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Rate chaos is a collective state of a neural network characterized by slow irregular fluctuations of firing rates of
individual neurons.We study a sparsely connected network of spiking neuronswhich demonstrates three differ-
ent scenarios for the emergence of rate chaos, based either on increasing the synaptic strength, increasing the
synaptic integration time, or clustering of the excitatory synaptic connections. Although all the scenarios lead
to collective dynamicswith similar statistical features, it turns out that the implications for the computational ca-
pability of the network in performing a simple delay task are strongly dependent on the particular scenario.
Namely, only the scenario involving slow dynamics of synapses results in an appreciable extension of the
network's dynamic memory. In other cases, the dynamic memory remains short despite the emergence of long
timescales in the neuronal spike trains.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Patterns of spontaneous activity of cortical neurons are typically
highly irregular [1–3], showing Poisson-like statistics of inter-spike in-
tervals on short timescales [4,5] and firing rate fluctuations over longer
timescales [5–11]. The classical theory accounting for the origin of neuro-
nal irregular behavior invokes the paradigm of an approximate balance
between strong excitation and inhibition which for the most time cancel
each other out, leaving the network activity to be driven by fluctuations
which intermittently interrupt the balanced conditions [12–20]. Asyn-
chronous balanced states with irregular weakly correlated local activity
have been observed in networks of realistic spiking neurons [21–24].
These states may be referred to as homogeneous, since the firing rates of
all the neurons are approximately equal and stationary.

Nevertheless, introducing the balanced excitation-inhibition para-
digm by itself does not resolve the second part of the variability prob-
lem, since it still does not explain how the networks of fast spiking
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neurons may generate rate fluctuations over slow timescales. These
fluctuations are a hallmark of the state typically called rate chaos or
heterogeneous state [25,26] to describe both the temporal rate variability
and the nonuniform distribution of rates over the neurons. The rate
chaos was first observed in models of networks of rate neurons [27],
having explicitly demonstrated the transition from regular to chaotic
dynamics [28]. In contrast to that, the networks of spiking neurons in
the thermodynamic limit are expected to be always chaotic [12]. Never-
theless, the question concerning the transition from the homogeneous
to heterogeneous chaotic regime in spiking networks is still debated,
and a potential physical explanation may be that above the transition,
both the fluctuations in neuronal inputs and outputs become strongly
colored [29]. Recently, much efforts have been made to understand
the precise dynamical mechanisms underlying the rate chaos and its
possible functional role for neural computations. Several scenarios lead-
ing to the onset of rate chaos in realistic networks of spiking neurons
have been revealed. In particular, high variability and slow rate dynam-
ics has been demonstrated in networks with clustered excitatory con-
nections [15,30]. Highly heterogeneous chaotic states were shown to
emerge in a sparse random network for strong synaptic couplings [25,
29]. Finally, a transition to rate chaos has been observed when the syn-
aptic integration time becomes large compared to the characteristic
times of neuronal dynamics [16,17].

Rate chaos is believed to play an important part in facilitating the
complex computations unfolding in the brain [31–36], since it has
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Homogeneous state of the network. (a) Spike trains of five randomly selected neu-
rons; (b) Average activity of the network 〈r〉 = 1/N∑j=1

N rj; (c) Averaged autocorrelation
function of neurons; (d) Distribution of the local firing rates. (e) Distribution of
coefficients of variation of neuronal inter-spike intervals. (f) Distribution of cross-
correlation coefficients between neuronal inter-spike intervals. Network parameters:
N = 400, p = 0.1, τr = 2 ms, τd = 20 ms, g = 0.3.
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been shown to support fluctuations over longer timescales, giving rise
to slow neural activity associated with behavior, learning and memory.
Chaotic spiking networks have already been successfully trained to per-
form computational tasks such as generating signals, classifying inputs
or predicting nonlinear dynamics [37,60,61].With this inmind, it is rea-
sonable to assume that using heterogeneous rather than homogeneous
chaotic states can improve the computational capabilities of the net-
work. Indeed, many applications involve accumulating data over the
timescales of seconds, which requires a comparatively long dynamic
memory. In the present study we address the problem of whether the
slow rate fluctuations observed in the heterogeneous chaotic state
may provide the basis for such a dynamic memory.

As our basic model, in Section 2 we introduce a network of theta
neurons with random sparse connectivity which is initially is set to a
homogeneous state with stationary local firing rates and the Poisson-
like uncorrelated spike trains of individual neurons. In Section 3, we
demonstrate that by varying certain macroscopic control parameters,
one may induce the transition to a heterogeneous chaotic regime (rate
chaos) featuring slowly fluctuating firing rates. In particular, we
consider three generic scenarios for such a transition, involving
i) strengthening of the synapses, ii) slowing the dynamics of synapses
and iii) clustering of excitatory connections. Remarkably, the spike
trains and their statistics appear quite similar for all three scenarios. In
Section 4, we investigate whether our system in the state of rate chaos
may be applied as a dynamicmemory network [38,39], intended to per-
form a simple delay task by preserving the input historywithin its inter-
nal state. The network is considered in a reservoir setting [40,41],
whereby its dynamical state serves as a representation of the input
stimuli and the desired response is extracted via a linear readout of
output nodes. The maximal delay for which the task is fulfilled with
satisfactory precision is used to estimate the dynamic memory lifetime.
Surprisingly, the network performance shows a striking dependence on
the method by which the transition to heterogeneous state is induced.
Wewill show that the network's dynamicmemory extends appreciably
only for the scenario based on slow synapses, but remains virtually
unchanged compared to that in a homogeneous state if the rate chaos
is induced by strong synapses or clustered connections.

2. Model

Our main model is a network of N theta neurons [42,43] whose
dynamics is given by

dθj
dt

¼ 1− cos θj
� �þ 1þ cos θj

� �
Ij, ð1Þ

where θj ∈ S1, j = 1, 2,…, N are the local phase variables related to the
respective membrane voltages by Vj = tan (θj/2). The input currents Ij
comprise of two terms Ij = Ib + sj, whereby Ib denotes the constant
bias current and sj is the synaptic current. The SNIPER bifurcation at
Ij = 0 mediates between the excitable (Ij < 0) and oscillatory regime
(Ij > 0). A neuron j is said to have fired a spike when its phase crosses
the value θj = π. The spikes are filtered by double exponential
synapses of the form

drj
dt

¼ −
rj
τd

þ hj, ð2Þ

dhj
dt

¼ −
hj
τr

þ 1
τrτd

∑
tpj

δ t−tpj
� �

, ð3Þ

which can account for the separate timescales of the rapid neurotrans-
mitter binding followed by their slow unbinding [44]. The parameters
τr and τd denote the synaptic rise and decay times, respectively, rj is
the synaptic output current, and tj

p denote the firing times of neuron j.
The total synaptic current received by neuron j is given by
2

sj ¼ g∑
N

k¼1
Ajkrk, ð4Þ

where g is the coupling strength and Ajk are the elements of the
adjacency matrix determining the structure of the synaptic
connections. Note that the described model (1)–(4) with some
modifications will provide for the reservoir within the computational
framework elaborated in Section 4.

First we consider a sparse random network with the connectivity
probability p=0.1. For simplicity, we do not divide the neurons into ex-
citatory and inhibitory pools and draw the coupling strength of each
nonzero connection from the Gaussian distribution with a zero mean
and a variance (Np)−1. Together with a slightly negative bias current
Ib = − 0.001, this ensures the balance between excitation and
inhibition [12,45], such that the overall network activity is fluctuation-
driven rather than mean-driven [46].

To study the collective dynamics of the network, we have excited 10
arbitrary neurons and have simulated the network activity for t= 20 s.
The synaptic rise and decay time constants are fixed to τr = 2 ms and
τd = 20 ms, and the coupling strength g is used as the control
parameter. One finds that if the coupling strength exceeds a certain
critical value gc, the chaotic self-sustained activity emerges from the
quiescent state. Indeed, for weak couplings g < gc, an elevated
network activity observed upon stimulation is only transient and dies
out in several seconds. The precise value of critical coupling strength
gc depends on the bias current and equals gc ≈ 0.27 for the chosen
parameter set. For the coupling strengths slightly above the threshold,
the network activity is sparse, irregular and weakly correlated, as
illustrated in Fig. 1 for g = 0.3. The spike trains of individual neurons
are sub-Poissonian with the assembly-averaged firing rate 3.74 ±
1.24 Hz, and the respective distributions of inter-spike intervals charac-
terized by themean coefficient of variation 0.81± 0.13, see Fig. 1d) and
e). Weak correlation between the outputs of different neurons is
evinced by the average cross-correlation coefficient 0.002 ± 0.047, see
Fig. 1f). The assembly-averaged autocorrelation function of individual
neurons quickly decays at time lags ~50 ms that are of the order of the
characteristic synaptic time, cf. Fig. 1c), indicating an absence of any
longer timescales in local neuronal dynamics.
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Fig. 3. Statistical features of network dynamics in dependence of coupling strength g.
(a) Average firing rate of neurons (solid line) plus/minus its standard deviation (dashed
lines). (b) Average coefficient of variation (solid line) plus/minus its standard deviation
(dashed lines). (c) Average correlation time of the spike trains.
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3. Three scenarios for transition to rate chaos

Further increase of the coupling strength results in the significant
changes of the network state which is illustrated in Fig. 2 for g = 1.
The stronger coupling not only increases the mean firing rate to 18.14
± 6.96 Hz, but also induces a transition to the so-called rate chaos or
heterogeneous state [25,29], where the firing rates of neurons exhibit
slow fluctuations. At the level of spiking dynamics, the signature effect
is that the neurons tend to generate bursts of spikes alternating with
long periods of quiescence. Strong variability of spike trains is corrobo-
rated in Fig. 2e), which indicates large coefficients of variation of the
inter-spike intervals, whose mean value 1.63 ± 0.30 is substantially
supra-Poissonian. The emergence of bursting dynamics is also reflected
in the shape of the assembly-averaged autocorrelation function, which
now decays at longer lags ~400 ms, corresponding to a typical duration
of a burst, see Fig. 2c). Also note that in the heterogeneous regime, the
dynamics of individual neurons becomes more correlated compared to
the homogeneous state, cf. Fig. 2f), as corroborated by the value 0.002
± 0.16 for the mean correlation coefficient of individual spike trains.

In Fig. 3 are provided the dependencies of certain characteristics of
the network dynamics on the coupling strength g. Although for g = gc
the onset of chaotic spiking from quiescence is sudden, the transition
from the homogeneous to heterogeneous irregular activity is a rather
smooth one. In particular, the average firing rates illustrated in Fig. 3a)
show a steady growth, and the coefficient of variation of neuronal
inter-spike intervals increases almost linearly with coupling strength,
see Fig. 3b). Similarly, the average correlation time displays small values
~τd for weak coupling and increases to hundreds of milliseconds in case
of strong coupling, cf. Fig. 3c). Note that the activity always remains
non-uniform over the neurons with the standard deviation of local fir-
ing rates being of the same order as their mean values.

Apart from increasing the coupling strength, another scenario previ-
ously reported to induce transition to rate chaos is based on increasing
the characteristic synaptic time [16,17]. To test for such a scenario in
our model, we keep the coupling strength fixed at g = 0.5 and vary
the synapse decay time τd. The results in Fig. 4 reveal that slowing
down the synapses indeed induces the transition to heterogeneous
irregular activity. Although the average firing rate does not change
appreciably and equals ≈8 Hz for any τd > 20 ms, see Fig. 4a), the
mean coefficient of variation for the inter-spike intervals in Fig. 4b) vis-
ibly grows with synaptic time. The correlation time also shows a signif-
icant increase, reaching values larger than 600 ms for τd > 60 ms, see
Fig. 4c). The features of heterogeneous irregular activity observed for
Fig. 2. Heterogeneous state of the network with strong synapses. Presentation style and
the network parameters are the same as in Fig. 1, except for the coupling strength g = 1.
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slow synapses are similar to those in case of strong couplings except
that the overall network activity r = < rj> shows slower fluctuations,
see Fig. S1 of the Supplementary material.

So far we have considered only networks with a random connection
topology. However, real cortical microcircuits are highly non-random
[47–49], and the statistically nonuniform network structure may itself
induce heterogeneous activity. For example, clustering of synaptic con-
nections was shown to give rise to slow fluctuations of firing rates and
high variability of spike trains [15,30,50,51]. In our model, it turns out
that clustering of all connections does not result in a significant change
of the network activity. However, clustering of excitatory (positive) con-
nections alone yields a notable effect. To introduce clustering, we divide
the network intoM=5 equal groups and rewire the excitatory connec-
tions in such a way that the connectivity inside each group pin becomes
larger than the connectivity between the groups pout. The clustering
coefficient R = pin/pout is introduced to measure the degree of
clustering, whereby the value R = 1 corresponds to a homogeneous
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Fig. 4. Statistical features of network dynamics in terms of the synaptic decay time τd.
Presentation style is the same as in Fig. 3.
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Fig. 5. Statistical features of network dynamics in terms of clustering coefficient R. Presen-
tation style is the same as in Fig. 3.
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signal.

V.V. Klinshov, A.V. Kovalchuk, I. Franović et al. Chaos, Solitons and Fractals 158 (2022) 112011
random network. Note that the described rewiring scheme preserves
the total network connectivity p = pin/M + pout(1− 1/M).

Fig. 5 shows the characteristics of the network dynamics depending
on the clustering degree R. Note that due to the small size of clusters, the
network dynamics significantly depends on the particular realization of
the connectivity matrix, and the results we present were obtained by
averaging over 20 different network configurations. Though the average
firing rates in Fig. 5a) do not showmuch variationwith R, one still notes
the onset of heterogeneous activity and the highest variability at an in-
termediate clustering degree R ~ 4. While the mean coefficient of varia-
tion exceeds 1 only slightly, its standard deviation is about the same, see
Fig. 5b), which indicates that there is a significant number of neurons
with CV≈2 and larger. Themean correlation time also peaks at interme-
diate clustering degrees and reaches several hundreds of milliseconds,
see Fig. 5c). The manifestation of heterogeneous irregular activity for
networks with intermediate clustering is similar to the two previous
scenarios. Namely, the neurons tend to generate bursts of spikes rather
than isolated spikes, while the spike trains of different neurons remain
weakly correlated. Note however that the local spiking rates, as
coarse-grained quantities, tend to become correlated within the clus-
ters, which induces pronounced slow fluctuations of the cluster activi-
ties, see Fig. S2 of the Supplementary material.

For larger clustering degrees, the local imbalance between the exci-
tation and inhibition becomes too strong and one of the clusters typi-
cally settles into a regime of mean-driven activity with fast and
regular spiking, cf. Fig. S3 of the Supplementary material. At the same
time, this cluster tends to inhibit and synchronize other clusters, sup-
pressing the irregular activity. Note that the time-averaged activity of
neurons becomes quite diverse in this regime because of the high firing
rate of the active cluster and low firing rates of the other ones.

4. Computational capabilities of the network

After the detailed study of the network dynamics, we investigate the
relation between its intrinsic activity and computational capabilities, in
particular its ability to serve as a dynamicmemory network [38,39]. This
recently introduced concept involves creating of networks optimized
for question-answering problems, whereby the network processes the
input, forms an episodic memory and generates the relevant output.
Here, we train the network to perform a simple computational delay
task defined as follows: the network receives a single input in the
form of a spike train and has to indicate whether it has received or not
4

a spike within the period of a given duration. In particular, the network
should respond by “1” if it has received at least one spikewithin the last
τmilliseconds and by “0” otherwise. The maximum value of the delay τ
at which the network shows a sufficient accuracy provides a reasonable
estimate for its dynamic memory lifetime.

As an input signal, we use a Poisson spike train with the rate λ = 1
Hz. To feed the input into the network, the signal (4) received by each
neuron is modified to

sj ¼ g∑
N

k¼1
Ajkrk þ ginpujrinp, ð5Þ

where ginp is the input gain, the weights uj are drawn independently
from a uniform random distribution [−1;1], and rinp is the input
synaptic current given by the same set of equations as Eqs. (2) and
(3). The output of the network is calculated as

rout ¼ ∑
N

j¼1
wjrj, ð6Þ

having tuned the output weightswj to train the network to perform the
required task. The network response counts as “1” if its output exceeds
1/2 and as “0” otherwise.

The described approach conforms to the classical computational
framework of reservoir computing [40,52], a machine learning method
derived from liquid-state and echo-statemachines [53,54] to solve tasks
using the response of a dynamical system, called a reservoir, to a certain
input, having the output generated by linearly combining the states of
the readout nodes. Reservoir computing has the advantage of an effi-
cient training process, since only the readout weights affecting the out-
put are trained, while the input weights and the weights within the
reservoir remain unchanged [41]. In training the output weights wj, we
have used the method of least squares or the recursive least square
algorithm [55]. Both methods turned out to provide similar results, and
we preferred the least squares method for being the faster of the two.
After a certain training period ttrain, the network's performance was
estimated during the test period ttest = 100 s, see Fig. 6. To characterize
the network performance, we have measured the error

ε ¼ ε0ν0 þ ε1ν1, ð7Þ
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where ν0 and ν1 are the rates of the false output being equal to zero or
one, respectively, and ε0 and ε1 are the error weights set such that a
constant output of either zero or one leads to a total error ε = 1. The
network performance P is then estimated as the inverse of the error
P = 1/ε.

One observes that the resulting performance improves with the in-
crease of the training time and reaches maximum after several tens of
seconds, see Fig. S4 of the Supplementarymaterial. In our numerical ex-
periments, we have used the training time of ttrain = 100 s which
warrants an optimal network performance. One also notes an
important role of the input gain ginp for the network performance. In
particular, if ginp is too small, the input signal fails to suppress the
chaotic activity, resulting in a poor network performance. Thus, the
input gain has to be sufficiently strong, but at the other hand, its
excessive increase does not further a significant improvement in the
network performance, see Fig. S5 of the Supplementary material. With
this in mind, we have fixed ginp = 10 in all the numerical experiments
considered below.

To address the problem of enhancing the dynamic memory lifetime
of the network,we have trained it to perform the delay task for different
values of the delay τ and have analyzed the performance P. The results
presented in Fig. 7 show the performance in terms of delay for several
different network configurations. In particular, we have started from
the network with weak and fast synapses and no clustering of connec-
tions (g = 0.5, τd = 20, R = 1), which admits a homogeneous state.
The optimal performance P ≈ 15 is reached for the delay τ ≈ 200 ms.
For small delays τ < 100 ms, the network performance is poor since it
does not have enough time to respond to the stimulus. For large
delays, the performance quickly drops and reaches a half of the
maximal value at τ ≈ 500 ms. This indicates that the dynamic
memory of the network lasts about 0.2 s.

Next, we increased the strength of the synapses to g = 2 and
checked whether it would improve the network performance. For
such a strong coupling, the spike trains demonstrate amuch longer cor-
relation time of about 250ms, see Fig. 3b), whichwould intuitively sug-
gest a much longer dynamic memory. Surprisingly, however, the
strengthening of the synapses changed the network performance only
by a small margin, and the observed dynamic memory was still about
0.25 s. We have also studied the influence of clustering with R = 4,
the value corresponding to the maximal correlation time of about 230
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ms, see Fig. 4b). This has led to a slightly improved network perfor-
mance, which becomes optimal for τ = 300 ms and drops twice at τ
= 600 ms. Thus, the dynamic memory lifetime in a clustered network
increases only slightly compared to the network in the homogeneous
state and reaches 0.3 s.

Finally, we have considered the scenario involving slow synapses by
having increased the synaptic decay time to τd = 60 ms. This approach
has impactedmost profoundly on the dynamicmemory of the network.
We have found that the network performance has indeed substantially
improved, with the flatmaximum P≈ 30 reached at thewide interval τ
= 500 − 1000 ms. For larger delays, the network performance quickly
deteriorates, such that the network's dynamic memory can be
estimated as 1 s. We have also checked whether the extension of
dynamic memory may be caused by the change of stimulus itself,
since for longer synaptic times it comprises longer pulses. To do so,
we have decreased the decay time of the input synapses only to τd =
20 ms and kept the internal synapses with τd = 60 ms, observing that
the network performance has marginally decreased but has still
substantially outperformed the network with fast synapses. Indeed,
the dynamic memory lifetime in this case is still about 1 s.

5. Discussion and conclusions

We have considered three different scenarios for the onset of rate
chaos in a sparse network of spiking neurons and have examined their
implications for the computational capability of the network to perform
a simple dynamicmemory task. The signature of rate chaos are the slow
rate fluctuations of individual neurons, which introduce characteristic
timescales longer than the one associatedwith the spike timing dynam-
ics. Three generic scenarios of transition to rate chaos were considered.
The first scenario involves strengthening of the synaptic coupling, the
second one relies on slowing the dynamics of synapses, whereas the
third one is observed when a certain degree of clustering is applied to
synaptic connections. Though all three scenarios have been reported
previously, they were still considered separately for different network
models, and the present study provides for the first time a universal
model where all the scenarios can be observed and compared by chang-
ing different system parameters, such as the coupling strength, the syn-
aptic decay time and the clustering degree.

At the microscopic level of individual neuronal spike trains, all the
three scenarios have been shown to yield very similar features. Never-
theless, the computational capabilities of the underlying regimes turned
out to be quite different, at least in performing simple delay-related
tasks. We have demonstrated that the dynamicmemory of the network
in the heterogeneous state depends significantly on themechanismgiv-
ing rise to this state. Namely, for scenarios involving strong synapses or
clustering of connections, the duration of dynamicmemory remains ap-
proximately the same as in the homogeneous state. Contrasting that,
the scenario involving the slow synapses leads to a substantial increase
in the duration of dynamic memory, found to reach values above 1 s.

Identifying mechanisms that allow cortical networks to perform
computational tasks on the timescales of seconds while the local neuro-
nal activity unfolds on the timescales of milliseconds has been a long-
standing problem in neuroscience [10,29,56–58]. It has already been
shown that merely increasing the network size has very little impact
on the memory lifetime since it scales only as the logarithm of the net-
work size [59]. Thus, the underlying problemhas to be resolved in terms
of finding an appropriate mechanism that endows the network dynam-
ics with long timescales. Our study nevertheless indicates an additional
subtlety in the sense that the mere presence of longer timescales in the
spike trains may not warrant longer memory lifetimes.

We emphasize that our findings should by no means be interpreted
as questioning the general usefulness of heterogeneous chaotic states as
a substrate for computation in networks of spiking neurons. Such states
have already been shown beneficial for complex computational tasks
including decision-making, categorization or associative memory [25,
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32,33,35,36]. Our results rather imply that spiking networks in a state of
rate chaos are not optimal candidates for dynamicmemory networks, so
that finding amore suitable paradigm is required to carry out computa-
tions involving an extended temporal memory.
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