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a b s t r a c t 

In present paper authors examined the effect of colored noise on the onset of seismic fault motion. For 

this purpose, they analyze the dynamics of spring-block model, with 10 all-to all coupled blocks. This 

spring-block model is considered as a collection of fault patches (with the increased rock friction), which 

are separated by the material bridges (more petrified parts of the fault). In the first phase of research, au- 

thors confirm the presence of autocorrelation in the background of seismic noise, using the measurement 

of real fault movement, and the recorded ground shaking before and after an earthquake. In the second 

stage of the research, authors firstly develop a mean-field model, which accurately enough describes the 

dynamics of a starting block model, with the introduced delayed interaction among the blocks, while col- 

ored noise is assumed to be generated by Ornstein-Uhlenbeck process. The results of the analysis indicate 

the existence of three different dynamical regimes, which correspond to three regimes of fault motion: 

steady stationary state, aseismic creep and seismic fault motion. The effect of colored noise lies in the 

possibility of generating the seismic fault motion even for small values of correlation time. Moreover, it is 

shown that the tight connection between the blocks, i.e. fault patches prevent the occurrence of seismic 

fault motion. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Significance of seismic noise study in seismological research

ies in the possibility of reliable subsurface tomography using the

ecords on ambient seismic noise [1] . In particular, numerous field

tudies confirmed that ratio of horizontal to vertical component of

mbient noise gives solid data on the subsurface geology in areas

ith low seismicity or even in aseismic areas [2] . However, none

f the previous studies dealt with the effect of noise on the fault

ovement. Reason for this lies in inaccessibility of the fault zone

o direct measurements, both of ambient noise and the fault move-

ent. These measurements are only possible in deep boreholes,

ear the active fault zones, like in the case of fault movement di-

ectly measured at the Driny cave, Male ́Karpaty mts in Slovakia [3] ,

r in the 3 km deep borehole that cuts through the San Andreas

ault system within the SAFOD research project [4] . Also, the ef-

ect of noise on generation of seismic fault movement is impossi-
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le to prove by the in situ measurements. For these reasons, fault

otion is usually examined by modeling in laboratory conditions,

hereby simulations are commonly conducted in two ways: either

y observing the behavior of an array of blocks (starting from the

urridge-Knopoff model), or by analysis of the motion between the

wo plates, whose contact is simulated by an assemblage of real

r artificial grains. In these conditions, it is possible to simulate

ovement along the fault, including all the accompanying effects.

evertheless, as far as authors are aware, effect of noise on fault

otion has not been examined in laboratory conditions so far. 

However, mathematical expressions which are used to describe

he dynamics of such systems allow one to examine different ef-

ects, at least from a theoretical viewpoint. Regarding the effect

f noise, in our previous work [5] we examined the dynamics of

n array of 100 blocks under the effect of random seismic noise.

n that case, assumption of random nature of seismic noise came

rom the two sources. Firstly, we examined the real observed GPS

easurements of fault movement at the ground surface at several

tations within the San Andreas fault zone, for which we estab-

ished to have the properties of stochastic time series. Secondly,

https://doi.org/10.1016/j.chaos.2020.109726
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109726&domain=pdf
mailto:srdjan.kostic@jcerni.rs
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we wanted to examine the effect of permanent background seis-

mic noise, so it was natural to assume its random nature. How-

ever, what if the noise along the fault zone or in its immediate

vicinity is correlated? Justification for this lies in existence of many

potential sources of colored (correlated) noise: reservoir charg-

ing/discharging, penetration of sound waves emitted by neigh-

boring fault motion, close earthquakes or explosion, ocean waves

and tides, etc. Another source of colored noise could come from

the pre-processing of the acquired measurements. In particular,

recorded time series could be represented as a combination of a

deterministic signal, i.e. convenient combination of sine and co-

sine wave, with the remaining stochastic residuals, which always

have certain level of autocorrelation. All these factors could gener-

ate correlated oscillations of small amplitude with respect to the

scale of fault motion. 

In our previous work on the effect of random noise on the fault

motion, we showed that when fault is in inter-seismic stage, near

the boundary to the co-seismic regime, even random noise with

very small amplitude could generate the transition to co-seismic

fault motion. Regarding the possible multiple sources of colored

seismic noise, in present paper we want to examine whether cor-

related noise could be also responsible for earthquake nucleation.

For this purpose, we invoke the method of mean-field approxima-

tion, which enables us the reduction of large stochastic system to

the simple deterministic system which could be further analyzed

by applying standard local bifurcation analysis. 

Presented research is performed with two main goals. Firstly,

we want to show that in situ recorded fault motion is stochas-

tic per se, and that the stochastic part of displacement time se-

ries could be treated as colored noise. Secondly, we wish to esti-

mate the impact of colored noise on the generation of instability,

i.e. on the occurrence of seismic fault motion. For the former, we

invoke the joint deterministic-stochastic approach based on tra-

ditional Box-Jenkins method, while for the latter we perform the

local bifurcation analysis of the mean-field approximated starting

system of 10 blocks in a spring-block array along a single direc-

tion. 

2. Colored noise in situ 

In order to justify the introduction of the colored seismic noise

in fault motion model, one needs to confirm the existence of col-

ored noise in rela conidtions within the Earth’s crust. In present

case, we analyze the following datasets based on the real measure-

ments: 

(1) Strike-slip fault movement directly measured at the

two points in Driny cave, Male´Karpaty mts in Slovakia

[3] ( Fig. 1 a), 

(2) Ambiental noise measurements before and after the earth-

quake on 8th September 2015 at the BKS station (Byerly

Seismogrpahic Vault, Berkley) ( Fig. 1 b). 

In case (1) we show that once the estimation model of the fault

movement is established, estimation error is autocorrelated, indi-

cating the possibility of the existence of the colored noise. In case

(2) we show that ambiental noise before and after the quake is

autocorrelated. 

Analysis of the measurement results shown in Fig. 1 a indicates

that the real observed time series could be well described by the

following models in a general form of Fourier series sums of sine

and cosine functions: 

y = a 0 + a 1 · cos (ω · t) + b 1 · sin (ω · t) + a 2 · cos (2 · ω · t) 

+ b 2 · sin (2 · ω · t) + ... (1)
here a i and b i denote Fourier coefficients, and ω is the average

scillation freuqency. Coefficients and frequencies of the resulting

odels for estimation of displacements at the locations Driny 1

nd Driny 3 are given in Table 1 . 

Using these equations, one could describe the observed hori-

ontal strike-slip motion accurately enough ( Fig. 2 ). 

For the present case, properties of the estimation error are of

pecial importance, since the presence of autocorrelation in resid-

als could indicate the existence of the colored noise in the back-

round of the seismic movement. Indeed, the results of Durbin–

atson statistics indicate the presence of autoccorelation in the

ecorded noise ( < D L ), according to reccommendations of Savin and

hite [7] ( Table 2 ). 

As for the recorded noise before and after the earthquake

n 8th September 2015 at the BKS station (Byerly Seismogrpahic

ault, Berkley), one can simply calculate the autocorrelation func-

ion, which, in present case, for both time series (before and after

he earthquake) indicates the presence of autocorrelation ( Fig. 3 ).

t is clear that there is a significant autocorrelation for the first 8

nd 7 lags, for time series before and after the earthquake, respec-

ively, while t-statistics is higher than 2 for the first two lags in

oth cases. 

Concerning the results of the aforementioned analysis, one

ould reasonably assume that noise in the background of fault

ovement could be considered as a colored noise. 

. Bifurcation analysis 

A new model for seismic fault motion is suggested in a form

f a single array spring-block model, described by a determinis-

ic mathematical model with the included effect of colored noise.

nalysis of such model is conducted using the standard local bifur-

ation analysis, which is applied for the analysis ofthe determinis-

ic mean-field system instead of the starting stochastic model. It is

hown that both models display qualitative similar dynamics. 

Earthquake fault motion is examined by analysis of dimension-

ess all-to-all coupled spring-slider model with 10 units, whose dy-

amics is described by the following set of stochastic delay differ-

ntial equations (SDDEs): 

˙ x i (t) = y i (t) 

˙ y (t) = −x i (t) + �( y i + v ) − �(ν) 

+ 

K 

N 

(
x j ( t − τ ) − x i (t) 

)
+ Z i (t) 

Zi (t) = −Z i 
ε 

d t + 

√ 

2 D 

ε 
d W i (2)

here x i and y i represent displacement and velocity of the i

h block, respectively, K is constant of spring connecting the

locks, � stands for the friction force, τ is time delay and ν is

ondimensional pulling background velocity. Z i (t) is an Ornstein-

hlenbeck process, and terms 
√ 

(2 D/ε) dW i represent stochas-

ic increments of independent Wiener process, i.e. dW i satisfy:

(dWi) = 0, E(dW i dW j ) = δij dt , where E() denotes the expectation over

any realizations of the stochastic process. The noise correlation

ime ε and the intensity of noise D are parameters that can be var-

ed independently. Colored noise generated by Ornstein-Uhlenbeck

rocess with this parametrization is referred to as power-limited

olored noise, since the total power of the noise (the integral over

he spectral density of the process) is conserved upon varying the

oise correlation time. 

Friction force � is assumed to be only rate-dependent: �(V ) =
( μ0 + a ln (V ) ) where V is the general notion for the friction ar-

uments in (2). 
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Fig. 1. (a) Horizontal strike-slip displacements along the faults at Driny Cave [3] , (b) Permanent noise measurements before and after the earthquake at the Byerly Seismo- 

grpahic Vault, Berkley [6] . 

Table 1 

Fourier coefficients for deterministic models of fault movement of general form (1) based on the real observations atlocations Driny 1 and Driny 3. 

Driny 1 ( ω = 0.108) Driny 3 ( ω = 0.0205) 

a 0 0.139 a 0 0.012 a 9 −0.002 a 17 0.002 a 25 −0.004 

a 1 0.116 a 1 0.002 b 9 −0.005 b 17 −0.002 b 25 0.0005 

b 1 −0.063 b 1 0.038 a 10 0.002 a 18 −0.005 a 26 0.0003 

a 2 0.031 a 2 0.007 b 10 0.006 b 18 −0.013 b 26 −0.0003 

b 2 0.033 b 2 0.0280 a 11 0.002 a 19 0.007 a 27 0.0002 

a 3 −0.007 a 3 −0.001 b 1 −0.009 b 19 −0.013 b 27 −0.006 

b 3 0.048 b 3 −0.0005 a 12 0.005 a 20 −0.001 a 28 −0.009 

a 4 −0.005 a 4 0.003 b 12 0.011 b 20 −0.001 b 28 0.008 

b 4 0.016 b 4 0.016 a 13 0.003 a 21 0.009 a 29 0.003 

a 5 −0.015 a 5 −0.007 b 13 0.009 b 21 −0.0007 b 29 −0.0005 

b 5 −0.009 b 5 0.017 a 14 0.005 a 22 0.002 a 30 0.002 

a 6 0.001 a 6 −0.006 b 14 0.009 b 22 0.013 b 30 −0.0006 

b 6 −0.004 b 6 0.004 a 15 −0.011 a 23 −0.004 a 31 0.0089 

a 7 0.008 a 7 −0.009 b 15 0.017 b 23 0.006 b 31 0.002 

b 7 −0.006 b 7 0.019 a 16 −0.014 a 24 −0.004 a 32 0.002 

a 8 −0.011 a 8 −0.006 b 16 −0.011 b 24 0.005 b 32 0.004 

b 8 0.008 b 8 −0.011 

Table 2 

Results of Durbin–Watson test for testing the presence of autocorre- 

lation in residuals of the models in general form (1) and with the 

coeeficients given in Table 1 . 

Recording location Durbin–Watson statistic D L D U 

Driny 1 0.485 1.696 1.727 

Driny 3 0.527 1.807 1.820 

 

a  

z  

[

 

m  
In present paper, authors consider this spring-block model as

 collection of fault patches mutually separated by the petrified

ones (material bridges). This is the modified original model from

8] 

Starting from the model (2), one could obtain the following

ean-field model, which has qualitatively the same dynamics as
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Fig. 2. Comparison of estimated motion and real observed fault movement. Black line stands for the recorded time series, while gray line indicates the result of estimation 

determinstic model. 

Fig. 3. Autocorrelation function for the time series before (a) and after (b) the earthquake on 8th September 2015 at the BKS station (Byerly Seismogrpahic Vault, Berkley), 

with the clear indication of the presence ofg autocorrelation. 
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the starting model (2): 

˙ m x = m y 

˙ m y = −m x − a ln ( m y + ν) + a ln (ν) + 

1 
2 

a 

( m y + ν) 
2 s y 

+ 

3 
4 

a 

( m y + ν) 
4 s y 

2 + K ( m x ( t − τ ) − m x ) + m z 

˙ m z = − 1 
ε m z 

1 
2 

˙ s x = U xy 

1 
2 

˙ s y = s y 

[ 
− a 

m y + ν − a 

( m y + ν) 
3 s y 

] 
− ( K + 1 ) U xy + U yz 

˙ 
 xy = U xy 

[ 
− a 

m y + ν − a 

( m y + ν) 
3 s y 

] 
− ( K + 1 ) s x + s y + U xz 

˙ 
 xz = U yz − 1 

ε U xz 

˙ 
 yz = −U xz − a 

m y + ν U yz − a 

( m y + ν) 
3 s y U yz − K U xz + D − 1 

ε U yz 

(3)

Detailed derivation of model (3) is given in Appendix. 

Results of the numerical analysis of mean-field model (3) indi-

cate the existence of three different dynamical regimes ( Fig. 4 –6 ): 

- Equilibrium state, which manifests as steady stationary move-

ment (corresponding to the steady regime of fault motion); 

- Small-amplitude regular periodic oscillations (corresponding to

the creep regime of fault motion); 

- High-amplitude irregular oscillations (corresponding to the

seismogenic fault motion). 

From Fig. 4 one could identify the effect of correlation time

ε on the dynamics of mean-filed model (2) . In particular, with

the increase of correlation time, second bifurcation curve vanishes,

i.e. there are no high-amplitude oscillations. From the seismolog-
cal point of view, this could indicate that degree of autocorre-

ation of background seismic noise could directly determine the

ype of transition from equilibrium state, i.e. creep regime of fault

ynamics to low-amplitude oscillations (which could still not in-

uce the seismogenic motion) or to high-amplitude irregular oscil-

ations, whose amplitude progressively increases, which could be

onsidered as the onset of the fault motion which produces the

eismic waves responsible for surface soil shaking. 

Regarding the effect of coupling strength K, it is clear from

ig. 5 that the increase of coupling strength further increases the

mpact of both time delay τ and friction a , and excludes the possi-

ility of the occurrence of seismogenic fault motion. In particular,

or higher values of K transition from equilibrium state to small

mplitude oscillations, i.e. creep regime is possible even for higher

alues of friction a . From the seismological viewpoint, this means

hat the stronger interrelations between different patches of fault

lso induce the stronger role of friction. In the same time, it ap-

ears that for higher values of coupling strength, there is no possi-

ility that seismogenic motion occur, since the second bifurcation

urve (denoting the transition from creep regime to irregular seis-

ogenic motion) vanishes. 

However, this statement is valid only for the lower values of

ime delay. Indeed, one could see from Fig. 6 that high-amplitude

rregular oscillations occur for higher values of time delay, i.e.

> 5. From the practical viewpoint, this means that the higher

elay in interaction between the neighboring patches of fault – the

ore likely is to expect the onset of seismogenic fault motion. In

ther words, it seems that without the delay in nteraction, or with
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Fig. 4. Andronov-Hopf bifurcation diagram, displaying interaction of friction a and time delay τ , for different values of correlation time ε. While friction and delay are being 

varied, other parameters are being held constant for the mean-field model (3) in equilibrium state: μ0 = 0.1, K = 1, D = 0.001, ν = 1.2. (a) ε = 0.005, (b) ε = 0.5, (c) ε = 5.0. 

EQ denotes the equilibrium state (steady stationary displacement), LC-SA stands for the periodic oscillations of small amplitude, while LC-HA denotes the high-amplitude 

irregular oscillations. 

Fig. 5. Effect of coupling strength K on the dynamics of the mean-field model (3) . 

While friction and delay are being varied, other parameters are being held constant 

for the mean-field model (2) in equilibrium state: μ0 = 0.1, D = 0.001, ν = 1.2, 

ε = 0.5, K = 5. EQ denotes the equilibrium state (steady stationary displacement), 

while LC-SA stands for the periodic oscillations of small amplitude. 

t  

i  

g

4

 

g  

F  

f  

a  

(  

i  

m  

2  

t  

d  

b  

c  

d  

d  

s  

t  

t  

m  

i  

o  

s  

c  

a

he small values of delay, the whole faults acts as a unique block,

.e. the fault patches are locked, preventing the irregular seismo-

enic motion to occur. 
. Discussion and conclusion 

In present paper, authors examine the impact of the back-

round colored seismic noise on the dynamics o fan active fault.

irstly, authors prove, by analyzing the measurement of the real

ault displacement, that background seismic noise could be treated

s the colored noise. This is done for the real two examples:

1) strike-slip fault movement directly measured at the two points

n Driny cave, Male ́Karpaty mts in Slovakia [3] ; (2) ambiental noise

easurements before and after the earthquake on 8th September

015 at the BKS station (Byerly Seismogrpahic Vault, Berkley). In

he second phase of the research, authors investigated the fault

ynamics by analyzing the mean-field model of all-to-all coupled

locks, with delayed interaction and with the assumed additive

olored noise. The results obtained indicate the existence of three

ifferent dynamical regimes, all of which could have its correspon-

ence with the real observed regimes of fault motion: (1) steady

tationary state; (2) creep regime and (3) active seismogenic mo-

ion. Furthermore, the results indicate interesting effect of correla-

ion time ε and coupling strength K on the onset of seismic fault

otion. Higher values of ccorrelation time exclude the possibil-

ty of seismic fault motion, indciating the affect of strong impact

f background seismic noise. Similarly, higher values of coupling

trength also make seismic fault motion impossible to occur. In this

ase, when coupling strength is high, fault patches are interlocked

nd there is no possibility that irregular motion occur. 
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Fig. 6. Andronov-Hopf bifurcation diagram, displaying interaction of coupling strength K and time delay τ . While coupling strength and delay are being varied, other 

parameters are being held constant for the mean-field model (3) in equilibrium state: μ0 = 0.1, D = 0.001, ν = 1.2, a = 0.8, ε = 0,5. EQ denotes the equilibrium state (steady 

stationary displacement), LC-SA stands for the periodic oscillations of small amplitude, while LC-HA denotes the high-amplitude irregular oscillations. 

n this paper, and white seismic noise, analyzed in our previous paper 

ic noise, seismic fault motions could be expected to occur only in a bi- 

ided that initial conditions along the fault are far from the equilibrium 

olored noise brings more rich dynamical behavior, where colored noise 

eismic fault motion, with the increase of time delay. 

red noise in case when the interaction of neighboring blocks weakens 

 the real observed scenario. 

ncial interests or personal relationships that could have appeared to 

on, Science and Technological Development of the Republic of Serbia 

the vicinity of the mean values ( x i , y i , z i ) = ( m x , m y , m z ) = 

s: 

 y ] + 

1 

2! 

[
�′′ ( m y + ν) 

]
[ y i (t) − m y ] 

2 

(t) − m y ] 
4 + K [ m x ( t − τ ) − x i (t) ] + Z i (t) (1A) 

for starting system (1) , we shall first suppose that: (a) dynamics is such 

e average over local random variables is given by the expectation with 

ally (all-to-all) coupled units shall be performed in the thermodynamic 

 N 
i =1 x i (t ) , 〈 y (t ) 〉 = lim 

N→∞ 

1 
N 

∑ N 
i =1 y i (t ) , 〈 z(t ) 〉 = lim 

N→∞ 

1 
N 

∑ N 
i =1 z i (t) , for each 

z i (t) . 

 independent in different elements. 

le semi-invariants which have an important property that all of them, 

econd order cummulants: 

 (t ) 〉 , m z (t ) = 〈 z(t) 〉 , 
 z (t ) = 〈 n 2 z (t) 〉 , 
 = 〈 n y n z 〉 
If one compares the effect of colored seismic noise, analyzed i

[5] , the difference lies in the following. For white background seism

stable dynamical regime in the vicinity of a bifurcation curve prov

state (the case of active fault). On the other hand, introduction of c

with rather small correlation time ( Fig. 4 a) indicates the onset of s

Further research on this topic could evaluate the effect of colo

with the mutual distance of the blocks, which is certainly closer to
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Appendix 

By deriving the Taylor expansion of �(y i (t) + ν) in 

( lim 

N→∞ 

1 
N 

N ∑ 

i =1 

x i (t) , lim 

N→∞ 

1 
N 

N ∑ 

i =1 

y i (t) , lim 

N→∞ 

1 
N 

N ∑ 

i =1 

z i (t) ) , system (1) become

˙ x i (t) = y i (t) 

˙ y (t) = −x i (t) + �( m y + v ) − �(ν) + 

1 

1! 

[
�′ ( m y + ν) 

]
[ y i (t) − m

+ 

1 

3! 

[
�′′′ ( m y + ν) 

]
[ y i (t) − m y ] 

3 + 

1 

4! 

[
�( 4 ) ( m y + ν) 

]
[ y i 

d Z i (t) = −Z i (t) 

ε 
d t + 

√ 

2 D 

ε 2 
d W i 

In order to derive mean-field approximate dynamical equations 

that the distribution of x i and y i are Gaussian and (b) for large N th

respect to the corresponding distribution, as in [9] . 

The cumulant analysis of a system (2) of above mentioned glob

limit of an infinitely large ensemble, N → ∞ . 

We introduce deviations from the mean-field: 〈 x (t) 〉 = lim 

N→∞ 

1 
N 

∑
element n x (t) = 〈 x (t) 〉 − x i (t ) , n y (t ) = 〈 y (t) 〉 − y i (t ) , n z (t ) = 〈 z(t) 〉 −

We assume that these fluctuations are Gaussian and statistically

There is a set of moments known as cumulants [10,11] or Thie

for the third order, vanish in the Gaussian case. 

Next, we introduce the following notation for the first and the s

- The means: m x (t) = 〈 x (t) 〉 , m x (t − τ ) = 〈 x (t − τ ) 〉 , m y (t) = 〈 y
- The mean square deviations: s x (t) = 〈 n 2 x (t ) 〉 , s y (t ) = 〈 n 2 y (t ) 〉 , s
- The cross-cummulants: U xy (t) = 〈 n x n 〉 y , U xz (t) = 〈 n x n z 〉 , U yz (t)

http://dx.doi.org/10.13039/100009950
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d

Y

d

f ins: 

m (2A) 

m
) 

4 
s y 

2 + K ( m x ( t − τ ) − m x ) + m z (3A) 

m (4A) 

s ˙ m 

2 
x + 

〈
˙ x 2 i 

〉
= −2 m x ˙ m x + 〈 2 x i ̇ x i 〉 

(5A) 

s 2 m y ˙ m y + 〈 2 y i ̇ y i 〉 = 

�( 4 ) ( m y + ν) 
]

· 3 s 2 y 

) + 

[
�′ ( m y + ν) 

]
·

�′ ′′ ( m y + ν) 
]

·

− y i x i ] + y i z i 〉 
 U yz 

U yz 

(6A) 

2 
ε t + 

D 
ε , where s z0 is an integration constant. It is obvious when t → ∞ , 

s / ε. 

U
 

y i 

〉 
= −

·
m x m y + 

〈 ·
x i y i 

〉 

 y + 〈 y 2 i 〉 

 x i z i 

〉 

m 

2 
y + s y + m 

2 
y − s x 
By applying Ito’s formula (or Ito’s chain rule): 

 X = F d t + Gd W 

 (t) = U(x, t) 

Y = 

∂U 
∂t 

d t + 

∂U 
∂x 

d X + 

1 
2 

∂ 2 U 
∂ x 2 

G 

2 d t 

rom Eq. (1A) , following the procedure described in [9,12] one obta

˙ 
 x = m y 

˙ 
 y = −m x − a ln ( m y + ν) + a ln (ν) + 

1 

2 

a 

( m y + ν) 
2 

s y + 

3 

4 

a 

( m y + ν

˙ 
 z = −1 

ε 
m z 

˙ 
 x = 〈 n 

2 
x 〉 = 

〈 . 

( 〈 x 〉 − x i ) 
2 

〉
= 

〈
. 

m 

2 
x − 2 m x x i + x 2 

i 

〉
= − ˙ m 

2 
x + 

〈
˙ x 2 i 

〉
= −

= −2 m x m y + 〈 2 x i y i 〉 = 2 U xy ⇒ 

1 

2 

˙ s x = U xy 

˙ 
 y = 〈 ̇ n 

2 
y 〉 = 

〈 . 

( 〈 y 〉 − y i ) 
2 

〉
= 

〈
. 

m 

2 
y − 2 m y y i + y 2 

i 

〉
= − ˙ m 

2 
y + 〈 ̇ y 2 i 〉 = −

= − 2 m y 

[ 
−m x + �( m y + ν) − �( ν) + 

1 

2 

[
�′′ ( m y + ν) 

]
s y + 

1 

24 

[
+ K [ m x ( t − τ ) − m x ] + m z ] + 2 〈−x i y i + y i �( m y + ν) − y i �( ν

·
[
y 2 i − m y y i 

]
+ 

1 

2 

[
�′′ ( m y + ν) 

]
·
[
y i 
(
y 2 i − 2 y i m y + m 

2 
y 

)]
+ 

1 

6 

[
·
[
y i 
(
y 3 i − 3 y 2 i m y + 3 y i m 

2 
y − m 

3 
y 

)]
+ 

1 

24 

[
�( 4 ) ( m y + ν) 

]
·

·
[
y i 
(
y 4 i − 4 y 3 i m y + 6 y 2 i m 

2 
y − 4 y i m 

3 
y + m 

4 
y 

)]
+ K [ y i − m x ( t − τ ) 

= −2 U xy + 2 

[
�′ ( m y + ν) 

]
s y + 

1 

3 

[
�′′ ′ ( m y + ν) 

]
3 s 2 y − 2 K U xy + 2

⇒ 

1 

2 

˙ s y = s y 

[ 
�′ ( m y + ν) + 

1 

2 

�′′′ ( m y + ν) s y 

] 
− ( K + 1 ) U xy + 

˙ s z = − ˙ m 

2 
z + 〈 ̇ z 2 i 〉 + 

2 D 

ε 2 
= −2 m z ˙ m z + 〈 2 z i ̇ z i 〉 + 

2 D 

ε 2 

= −2 m z ·
(
−1 

ε 
m z 

)
+ 

〈 

2 z i 

( 

− z i 
ε 

+ 

√ 

2 D 

ε 2 
dW i 

) 〉 

+ 

2 D 

ε 2 

= −2 

ε 
s z + 

2 D 

ε 2 

⇒ 

1 

2 

˙ s z = −1 

ε 
s z + 

D 

ε 2 

Last equation can be solved in order to obtain s z = ( s z 0 − D 
ε ) e 

−

 z → D/ ε, and because of that we fix the value for s z to be exactly D

˙ 
 xy = 

〈 ·
n x n y 

〉 
= 〈 ( m x − x i ) · ( m y − y i ) 〉 = 

〈 ·
m x m y − m x y i − x i m y + x i

= −m x ˙ m y − m y ˙ m x + 〈 ̇ x i y i 〉 + 〈 x i ̇ y i 〉 
= −m x ·

[ 
−m x + �( m y + ν) − �( ν) + 

1 

2 

�′′ ( m y + ν) · s y + 

+ 

1 

24 

�( 4 ) ( m y + ν) · 3 s 2 y + K · [ m x ( t − τ ) − m x ] + m z 

] 
− m y m

+ 

〈 

−x 2 i + x i �( y i + ν) − x i �( ν) + 

K 

N 

N ∑ 

j=1 

(
x j ( t − τ ) x i − x 2 i 

)
+

= m 

2 
x − m x �( m y + ν) + m x �( ν) − m x 

1 

2 

�′′ ( m y + ν) s y −

−m x 
1 

�( 4 ) ( m y + ν) · 3 s 2 y − K m x m x ( t − τ ) + Km 

2 
x − m x m z −
24 
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′′ ( m y + ν) ·
(
x i y 

2 
i − 2 x i y i m y + x i m 

2 
y 

)
 

4 ) ( m y + ν) 
(
x i y 

4 
i − 4 x i y 

3 
i m y + 6 x i y 

2 
i m 

2 
y − 4 x i y i m 

3 
y + x i m 

4 
y 

)
− m x �( ν) 

( K + 1 ) s x + s y + U xz (7A) 

U

 

= 

 

−

(8A) 

U
 

〉 
= 

( 4 ) ( m y + ν) 3 s 2 y 

 y + ν) − z i �( ν) 

 z i m 

2 
y 

)

z i m 

4 
y 

)
+ K z i m x ( t − τ ) −

+ ν) U yz + 

1 

6 

�′′′ ( m y + ν) · 3 s y U yz 

(9A) 

tions for earthquake nucleation model with colored noise: 

) 
4 

s y 
2 + K ( m x ( t − τ ) − m x ) + m z 

U

U

U

(10A) 
−m 

2 
x + 

〈 
m x · �( m y + ν) + +�′ ( m y + ν) · ( x i y i − x i m y ) + 

1 

2 

�

+ 

1 

6 

�′′′ ( m y + ν) 
(
x i y 

3 
i − 3 x i y 

2 
i m y + 3 x i y i m 

2 
y − x i m 

3 
y 

)
+ 

1 

24 

�(

+ K m x m x ( t − τ ) − K s x − Km 

2 
x + U xz + m x m z 

〉 
= s y − s x + �′ ( m y + ν) U xy + 

1 

6 

�′′′ ( m y + ν) 3 s y U xy 

−K s x + U xz ⇒ 

˙ U xy = U xy 

[ 
�′ ( my + ν) + 

1 

2 

�′′′ ( my + ν) s y 

] 
−

˙ 
 xz = 

〈 ·
n x n z 

〉 
= 

〈 ·
( m x − x i ) ( m z − z i ) 

〉
= 

〈 ·
m x m z − m x z i − m z x i + x i z i 

〉
= 

〈 ·
m x m z 

〉 
+ 

〈 ·
x i z i 

〉 
= − ˙ m x m z − m x ˙ m z + 〈 ̇ x i z i 〉 + 〈 x i ̇ z i 〉 = −m y m z

−m x 

(
−1 

ε 
m z 

)
+ 〈 y i z i 〉 + 

〈 

x i 

(
− z i 

ε 

)
+ x i 

√ 

2 D 

ε 2 
d W i 

〉 

⇒ 

˙ U xz = U yz − 1 

ε 
U xz 

˙ 
 yz = 

〈 ·
n y n z 

〉 
= 

〈 ·
( m y − y i ) ( m z − z i ) 

〉
= 

〈 ·
m y m z − m y z i − m z y i + y i z i

= 

〈 ·
m y m z 

〉 
+ 

〈 ·
y i z i 

〉 
= − ˙ m y m z − m y ˙ m z + 〈 ̇ y i z i 〉 + 〈 y i ̇ z i 〉 = 

−m z 

[ 
−m x + �( m y + ν) − �( ν) + 

1 

2 

�′′ ( m y + ν) · s y + 

1 

24 

�

+ K m x ( t − τ ) − K m x + m z ] − m y 

(
−1 

ε 
m z 

)
+ 

〈 
− x i z i + z i �( m

+�′ ( m y + ν) ( y i z i − m y z i ) + 

1 

2 

�′′ ( m y + ν) 
(
z i y 

2 
i − 2 z i y i m y +

+ 

1 

6 

�′′′ ( m y + ν) 
(
z i y 

3 
i − 3 z i y 

2 
i m y + 3 z i y i m 

2 
y − z i m 

3 
y 

)
+ 

+ 

1 

24 

�( 4 ) ( m y + ν) ·
(
z i y 

4 
i − 4 z i y 

3 
i m y + 6 z i y 

2 
i m 

2 
y − 4 z i y i m 

3 
y + 

− K z i x i + z 2 i 

〉 
+ 

〈 

y i 

(
−1 

ε 
z i 

)
+ y i 

√ 

2 D 

ε 2 
d W i 

〉 

= −U xz + �′ ( m y 

− K U xz + s z − 1 

ε 
U yz 

Eqs. (2A) –( 9A ) together compose the mean-field system of equa

˙ m x = m y 

˙ m y = −m x − a ln ( m y + ν) + a ln (ν) + 

1 

2 

a 

( m y + ν) 
2 

s y + 

3 

4 

a 

( m y + ν

˙ m z = −1 

ε 
m z 

1 

2 

˙ s x = U xy 

1 

2 

˙ s y = s y 

[
− a 

m y + ν
− a 

( m y + ν) 
3 

s y 

]
− ( K + 1 ) U xy + U yz 

˙ 
 xy = U xy 

[
− a 

m y + ν
− a 

( m y + ν) 
3 

s y 

]
− ( K + 1 ) s x + s y + U xz 

˙ 
 xz = U yz − 1 

ε 
U xz 

˙ 
 yz = −U xz − a 

m y + ν
U yz − a 

( m y + ν) 
3 

s y U yz − K U xz + D − 1 

ε 
U yz 

which is the Eq. (3) in the main text. 
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