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Abstract. We report on measurements of the electrical conductivity on a two-dimensional packing of
metallic disks when a stable current of ∼1 mA flows through the system. At low applied currents, the
conductance σ is found to increase by a pattern σ(t) = σ∞ − ΔσEα[−(t/τ )α], where Eα denotes the
Mittag-Leffler function of order α ∈ (0, 1). By changing the inclination angle θ of the granular bed from
horizontal, we have studied the impact of the effective gravitational acceleration geff = g sin θ on the
relaxation features of the conductance σ(t). The characteristic timescale τ is found to grow when effective
gravity geff decreases. By changing both the distance between the electrodes and the number of grains in the
packing, we have shown that the long term resistance decay observed in the experiment is related to local
micro-contacts rearrangements at each disk. By focusing on the electro-mechanical processes that allow
both creation and breakdown of micro-contacts between two disks, we present an approach to granular
conduction based on subordination of stochastic processes. In order to imitate, in a very simplified way,
the conduction dynamics of granular material at low currents, we impose that the micro-contacts at the
interface switch stochastically between two possible states, “on” and “off”, characterizing the conductivity
of the micro-contact. We assume that the time intervals between the consecutive changes of state are
governed by a certain waiting-time distribution. It is demonstrated how the microscopic random dynamics
regarding the micro-contacts leads to the macroscopic observation of slow conductance growth, described
by an exact fractional kinetic equations.

1 Introduction

The electrical resistance of a granular packing is a combi-
nation of the individual resistances of both the grains and
the contacts between them [1]. Such a combination is a
strong function of global properties concerning the grain
assembly (packing size and density, external loads) and
local properties at the contact scale of two grains (surface
state, roughness, degree of oxidation, presence of impu-
rities). Understanding the electrical conduction through
real granular materials is a complicated many body prob-
lem since particles may have simultaneously broad distri-
butions of sizes and strongly varying morphologies.

The main contribution to the overall conductivity of
the packing of metallic grains comes from the contact
resistances, which may have two origins: tunneling [2]
and constrictions [3]. The tunneling resistances may have
very high values, but especially concern metallic powders
coated by thin oxide film. On the other hand, constriction
resistances are due to the narrowness of the conducting
path owing to the small contact area between two parti-
cles. Actually, any contact is made of a number of touching
points rather than by well-defined surface.
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Experiments on the electrical properties of granu-
lar systems have been performed in the past. In 1890,
Branly [4] discovered the extreme sensitivity of the con-
ductivity of metal filling to an electromagnetic wave.
The Branly’s effect is an instability of the electrical
conductance that appears in oxidized granular metallic
material under mechanical loading [5–9]. Electrical con-
duction within metallic granular packings displays other
interesting properties. Indeed, in both 1D and 2D granu-
lar systems at low current, the wide distribution of contact
resistances results in a logarithmic behavior for the volt-
age/current characteristics [10]. At high enough current,
the voltage saturates due to the local welding of micro-
contacts between grains [11]. Furthermore, electrical con-
duction shows a large sensitivity on the small mechanical
and thermal perturbations of the packing [12,13]. Origin of
these large non-Gaussian conductance fluctuations should
be found in local micro-contact rearrangements at each
grain rather than collective rearrangements of grains in-
side the packing.

Although many experiments have been performed for
studying electrical aspects of granular matter, only few
reports [14,15] can be found for describing the tempo-
ral evolution of the electrical resistance R(t) in packing
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of metallic grains when a stable current flows through the
system. Dorbolo et al. [14] measured the electrical resis-
tance in a 2D system and found that the decay process
in the case of injected currents 35 � I � 50 mA may
be decomposed into three phases. At first the resistance
decreases during the first minute, after that the curves
R(t) are stabilized during ∼103 s before decreasing again.
However, for lower injected currents 10 � I � 25, the
resistance R(t) is a monotonically decreasing function. It
would be interesting to find out where such unusual be-
havior comes from. Dorbolo et al. [14] suggested that the
long term decay of the electric resistance R(t) seems to be
related to the enhancement of contacts themselves. The
aim of this work is to investigate the regime of very small
electric currents I ∼ 1 mA in order to gain a better un-
derstanding the origin of the slow electrical resistance re-
laxation in granular packing.

We focus on the electrical transport within 2D packing
of metallic disks directly connected to an electrical source.
A fixed current has been injected during a few hours and
conductance σ(t) = 1/R(t) has been recorded at regular
intervals. Experiments were performed for two different
inclination angles θ of the granular bed from horizontal.
Consequently, we have considered the impact of the effec-
tive gravitational acceleration geff = g sin θ on the relax-
ation features of the conductance σ(t). We could change
the distance between the electrodes, i.e. the number of
grains in the packing. In this way we were able to com-
pare the influence of large force chain rearrangements with
impact of local micro-contact rearrangements at each disk
on overall electrical conductivity of the packing.

We have tried to fit different functional forms to the
slow temporal relaxation of σ(t) obtained in the exper-
iments, looking in particular at the relaxation functions
proposed in the experimental and numerical studies of
disordered systems [16]. We have found that the most
suitable functional form for our experimental data is the
Mittag-Leffler law (1) (corresponding mathematical defi-
nitions are provided later in the text; see Eqs. (2) and (3)).
The main question that needs an answer is whether equa-
tion (1) represents only a convenient fitting expression or
it has a more fundamental meaning, associated to some
peculiar dynamical events which are dominant in the con-
ductance relaxation. We would like to elucidate this point
more thoroughly in order to develop a dynamic model
for the electric contact between two grains based on the
stochastic fractional process that captures this relaxation
dynamics.

A typical rough surface of metallic grain may include
many small contacts of varying sizes. Our model assumes
the electrical current flow is between two contiguous bulk
conducting materials and the current flows through the
conducting a-spots or constrictions (micro-contacts) [3].
The model does not explicitly account for quantum ef-
fects or the spreading resistance resulting from the thin
film micro-contacts. Our approach is based on the proba-
bilistic formalism of limit theorems which provides tools to
relate the non-differentiable nature of microscopic dynam-
ics of components in complex systems to the macroscopic

description of such systems in the form of fractional oper-
ators [17–20]. We suppose that there are only two possible
states of micro-contacts, referred to as “switched on” and
“switched off”. In order to imitate, in a very simplified
way, the relaxation features of conductance σ(t) under low
currents, we impose that the micro-contacts at interface
switch stochastically between two possible states. Starting
with the description of the two-state system evolution as
a Markovian process, we develop the analysis on a sub-
ordinated random process. The process differs from the
Markovian ones by the temporal variable becoming ran-
dom [19]. This generalization is of a stochastic origin and
produces the fractional operator in the resulting evolu-
tion equation for the conductance. The evolution equation
is capable of reproducing a wide range of experimental
behavior.

In the following section, we present the experimental
set-up and describe the experimental procedures. The ex-
perimental results are reported and discussed in Section 3.
Definition of the model and discussion on the physical in-
terpretation of the model parameters are given in Sec-
tion 4. In the same section results of numerical simulation
are presented, discussed, and wherever possible compared
with analytical results. Finally, we summarize our findings
in Section 5.

2 Experiment

Let us now describe our experimental set-up, which is pre-
sented in Figure 1. Experiments were carried out on a 2D
granular medium, i.e. the motion of the grains was con-
fined to a plane. The granular packing is constituted of
metallic cylinders of millimetric size contained in a rectan-
gular box made of two parallel glass plates, with an inner
gap of thickness 3.4 mm, slightly larger than the height of
the cylinders, h = 3.00 ± 0.01 mm. The lateral walls of the
box delimit a rectangular frame of height H = 340 mm
and an adjustable width of typically L = 300 mm. We
can change the distance between the lateral walls, i.e. the
number of grains in 2D packing, to separate local behavior
from collective behavior. The box is secured on a heavy
plane able to be inclined at different rates (5◦–20◦ s−1)
so that we could set an arbitrary inclination angle θ from
the horizontal. The angle of inclination θ is measured by
means of a goniometer fixed to the plane. See Figure 1b
for a sketch of this angle definition.

The cylinders of diameter d = 6.00 ± 0.05 mm were
used to prepare the monodisperse packings containing
about 2400 grains. Disordered packings are prepared by
pouring grains onto an initially horizontal glass plate at
once. Then, they are spread until a flat layer is obtained,
where the cylinders are randomly deposited without con-
tact between them and at rest. The angle of the plane is
then slowly increased up to the angle θ = 45◦ or θ = 85◦,
at constant angular velocity. These final inclination angles
correspond to a value larger than the static Coulomb angle
of friction between the metallic grains and the glass plate,
which is around 25◦. During the plane rotation, grains
therefore freely slide downward and reach a mechanically
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(a)

(b)

Fig. 1. (a) Photograph of the experimental setup. (b)
Schematic diagram of the experimental setup (side view). The
hatched area indicates the granular packing and θ is the incli-
nation angle of the packing from the horizontal.

stable state. This way we control the balance of tangential
and normal gravitational force on the layer and thus the
contact network (and certainly also force network) inside
the granular material. The measured packing fractions of
these disordered packings are ρ = 0.78−0.80 ± 0.01. Par-
tially ordered packings are obtained by using the same
initial procedure followed by the vibration of the inclined
plane with a hammer-like device installed below the con-
tainer. The packing fraction of densely packed systems is
ρ = 0.81−0.86 ± 0.01. Those densities are far from the
close packing limit ρcp = π/2

√
3 ≈ 0.91 [21].

The bottom side of the rectangular box is electrically
insulated. The current is injected to the packing side and
not to only one grain. Long electrical contacts are disposed
on two opposite lateral walls of the box. Electrical contacts
are connected by cables to a Fluke 8008A Digital Mul-
timeter which allows to measure the resistance. During
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Fig. 2. Typical temporal evolutions of the resistance R(t) ob-
tained for an injected current I = 1 mA and an inclination
angle θ = 85◦ (solid lines). The corresponding values of the
conductance σ(t) are given on the right axis (dashed lines).
The different curves are obtained for several disordered pack-
ings prepared by using the same procedure.

the experiment, we have recorded the temporal evolution
of the electrical resistance R(t) of a metallic grains heap
when a stable current flows through the system. A fixed
current of I = 1 mA is injected during ∼20–100 min and
the resistance R(t) is sampled every 5 s. Different mate-
rials have been used for the electrodes (brass and stain-
less steel). We observed that the main relaxation features
of conductance σ(t) do not qualitatively depend on the
electrode material. After each measurement of resistance
R(t), effective gravitational force on the grains is reduced
to zero by placing the container in a horizontal position,
and we rearrange the cylinders which creates new contacts
for the next measurement.

The experimental setup has a high sensitivity to ther-
mal perturbations and mechanical vibrations. It should
be noted that we controlled the ambient humidity and
temperature of the laboratory. The experimental repro-
ducibility is qualitatively good although the exact values
of conductance may exhibit fluctuations from one packing
preparation to another.

3 Experimental results and discussion

In Figure 2, typical variations of the resistance R(t) are
shown versus time for an injected current I = 1 mA and an
inclination angle θ = 85◦. Also included in Figure 2 is the
temporal evolution of the conductance σ(t) for the same
experimental conditions. We observe that for the fixed in-
jected current, the initial resistance for different packings
differs from one another. This should be attributed to the
changes in the contact network during the formation of
new packings. It must be noted that the initial resistance
dependence on the injected current in the range between
10 and 65 mA has been extensively analyzed in the experi-
ments by Dorbolo et al. [14], that suggested that the initial
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resistance decreases with the injected current. As seen
in Figure 2, resistance R(t) decreases very slowly with
time for each packing. Our measurements have suggested
that resistance R(t) continues to decrease toward some
saturation value. With the compacted (partially ordered)
granular medium we made the same experiments and ob-
tained qualitatively the same long-time behavior of the
conductivity. Such behavior of the electrical conductivity,
Dorbolo et al. [14] was demonstrated in the experiments
at higher currents, 10 mA � I � 25 mA.

Looking for a function that gives the best fit to the
temporal evolution of the conductance σ(t) in the case of
very low injected currents I ≈ 10−3 A, we have obtained
that the best agreement with our experimental data gives
the Mittag-Leffler function. The fitting function we have
used is of the form

σ(t) = σ∞ −Δσ Eα(−(t/τ)α), (1)

where σ∞, Δσ, τ , and α are the fitting parameters. Pa-
rameter τ determines the characteristic time of the tem-
poral evolution of conductance σ = σ(t), and α measures
the rate of conductance relaxation on this time scale. The
parameter σ∞ is the asymptotic value of the conductance
σ(t) when t→ ∞, and Δσ = σ∞ − σ(0).

In equation (1), Eα denotes the Mittag-Leffler function
of order α ∈ (0, 1) [22]. It is defined through the inverse
Laplace transform L

Eα [−(t/τ)α] = L [
(u+ τ−αu1−α)−1

]
, (2)

from which the series expansion

Eα [−(t/τ)α] =
∞∑

n=0

(−(t/τ)α)n

Γ (1 + αn)
, (3)

can be deduced; in particular, E1(−t/τ) = exp(−t/τ).
The Mittag-Leffler function interpolates between the ini-
tial stretched exponential form

Eα [−(t/τ)α] ∼ Φ1(t) = exp
[
− 1
Γ (1 + α)

(t/τ)α

]
, t� τ,

(4)
and the long-time power-law behavior

Eα [−(t/τ)α] ∼ Φ2(t) =
1

Γ (1 − α)
(t/τ)−α, t	 τ. (5)

In Figure 3 we compare the temporal evolution of the
conductivity σ(t) obtained when the experiment is per-
formed for two different inclination angles of the plane,
θ = 85◦, 45◦. In the same figure the fits to the Mittag-
Leffler law (Eq. (1)) are also given, demonstrating that
it is excellently obeyed. The two fitting parameters are
τ(85◦) = 1.46 × 104 s, α(85◦) = 0.461 for θ = 85◦, and
τ(45◦) = 2.68×105 s, α(45◦) = 0.327 for θ = 45◦. In addi-
tion, the inset of Figure 3 compares the evolution of nor-
malized conductivity σr(t) = (σ(t)−σ(0))/(σ∞ −σ(0)) =
1 − E[−(t/τ)α] for the two values of inclination angle,
θ = 85◦, 45◦. It can be seen that the relaxation dynam-
ics gets slower (τ(85◦)<τ(45◦)), and the evolution of the
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Fig. 3. Temporal evolution of the conductivity σ(t) obtained
for two different inclination angles of the plane, θ = 85◦, 45◦.
The thin (black) lines are the Mittag-Leffler fits of equation (1),
with parameters τ (85◦) = 1.46 × 104 s, α(85◦) = 0.461, and
τ (45◦) = 2.68 × 105 s, α(45◦) = 0.327. Inset: temporal evolu-
tion of the normalized conductance σr(t) = (σ(t)−σ(0))/(σ∞−
σ(0)) = 1 − E[−(t/τ )α] for θ = 85◦, 45◦.

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

σ 
[Ω

-1
]

t[s]

85° - 45° - 85°
45° - 85° - 45° - 85°

Fig. 4. Time evolution of the conductivity σ(t) when the in-
clination angle θ is changed from θ1 = 85◦ to θ2 = 45◦ and
vice versa in different time instants.

conductivity σ(t) toward the saturation value takes place
on much wider time scale (α(85◦)>α(45◦)) when the ef-
fective gravity geff = g sin θ decreases.

Figure 4 shows the rapid variation of the electrical con-
ductivity σ(t) of granular packing induced by the abrupt
change of the effective gravity geff = g sin θ. In this exper-
iment, the inclination angle θ is changed from θ1 = 85◦ to
θ2 = 45◦ and vice versa in three different time instants.
For a sudden decrease in geff(θ1) → geff(θ2) it is observed
that on short-time scales the conductivity σ decreases
rapidly, while for a sudden increase in geff(θ2) → geff(θ1)
the conductivity increases for short times. This behav-
ior is transient, and after short time the usual increasing
rate of conductivity σ(t) growth is recovered. In addition,
the rapid variation of the electrical conductivity induced
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by a sudden change of the inclination angle θ is propor-
tional to the angle change,Δθ = |θ1−θ2| (not shown here).

Our findings for the behavior of the electrical conduc-
tivity, shown in Figures 3 and 4, clearly demonstrate that
a granular material in the case of the higher values of ef-
fective gravity has a higher electrical conductivity. This is
in agreement with experiments and numerical simulations
examining the effect of gravity on the force network and
microstructural properties of granular packings [23–27].
As gravity decreased, the spatial distribution of the force
chain network changed from a dense, tangled network to
one consisting of less tangled, longer chains. Intuitively,
we would expect that shorter chains can support greater
stress since there are fewer potential failure points. Thus,
packings with more branching in their force chain network,
induced by higher values of effective gravity are macro-
scopically stronger and more electrically conductive, since
there are more pathways available for stress and electric
current transmission.

Previously described “geometrical” contact disorder
which arises from the lowering of the number of real con-
tacts when the effective gravity decreases is not the sole
cause that induces the abrupt changes of conductivity
shown in Figure 4. Additionally, the “physical” contact
disorder appears because some contacts are good trans-
mitters, other are not. As the stress increases, some con-
tacts may become active in turn, as the contact area may
be cleaned of oxide coating or some other impurities. Con-
sequently, the number of active contacts increases with
the effective gravity. This effect contributes to the con-
ductance due to the growth of the conducting network.

In order to better understand the reasons for the long
term decay of the electric resistance, we have made the fol-
lowing experiment. The distance between the lateral walls
of the box (electrodes) is reduced to d(1 +

√
2). In this

channel, six, nine or twelve disks are arranged to form
square packing as illustrated in Figure 5a. This packing
can easily be reproduced before each experiment. For the
given configurations, each conductive path between the
electrodes always includes only three disks. Therefore, the
total number of possible conductive paths is equal to 5,
9, and 13, for configurations with 6, 9, and 12 disks, re-
spectively. For configurations with small number of possi-
ble conductive paths, one should expect to detect abrupt
changes in the resistance as a result of forming new con-
ductive paths or termination of existing ones. However,
Figure 5b shows that the resistance decreases continuously
for all three configurations of disks. This means that the
number of conductive paths does not change, but their
conductivity increases over time. The fact that the decay
of the resistance still holds for six disks (or five conductive
paths), suggests that the origin of these changes is local.
Consequently, long term resistance decay observed in the
experiment is not related to large force chain rearrange-
ments, but to individual microcontacts between two disks
that rearrange.

It must be stressed that the time behavior of the con-
ductance σ(t) in experiments with reduced distance be-
tween the lateral walls (electrodes) is consistent with the
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Fig. 5. Experiment with reduced distance between the lateral
walls (electrodes). (a) Sketch of the 2D experimental setup.
(b) Temporal evolutions of the resistance R(t) obtained for
configurations with 6, 9, and 12 disks shown on plot (a).

Mittag-Leffler law (1). According to equation (1), we get

Δσ(t)
Δσ(0)

=
σ∞ − σ(t)
σ∞ − σ(0)

= Eα(−(t/τ)α). (6)

Temporal evolution of the quantity Δσ(t)/Δσ(0) for the
configuration with 9 disks (see Fig. 5) is shown in Figure 6
on double logarithmic scale together with the Mittag-
Leffler fitting function Eα(−(t/τ)α). In addition, Figure 6
shows the functions Φ1(t) and Φ2(t) (see Eqs. (4) and (5))
determined by fitting the conductance behavior σ(t) to
the Mittag-Leffler functional form (1).

The observed slow resistance decay might be related
to the roughness of the surface of the disks. When
two surfaces meet, and because no surface is perfectly
smooth, asperity peaks or “a-spots” from each surface
meet at the interface and form contact areas [3]. In this
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Fig. 6. Shown here is the double logarithmic plot of the tem-
poral evolution of the normalized conductance deviation from
the asymptotic value, Δσ(t)/Δσ(0) = (σ∞−σ(t))/(σ∞−σ(0))
(Eq. (6)). Data for σ(t) are obtained for configuration with
9 disks in the experiment with reduced distance between the
electrodes (Fig. 5). The solid (blue) line is the Mittag-Leffler
function Eα(−(t/τ )α), with parameters τ = 815.3 s, α = 0.628,
and σ∞ = 0.497. The dashed lines give the functions Φ1(t) and
Φ2(t) (see Eqs. (4) and (5)), as indicated in the legend. The
solid vertical line indicates the characteristic time τ = 815.3 of
the temporal evolution of conductance σ(t).

Fig. 7. Schematic diagram of current flow through a contact
spot. The electrical connection between the two surfaces takes
place at discrete solid spots, also known as a-spots or asperities,
based on the roughness of the surfaces. These spots determine
the true size of the contact area that can be as small as only a
fraction of the nominal contact area.

way, when two disks are brought into contact, the sur-
face irregularities of each disk create a large number of
conducting micro-channels. The presence of the micro-
contacts leads to a constriction of the current lines on
tiny areas. Figure 7 shows a graphical representation of
a contact area and contacting a-spots. Instead of passing
uniformly through the oxide layer, electric current prefers
to be divided in a large number of micro-currents following
conducting micro-channels [2,3,11,13]. The convergence of
the electrical current through the conducting a-spots is
known as the constriction resistance or commonly the con-
tact resistance [1]. With a small contact region comes a
large contact resistance. Consequently, the flow of the cur-
rent through the micro-contacts contributes to their heat-
ing by Joule effect and causes a softening or even melting
some of them. At the same time, the mechanical stabi-
lization of the discs, initiated by thermal perturbations,

Fig. 8. Schematic picture of the dynamic model of the electric
contact between two grains described in the text.

leads to the local micro-contact rearrangements at each
disk, during which the new micro-contacts can be created.
These electro-mechanical processes then allow both cre-
ation and breakdown of the micro-contacts between two
disks. Adaptation of the micro-contacts to the flow of the
electric current leads to a larger effective contact surface,
thereby making the resistance of contact smaller.

4 Definition of the model and numerical
simulation

Previous findings allow us to build a dynamic model of the
electric contact between two grains that provides a very
slow relaxation of electrical conductivity observed in the
experiments. Our model can be regarded as a very sim-
ple picture of the interface between two metallic grains
which is composed of a large number of micro-contacts.
We consider a one-dimensional lattice, with N micro-
contacts located at its lattice points (see Fig. 8). Each
micro-contact can take two possible states, referred to as
“switched on” (↓) and “switched off” (↑). A configuration
of the contact is uniquely defined by N orientation vari-
ables {Λn|n = 1, . . . , N}, with Λn = +1 denoting a micro-
contact in state “on” (↓), and Λn = 0 denoting a micro-
contact in state “off” (↑). To each micro-channel n in the
state “on”, we assigned the same resistance, rn ≡ r(c).
When micro-channel n is in the state “off”, its resistance
is too high and no current flows through it, so that we
formally take rn = ∞.

At first, we can try to model the contact interface,
naively, by a continuous-time stochastic dynamics, de-
scribed by the following general kinetic equations:

dp(↓)

dt
= ω↓↑p(↑)(t) − ω↑↓p(↓)(t), (7)

dp(↑)

dt
= ω↑↓p(↓)(t) − ω↓↑p(↑)(t), (8)

where p(↑)(t) and p(↓)(t) are the probabilities for finding
the micro-contact in the states “off” and “on” at time
t, respectively. Here, ω↓↑ and ω↑↓ represent, respectively,
the constant transition probability rate from the state
“off” to the state “on”, and from the state “on” to the
state “off”. The term ω↓↑p(↑) describes transition into the
state “on” from the state “off”, and ω↑↓p(↓) corresponds
to transition out of the “on” into the other state “off”.
Since the micro-channels of conduction are connected in
parallel, the total contact conductance σ(t) = 1/R(t)
is expressed as the sum of their individual conductances
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σn = 1/rn = 1/r(c) ≡ σ(c):

σ(t) =
N∑

n=1

Λn(t)σ(c) = σmaxp
(↓)(t), (9)

where σmax = Nσ(c) is the conductance when all micro-
contacts are in the state “on”. We have two limits: p(↓) =
1 when σ = σmax (resistance is minimal) and p(↓) = 0
when σ = 0. Setting dp(↓)

dt

∣∣∣
t→∞

= 0 and dp(↑)

dt

∣∣∣
t→∞

= 0 in

equations (7) and (8) they become a set of two algebraic
equations whose solution provides the steady-state values
of the conductance σ(∞):

σ(∞) = σmaxp
(↓)(∞) = σmax

ω↓↑
ω
, (10)

where ω = ω↓↑ + ω↑↓ is the total transition probability
rate. This steady state will be reached by the system from
any initial configuration. Assume that for t = 0:

p(↑)(0) =
N (↑)(t = 0)

N
, p(↓)(0) =

N (↓)(t = 0)
N

, (11)

where N (↑) and N (↓) are the number of micro-contacts
in the states “off” and “on”, respectively. Without loss
of generality we assume that for t = 0 the states “off”
dominate, i.e. N (↑)(t = 0) > N (↓)(t = 0). The solution
of equations (7) and (8) with initial conditions (11) is
straightforward. Accordingly, the conductance of the con-
tact (Eq. (9)) grows exponentially in time towards the
steady state value:

σ(t) = σ(∞) − [σ(∞) − σ(0)] exp(−ωt), (12)

where σ(0) = σmaxp
(↓)(0) = σmaxN

(↓)(t = 0)/N is the
conductance at the moment t = 0, when an electric current
is turned on.

Not unexpectedly, this simplified model does not de-
scribe the behavior of a real electrical contact between
metallic grains at low applied current, i.e. it is not a
good approximation for the conduction dynamics. Our
model requires substantial addition and extension in or-
der to have the ability to properly capture the slow re-
laxation dynamics of conductivity observed in the experi-
ments. The main physical idea of our approach is that the
time intervals between the successive micro-contact clos-
ing/opening are governed by a certain waiting-time distri-
bution ψ(t). This function governs the random time inter-
vals between single microscopic jumps “on” (↓) ↔ “off”
(↑) of the micro-contacts. Actually, in our model the evo-
lutions of the number of micro-contacts in the states “on”
and “off” are subordinated by another random process.
Random switching of micro-contacts between the states
“on” and “off” are parent random processes Y (t) in the
sense of subordination (see Eqs. (7) and (8)). Recall that a
subordinated process Y [U(t)] is obtained by randomizing
the time clock of a random process Y (t) using a random
process U(t). The latter process is referred to as the ran-
domized time. The new clock generalizes the deterministic

time clock of the kinetic equation for the Markovian pro-
cess (Eqs. (7) and (8)).

Now we consider in more details the evolution of
the number of micro-contacts in the states “on” and
“off”. These are parent random processes in the sense
of subordination. Consider a sequence Ti, i = 1, 2, . . .
of non-negative, independent, identically distributed ran-
dom variables which represent the waiting time intervals
between single microscopic jumps “on” (↓) ↔ “off” (↑)
of the micro-contacts. If the waiting times Ti belong to
the strict domain of attraction of an α-stable distribu-
tion (0 < α < 1), their sum n−1/α

∑n
i=1 Ti, n ∈ N con-

verges in distribution to a stable law with the same index
α [17,28,29]. The continuous limit of the discrete counting
process {Nt}t≥0 = max{n ∈ N |∑n

i=1 Ti ≤ t} is the hit-
ting time process S(t) (also called the first passage time).
We choose the nondecreasing random process S(t) for a
new time clock (stochastic time arrow). The probability
density of the process S(t) has the following form [30]:

pS
α(t, τ) =

1
2πj

∫
Br

uα−1 exp(ut− τuα)du = t−αFα

( τ

tα

)
,

(13)
where Br denotes the Bromwich path and j =

√−1. The
function Fα(z) can be expanded as a Taylor series:

Fα(z) =
∞∑

k=0

(−z)k

k! Γ (1 − α− kα)
, (14)

where Γ (·) is the gamma function. The probability den-
sity pS

α(t, τ) determines the probability to be at the in-
ternal time (or so-called operational time) τ on the real
time t [29,31].

The stochastic time arrow can be applied to the kinetic
equations (7) and (8). Take the process S(t) as a subordi-
nator. It accounts for the amount of time when an micro-
contact does not change its state. If p(↓)(τ) and p(↑)(τ),
taken from equations (7) and (8) as probability laws of the
parent process, depend now on the local time τ , then the
resulting probabilities p(↓)

α (t) and p
(↑)
α (t) after the subor-

dination are determined by the integral relations

p(↓)
α (t) =

∫ ∞

0

dτ pS
α(t, τ)p(↓)(τ), (15)

p(↑)
α (t) =

∫ ∞

0

dτ pS
α(t, τ)p(↑)(τ). (16)

Now the relaxation of conduction σ(t) is defined by two
stochastic processes, random switching of micro-contacts
and random waiting times between these events. The ratio
of micro-contacts in the state “off” (↑) and another in the
state “on” (↓) is subordinated by the process S(t). In other
words, the new relaxation process (Eqs. (15) and (16)) is
obtained by randomizing the time clock of the continuous-
time stochastic dynamics (Eqs. (7) and (8)) using the ran-
dom process S(t) [29,31]. The stochastic time clock has a
clear physical sense. The electrical connection between the
two surfaces takes place at discrete solid a-spots in random
points of time.
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The equation describing the present model takes the
form similar to equations (7) and (8), but the derivatives
of first order become fractional of order 0 < α < 1 deter-
mined by the index of the process S(t). In the following,
using properties of the stochastic time clock, we derive the
corresponding master equation with the fractional deriva-
tive of time, along the lines of references [31–33]. Let us
present equations (7) and (8) in compact form

d

dt
p(t) = ω̂ p(t), (17)

where p(t) =
[
p(↓)(t) p(↑)(t)

]T
and ω̂ denotes the transi-

tion rate operator:

ω̂ =

[−ω↑↓ ω↓↑

ω↑↓ −ω↓↑

]
. (18)

It is important to note that the operator ω̂ is independent
of time. Equation (17) can be written in the integral form

p(t) = p(0) +
∫ ∞

0

dτ ω̂ p(τ). (19)

The Laplace transform of equation (19) gives the relation

ω̂ p̃(s) = sp̃(s) − p̃(0), (20)

where the Laplace transform L is defined as:

Lp(t) ≡ p̃(s) =
∫ ∞

0

dt exp(−st)p(t). (21)

In the Laplace space the probabilities pα(t) =[
p
(↓)
α (t) p(↑)

α (t)
]T

(see Eqs. (15) and (16)) take the most
simple form

p̃α(s) = sα−1p̃(sα), (22)

since p̃S
α(s, τ) = sα−1 exp(−τsα) [34]. When the operator

ω̂ acts on the Laplace image p̃α(s) (Eq. (22)), we obtain

ω̂p̃α(s) = sα−1ω̂p̃(sα) = sα−1 (sαp̃(sα) − p̃(0))

= sαp̃α(s) − sα−1p̃(0). (23)

The inverse Laplace transform L−1 of the latter expres-
sion (23) gives the abstract partial differential equation
with the fractional derivative of time:

pα(t) = p(0) + 0D
−α
t ω̂ pα(t). (24)

Here we use the fractional Riemann-Liouville integral op-
erator defined via the formula

0D
−α
t f(t) =

1
Γ (α)

∫ t

0

dτ (t− τ)α−1f(τ), 0 < α < 1,

(25)
with the convenient property L[ 0D−α

t f(t)] =
s−αf̃(s) [35]. Using equation (24) and taking into
account that σ(t) = σmaxp

(↓)
α (t), we obtain that the

deviation Δσ(t) = σ(∞) − σ(t) of the conduction σ(t)

from its steady-state value σ(∞) obeys the fractional
differential equation

Δσ(t) = Δσ(0) − ω
[

0D
−α
t Δσ(t)

]
, (26)

where ω = ω↓↑ + ω↑↓ is the total transition probabil-
ity rate and σ(∞) is defined by equation (10). In equa-
tion (26), the fractional derivative on the rhs describes a
process which is subordinated to the simple micro-contact
switching; the subordination is defined by the α-stable
waiting time distribution. By differentiating equation (26)
with respect to time and with the help of the formula [35]

d

dt
0D

−α
t f(t) = 0D

1−α
t f(t), (27)

it is found that

d

dt
Δσ(t) = −τ−α

r 0D
1−α
t Δρ(t), (28)

where τr = ω−1/α = (ω↓↑ + ω↑↓)−1/α. Equation (28) is an
integro-differential equation. The Riemann-Liouville op-
erator 0D

1−α
t introduces a convolution integral with the

power-law kernel M(t) ∝ tα−2. The parameter τr may
be interpreted as a generalized relaxation time. Indeed,
the solution of equation (28) can be expressed in terms of
the Mittag-Leffler function Eα of order α via [35,36]

Δσ(t) = Δσ(0)Eα

[
−

(
t

τr

)α]
. (29)

Let us briefly describe the algorithm used in our numeri-
cal simulation. At each Monte Carlo step one lattice site
is selected at random, and one of the two possible transi-
tions between the two different states of the micro-contact
is chosen at random. The choice of the transition from the
state “off” to the state “on” occurs with probability p↓↑,
and from the state “on” to the state “off” with probabil-
ity p↑↓. The transition probabilities obey the normaliza-
tion condition p↓↑ +p↑↓ = 1. When the attempted process
is an “off” → “on” transition, and if randomly chosen
micro-contact is in the “off” state, its state switches form
“off” to “on”. On the contrary, if randomly chosen micro-
contact is in the “on” state the attempt is abandoned.
When the attempted process is an “on” → “off” tran-
sition, and provided that the selected micro-contact is in
the “on” state, its state is changed from the “on” to “off”.
Otherwise, we reject the switching trial. Switching pro-
cesses at micro-contacts are assumed to happen instanta-
neously or at least in negligible time.

The random time τ between the successive micro-
contact closing/opening attempts is extracted from a resi-
dence time distribution ψ(τ). We assume that the waiting-
time intervals Ti between single microscopic jumps “on”
(↓) ↔ “off” (↑) of the micro-contacts belong to the strict
domain of attraction of an α-stable distribution (0 < α <
1) [17,28]. In that case, the probability that Ti is greater
than some number t > 0 (tail probability) is asymptoti-
cally a power law, i.e. P (Ti > t) ∝ t−α as t → ∞ [28].
Accordingly, decreasing of the parameter α in the range
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(0, 1) increases the contribution of long waiting-time inter-
vals Ti during the relaxation process. A suitable possible
choice for a residence time distribution ψ(τ) is the Mittag-
Leffler distribution defined by

ψ(τ) = − d

dτ
Eα(−(τ/ν)α), (30)

where Eα is the Mittag-Leffler function of order α ∈ (0, 1)
and the constant ν is the time-scaling parameter. The ba-
sic role of the Mittag-Leffler waiting time probability den-
sity in the time fractional continuous time random walk
(CTRW) has become well known by the seminal paper of
Hilfer and Anton [37]. The probability density ψ(τ) for
the waiting times can be numerically calculated by the
series expansion (3). This method produces a pointwise
representation of the density on a finite interval. Random
numbers can then be produced by rejection, most effi-
ciently with a look-up table and interpolation. More con-
venient is the following inversion formula by Kozubowski
and Rachev [38,39]:

τ = −ν lnu
(

sin(απ)
tan(απv)

− cos(απ)
)1/α

, (31)

where u, v ∈ (0, 1) are independent uniform random num-
bers, ν is the scale parameter, and τ is a Mittag-Leffler
random number. For α = 1, equation (31) reduces to
the inversion formula for the exponential distribution,
i.e. τ = −ν lnu. In each computational step the time
t and the conductance σ are updated, t → t + τ and
σ → σ + Δσ, where Δσ ∈ {±σ(c), 0}. Reiterating this
algorithm, the full conductance growth above the initial
value σ(0) = σmaxN

(↓)(t = 0)/N to the steady-state limit
σ(∞) (Eq. (10)) can be computed.

The time-scaling parameter ν in equation (31) is cal-
culated using the procedure detailed in references [40,41].
The quantities ω↓↑ = (p↓↑/N)ν−α and ω↑↓ = (p↑↓/N)ν−α

in the fractional kinetic equation (28) are referred to as the
fractional “off” → “on” and “on” → “off” rates. Using
the normalization condition for the transition probabili-
ties, i.e. p↓↑ + p↑↓ = 1, one obtains that

p↓↑ =
ω↓↑

ω↓↑ + ω↑↓
, p↑↓ =

ω↑↓
ω↓↑ + ω↑↓

, (32)

and
ν = (N(ω↓↑ + ω↑↓))

−1/α
. (33)

In that case, the results of simulations are independent of
the number of micro-contacts in the system. The fractional
rates can be chosen as

ω↓↑ = ω
1

1 + γ
, ω↑↓ = ω

γ

1 + γ
, (34)

where γ = p↑↓/p↓↑. We impose that the parameter ω >
0 in equation (34) depends only on the micromechanical
properties of the contact, i.e. ω does not depend on the
injected current I and the effective gravity geff = g sin θ
(an inclination angle θ of the plane) in the experiment. In

fact, the form (34) of the fractional rates ensures that the
total rate ω↓↑ + ω↑↓ = ω �= f(γ) is independent on the
parameter γ.

The crucial parameter which determines the final
steady-state conductance σ(∞) and controls the dynam-
ics, is the ratio γ = p↑↓/p↓↑ = ω↑↓/ω↓↑. According to
equation (10), the steady-state value of the conductivity
σ(∞) is determined by

σ(∞) = σmax
1

1 + γ
. (35)

The conductance σ(∞) is a decreasing function of the pa-
rameter γ ≥ 0 and varies between 0 (γ → ∞) and σmax

(γ = 0).
It is important to note that the coefficient α is not in-

dependent as far as its functional dependence on the pa-
rameter γ is concerned. We postulate that the parameters
0 < α < 1 and γ > 0 obey a simple relation:

α =
1

1 + γ
. (36)

The value of parameter α decreases monotonically from
unity as a function of the parameter γ. This relationship
can be justified by the following phenomenological argu-
ment. Mapping the model on to the experiment, “on” →
“off” event is associated with the opening of a micro-
contact, whereas an “off” → “on” event is associated
with the closing of a micro-contact. The number of micro-
contacts in the state “off” and another in the state “on” is
controlled by the parameter γ = p↑↓/p↓↑. Higher values of
the effective gravity geff mean stronger interaction between
the contact surfaces, thereby reducing the possibility of
termination of micro-contacts, and stimulates the process
of creating new ones. Therefore, it is acceptable to suppose
that increasing the effective gravity geff corresponds to re-
duction of the parameter γ. Consequently, equation (35)
indicates that the steady-state value of the conductivity
σ(∞) increases with the increasing of the effective grav-
ity geff. Furthermore, from equation (36) it follows that
higher values of effective gravity are consistent with the
greater values of the parameter α. Increasing of the pa-
rameter α in the range (0, 1) decreases the contribution of
long waiting-time intervals Ti during the relaxation pro-
cess, because P (Ti > t) ∝ t−α as t→ ∞ [28]. This causes
that the relaxation dynamics gets faster when the effec-
tive gravity geff increases, in accordance with our experi-
ment. Analogously, in the present model, parameter γ has
higher values for the lower values of effective gravity geff.
In addition, decreasing of the parameter α (Eq. (36)) in-
creases the contribution of long waiting-time intervals Ti

during the relaxation process. Accordingly, evolution of
the conductivity σ(t) toward saturation value takes place
on much wider time scale when the effective gravity geff
decreases, which is consistent with the results of the ex-
periment. Now it can be concluded that the parameter γ
within a model plays a role similar to that of the intensity
of effective gravity geff in real experiments.
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Fig. 9. Temporal evolution of the conduction σ(t) obtained
through Monte-Carlo simulations (solid lines) and analyti-
cally (dashed lines) for various values of parameter γ =
3/7, 2/3, 1, 3/2. Two curves, for the same value of γ = 2/3,
demonstrate that the same steady-state will be reached by the
system from any initial configuration.

The growth of a generalized relaxation time τr with γ
can be accurately described by the exponential law:

τr = τ0 exp(γ0 · γ). (37)

Indeed, inserting expressions γ0 = ln(1/ω) �= f(γ) and
τ0 = 1/ω �= f(γ) into equation (37), and eliminating γ
with the help of relation (36), we can obtain the expres-
sion for the generalized relaxation time, τr = ω−1/α (see
Eq. (28)).

Now, we present and discuss numerical results regard-
ing the temporal evolution of the conductivity σ(t). All
numerical simulations were performed on a system of
N = 25 micro-contacts. The parameter ω was chosen to be
ω = 10−2. In order to sufficiently diminish statistical fluc-
tuations, it is necessary to average over many independent
runs for each value of the parameter γ. Therefore, curves
of the σ(t) relaxation reported here are averages of 104 in-
dependent simulations. A detailed description for the com-
putation of the averages can be found in reference [40].

Variation of the conductance σ(t) with time for sev-
eral values of parameter γ is presented in Figure 9. We
have observed that the relaxation of the conductance gets
slower when the parameter γ increases. The simulation
curves are in a good qualitative agreement with our ex-
perimental data, since the parameter γ has higher val-
ues for lower values of the effective gravity geff. Actually,
for small values of the effective gravity we obtain higher
values for the relaxation times τ and lower values of the
asymptotic conductance σ(∞). In the same figure, the re-
laxation curves obtained analytically by equation (29) are
also given, demonstrating that the Mittag-Leffler law (29)
is excellently obeyed in our simulations. For very small
values of γ, i.e. for high values of geff, there is a rapid
approach to the asymptotic conductance σ(∞), and con-
sequently the parameter α reaches a value close to 1 (see
Eq. (36)). Since Eα[−(t/τr)α] → exp(−t/τr) when α→ 1,
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Numerical simulation: γ1=9/11 → γ2=2/3
M-L funct. (γ1=9/11, α1=0.55)
M-L funct. (γ2=2/3, α2=0.60)
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Numerical simulation: γ1=2/3 → γ2=9/11
M-L funct. (γ1=2/3, α1=0.60)
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(b)

Fig. 10. Time evolution of the conductance σ(t) when the
parameter γ is switched (a) from γ1 = 9/11 (α1 = 0.55) to
γ2 = 2/3 (α2 = 0.60) and (b) from γ1 = 2/3 (α1 = 0.60)
to γ2 = 9/11 (α2 = 0.55), at a time tw = 104 (solid curves).
The dotted and dashed curves, obtained analytically by equa-
tion (29), correspond to the processes at constant γ1 and γ2.

the slow relaxation feature disappears in the regime of
strong external forces.

Next we show that the proposed model reproduces
qualitatively the rapid variation of the electrical conduc-
tivity σ(t) of granular packing induced by the abrupt
change of the effective gravity geff = g sin θ (see Fig. 4).
Since the parameter γ within a model plays a role simi-
lar to that of the intensity of the effective gravity geff in
our experiment, we simulate the abrupt change of geff as
an instantaneous change of the parameter γ in our model.
Figure 10 shows a typical change of the electrical conduc-
tivity in our model after an abrupt change of the param-
eter γ. In Figure 10a the parameter γ is switched from
γ1 = 9/11 (α1 = 0.55) to γ2 = 2/3 (α2 = 0.60) at
tw = 104. We observe that after the transient interval,
the rapid growth of σ(t) ceases and there is a crossover
to the “normal” behavior, with relaxation rate becoming
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the same as in the case of constant value of parameter
γ. When γ = p↑↓/p↓↑ is abruptly lowered, the first ef-
fect is that the system tends to decrease the fraction
of opened micro-contacts, so that conductance becomes
larger. Therefore the rate of conductivity growth increases
with respect to the unperturbed case. At larger times,
however, the relaxation of σ(t) is slowed down by the
creation of smaller fraction of the micro-contacts that is
available for transition from the state “off” to the state
“on”. In Figure 10b we show the response of the sys-
tem to instantaneous shift of parameter γ from γ1 = 2/3
(α1 = 0.60) to γ2 = 9/11 (α2 = 0.55) at a time tw = 104.
We observe an effect opposite to the previous case, i.e. we
find that the conductance σ(t) drops immediately follow-
ing tw. Both numerical results are qualitatively consistent
with our experimental results shown in Figure 4.

5 Concluding remarks

We have reported experiments on the electrical conductiv-
ity in 2D packings of metallic disks at fixed injected cur-
rent of I = 1 mA. This work provides experimental and
theoretical additions to the studies of references [14,15]
mostly carried out in the regime of higher currents (I >
10 mA). The scenario of the evolution of the conductance
depends on both the injected current and external forces
acting on the packing. In this paper, we have attempted to
give some insights into the mechanisms by which granular
materials handle slow relaxation of electrical conductivity
in the regime of very low injected currents and without
external load.

We have experimentally investigated the conductance
of 2D packings of metallic disks for different values of the
effective gravity geff. We have shown that evolution of the
conductivity σ(t) toward saturation value takes place on
much wider time scale when the effective gravity geff de-
creases. We have fitted the time dependences of the con-
ductance σ(t) with the Mittag-Leffler function (1). The
characteristic timescale τ (Eq. (1)) is found to grow when
the effective gravity geff decreases. By changing both the
distance between the electrodes and the number of grains
in the packing, it was shown that the long-term resis-
tance decay observed in the experiment is not related to
large force chain rearrangements, but to individual micro-
contacts between two disks that rearrange. Hence, this
long-term decay seems to be related to the enhancement of
the contacts themselves. The behavior of granular material
is thus completely different from a metallic bulk material.
When the current is switched on, the metallic wire pro-
duces heat. This change in temperature makes the electri-
cal conductance decrease. On the other hand, in the case
of granular material, the opposite effect occurs. The lo-
cal micro-contact rearrangements at each grain influence
the conduction by increasing it. Consequently, in the case
of granular material with weak links between conductive
grains, electrical measurements have to be carefully im-
plemented. The intensity of the injected current, external
load and surface state of grains are seen to be relevant
parameters.

These results were used as a basis for building of a
dynamic model of the electric contact between two grains
which is composed of a large number of micro-contacts.
Actually, we have developed an artificial, but instructive
model of a contact which can be regarded as a very sim-
ple picture of the interface between two metallic grains.
We impose that the micro-contacts at the interface switch
stochastically between the two states (“on” and “off”).
By appropriately choosing this random process, one can
provide the essential ingredients in our model to repro-
duce the slow relaxation of the electrical conductivity and
mimic the rapid variation of the conductance σ(t) induced
by the abrupt change of the effective gravity geff. We think
that the success of the model in emulating the experi-
ments indicates that the dominant physical mechanisms
have been correctly identified. Even though the model is
simple enough as to be analytically tractable, the theoret-
ical results are corroborated by numerical simulations of
the corresponding stochastic fractional processes.
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