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ABSTRACT

We discover the mechanisms of emergence and the link between two types of symmetry-broken states, the unbalanced periodic two-cluster
states and solitary states, in coupled excitable systems with attractive and repulsive interactions. The prevalent solitary states in non-locally
coupled arrays, whose self-organization is based on successive (order preserving) spiking of units, derive their dynamical features from the
corresponding unbalanced cluster states in globally coupled networks. Apart from the states with successive spiking, we also find cluster
and solitary states where the interplay of excitability and local multiscale dynamics gives rise to so-called leap-frog activity patterns with an
alternating order of spiking between the units. We show that the noise affects the system dynamics by suppressing the multistability of cluster
states and by inducing pattern homogenization, transforming solitary states into patterns of patched synchrony.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0077022

With the remarkable discovery of chimera states, the research
of self-organization in coupled oscillators witnessed a change
of focus from the synchronization transition and the onset
of the collective mode toward the emergence and the rela-
tionship between the states with symmetry breaking of syn-
chrony (cluster states, chimeras, solitary states), where assemblies
of indistinguishable oscillators with symmetric couplings split
into groups with different dynamics. Currently, these problems
remain widely open for a class of coupled excitable systems, which
have a linearly stable rest state but may be triggered to oscil-
late by strong enough perturbations due to interactions and/or
noise. We address the mechanisms of emergence and the link
between two types of symmetry-broken states in coupled excitable
FitzHugh–Nagumo systems, namely, the unbalanced periodic
two-cluster states in globally coupled networks, characterized by
an uneven partition between the clusters comprising identically

synchronized units, and solitary states in non-locally coupled
arrays, where small groups of units display an average frequency
distinct from the typical units forming the synchronized clus-
ter. The prevalent solitary states, where the self-organization is
based on successive (order preserving) spiking of units, are found
to appear in the same parameter range as the corresponding
unbalanced cluster states, inheriting the ratio of average frequen-
cies of solitary and typical units and the form of corresponding
units’ orbits. Apart from the states displaying successive spik-
ing, we also find the states involving leap-frog (leader-switching)
dynamics, where the units from different clusters, or even within
the same cluster, exchange their relative order of spiking. We
further demonstrate that the noise reduces the multistability of
cluster and solitary states by the effect of noise-induced prefer-
ence of attractors, promoting the attractors with a larger basin of
attraction at the expense of those with a smaller one.
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I. INTRODUCTION

The discovery of chimera states1,2 spurred a profound change
of paradigm in understanding of self-organization in assemblies of
coupled oscillators. Instead of the synchronization transition and
the onset of the collective mode,3 attention has shifted to states
emerging via symmetry breaking of synchrony,4 where assemblies
of indistinguishable oscillators with symmetric couplings split into
groups with different dynamics. Classical examples of symmetry
breaking of synchrony include cluster states,5–8 chimeras,9–12 and
solitary states.13–22 In contrast to low-dimensional dynamics of clus-
ter states, where the units within each group are identically synchro-
nized, chimeras are self-organized patterns that are comprised of
coexisting domains of coherence and incoherence.11 A similar coex-
istence of locked and unlocked units underlies solitary states, where
a single or a small subset of solitary units display an average fre-
quency different from the synchronized cluster. However, distinct to
the structure of chimeras, the solitary units spread randomly instead
of forming spatially localized domains. Another difference is that
solitary states involve spatial chaos,23 reflecting sensitive dependence
of the dynamics on spatial coordinates, which gives rise to extensive
multistability. Regardless of these differences, both chimeras and
solitary states satisfy the definition of weak chimeras.24

For coupled oscillators, much progress has been made in
resolving the two fundamental problems, namely, the mechanisms
of onset and potential links between symmetry-broken states along
the path from complete coherence to incoherence. In particular,
emergence of cluster states from complete synchrony has been
explained by unfolding of a so-called cluster singularity, reveal-
ing cascade transitions from a synchronous state to a balanced
two-cluster partition, characterized by an equal number of oscilla-
tors within each cluster, via different unbalanced cluster states.5,25

Also, clustering has been identified as a prerequisite for the onset
of chimeras.26 Self-organization of strong chimeras, where coher-
ent domains comprise identically (in-phase) synchronized oscilla-
tors, was shown to involve stabilization of the coherent cluster by
the incoherent one,27 while solitary states were found to mediate
transition from complete coherence to chimeras.16

However, in a myriad of examples, from neural and car-
diac tissue to chemical reactions, system components are not
intrinsic oscillators, but are rather excitable units,28,29 nonlinear
threshold elements that in the absence of input lie at rest, but
may be triggered to oscillate by sufficiently strong perturbations.
There is no reason to expect a priori that results for coupled
oscillators translate to excitable systems, where even the onset
of collective oscillations requires repulsive rather than attractive
interactions.30–32 Apart for theoretical relevance, resolving funda-
mental questions on emergence and relation between periodic clus-
ter states, chimeras, and solitary states in coupled excitable systems
may be important for applications, e.g., for treating in neuro-
science the problems of cluster synchronization during information
transmission and processing,33,34 localized activity associated with
working memory,35–38 or inducing desynchronization to control
pathological states.39–41

In this paper, we reveal mechanisms of onset and links between
different types of unbalanced periodic two-cluster states and soli-
tary states in systems with excitable local dynamics on multiple

timescales, typical for but not confined to neuroscience,29,42–45 and
varying attractive/repulsive46 type of interactions. We show that
the prevalent solitary states in non-locally coupled arrays, having a
self-organization based on successive spiking of units, derive their
dynamical features, such as the frequency locking between typical
and solitary units and the form of corresponding orbits, from the
unbalanced two-cluster states in globally coupled networks, char-
acterized by a permutation symmetry SNA

⊗ SNB
with NA 6= NB

being the cluster sizes. However, we also discover cluster and soli-
tary states where such a correspondence cannot be established. The
self-organization of these peculiar cluster and solitary states is based
on so-called leap-frog dynamics,47–51 characterized by an alternat-
ing order of spiking (leader-switching) between the units. Leap-frog
dynamics was initially observed as a near-synchrony state in models
of phase oscillators or type I relaxation neural oscillators supplied by
strong nonlinear couplings with finite time constants.48,50,51 Never-
theless, it has recently been shown that leap-frogging can also occur
in repulsively coupled type II excitable systems, considering an
example of binary motifs of FitzHugh–Nagumo units poised close to
(above or below) the bifurcation threshold.47 There, leap-frog solu-
tions of different complexity emerge from a slow–fast dynamics in
vicinity of a canard transition and beyond a small coupling limit rep-
resent a particular type of mixed-mode oscillations at a folded node
singularity.52,53 Given a strong sensitivity of excitable systems to
noise,28 we also investigate the resilience of the observed unbalanced
cluster states and solitary states to noise. While noise has already
been known to facilitate spontaneous clustering54 and emergence
of chimeras55,56 in coupled FitzHugh–Nagumo systems, here, we
demonstrate the effect of noise-induced preference of attractors,57–59

where the noise suppresses the system’s multistability by promoting
only certain types of cluster states or by favoring patched patterns at
the expense of solitary states.

Our system is an array of N identical FitzHugh–Nagumo units29

whose dynamics obeys

εu̇k = uk − u3
k

3
− vk + κ

2R

k+R
∑

l=k−R

[guu(ul − uk) + guv(vl − vk)]

+
√

εσξk(t),
(1)

v̇k = uk + a + κ

2R

k+R
∑

l=k−R

[gvu(ul − uk) + gvv(vl − vk)],

where local slow–fast dynamics is governed by activator variables
uk and recovery variables vk with timescale separation ε = 0.05.
All indices are periodic modulo N. Local bifurcation parame-
ter a, fixed to a = 1.001, mediates the transition from excitable
(|a| > 1) to oscillatory regime (|a| < 1). Due to a singular char-
acter of Hopf bifurcation at a = 1, onset of oscillations is fol-
lowed by a canard transition (a ≈ 1 − ε/8) from small-amplitude
(subthreshold) to large-amplitude relaxation oscillations.60 Non-
local interactions have coupling strength κ = 0.4, with each
unit coupled to R neighbors on both sides, yielding a cou-
pling radius r = R/N. Impact of direct and cross-coupling terms
in uk and vk is compactly described via a rotational coupling
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matrix61 G =
(

guu guv

gvu gvv

)

=
(

cos φ sin φ

− sin φ cos φ

)

. Parameter φ mod-

ifies prevalence of attractive and repulsive interactions. Spiking
can also emerge due to noise, which here affects the fast variables
similar to synaptic noise in neuronal systems,62 having each unit
influenced by independent Gaussian white noise ξk(t) of inten-
sity σ : 〈ξi(t)〉 = 0, 〈ξi(t)ξj(t

′)〉 = δijδ(t − t′). Note that the systems
of ordinary (stochastic) differential equations were integrated by
the standard adaptive ODE45 solver (SDETools toolbox available at
https://github.com/horchler/SDETools).

We first focus on how the stability of unbalanced two-cluster
states in globally connected networks (r = 1/2) changes with φ and
then analyze the onset of solitary states in non-locally coupled arrays
(r < 1/2) of excitable elements.

II. TWO-CLUSTER STATES IN GLOBALLY COUPLED

NETWORKS

To gain insight into the structure of unbalanced periodic two-
cluster states, their stability domains, and underlying bifurcations,
we implement a twofold approach, combining the semi-analytical
method of evaporation exponents and the numerical path-following
method based on introducing probe oscillators. Since our inter-
est is in solutions where both clusters emit spikes, the splitting
scenario by which clusters emerge from a collective rest state is
beyond our current scope. We remark that for stable local dynamics
(|a| > 1), interaction-induced destabilization of a stationary state

at φ∗ = arccos
(

1−a2

2κ

)

is a highly degenerate point where 2(N − 1)

Jacobian eigenvalues with real parts 1 − a2 − 2κcos(φ) simultane-
ously become critical, giving rise to a large number of different
cluster partitions featuring subthreshold oscillations, which in an
exponentially small φ region start to display spikes via secondary
canard transitions. Stability of a stationary state is regained at
φ̄ = φ∗ + π . Onsets of cluster instability and periodic cluster states
for type I excitable units were addressed in Refs. 30 and 63.

Unlike Lyapunov exponents, evaporation exponents64–66 can
describe perturbations that destroy cluster partitions. They char-
acterize stability of clusters to emanation of elements, induced by
perturbations transversal to invariant subspace of certain parti-
tion. Negative evaporation exponents indicate assembly’s attractors,
while their positive values imply instability. We consider a two-
cluster state with partition parameter p ∈ (0, 1) such that NA = pN
units are in cluster A and NB = (1 − p)N units in B. Its dynamics is
independent of N and is governed by the reduced system

εu̇i = ui −
1

3
u3

i − vi + κwi(guu(uj − ui) + guv(vj − vi)),

v̇i = ui + a + κwi(gvu(uj − ui) + gvv(vj − vi)),

(2)

with i, j ∈ {A, B}, i 6= j, and (wA, wB) = (1 − p, p) being additional
coupling weights derived from particular partition. For p 6= 1/2,
system (2) is equivalent to a pair of nonidentical excitable units. Dif-
ferent p values specify invariant subspaces in complete phase space
that intersect only in the full synchrony plane. To introduce evap-
oration exponents, we consider symmetric small perturbations to
two units, 1 and 2, in each cluster: ui,1/2 = ui ± δui, vi,1/2 = vi ± δvi.
Due to permutation symmetry, they can be applied to an arbitrary

pair of elements, leaving the cluster mean-fields unchanged. Lin-
earized equations for deviations [δui(t), δvi(t)] transversal to cluster
dynamics read

ε ˙δui = (1 − u2
i − κguu)δui − (1 + κguv)δvi,

˙δvi = (1 − κgvu)δui − κgvvδvi.
(3)

Evaporation exponents λev,i = lim
T→∞

1
2 ln

δu2
i (T)+δv2

i (T)

δu2
i (0)+δv2

i (0)
are

obtained by integrating the system (2) and (3).
Bifurcations of particular cluster states are determined by

numerical continuation using probe oscillators, indicating whether
a unit added to the cluster asymptotically remains in it or leaves it.
Probes are introduced at the cluster coordinates without affecting
the mean-fields such that their dynamics [ũi(t), ṽi(t)] obeys

ε ˙̃ui = ũi − ũ3
i − ṽi + κ[wi(guu(ui − ũi) + guv(vi − ṽi))

+ wj(guu(uj − ũi) + guv(vj − ṽi))],
(4)

˙̃vi = ũi + a + κ[wi(gvu(ui − ũi) + gvv(vi − ṽi))

+ wj(gvu(uj − ũi) + gvu(vj − ṽi))].

Numerical continuation of solutions of (2) together with (4)
was performed by the software package AUTO.67

Figure 1(a) shows the stability diagram for system (2) and (3)
in the (φ, p) plane, combining the results obtained by methods of
evaporation exponents and probe oscillators. Regions supporting
stable solutions are indicated in orange, with black and green lines at
their boundaries denoting period-doubling bifurcations and curves
of branching points, respectively. The latter are typically pitchfork
bifurcations of the reduced system but correspond to unfolding of
highly degenerate bifurcation points5 of system (1), where p becomes
a solution parameter. System (2) supports six characteristic regimes
with 1:1 (regions IV, V, and VI), 1:2 (I, II), or 2:3 (III) frequency
locking, all conforming to mixed-mode oscillations52,53 with inter-
spersed large- and small-amplitude oscillations; cf. Figs. 1(b)–1(e).
Note that the partition parameter p for certain types of solutions
can become small but still does not approach zero, indicating that
only those periodic two-cluster states with a sufficiently balanced
partition can exist. This is similar to the scenario recently described
for coupled type I excitable systems.30 Nevertheless, these results for
coupled excitable systems are different from those for globally cou-
pled networks of Kuramoto oscillators with inertia,19 where a stable
existence of solitary states with a single or just few oscillators iso-
lated from the synchronized cluster has been reported. Also note
that some authors tend to refer to states characterized by a finite
fraction of units (up to p = 1/2) split from the synchronized bulk
cluster as solitary states.19,68 Nevertheless, here, we prefer to call the
states with an uneven partition to two groups of identically syn-
chronized units unbalanced cluster states, as opposed to the solitary
states described later on for non-locally arrays, where the units are
split into majority and minority groups of frequency locked but not
identically synchronized units.

Apart from solutions I–III and V with a successive spik-
ing between clusters, where the spiking order of clusters is pre-
served, one also observes mixed-mode solutions IV characterized
by leap-frog dynamics47–50 of clusters. There, switching of leadership
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FIG. 1. Unbalanced periodic two-cluster states. (a) Stability diagram in the (φ, p)
plane. Stable and unstable solutions are indicated in orange and gray, respectively.
Black solid lines: period-doubling bifurcations. Green lines: curves of branching
points. Black dashed lines: destabilization of rest state (φ = φ∗ ≈ 1.573) and its
reappearance (φ = φ̄ ≈ 4.715). (b)–(e) Time traces ui(t), i ∈ {A, B} and phase
portraits corresponding to (φ, p) values (blue squares) from (a).

between the clusters occurs via subthreshold oscillations such that
the current leader performs an extra small oscillation allowing it to
be overtaken by the lagging cluster; see the arrows in Fig. 1(d). Leap-
frog solutions at p = 1/2 may acquire additional antiphase sym-
metry uA(t) = uB(t + P/2), vA(t) = vB(t + P/2), where P denotes
the oscillation period. Note that different types of leap-frog
patterns and their underlying mechanisms in binary motifs of
repulsively coupled FitzHugh–Nagumo units were shown to be a
consequence of phase-sensitive excitability of periodic orbits,47 a
recently introduced concept69 referring to a non-uniform sensitiv-
ity to perturbations of both relaxation and subthreshold oscillations
in the FitzHugh–Nagumo system.

Evaporation exponents can also be used to approximate impact
of small noise to stability of two-cluster partitions. For (1) with
r = 1/2, σ > 0, we find that the noise may cause transition to
another type of two-cluster state or may reorganize the state’s
structure by inducing migration of units between clusters with-
out qualitatively affecting their mean-fields. Reorganization process
eventually settles to a partition where the net transport between the

FIG. 2. Persistence of unbalanced two-cluster states under noise. (a) Quantity
d(φ, p) distinguishes between four cases: cluster states reorganize to the par-
tition with smaller (blue, λev,A > λev,B) or larger p values (red, λev,B > λev,A);
two-cluster states are unstable (gray, d = 4); only synchronous stationary state
is stable (white, d = 1). (b)–(e) Examples of evolution of partition parameter
p(t) under noise. Left to right: φ = 2, 4.4, 2.3, 5.0 and σ = 5, 0.6, 0.6, 5 × 10−3,
respectively.

clusters reaches a dynamical balance so that the partition parame-
ter p(t) becomes stationary. Splitting of a unit from a cluster and
migration to another cluster may involve nonlinear effects of pertur-
bations that cannot be captured by methods involving linearization
around a certain solution, such as evaporation exponents. Still, at the
linear level, “potential barrier” that has to be overcome when a unit
leaves the cluster is proportional to λev,i. This is used to characterize
resilience of two-cluster states to noise in Fig. 2(a). We distinguish
between the cases where noise is more likely to shift a two-cluster
partition toward smaller (0 > λev,A > λev,B; blue regions) or a larger
p value (0 > λev,B > λev,A; red regions), depending on the dominant
stable exponent. There are also domains where unbalanced two-
cluster states are unstable (λev,A/B > 0, shown gray) or where only
synchronous stationary state is stable (white). For convenience, each
case is assigned with a discrete variable d ∈ {1, 2, 3, 4}. Evolution
of cluster partition p(t) under noise is illustrated in Figs. 2(b)–2(e)
for solutions from regions I to VI. While states from I and V dis-
play persistence under noise, representative state from II migrates
to region III. Interestingly, asymmetric leap-frog solution from IV
evolves toward balanced partition p = 1/2.

III. SOLITARY STATES IN NON-LOCALLY COUPLED

ARRAYS

The intrinsic dynamics of the prevalent solitary states in non-
locally coupled arrays, called SS1 and SS2, is based on succes-
sive spiking of units. In the following, we show that they derive
their dynamical features from the corresponding unbalanced cluster
states from Fig. 1(a). In particular, state SS1 in Fig. 3 is a dynam-
ical counterpart of a two-cluster state from region I, whereas SS2
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FIG. 3. Solitary state SS1 (N = 100,φ = 1.85, r = 0.2). (a) Spatial profile of
ωk ; (b) red and blue: two snapshots of local variables (uk , vk), black: nullclines of
isolated unit; (c) spatiotemporal evolution of uk(t); (d) phase portraits [uk(t), vk(t)]
for solitary (k = 84) and typical unit (k = 60); (e) cross-correlationmatrixCkl ; and
(f) time traces uk(t) for two units from (d).

(not shown) derives from the cluster state from region V. These
solitary states occur within the same φ intervals as the correspond-
ing cluster states and preserve the respective frequency locking of
clusters, but due to nonlocal interactions and associated fluctua-
tions of the local mean-fields, clusters of solitary and typical units are
fuzzy13,16 rather than exact; see Fig. 3(b). In other words, introducing
a nonlocal coupling r < 1/2 results in breaking of the permutation
symmetry of the unbalanced cluster states observed for r = 1/2 such
that the solitary and typical clusters consist of frequency locked but
not identically synchronized units. The spatial profile of the aver-
age local frequencies ωk = 2πMk/1, where Mk is the spike count
within interval 1, shows a 2:1 frequency ratio between solitary and
typical units. The analogy with the two-cluster state from region I
in Fig. 1(a) in terms of local phase portraits and time traces uk(t)
is illustrated in Figs. 3(d) and 3(f). Intrinsic dynamics of SS1 is

characterized by a cross-correlation matrix Ckl = 〈ûk(t)ûl(t)〉T√
〈ûk(t)2〉T〈ûl(t)

2〉T
,

where 〈·〉T denotes time averaging, while ûk(t) = uk(t) − 〈uk(t)〉T

are deviations of uk(t) from their means; cf. Fig. 3(e).
Nevertheless, we also find solitary states without two-cluster

state counterparts. A typical example is a state SS3 illustrated in
Fig. 4, which, unlike SS1 and SS2, is maintained by leap-frog dynam-
ics of pairs of solitary-typical, only solitary or only typical units;
cf. Figs. 4(b), 4(d), and 4(f). States of SS3 type emerge due to non-
local interactions, which induce self-localized excitations71 at inter-
faces separating domains with distinct dynamics. Frequency profile

FIG. 4. Solitary state SS3 (N = 100,φ = 1.788, r = 0.2). (a) Spatial profile of
ωk . (b) Time traces uk(t) for solitary units k = 75 and k = 76. (c) Spatiotem-
poral evolution of uk(t). (d) Time traces uk(t) for solitary unit k = 76 and typical
unit k = 20. (e) Cross-correlation matrix Ckl . (f) Time traces uk(t) show leap-frog
dynamics within majority cluster (units k = 20 and k = 40).

ωk shows two clusters with a frequency ratio distinct from SS1;
cf. Fig. 3(a). The difference in ωk derives from events where soli-
tary units emit two successive spikes rather than a spike followed by
subthreshold oscillation; see the arrow in Fig. 4(d). SS3 involves a
more complex correlation structure compared to SS1, cf. Figs. 4(e)
and 3(e), and the corresponding maximal Lyapunov exponent70 is
1.78 × 10−5.

Contrasting with locally coupled excitable systems where
the noise may strongly influence pattern formation by inducing,
enhancing or controlling wave propagation, spiral dynamics, and
pacemaking,28 the deterministic dynamics of non-locally coupled
arrays here features extensive multistability, and the main impact
of noise is qualitatively different. We find that the noise reduces
system’s multistability, suppressing solitary states. This reflects the
effect called noise-induced preference of attractors,57 which may
be understood as follows: in highly multistable systems, stability
boundaries of attractors become smeared by noise, and only those
with sufficiently large basins of attraction remain visible. This may
be seen as a highly biased switching72,73 to a coexisting state with-
out returning to the initial one. For small noise, unbalanced splitting
into frequency clusters is preserved, but the preferred spatial distri-
bution of minority units is localized rather than random. This gives
rise to patched patterns with 1:2 subharmonic frequency locking. A
typical example is shown in Fig. 5, where an initial SS1 state trans-
forms under small noise into a state of patched synchrony.61 Note
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FIG. 5. Transformation of an SS1 state under noise. (a) Typical SS1 dynam-
ics without noise. (b) Patched pattern developed from SS1 at σ = 0.0011.
Parameters are N = 200,φ = 2.0, r = 0.2.

that introducing intermediate noise favors rotating waves instead of
patched synchrony, while an even larger noise leads to turbulence.

IV. CONCLUSION AND OUTLOOK

We have discovered the mechanisms of onset and links
between unbalanced periodic two-cluster states and solitary states,
as a form of weak chimeras, in coupled excitable systems. The fact
that the prevalent solitary states SS1 and SS2 in non-locally coupled
arrays, characterized by self-organization based on successive spik-
ing of units, derive their dynamical features from unbalanced cluster
states in globally coupled networks is to a certain extent qualitatively
similar to the finding for globally coupled Stuart–Landau oscilla-
tors, where clustering has been identified as a symmetry-breaking
step required for emergence of chimeras.26 Distinct from the phys-
ical picture reported for the systems of Kuramoto oscillators with
inertia,19 we have not observed states with a single or just a few
units split from the synchronized cluster that can be continued for
an arbitrary range of couplings from global via nonlocal to local.
A peculiar finding associated with the interplay of local excitabil-
ity and nonlocal interactions concerns the solitary states SS3 that
have no cluster states counterparts and whose structure involves
leap-frog activity patterns. Leap-frog dynamics derives from mul-
tiscale character of the system, and, in particular, the phase-sensitive
excitability of relaxation oscillations, underlying their strong sen-
sitivity to perturbations in the vicinity of a canard transition.47,69

Current results, together with Refs. 47 and 74, indicate the impor-
tance of this concept to pattern formation in multiscale systems,
both in regard to coupled type II excitable units and oscillators. A
question that remains open is whether a similar type of unbalanced
cluster states and solitary states based on leap-frog dynamics can be
observed in coupled type I excitable systems. Since leap-frogging in
type I neural oscillators has so far only been found in the presence of
strong nonlinear couplings,50,51 we suspect that they are also required
for the onset of leap-frog states in type I excitable systems.

Regarding the impact of noise, we have found that it affects
the cluster and solitary states by suppressing the multistability of
system dynamics. This is a manifestation of noise-induced pref-
erence of attractors, an effect previously corroborated in coupled
oscillators,58 Hénon maps,75 and multistable fiber lasers.59 An addi-
tional subtlety is that the small noise influences pattern formation by
promoting homogeneous patched patterns at the expense of solitary
states. Since solitary states in coupled oscillators may mediate the

transition from complete synchrony to chimeras,16 it would be inter-
esting to investigate whether a similar scenario applies to coupled
excitable systems.
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