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Abstract. Effective action approach for path integral Monte Carlo calculations is introduced and
the derivation of the corresponding effective actions. improving the convergence of diseretized
quantum mechanical amplitudes, partition functions and expectation values from /N to /N7,
is presented. Applicability of previously developed methed is extended to multidimensional many-
particle systems. The presented results of numerical simulations demonstrate the expected increase
in the speed of convergence.

INTRODUCTION

Path Integral Monte Carlo (PIMC) simulations are very important, general tool for nu-
merical calculations of properties of complex quantum and statistical systems that can-
not be solved analyticaly or treated satisfactorilly using approximative techniques. Con-
siderable effort has been devoted to the development of approaches that will enable faster
convergence of discretized path-integral expressions [1]. Recent series of papers [2, 3]
has focused on systematic analytical construction of effective actions that improve con-
vergence of discretized transition amplitudes, partition functions and expectation values
to the continuum himit for one-particle one-dimensional systems. This new analytical
input has allowed significant speedup of several orders of magnitude in numerical cal-
culations. Originally, effective actions have been derived considering N-fold and 2N-fold
discretizations of the same theory. In this paper we present different way of derivation
of effective actions, which is applicable to general non-relativistic many-body systems
whose lagrangian is of the form L — $¢* — V' (¢), where ¢ denotes vector of all coordi-
nates of all particles in the system.

DERIVATION OF EFFECTIVE ACTIONS
Basic property of the general quantum mechanical amplitude 4(a,b;T) describing the
transition of the system from the inital state |a) to the final state |b) during the time

interval 7" 1s linearity: if the time interval 7' is subdivided into N equal time steps,
€ = T'/N, the amplitude satisfies

A(a,b,T) - /a’q, codgy Alaqy€) - A(gy-1.b;€). (N
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When deriving path integral expression in the standard manner [4, 5] we proceed with
approximate evaluation of amplitudes 4(¢,,¢..1;€) for short times of propagation &,
leading to the well-known result for discretized amplitude in imaginary time

N/2
AI\N(CI.,b',T> (27‘[£> /(1’(11 Cl([\r ,e SN, (2)

ey
where Sy is naively discretized action Sy - ):j\, 7(} € ( (b—’) - V(c],,)) and &, = g1 —

g

Gn, Gn = %(fln 4 ¢n-1). In the continuum limit N — oo the discretized value of amplitude
converges to the continuum amplitude 4(a, b; T), which is symbilically written as

g(T)=b_ ;
Aab;T)= [ jdgle~S0. 3)
Jq(0)=a

The convergence to the continuum limit is slow if naively discretized action is used, typ-
ically O(1/N). Our aim is to construct a series of effective actions Sg’) which will im-

prove the convergence of discretized expressions to the desired order p, 4 ) v (a,b,T) =

Ala,b;T)+O(1/NP).

Following approach described in [5], we calculate A(g,, ¢, 1; €) approximately to the
order €7 using expansion around some referent trajectory; this way we would obtain
sought-after discretized effective actions of level p. To simplify the derivation, we use
new time variable s — ¢ — £/2. We also introduce new trajectories variable y(s) by
relation x(s) = y(s) + & (s), where x(s) are trajectories that we integrate over and &(s)
is some fixed referent trajectory satysfying the same boundary conditions as x(s). This
results in y(—€/2) - y(e/2) = 0. Since the measure is invariant under the previous
transformations, we have:

y(e/2)=

Aananiie) =50 [ e Fiadl21008), @
£/2)=

U(y,E) =V (E +y) —V(E) —p&. In order to calculate the remaining functional integral
in (4), we introduce the expectation value with respect to the free particle action:

ly “fjg:d-"‘k."’z

F ,‘l - /2
< b > [ [d )]e—ff}:'zdv“g)')z

Using this notation and expression for the free-particle transition amplitude, we obtain

A M2 st g faety 6
qn-Gn+1; E) 27’[8 e <C >a ( )

where M is the number of particles and d is the number of spatial dimensions. In order
to proceed, we use the following series expansion:

(e~ T AU0:8)y 1—/ds Uy, €)) //dsds (U EUWEN +O(UY), (7)
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with shorthand notation y' = y(¢'),&’ = £(¢'), and also

= 1 —
U, 8) =yi(aV () - &)+ EyIYj()i()/I/(é) +007). (8)

Here 7 and j count Md degrees of freedom and we assume summation over repeated
indices. After expanding V(&) and all its derivatives in (8) around g, i order to do the
remaining integrations, from (7) and (8) it is obvious that it is sufficient to calculate
,/:vi(s)>, (_‘y,-(s)yj(s’)), etc. This is achieved by introducing generating functional for the
free-particle theory whose propagator in this particular case is:

A(s,s)iy = ~6;'j [9(.\'—5') (g *S) (g— | .s") FO(s' —s) (; ‘Fb‘) (g fs')] )]

We easily see that (y;(s)) = 0, (yi(s)y;(s")) = A(s,8");, etc. The calculation of the
generating functional (and also of the expectation values) is the same irrespective of
the choice of &. In all cases the action and the boundary conditions for the field y are the
same, and so the propagator is always given by formula (9).

In order to achieve 1/N¥ convergence of Af\{}) (a,b,T) we have to keep all the terms
proportional to £” when calculating 4(g,, g, ;€) taking into account that §? ~ €. For
example, choosing linear referent trajectory & (s) = g, -+ %’-s and keeping terms up to the

€2 we obtain:

Ael/ 52 - SN < R
1 Alp2 *5<§b§2 + V(qn)“'|€_1,AV(‘I")7L L:.;n'} ()j':,‘V(‘In)
é 2
2re

A(Gn:gns1;€) (——— )+00@)> (10)
(A=4% d;,). From the above formula we read off p — 2 discretized effective action:

SO S E Ly Ear@y s 2 92 v (i
A T 12 24 %

RESULTS AND CONCLUSIONS

Previously, for one-particle one-dimensional systems effective actions up to p -~ 12 have
been derived and applied for efficient PIMC calculations [2, 3, 7, 8]. By now, using the
above outlined procedure, we have derived effective actions for general many-particle
systems up to the level p = 5.

In order to verify our analytical results, Monte Carlo simulation for many-particle
system of distinguishable bosons in d spatial dimensions is developed. Deviations of
discretized amplitudes from the continuum limit for system of two particles in two
dimensions are shown on log-log scale in Figure 1. Slopes of solid lines clearly indicate
expected improved convergence governed by 1 /N? term. As level p increases discretized
amplitudes approach continuum limit ever faster, so for higher values of p it is possible
to use much smaller values of N to obtain results of the same quality. Since the CPU
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FIGURE 1. Deviations from the continuum limit |_"‘11£_§") — AJ as funetions of N for p = 1,2,3,4 for the
system of two particles in two dimensions in potential V(4 ,42) — ;—((_j] —§2)* + £(¢1 —g2)*, g = 10, with
the time of propagation 7 = 1 and inital and final states @ — (0,0,0.2,0.5), 5 = (1,1,0.3,0.6). Number of
Monte Carlo samples used is Mye = 108 (p = 1), Nyse = 107 (p = 2), Nage = 10”7 (p = 3) and Nygee = 1017
(p = 4). Solid lines give the leadinig 1/N? behaviour.

time of PIMC calculation depends linearly in N, this leads to substantial speedup in
numerical calculations.

To conclude, new approach to the derivation of effective actions for PIMC calcula-
tions is presented. Important advantage of this approach is the possibility of its straight-
forward generalisation to many-particle systems. This enables wide range of applica-
tions of effective action approach for efficient PIMC simulations. Numerical simulations
obtained for a two-dimensional two-particle system demonstrate analyticaly derived re-
sults. Derivation of higher-level effective actions and applications to systems of identical
particles are in progress.
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