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Abstract. Effective action [lpproach for palh intcgral Montc Carlo calculations is inlroducL:d and 
the derivation of the corresponding ctfective actions, improving, the convergence of disereli7Cd 
quantum mechanical amplitudes, partition functions and e\pcctation \'alues from JIN lo l/NI', 
is presentcd. Applicability of prcviousl\' developed method is extellded to mulLidimensional manv
particle s ~lems. The prcsented results of numerical :iimublions del1lon,tratc the expectcd increase 
in the spcL:d of COllVcr 'ence. 

INTRODUCTION 

Path Int gral 10nte Carlo (PI Me) simulations are very important, general tool for nu
merical calculations of properties of complex quantum and statistical systems that can
not b solved analyticaly or treated satisfactorilly using approximative techniques, Con
sid rable effo11 has been devoted to the development of approaches that will enable faster 
convergence of discretized path-integral expr ,'Ions [I). Recent series of papers [2, 3] 
has focu ed on systematic analytical constructiOll of efll ctive actions that improve con
v rgence of discretizcd lransi tion ampIitudes, parti lion functions and expectation values 
to the continuum limit for one-particle one-dimensional systems. This new analytical 
input has all wed significant speedup of several orders of magnitude in numerical cal
culation , Originally, effective actions have been derived con idering N -fold and 2N-fold 
discrctizations of the same theory In this paper we present different way of derivation 
of e~ ctive actions, which is applicable to general non-relativistic many-body systems 
whose lan rangiall IS of the form [, -= ~(? - V(q), where (1 denotes vector of allcoordi
nates of all particles in the system. 

DERIVATIO OF EFFECTIVE ACTIONS 

Basic property of the general quantum mechanical amplitude A(a,b; T) describing the 
transition of the system from the inital state la) to the fmal state Ib) during the time 
interval 7' is linearity if the time interval l' is subdivided into N equal time steps, 
£ T / ,the amplitude sali fi s 

( I ) 
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When deriv'ing path Integral expression in the standard manner [4, 5] we proceed 'v\~th 

approximate evaluation of amplitudes A(ql1,QI1+J;£) for short times of propagation £, 

leading to the well-known result for discretized amplitude in imaginary time 

( 

2 j'I )"'/Ax(a,b;T) = 2n;£ dC;}" 'c!C!N_IC'S;v, (2) 

where SN is naively discretized action SN -, I;;; OI £ (i (~) 2 -I V(QI1)) and On = gil i } 

C;n, 0, = ! (gn +qn, I), In the continuum limit N the discretized value of amplitude~ 00 

converges to the continuum amplitude A(a, b; T), which is symbilically written as 

,q(T)~b , 
A(a,b; T) = Idc;le-S(q). (3)!
, q(O)~a 

The convergence to the continuum limit is slow if naively discretized action is used, typ

ically 0(1 /N), Our aim is to construct a series of effective actions SY;) which will im

prove the convergence of discretized expressions to the desired orde; p, A,~) (a,h; T) --"C 

A(a,b;T)+O(I/NP) . 
Following approach described in [5], we calculate A (qll ,(!I1+} ; E) approximately to the 

order EP Llsing expansion around some referent trajectory; this way we would obtain 
sought-after discretized effective actions of level p. To si mplify the derivation, we use 
new time variable s = t ~ £/2, We also introduce new trajectories variable y(s) by 
relation x(s) = y(s) + S(s), where x(s) are trajectories that we integrate over and S(.I) 
is some fixed referent trajectory satysfying the same boundmy conditions as x(s), This 
results in y( -£/2) Y(E/2) = 0 Since the measure is invariant lmder the prevIOus 
transformations, we have: 

, IY( E12)=0 f'!2 d (1 ; I U ( r e))
A(qll,(!II+I;E) =e'-S(~) [dy]e -./2 s 2> ~ l,e; , (4) 

, Y( -£/2)-0 

U(y; s) = V( S+y) - V( s) --y~. In order to calculate the remaining functional integral 
in (4), we introduce the expectation value with respect to the free particle action 

J'/2 1,,2

J[dy]F[y]e - _c/2 
ds 

l r 
(FlY]) =-- , _ j"/2 d, I, '2 (5)

.I [dy]e -"/2 J 

Using this notation and expression for the free-particle transition amplitude, we obtain 

1 ) Mdl2 ,'e • ,

A(q .q , '£) = - e Slsl(e jds(,(y;S)) (6)n, fiT}' ( 2n;£ ' 

where M is the number of particles and d is the number of spatial dimensions, In order 
to proceed, we use the follovving series expansion 

(e-jdsl.!(y,~)) -1-Jds(U(y;S)) +~ JJdsdsl (U(Y;S)U(Y;S/))+O((U3 
)), (7) 
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with shorthand notation J- y(tl), ~I = ~ (t l ), and also 

U(y;S) = y,(o,V(s) - ~,) + ~Y'Yja'()jV(~) -/-()(i)· (8) 

Here i and j count 1\1d degrees of freedom and we assume summation over repeated 
indi 'es. After expanding V( ~) and all its derivatives in (8) around (In in order to do the 
remaining integrations, from (7) and (8) it is obvious that it is sufficient to calculate 
(h(S)), (vJS)Yj(SI)), etc. TIllS is achieved by introducing generating functional for the 
free-particle theory whose propagator in this particular case is: 

We easily see that (yly)) -::0 0, 0'i(S)Yj(SI))_- t!:,.(S,SI)i,j, etc. The calculation of the 
generating functional (and also of the expectation values) is the same irrespective of 
the choice of ~. In all cases the action and the boundary conditions for the field yare the 
same, and so the propagator is always given by formula (9) 

In order to achieve I j NP convergence of AJ~}) (a, h; 'f') we have to keep all the terms 

proportional to £P when calculating A(Cfn,qn ~l; e) taking into account that 8,2 rv e. For 

example, choosing linear referent trajectory S(s) = q,., + ~s and keeping terms up to the 
£2 we obtain 

= I::~~ alJ From the above formula we read off fJ = 2 discretized effective action: 

(II) 

RESULTS AND CONCLUSIONS 

Previously, for one-particle one-dimensional systems effective actions up to P 12 bave 
been derived and applied for efficient PIMC calculations [2, 3, 7, 8]. By now, using the 
above outlined procedure, we have derived effective actions for general many-particle 
systems up to the level p = 5. 

In order to verify our analytical results, Monte Carlo simulation for many-particle 
system of distinguishable bosons in d spatial dimensions is developed. Deviations of 
discretized amplitudes from the continuum limit for system of two particles in two 
dimenSIons arc shown on log-log scale in Pigure I. Slopes of solid lines clearly indicate 
expected improved convergence governed by I jNP term As level p increases discretized 
amplitudes approach continuum limit ever faster, so for higher values of p it is possible 
to use much smaller values of N to obtain results of the same quality. Since the CPU 
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FIGURE I. Deviations from the continuum limit \.'l,~f) -/11 as [unctions ofN for p = 1,2,3,4 for the 

system o[two particles in two dimens.ions in potential V(q, ,Q2) =- ~(ql -q2)2 + f4 (i'iJ -q2)4,g - 10, will] 

Ihe time o[propagation T = 1 and inital and final slales a= (D, 0;0.2, D.5), h = (1,1 ;0.3,0.0). Number o[ 
MonIc Carlo samples used is NMC _ ID6 (p = 1), NMc = 107 (p ~ 2), A:..1c -. 109 (p ~ 3) and Nw; = 10 10 

(p C" 4). Solid lines give the leadinig I/NI' behaviour. 

time of PIMC calculation depends linearly in N, this leads to substantial speedup in 
numellcal ca'kulations. 

To conclude, new approach to the derivation of effective actions for PIMC calcula
tions is presented, Impoliant advantage of this approach is the possibi Iity of its straight
forward generalisation to many-particle systems. This enables wide range of applica
tions of effective action approach for efficient PIMC simulations. Numerical simulations 
obtained for a two-dimensional two-particle system demonstrate analyticaly derived re
sults. Derivation of higher-level effective actions and applications to systems of identical 
particles are in progress. 
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