion for R remains the
same as eq. (3.7) and for Φ1 we obtain:

Φ̈1 +
(
Φ̇2

1 − w2
)
cotΦ1 = 0. (A.3)

Therefore, it is possible to go for more general dynamics than in the main text, which
might be of interest for some applications but is completely peripheral for our main interest
in this paper.
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