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Abstract—While coherence-incoherence patterns have been ex-
haustively studied in systems of coupled oscillators, their mecha-
nisms of emergence and their relationship en route from complete
coherence to incoherence in coupled excitable systems remain as
yet unresolved. Here we disclose two types of solitary states in
arrays of non-locally coupled excitable FitzHugh-Nagumo units
with dominant repulsive over attractive interactions. While the
prevailing type of solitary states is shown to derive its dynamical
features from unbalanced two-cluster states in globally coupled
networks, the minority type is fundamentally a consequence of
non-locality of interactions. Apart from the states whose local
structure is based on successive spiking of units, we also find
solitary states where local excitability and slow-fast dynamics give
rise to leap-frog activity characterized by an alternating order
of units’ spiking. The main impact of noise on system’s behavior
is shown to be the reduction of its multistability, whereby the
solitary states are suppressed in favour of patched patterns.

Index Terms—Excitable systems, clustering, solitary states,
leap-frog activity, noise, noise-induced preference of attractors

I. INTRODUCTION

The discovery of chimera states [1], [2] has fundamentally
affected our understanding of emergent phenomena in coupled
oscillators. Instead of studying the onset of synchronization
and the appearance of collective modes, the main focus shifted
toward the onset of and the links between the states with
symmetry breaking of synchrony [3], such as cluster states
[4], [5], chimeras [6], [7], or solitary states [8], [9], where
populations of identical units with symmetrical couplings
spontaneously split into groups admitting different dynamics.
In contrast to coupled oscillators, these two problems still
remain unresolved for the class of coupled excitable systems
[10], where the isolated dynamics is stationary rather than
oscillatory, but oscillations may be triggered by sufficiently
strong perturbations from interactions and/or noise. Excitabil-
ity is one of the building blocks of physics of life, shaping the
activity of neuronal, endocrine and cardiac tissues, but is also
pervasive in other fields, including climate dynamics, chemical
reactions and lasers. One cannot expect beforehand that the

results on coherence-incoherence patterns from coupled oscil-
lators would trivially extend to the realm of coupled excitable
systems. Apart from theory, addressing fundamental problems
concerning the onset and relationship between synchrony-
broken states in coupled excitable systems is relevant for
different applications, including neuroscience, especially in re-
lation to achieving efficient information transmission, working
memory or desynchronization supposed to prevent setting in
of pathological states. Here we disclose the mechanisms of
emergence of solitary states in systems of excitable units with
prevalent repulsive over attractive interactions and the slow-
fast local dynamics, the paradigm often found in neuronal
systems [11].

Our model concerns an array of N identical, non-locally
coupled FitzHugh-Nagumo units, whose dynamics is given by
[12], [13]

εu̇k = uk −
u3k
3
− vk +

κ

2R

k+R∑
j=k−R

[guu(uj − uk) + guv(vj − vk)]

v̇k = uk + b+
κ

2R

k+R∑
j=k−R

[gvu(uj − uk) + gvv(vj − vk)].

(1)

The individual slow-fast dynamics is prototypical for type II
excitability [11], and comprises fast activator variables uk
and slow recovery variables vk with a timescale separation
due to the smallness of parameter ε = 0.05. All the indices
are periodic modulo N . An isolated unit undergoes a sin-
gular Hopf bifurcation at b = 1 which mediates between
the excitable (b & 1) and the oscillatory regime (b < 1).
Above Hopf bifurcation, there is a further canard transition
at b ≈ 1 − ε/8 [15], where the harmonic subthreshold
(low-amplitude) oscillations transform to relaxation (large-
amplitude) oscillations. Here, the value b = 1.001 is set so that
uncoupled units are in the excitable regime. Each unit interacts
with R nearest neighbors to its left and to its right, rendering



the coupling radius r = R/N . Interactions between a pair
of units involve not only direct terms between two activator
or two recovery variables, but also the cross terms, which
may be compactly written via the rotational coupling matrix

[12] G =

(
guu guv
gvu gvv

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)
. Note that

parameter ϕ modifies the prevalence of attractive and repulsive
interactions [13] by affecting the sign of the interaction terms.
Coupling strength κ = 0.4 is considered to be uniform over
the array.

The paper is organized as follows. In Sec. II we characterize
the prevalent type of solitary states, which have their dynam-
ical counterparts in unbalanced two-cluster states in globally
coupled networks. Section III concerns the minority type of
solitary states, which mainly emerges due to non-locality of
interactions and shows some peculiar features, such as self-
organization based on leap-frog (leader-switching) dynamics
[14] between pairs of units. Sec. IV addresses the impact of
noise on solitary states, while Sec. V provides the summary
of our main results.

II. PREVALENT TYPE OF SOLITARY STATES

In the following, we demonstrate that the main dynamical
features of the prevailing types of solitary states in arrays,
called SS1 and SS2, derive from the corresponding unbalanced
two-cluster states in globally coupled networks, where an
assembly is split into two groups of identically synchronized
elements. In particular, the features inherited by the solitary
states are the frequency locking of typical and solitary units as
well as the respective orbits of the units. Note that the coupling
parameter ϕ for all the relevant solutions is such that three out
of four interaction terms between two units are repulsive.

Let us first consider the unbalanced two-cluster states in
networks with global coupling. Classification of two-cluster
states and mechanisms of their emergence may be analyzed
by studying the dynamics of the reduced system, which
essentially has the same form as the system describing two
interacting nonidentical excitable units. Combining the results
of two approaches [13], one based on the method of evap-
oration exponents and the other involving probe oscillators,
we have been able to construct the stability diagram for
the unbalanced two-cluster states in a network with global
coupling, see Fig. 1(a). The results are presented in the (ϕ, p)
parameter plane, where p is the cluster partition parameter,
indicating that for the given solution, the two clusters comprise
pN and (1 − p)N units. Domains of stability of cluster
solutions are shown in orange, while the black and green
lines outlining their boundaries respectively denote period-
doubling curves and curves of branching points. One finds
six distinct regimes with 1:1 (domains IV-VI), 1:2 (I, II)
or 2:3 (III) frequency locking, all featuring the so-called
mixed-mode oscillations [16] where relaxation oscillations are
combined with subthreshold oscillations, see Fig. 1(b)-(e). For
certain types of cluster states, p can become rather small, but
nevertheless does not tend to zero. This implies that there
can exist only periodic two-cluster states with a sufficiently
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Fig. 1. Unbalanced periodic two-cluster states in networks with global
coupling. (a) Stability diagram in (ϕ, p) plane. Orange/grey: stable/unstable
solutions; black solid lines: period-doubling bifurcations, green lines: curves
of branching points; dashed black lines: destabilization/reappearance of ho-
mogeneous stationary state. (b)-(e) Time series ui(t), i ∈ {A,B} and phase
portraits associated with (ϕ, p) values (blue squares) from (a). Parameters
are: b = 1.001, ε = 0.05, κ = 0.4.

balanced partition, similar to what has already been found for
systems of type I excitable elements [17].

Making a comparison to the results in Fig. 1, we have
established that the prevailing type of solitary states in non-
locally coupled arrays is in fact a dynamical counterpart of
unbalanced two-cluster states in globally coupled networks.
In particular, the state SS1 in Fig. 2 is associated with two-
cluster states from region I, whereas SS2 (not shown) is
related to the two-cluster states from region V. The SS1 and
SS2 types of states emerge within the same ϕ intervals as
their two-cluster state counterparts and maintain the associated
locking of clusters’ frequencies. However, the nonlocal char-
acter of interactions and the associated fluctuations in mean-
fields felt by individual units cause the clusters of solitary
and typical units to become fuzzy [8] instead of exact, cf.
Fig. 2(b). Put differently, under nonlocal coupling r < 1/2,
the unbalanced cluster states inherent to globally coupled
networks lose permutation symmetry, so that the solitary and
typical clusters comprise frequency locked but not identically
synchronized units. The spatial profile of average spiking
frequencies ωk = 2πNk/∆, where Nk is the number of
spikes recorded within a long interval ∆, indicates a 2:1
subharmonic frequency locking of solitary to typical units.
Qualitative similarity with unbalanced cluster states found in
region I of Fig. 1(a), both in terms of local phase portraits and
the time series uk(t), is demonstrated in Fig. 2(d) and Fig. 2(f).



The intrinsic structure of SS1 is further described via the cross-
correlation matrix Ckj =

〈ûk(t)ûj(t)〉T√
〈ûk(t)2〉T 〈ûj(t)2〉T

, where 〈·〉T
denotes temporal averaging, while ûj(t) = uj(t) − 〈uj(t)〉T
present the deviations of uj(t) from the corresponding means,
see Fig. 2(e).
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Fig. 2. Solitary state SS1. (a) Spatial profile of ωk; (b) Red and blue: two
snapshots of local variables (uk, vk), black: nullclines of an isolated unit;
(c) Spatiotemporal dynamics of uk(t); (d) Phase portraits (uk(t), vk(t)) of
solitary (k = 84) and typical unit (k = 60); (e) Cross-correlation matrix Ckj ;
(f) Time series uk(t) for units from (d). System parameters are: ϕ = 1.85,
r = 0.2, κ = 0.4, N = 100.

III. MINORITY TYPE OF SOLITARY STATES

Here we present the minority type of solitary states that do
not have counterparts among the unbalanced two-cluster states
in networks with all-to-all coupling. A typical example is a
state called SS3 illustrated in Fig. 3. In contrast to the prevalent
solitary states, such as SS1 and SS2, self-organization of SS3
rests on leap-frog dynamics [14] of pairs of units, including
both solitary–typical pairs of units and pairs of only solitary
or only typical units, see Fig. 3(b),(d) and (f) which illustrate
the alternating dynamics between the different pairs of units.
States like SS3 are an immediate consequence of nonlocal in-
teractions that give rise to self-localized excitations [18] at the
interfaces between adjacent domains with different dynamics.
The four unlocked units actually appear on the background of
an alternating (spatially modulated) wave, which likely derives
from selecting the parameter values in vicinity of a Turing-
Hopf codimension-two bifurcation point. The spatial profile
of ωk still features two clusters, but their frequency ratio is
different than in the SS1 state, cf. Fig. 2(a). The solitary
units have distinct average frequencies from the bulk due to
events where they show two successive spikes instead of a
single spike and a subthreshold oscillation, an example of
which is denoted by an arrow in Fig. 3(d). Apparently, SS3 is
characterized by a correlation structure of local dynamics more
complex than the SS1 state, see Fig. 3(e) and Fig. 2(e). Also,

unlike the prevalent solitary states, the maximal Lyapunov
exponent λmax ≈ 2 × 10−5 for the minority type of solitary
states suggests weakly chaotic solutions.
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Fig. 3. Solitary state SS3. (a) Spatial profile of ωk; (b) Time traces uk(t)
for solitary units k = 75 and k = 76; (c) Spatiotemporal dynamics of uk(t);
(d) Time series uk(t) for solitary unit (k = 76) and typical unit (k = 20);
(e) Cross-correlation matrix Ckj ; (f) Time traces uk(t) illustrate leap-frog
dynamics within the majority cluster (units k = 20 and k = 40). System
parameters are: ϕ = 1.788, r = 0.2, κ = 0.4, N = 100.

IV. PERSISTENCE UNDER NOISE

In general, the impact of noise on deterministic dynamics
may be twofold. For one, it may be quantitative, in the
sense that the noise may enhance/suppress some features of
deterministic dynamics, while it may also be qualitative, such
that the noise may induce new types of behavior, associated
with crossing of thresholds or separatrices, or with a stabiliza-
tion of deterministically unstable states. In neuronal media,
the phenomena witnessing the constructive role of noise are
abundant and have become known by the umbrella term of
stochastic facilitation. Some of the classical examples are reso-
nant phenomena, like coherence resonance [10], and the ability
of triggering spontaneous switching between the coexisting
metastable states. In locally coupled excitable systems, the
noise can qualitatively impact pattern formation, including the
onset of waves, spiral dynamics and pacemaking [10].

Here, we consider the persistence of solitary states under
noise by including independent Gaussian white noise terms
to act on both activator and recovery variables in (1). Since
in our model the deterministic dynamics of an array involves
extensive multistability, the noise affects its behavior in a way
qualitatively different from the one in locally coupled excitable
systems. Indeed, the noise here reduces the multistability
of system dynamics, in particular by causing suppression
of solitary states. This is a manifestation of noise-induced
preference of attractors [19], an effect that may be explained
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Fig. 4. Vanishing of solitary state of SS1 type for small noise. (a) Typical
SS1 state in the absence of noise; (b) Patched pattern emerging from SS1
under small noise σ = 0.0011. Parameters are: ϕ = 2.0, κ = 0.4, r = 0.2,
N = 200.

in the following way: in highly multistable systems, the noise
smears out the stability boundaries of attractors, and only
the attractors with sufficiently large attraction basins remain
physically accessible. Such an effect has so far been observed
in systems of coupled oscillators, coupled chaotic maps and
multistable fiber lasers. From another point of view, this effect
may also be seen as emerging from a strongly biased switching
process [20], [21], where the system displays a regime shift
to a coexisting state never to regain the initial state. Smaller
noise tends to shift the system from a solitary state to a
coexisting state that may be described as a patched pattern
[23], featuring a piecewise constant profile of average spiking
frequencies. There, an array self-organizes into majority (bulk)
and minority patches, maintaining a mutual 1:2 subharmonic
frequency locking, the same as in SS1 solitary state. Figure 4
shows how under a small noise, an initial SS1 state gets
transformed to a patched pattern. Introducing intermediate
noise promotes rotating waves rather than patched patterns,
whereas large noise just results in turbulence.

V. CONCLUSION

We have reported on the emergence mechanisms of two
types of solitary states in arrays of excitable FitzHugh-
Nagumo elements with non-local coupling and prevailing
repulsive over attractive interactions. The prevalent type of
solitary states features periodic dynamics, and derives its main
features, such as the frequency locking between the typical
and solitary units and the associated local dynamics, from
unbalanced cluster states in all-to-all coupled networks. This
qualitative picture to a certain degree resembles the scenario in
globally coupled Stuart-Landau oscillators, where clustering is
found to be a necessary symmetry-breaking step en route to the
onset of chimeras [22]. The minority type of solitary states is
fundamentally a consequence of non-locality of interactions,
and has no counterpart among unbalanced cluster states in
networks with a global coupling. In contrast with the prevalent
type, their dynamics is weakly chaotic and features a peculiar
form of pattern self-organization involving leap-frog activity
between the pairs of units. Leap-frogging emerges due to
multiscale character of the system and the phase-sensitive
excitability of relaxation oscillations, underlying the system’s
high sensitivity to perturbations close to the canard transition
[14], [24]. Together with [14], [25], our results indicate the
importance of the interplay between canard transition and

repulsive interactions for pattern formation in systems of
coupled excitable units.

Concerning the influence of noise, it has been demonstrated
that it may be used to control the multistability of system
dynamics via noise-induced preference of attractors, an effect
where the attractors having larger basin of attraction are
favoured over the ones with a smaller basin. In this way, small
noise turns out to be capable of suppressing solitary states
by promoting spatially homogeneous patched patterns with a
similar split of average spiking frequencies.

Solitary states we discovered conform to the definition of
weak chimeras, if indeed one extends it beyond coupled oscil-
lator systems. Given that solitary states in systems of coupled
oscillators are already known to mediate the desynchronization
transition from full synchrony to chimeras [9], an important
point for future study is to investigate whether a similar
scenario holds for systems of coupled excitable elements.
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