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We consider the macroscopic regimes and the scenarios for the onset and the suppression of collective
oscillations in a heterogeneous population of active rotators composed of excitable or oscillatory elements. We
analyze the system in the continuum limit within the framework of Ott-Antonsen reduction method, determining
the states with a constant mean field and their stability boundaries in terms of the characteristics of the rotators’
frequency distribution. The system is established to display three macroscopic regimes, namely the homogeneous
stationary state, where all the units lie at the resting state, the global oscillatory state, characterized by the
partially synchronized local oscillations, and the heterogeneous stationary state, which includes a mixture
of resting and asynchronously oscillating units. The transitions between the characteristic domains are found
to involve a complex bifurcation structure, organized around three codimension-two bifurcation points: a
Bogdanov-Takens point, a cusp point, and a fold-homoclinic point. Apart from the monostable domains, our
study also reveals two domains admitting bistable behavior, manifested as coexistence between the two stationary
solutions or between a stationary and a periodic solution. It is shown that the collective mode may emerge via
two generic scenarios, guided by a saddle-node of infinite period or the Hopf bifurcation, such that the transition
from the homogeneous to the heterogeneous stationary state under increasing diversity may follow the classical
paradigm, but may also be hysteretic. We demonstrate that the basic bifurcation structure holds qualitatively in
the presence of small noise or small coupling delay, with the boundaries of the characteristic domains shifted
compared to the noiseless and the delay-free case.
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I. INTRODUCTION

The onset of a collective mode mediated via a transition to
synchrony is a fundamental paradigm of macroscopic behav-
ior in a broad variety of fields, ranging from neuroscience and
other biologically inspired models to chemistry, technology,
and social science [1,2]. A classical approach within the the-
ory of nonlinear dynamics is to regard populations exhibiting
a collective mode as macroscopic oscillators [3–5], which can
then interact with other populations or be subjected to external
stimuli. In this context, we investigate an important problem
of the emergence and the suppression of collective oscillations
in populations comprised of units with nonuniform intrinsic
parameters, which are drawn from a certain probability dis-
tribution. Such nonuniformity is a manifestation of variability
[6–9], a ubiquitous feature that often makes it more realistic to
consider heterogeneous rather than homogeneous assemblies.
Depending on the particular application, variability may alter-
natively be referred to as diversity, heterogeneity, impurities,
or quenched noise. In many cases, the diversity can be large

*vladimir.klinshov@ipfran.ru
†franovic@ipb.ac.rs

enough to give rise to qualitative differences in individual
dynamics of units, such that some of the active elements
within a population may be self-oscillating while the others
are excitable.

The classical Kuramoto paradigm [10] addresses the sce-
nario where the diversity is manifested at the quantitative level
alone, since all the units are considered to be self-oscillating.
There, the continuous transition to synchrony occurs once
the coupling between the oscillators becomes strong enough
to overcome the effects of diversity [2,11]. Nevertheless, the
diversity alone has been shown to be capable, under appro-
priate conditions, to enhance the response of an assembly
to external forcing or to promote synchronization [7,8,12].
Moreover, in the case of heterogeneous assemblies made up of
excitable and oscillatory units rather than the oscillators alone,
it has been demonstrated that the transition to synchrony with
increasing diversity may be classical or reentrant, depending
on the particular form of the units frequency distribution
[13]. For such a setup, it has also been indicated that the
collective firing emerges via a generic mechanism where the
entrainment of units is degraded by increasing diversity [8].

In the present paper, we investigate the regimes of macro-
scopic behavior, as well as the scenarios for the onset and
the suppression of collective oscillations in a heterogeneous
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population made up of oscillatory and excitable units, consid-
ering a model of active rotators with global sine coupling. Our
analysis relies on the Ott-Antonsen reduction method [14,15],
based on the ansatz that the long-term macroscopic dynamics
of such systems settles on a particular invariant attractive man-
ifold. We first provide an exact description of macroscopic
stationary states featuring a constant mean field and then
determine the bifurcations that outline the stability boundaries
of the characteristic domains. While the stationary states and
the associated self-consistency equation are obtained for an
arbitrary distribution of natural frequencies, the subsequent
bifurcation analysis is carried out for a uniform frequency
distribution on a bounded interval, which has the advantage of
allowing for analytical tractability. We establish the complete
bifurcation structure and demonstrate two generic scenarios
for the emergence and the suppression of the collective mode.
While the scenario featuring the successive onset and sup-
pression of oscillations under increasing diversity has earlier
been reported to be universal for heterogeneous populations
with various distributions of the units’ frequencies [12,13],
the other scenario, which involves a hysteretic behavior due
to existence of bistability regions, is reported here for the first
time, as far as we know.

Apart from diversity, the two additional ingredients in-
fluencing the dynamics in neuronal and other biophysical
systems are coupling delays and noise [16–18]. In particular,
realistic models often have to include explicit coupling delays
in order to describe the effects of finite velocity of signal prop-
agation or the latency in information processing [17,19–23].
On the other hand, creating coarse-grained models inevitably
requires one to incorporate different sources of noise [24–31].
Both coupling delay and noise may play an important role
in the collective dynamics of a population. For example, in
systems consisting just of excitable units, it is well known
that the noise may play a constructive role, contributing to
the onset of collective firing via synchronization of local
noise-induced oscillations [32–35]. Concerning the effect of
coupling delays, the standard Kuramoto model with uniform
delays has been shown to exhibit the discontinuous rather
than the continuous transition between the incoherent and
coherent states, further having the synchronization frequency
suppressed by the delay [11,36].

Our study evinces the robustness of the general physical
picture, inherited from the noiseless and the delay-free case,
in the presence of small coupling delay and small noise.
While the impact of small delay may be analyzed within
the local stability approach we developed, the Ott-Antonsen
method in principle does not allow one to treat stochastic
assemblies. Only quite recently, an approach involving the
so-called circular cumulants [37,38] has been developed to
incorporate a first-order correction to the Ott-Antonsen theory,
which accommodates for the effects of noise. We perform
numerical analysis of the system dynamics in presence of
small noise and complement it with qualitative arguments.

The paper is organized as follows. In Sec. II, we present the
details of the model and provide the continuum limit formula-
tion for the delay- and the noise-free setup, obtaining the Ott-
Antonsen equation for the local order parameter. Section III
comprises the analytical results on the local structure of the
macroscopic stationary states and the related self-consistency

equation, derived for an arbitrary frequency distribution. In
Sec. IV, the stability and bifurcation analysis of the stationary
states is carried out for a particular distribution of frequencies,
comparing the stability boundaries of the characteristic do-
mains to those obtained in numerical experiments. In Sec. V,
it is shown that the basic bifurcation scenario persists in
presence of small noise or small coupling delay. Section VI
contains our concluding remarks.

II. MODEL DYNAMICS AND THE CONTINUUM
LIMIT FORMULATION

We consider a heterogeneous assembly of N globally cou-
pled active rotators described by:

θ̇i(t ) = ωi − a sin θi(t ) − K

N

∑
j

sin[θi(t )

− θ j (t − τ ) + α] + σηi(t ), i = 1, . . . N, (1)

where the phase variables are θi ∈ S1 and the local dynamics is
governed by the nonisochronicity parameter a and the natural
frequency ωi. Regarding the term “natural frequency,” note
that it will be used for convenience to describe the intrinsic
parameter involving the quenched randomness, even though
some units may exhibit excitable, rather than oscillatory,
behavior. The frequencies are distributed according to the
probability density function g(ω) that satisfies

∫ ∞
−∞ g(ω)dω =

1 and is characterized by the mean value � and the width 	,
which we here explicitly refer to as the diversity parameter.
The individual unit rotates uniformly with the frequency
ωi for a = 0 only, whereas for a > 0 its rotation becomes
nonuniform, having the rotation direction dependent on the
sign of ωi. The relation between ωi and the parameter a
underlies the excitability feature of autonomous dynamics.
In particular, ωi constitutes the bifurcation parameter, such
that for fixed a, an isolated unit lies in the excitable regime
if |ωi| < a. In this case, the unit possesses a stable node,
whereas the characteristic nonlinear threshold-like response is
mediated by an unstable steady state. At |ωi| = a, an isolated
unit undergoes a saddle-node of infinite period (SNIPER)
bifurcation toward the oscillatory regime. The interactions are
assumed to be uniform across the population, and are charac-
terized by the coupling strength K , the coupling phase-lag α,
and the coupling delay τ . The effect of random fluctuations
is represented by the white Gaussian random forces ηi of
intensity σ 2, which act independently on each unit [〈ηi(t )〉 =
0, 〈ηi(t )η j (t )〉 = δi jδ(t − t )].

As already indicated, in this and the following section we
apply the Ott-Antonsen framework [14,15] to investigate the
collective dynamics of an heterogeneous assembly of active
rotators in the delay- and the noise-free case τ = σ = 0.
To this end, let us introduce the Kuramoto complex order
parameter, which represents the center of mass of all rotators:

R(t ) = ρ(t )eiψ (t ) = 1

N

∑
j

eiθ j (t ), (2)

such that (1) can be rewritten as

θ̇i = ωi − a

2i
(eiθi − e−iθi ) + K

2i
[Re−i(θi+α) − Rei(θi+α)], (3)
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where the bar denotes the complex conjugate. In the ther-
modynamic limit N → ∞, the macroscopic state of the sys-
tem can be described by the probability density function
f (θ, ω, t ), which, for the considered moment t , gives the rel-
ative number of oscillators whose phases and frequencies are
θi(t ) ≈ θ , ωk ≈ ω. The normalization condition required for
the probability density function is

∫ 2π

0 f (θ, ω, t )dθ = g(ω).
Given the conservation of oscillators, f (θ, ω, t ) has to fulfill
the continuity equation

∂ f

∂t
+ ∂

∂θ
( f v) = 0, (4)

where the velocity is just

v(θ, ω, t ) = ω − a

2i
(eiθ − e−iθ ) + K

2i
[Re−i(θ+α) − Rei(θ+α)].

(5)
In the last expression, we have used the form of the Kuramoto
mean field in the thermodynamic limit N → ∞,

R(t ) =
∫ ∞

−∞
dω

∫ 2π

0
f (θ, ω, t )eiθ dθ, (6)

According to the Ott-Antonsen ansatz [14,15], the long-term
dynamics of the continuity equation (8) settles on a particular
manifold of the form

f (θ, ω, t ) = g(ω)

2π

{
1 +

∞∑
n=1

[zn(ω, t )einθ + zn(ω, t )e−inθ ]

}
,

(7)

where the complex amplitude z(ω, t ) is such that |z(ω, t )| �
1. Introducing the assumption (7) into (4), one finds that
z(ω, t ) satisfies the Ott-Antonsen equation

ż(ω, t ) = iωz + (1 − z2)
a

2
+ K

2
Re−iα − K

2
Reiαz2. (8)

Quantity z(ω, t ) should be interpreted as the frequency-
dependent local order parameter, in the sense that it quantifies
the degree of synchrony of oscillators whose intrinsic frequen-
cies ωi lie within a small interval around the given frequency
ω. In the continuum limit, the global and the local order
parameter are connected by the self-consistency condition

R = Gz =
∫ ∞

−∞
g(ω)z(ω)dω, (9)

which follows from the definition (6) and the ansatz (7). Note
that (8) presents a generalization of the corresponding result
in Ref. [13] for a �= 1, α �= 0.

III. STATIONARY SOLUTIONS OF THE
OTT-ANTONSEN EQUATION

Within this section, our aim is to characterize the micro-
scopic structure of the stationary solutions, finding the means
to classify them by applying the self-consistency condition
(9). To do so, one first looks for the solutions of the Ott-
Antonsen equation (8) for which the Kuramoto mean field
R(t ) = ρ(t )eiψ (t ) is constant. In particular, we substitute the
solution of the form z(ω, t ) = r(ω, t )eiϕ(ω,t ) into (8), which

ultimately results in

ṙ = B

2
(1 − r2) cos φ,

rφ̇ = ωr − B

2
(1 + r2) sin φ, (10)

having introduced the notation

B =
√

a2 + K2ρ2 + 2aKρ cos(ψ − α),

β = arctan
Kρ sin(ψ − α)

a + Kρ cos(ψ − α)
,

φ = ϕ − β. (11)

From the system (10), one infers that the quantity B, which
depends only on the coupling strength and the mean field,
plays the role of the macroscopic excitability parameter. This
follows from the fact that the microscopic structure of the
stationary state is self-organized in a way that the assembly
splits into two groups, according to the relation between the
respective natural frequencies ωi and B. In particular, one
group is comprised of rotators in the excitable regime, whose
intrinsic frequencies satisfy |ω| < B, whereas the other group
consists of rotating units, whose intrinsic frequencies satisfy
|ω| > B. Another indication on the role of B can be obtained
if the definitions of B and β from (11) are applied to transform
the original equation for the dynamics of rotators (1) into θ̇i =
ωi − B sin (θi − β ), which just conforms to a set of forced
active rotators. From the level of single unit’s dynamics, B is
then classically referred to as the resistivity parameter in the
sense that it reflects the rotator’s ability to modify its natural
frequency.

Taking a closer look into the dynamics of the two sub-
assemblies following from (10), one finds that for |ω| < B
there exist two steady states, given by

r∗(ω) = 1, φ∗(ω) = arcsin
ω

B
, (12)

and

r∗(ω) = 1, φ∗(ω) = π − arcsin
ω

B
, (13)

whereby our latter stability analysis will show that only the
solution (12) is stable. For the units within the rotating group
|ω| > B, the only steady state reads

r∗(ω) = |ω|
B

−
√

ω2

B2
− 1

φ∗(ω) = π

2
sgnω. (14)

In order to fully quantify the stationary solutions of the Ott-
Antonsen equation (8), one has to obtain an explicit expres-
sion for the macroscopic excitability parameter B. In order to
do so, we invoke the self-consistency equation (9). Applying
the latter to the stationary state z∗(ω) = r∗(ω)eiφ∗(ω)+iβ given
by (12) and (14), one obtains

ρei(ψ−β ) = i�

B
+

∫
|ω|<B

dωg(ω)

√
1 − ω2

B2

− i

B

∫
|ω|>B

dωg(ω)ω

√
1 − B2

ω2
, (15)
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where � = ∫ ∞
−∞ ωg(ω)dω refers to the mean value of the fre-

quency distribution. Separating for the real and the imaginary
part of (15) and after some algebra, one ultimately arrives at
the self-consistency equation for B of the form:

f (B) = B2 − a2 − 2K[ f1(B) sin α + f2(B) cos α]

+ K2 f 2
1 (B) + f 2

2 (B)

B2
= 0, (16)

where

f1(B) = � −
∫

|ω|>B
dωg(ω)ω

√
1 − B2

ω2
,

f2(B) =
∫

|ω|<B
dωg(ω)

√
B2 − ω2. (17)

Note that the analogous expression has been obtained in
Ref. [13] but only for the particular case a = 1, α = 0. The
results so far apply for an arbitrary distribution of natural
frequencies g(ω). In order to carry out an explicit analysis
on the stability of stationary states, including determining
the associated stability boundaries and characterization of
the transitions between the different collective regimes, we
confine the remainder of the study to a particular case of g(ω),
namely a uniform distribution of frequencies on a bounded
interval.

IV. STABILITY OF THE STATIONARY SOLUTIONS OF
THE OTT-ANTONSEN EQUATION

Within this section, we specify the general results from
Sec. III to an example of a uniform distribution of natural
frequencies g(ω) defined on an interval ω ∈ [ω1, ω2]:

g(ω) =
⎧⎨
⎩

0, ω < ω1

γ , ω1 < ω < ω2

0, ω > ω2

, (18)

where γ = 1/(ω2 − ω1) derives from the normalization con-
dition. The given distribution is characterized by an average
� = ω1+ω2

2 and the width 	 = ω2 − ω1. The advantage of
making such a choice of frequency distribution is that it allows
for a full analytical treatment of the self-consistency equation
(16) for the macroscopic excitability parameter. In particular,
the integrals (17) then read

f1(B) =
⎧⎨
⎩

� − γ [F1(ω2) − F1(ω1)], B < ω1

� − γ F1(ω2), ω1 < B < ω2

�, B > ω2

, (19)

where

F1(ω) = |ω|
2

√
ω2 − B2 + B2

2
ln

B

|ω| + √
ω2 − B2

, (20)

and

f2(B) =
⎧⎨
⎩

0, B < ω1

γ
[

π
4 B2 − F2(ω1)

]
, ω1 < B < ω2

γ [F2(ω2) − F2(ω1)], B > ω2

, (21)

with

F2(ω) = |ω|
2

√
B2 − ω2 + B2

2
arcsin

ω

B
. (22)

Considering the uniform frequency distribution (18), we
have carried out the stability and bifurcation analysis of the
Ott-Antonsen equation (8). The main control parameters are
the characteristics of g(ω), namely its mean � and the width
	, while the remaining system parameters a, K , and α are
kept fixed. Note that the stability analysis of (8) requires one
to rewrite it as a real system in order to eliminate the complex
conjugation [39–41]. The analysis per se involves lineariza-
tion of the Ott-Antonsen equation for variations around the
stationary solution (12)–(14) and consists in determining how
the Lyapunov spectra of the stationary states depend on �

and 	. While the technical details of the calculation are
elaborated in the Appendix, the analysis we provide below
will include characterization of the stationary solutions of
the Ott-Antonsen equation (8) and the associated stability
domains, as well as the description of the mechanisms behind
the onset and the suppression of collective oscillations. The
analytical results are corroborated by numerical experiments
carried out on a heterogeneous assembly of N = 104 active
rotators.

The microscopic structure of the stationary regimes and
the fashion in which their number and stability depend on
the characteristics of g(ω) may conveniently be explained in
terms of the solutions of the self-consistency equation (16)
for the parameter B. A typical form of the function f (B)
for the considered domain of (�,	) values is illustrated in
Fig. 1. The three roots of f (B), denoted by B1 > B2 > B3,
correspond to the stationary solutions of the Ott-Antonsen
equation (8). In particular, the macroscopic regime associated
to B1 presents a global rest state, because the macroscopic
excitability parameter is so large that the frequencies of all
the units lie below it. Given its microscopic structure, where
the local dynamics is solely excitable, this state can also be
termed a homogeneous stationary state. The corresponding
time series θi(t ) and the evolution of the modulus of the
Kuramoto order parameter ρ(t ) = |R(t )| are illustrated in

1 2 3 4 5 6

-0.8

-0.4

0

0.4

0.8

FIG. 1. Typical form of the function f (B) and the three solutions
B1 > B2 > B3 of the self-consistency equation (16). The system
parameters are as follows: a = 1, K = 5, α = 0, � = 0.87, and
	 = 6.
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FIG. 2. Bifurcation diagram in the (�, 	) plane, constructed by the method of stability analysis described in the Appendix. The remaining
system parameters are fixed to a = 1, K = 5, α = 0. The two branches of saddle-node bifurcations (blue solid lines) emanate from the cusp
point CP, where the pitchfork bifurcation occurs. From the Bogdanov-Takens point (BT) emanate the Hopf bifurcation curve (H), indicated by
the red solid line, and a branch of saddle-homoclinic bifurcations (SH), shown by the green dashed line. The upper branch of folds meets SH
at the fold-homoclinic point (FH). The bullets indicate the parameter values associated to the time series in Fig. 4.

Fig. 4(a). We shall demonstrate below that the global rest
state may disappear in a fold bifurcation. In contrast to the
macroscopic regime given by B1, the stationary state corre-
sponding to B3 is typically a heterogeneous one, involving a
subassembly of excitable units (|ωi| < B3) and a subassembly
of oscillating units (|ωi| > B3), see the example of the time
series in Fig. 4(c). In Ref. [13], the heterogeneous stationary
state is referred to as the asynchronous state, because spiking
activity may be observed at the level of single units, but the
macroscopic dynamics per se does not exhibit a collective
mode. The heterogeneous state, as shown in greater detail
below, may undergo either a fold or Hopf bifurcation scenario.
The stationary state associated to B2 conforms to a saddle
within the relevant (�,	) domain, undergoing fold bifurca-
tions either with B1 or B3 or providing for the separatrices in
case of the two observed bistable regimes.

The bifurcation diagram in Fig. 2 shows how the number
and stability of the stationary solutions of the Ott-Antonsen
equation (8) changes under variation of the parameters of
the frequency distribution � and 	. The diagram features
five characteristic domains I–V and is organized around three
codimension-2 bifurcation points, namely (i) the cusp point
(CP), which corresponds to a symmetry-breaking pitchfork bi-
furcation; (ii) the Bogdanov-Takens point (BT), which unfolds
into Hopf (H) and saddle-homoclinic (SH) bifurcation curves;
and (iii), the fold-homoclinic point (FH), where a branch of

saddle-node bifurcations meets a curve of homoclinic tangen-
cies of a limit cycle. The upper and the lower branch of folds,
which emanate from the cusp, correspond to the coalescence
of the state B2 with B1 and B3, respectively. The former or
latter branch has been obtained by solving for the parameters
where the local minimum or maximum of the function f (B)
crosses the zero level. The Hopf bifurcation curve has been
determined by the local stability analysis of the stationary
state B3. While such local analysis cannot provide for the
saddle-homoclinic branch, its existence follows from the gen-
eral structure of the Bodganov-Takens bifurcation [42,43].

In the following, we provide a detailed description of the
regimes underlying domains I–V, illustrating the associated
phase portraits, cf. Fig. 2, and explaining the bifurcations that
outline their stability boundaries. At the cusp point CP, the
two branches of saddle-node bifurcations coalesce, cf. the two
blue solid lines in Fig. 2. In terms of the stationary states
B1–B3 from Fig. 1, to the right of CP there exists only a
stable fixed point B2. Following the pitchfork bifurcation, B2

becomes a saddle, whereas two stable nodes, B1 and B3, are
created. The parameter region admitting only a single stable
stationary state, be it B1, B2, or B3, is denoted by V in Fig. 2.
Decreasing the diversity, the stability of B1 is influenced only
by a fold bifurcation, whereas the character and stability of
B3 are influenced by the fold and Hopf bifurcations, derived
from the Bogdanov-Takens point. We have evinced that while
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FIG. 3. Oscillation frequency of the periodic solution ωosc in
terms of diversity 	, calculated along the Hopf bifurcation curve.
One observes that the frequency tends to zero while approaching the
Bogdanov-Takens point. The parameters a, K , and α are the same as
in Fig. 2.

approaching BT, the frequency of oscillations ωosc expectedly
tends to zero, see Fig. 3. Along the lower branch of folds
B2 and B3 get annihilated, so that from the right of this
curve and to the cusp point, the only stable stationary state
of the system is the node B1. The Hopf bifurcation curve
that emanates from the BT point affects the stability of the
stationary state B3, such that it becomes unstable for smaller
diversities. This implies that within the region IV, bounded by
the Hopf curve to the right and the two fold curves on the
left, one observes bistability between two stationary states,
namely the stable node B1 and the stable focus B3, which

are separated by the stable manifold of the saddle B2, cf. the
corresponding phase portrait in Fig. 2. Reducing diversity,
B3 undergoes a supercritical Hopf bifurcation (H), whereby
immediately to the left of the Hopf curve (region III), one
finds bistability between a small limit cycle and the stable node
B1, again separated by the stable manifold of the saddle B2.
The time series illustrating the microscopic and macroscopic
dynamics of the oscillatory states born from the Hopf bifurca-
tion for two different parameter sets, (�1,	1) = (0.87, 6.76)
and (�2,	2) = (0.93, 6.78), are provided in Fig. 4(b) and
Fig. 4(e).

Consistent with the Bogdanov-Takens scenario, the limit
cycle born from the Hopf bifurcation is destabilized via a
homoclinic tangency to the saddle B2, which is reflected by
a branch of saddle-homoclinic bifurcations (SH) emanating
from BT, see the green dashed line in Fig. 2. Using the
local stability approach described in the Appendix, we are
not able to trace the stability of a limit cycle per se but have
been able to qualitatively verify the disappearance of the limit
cycle by numerical means. The SH curve terminates at the
fold-homoclinic point (FH), where it meets the upper branch
of fold bifurcations. At FH, the stable manifold of the saddle
B2 touches the invariant circle. Decreasing diversity further
away from the saddle-homoclinic bifurcation, cf. region I,
the system exhibits a stable node B1 and has two additional
unstable fixed points, namely the saddle B2 and the unstable
focus B3.

At the upper branch of folds, under increasing diversity, the
stable node B1 and the saddle B2 collide and disappear. For 	

values less than that of the FH point, the fold takes place on the
invariant circle, giving rise to a SNIPER bifurcation. Crossing
the SNIPER bifurcation either by increasing � or 	, the
collective dynamics of the system exhibits a transition toward
the macroscopic oscillatory state. The latter is characterized
by synchronous local oscillations of a large period, cf. the
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FIG. 4. Local and collective dynamics within the characteristic parameter domains indicated in Fig. 2. In the top row are provided the
examples of the time series ρ(t ) = |R(t )|, while in the bottom row are shown the corresponding local time series θi(t ) normalized over 2π . The
particular parameter values of the frequency distribution (indicated by bullets in Fig. 2) are (�, 	) = (0.87, 6.64) in (a), (�,	) = (0.87, 6.76)
in (b), (�,	) = (0.87, 7) in (c), (�,	) = (0.93, 6.6) in (d), and (�,	) = (0.93, 6.78) in (e). The remaining system parameters are the same
as in Fig. 2.
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FIG. 5. Characteristic transition sequences between the different macroscopic regimes under increasing diversity for a fixed value of �.
The states are described by the time-averaged modulus of the Kuramoto order parameter 〈ρ(t )〉t (left column) and the associated variance
μ (right column). The mean frequencies are � = 0.9 in (a), � = 0.892 in (b), and � = 0.884 in (c). The classical scenario of transitions is
recovered in (a), whereas the two hysteretic scenarios involving passage over one or two bistability regions, indicated by shading in (b) and
(c), are reported for the first time as far as we know.

time series in Fig. 4(e). For this reason, it is also called the
synchronous state in Ref. [13]. For diversities to the right of
the FH point, the saddle-node annihilation of B1 and B2 no
longer occurs on an invariant circle. Thus, the only attractor
within region VI corresponds to a small limit cycle emerging
from Hopf destabilization of B3. For increasing diversity, B3

gains stability by undergoing the inverse Hopf bifurcation, as
already indicated above.

A. Classical and hysteretic transitions
between macroscopic regimes

Having characterized all the regimes of macroscopic ac-
tivity and the associated stability domains, we focus on the
scenarios leading to the onset and the suppression of the
collective mode in heterogeneous populations, an issue of out-
standing importance in the theory of coupled dynamical sys-
tems. By the classical paradigm [13], the systematic increase
of diversity under fixed mean frequency induces a sequence of
transitions between the three regimes of collective dynamics,
namely the global rest state, the synchronous state (corre-
sponding to macroscopic oscillations), and the asynchronous

state (a heterogeneous state displaying mixed excitable and
oscillatory local dynamics). Our study demonstrates that,
apart from this, there exist two novel generic scenarios of
transitions involving a hysteretic behavior. To gain a deeper
insight into this problem, we have plotted how the time-
averaged modulus of the Kuramoto mean-field ρ(t ) = |R(t )|
and the associated variance μ =

√
〈ρ2〉t − 〈ρ〉2

t change under
variation of the diversity 	 for the three characteristic mean
frequencies � ∈ {0.9, 0.892, 0.884}, cf. Fig. 5. In order to
reveal the potential bistable behavior, we have carried out
sweeps in the directions of the increasing and the decreasing
	 applying the method of numerical continuation, where the
initial conditions for the system with incremented 	 coincide
with the final state at the previous 	 value.

The classical sequence of transitions is indeed recovered
for � = 0.9, see Fig. 5(a). There the onset of the collective
mode is guided by a SNIPER bifurcation, mediating a tran-
sition from the homogeneous stationary state B1 to a periodic
solution. The suppression of the collective mode is induced by
an inverse Hopf bifurcation that stabilizes the heterogeneous
stationary state B3, which is analogous to the Kuramoto-type
scenario where the system desynchronizes under increasing
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FIG. 6. The (	,�) parameter plane divided into regions with
different macroscopic dynamics: the monostable stationary state
(dark blue, regions I and V), monostable limit cycle (light blue,
region II), bistability with two coexisting stationary states (green,
region IV), and bistability between a stationary state and a limit
cycle (yellow, region III). The parameter values are the same as
in Fig. 2. Superimposed are the corresponding bifurcation curves
obtained analytically within the Ott-Antonsen framework.

disorder. For � = 0.892, we have established a hysteretic
transition scenario, emerging due to a passage through a
bistability region III from Fig. 2, which admits coexistence
between the homogeneous stationary state B1 and the periodic
solution created from B3, cf. Fig. 5(b). In this case, the onset
of a collective mode is induced by a Hopf bifurcation, while
its suppression is controlled by the homoclinic tangency of
the limit cycle. For � = 0.884, the sequence of transitions
remains hysteretic but becomes more complex, see Fig. 5(c).
In particular, by increasing the diversity, one traverses over
two bistability regions, denoted by III and IV in Fig. 2. While
the first one is qualitatively the same as for � = 0.892, the
second one supports two coexisting stationary states, associ-
ated to B1 and B3. Nevertheless, the onset and the suppression
of the collective mode per se follow the same scenario as the
one described in Fig. 5(b). Note that the described transition
sequences are observed if the mean frequency � is sufficiently
large.

In order to evince the generic character of the described
scenarios and confirm the theoretical predictions regarding the
parameter domains supporting the collective oscillations, we
have carried out an extensive numerical study of the system’s
dynamics in terms of the parameters 	 and �, see Fig. 7. In
particular, using numerical continuation, we have performed
bidirectional sweeps over the (�,	) plane, keeping one
of the parameters fixed while the other one was varied, in
analogy to the method already described in relation to Fig. 6.
This allowed us to partition the (�,	) plane into different
regions according to the number and the type of the supported
attractors. Comparison of the boundaries of these regions with
the bifurcation curves from Fig. 2, which are shown overlaid,
corroborates an excellent agreement between the theory and
the numerical results.

6.55 6.6 6.65 6.7 6.75 6.8 6.85 6.9 6.95
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6.8

6.9
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FIG. 7. (a) Characteristic domains of macroscopic behavior in
the (�,	) plane for coupling delay τ = 0.3. Color coding, as well
as the remaining system parameters, are the same as in Fig. 6.
Superimposed are the bifurcation curves obtained by the local sta-
bility approach described in the Appendix. (b) Critical diversity
	H corresponding to the Hopf destabilization of the state B3 in
dependence of τ for fixed � = 0.88.

We have also examined whether the qualitative picture
described so far persists under variation of the coupling
strength K . It turns out that the general bifurcation structure
holds qualitatively, which indicates the robustness of the
scenarios underlying the transitions between the different col-
lective regimes. Still, one notes that under increasing coupling
strength, the cusp point and the Hopf bifurcation curve shift
to a larger diversity (not shown).

V. IMPACT OF SMALL COUPLING
DELAY AND SMALL NOISE

In this section, the goal is to demonstrate that the physical
picture described so far for the noiseless and the delay-free
case qualitatively also holds in presence of small noise or
small coupling delay. The small-noise scenario concerns a
range of noise levels where the applied perturbation typi-
cally cannot give rise to noise-induced oscillations but may
rather evoke only rare spikes, so that the prevalent fraction
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of units within the excitable subassembly remains at the
quasistationary state. The small-delay scenario refers to delay
values which are significantly less than the typical period of
local oscillations, such that no delay-induced oscillations or
multistability can emerge [44–46]. Essentially, our intention
is not to perform an exhaustive exploration of the effects of
noise or coupling delay but rather to confine the analysis to the
cases where these two ingredients cannot evoke qualitatively
new forms of collective behavior compared to the noiseless
and delay-free case. We have carried out extensive numerical
simulations to establish how the boundaries of the five char-
acteristic domains in the (�,	) plane are modified due to the
action of small noise or small coupling delay.

A. Effects of small coupling delay

The effects of small coupling delay are illustrated in
Fig. 7(a), which shows the characteristic domains of macro-
scopic behavior in the (�,	) plane for the delay τ = 0.3.
One observes an excellent agreement between the bifurcation
curves, obtained analytically by the local stability approach
described in the Appendix, and the associated stability bound-
aries of the domains. In particular, introducing the coupling
delay does not affect the very coordinates of the stationary
states of the Ott-Antonsen equation (8), meaning that the
branches of fold bifurcations remain unchanged relative to
the delay-free case. Nevertheless, the key effect of the delay
is that the Hopf bifurcation of the state B3, which underlies
one of the scenarios for the onset of the collective mode,
shifts to a smaller diversity compared to the delay-free case.
This implies that the delay promotes multistable behavior,
in the sense that the bistability domain IV, characterized by
the coexistence between the stable stationary states B1 and
B3, becomes broader due to the impact of delay, cf. the
green highlighted region in Fig. 7(a). From another point of
view, the latter also suggests that the coupling delay promotes
the onset of the collective mode via Hopf destabilization of
the stationary state B3 but suppresses the scenario where
B1 and B2 undergo the SNIPER bifurcation. In Fig. 7(b)
it is explicitly shown how the critical diversity 	H associ-
ated to Hopf bifurcation decreases with τ when � is kept
fixed.

B. Effects of small noise

In contrast to the impact of coupling delay, the small noise
is found to influence the effective positions of both the fold
and the Hopf bifurcation curves, cf. Fig. 8(a), where the five
characteristic domains for the noise level σ = 0.3 are shown
together with the analytical curves for the noiseless case.
The primary effect of small noise is to promote the onset
of the collective mode mediated via the SNIPER bifurcation,
in the sense that for a fixed mean frequency �, macroscopic
oscillations can be observed for the diversity 	 smaller than
those in the noiseless case. As a consequence, one observes
that the critical diversity 	SN at which the fold between the
states B1 and B2 takes place reduces under increasing σ , as
indeed shown in Fig. 8(b) for the fixed � = 0.88. Nonethe-
less, noise also shifts the location of the Hopf bifurcation
relevant for the stability of the state B3, see Fig. 8(a). This
may be interpreted as a disordering effect of noise, in the sense
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FIG. 8. (a) Characteristic domains of macroscopic dynamics in
the (�,	) plane for the noise level σ = 0.3. The color coding
and the remaining system parameters are the same as in Fig. 6.
Superimposed are the bifurcation curves obtained analytically for the
noise-free case σ = 0. (b) Decrease of the critical diversity 	SN with
σ , corresponding to the saddle-node annihilation of the states B1 and
B2 for fixed � = 0.88.

that the transition from the regime of macroscopic oscillations
(domain II) to the asynchronous regime (domain V) occurs at
the diversity smaller than that for the noise-free case. Also
note that the bistability regions III and IV shrink as compared
to the noiseless case.

In principle, one observes that the structure of the charac-
teristic domains is qualitatively preserved with introduction
of small noise, but the associated stability boundaries shift
to the left with respect to the noiseless case. This can be
understood by the following qualitative reasoning. The impact
of small noise on the local dynamics of the nodes can roughly
be interpreted as a perturbation of the intrinsic frequency ωi.
To corroborate this, in Fig. 9 we illustrate how the effective
oscillation frequencies of single units ωeff,i, calculated numer-
ically as the inverse of the respective mean oscillation periods,
change in the presence of noise σ = 0.3. One finds that a
certain fraction of units whose intrinsic frequencies ωi lie
closest to the excitability threshold ω = 1 acquire a nonzero
effective frequency, i.e., manifest noise-induced oscillations,
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FIG. 9. Effective oscillation frequencies of uncoupled units ωeff

for the noiseless case (black dots) and under noise intensity σ 2 =
0.09 (red dots) as a function of the intrinsic parameters ωi. The
dashed line indicates the excitability threshold ω = 1. The frequency
distribution g(ω) is characterized by � = 2, 	 = 4.

while the excitable units further away from the threshold
remain quasistationary. Nonetheless, the impact of noise on
the self-oscillating units is reflected as a small increase of
their effective frequency. Thus, in qualitative terms, the effect
of small noise amounts to enhancing the effective frequency
of the units near the threshold ω = 1. Since this effect is
symmetrical for positive and negative ω, the average assembly
frequency � remains unchanged, whereas the variance of the
associated distribution increases proportionally to the noise
intensity. Therefore the introduction of small noise should
lead to similar effects as the increase of diversity 	.

VI. SUMMARY AND CONCLUSION

Considering a heterogeneous assembly of active rota-
tors displaying excitable or oscillatory local dynamics, we
have classified the associated macroscopic regimes and have
demonstrated the generic scenarios for the onset and the
suppression of collective oscillations. The analytical part of
the study has been carried out within the framework of Ott-
Antonsen theory applied for the delay- and noise-free system
in the continuum limit, which enabled us to determine the
three macroscopic stationary states in case of an arbitrary
distribution of natural frequencies. The main qualitative in-
sight into the microscopic structure of stationary states is
that the population may in principle split into the excitable
and the rotating subassembly, with the division depending
on the relationship between the respective natural frequency
of a rotator and the macroscopic excitability parameter. In
this context, we have identified a homogeneous equilibrium
where the units typically lie at rest, as well as a heterogeneous
(mixed) collective stationary state, composed of units either
in the excitable regime or the oscillatory regime. The local
approach to stability and bifurcation analysis of the station-
ary states we have derived allowed us to address both the
delay-free case and the case where the system’s behavior is

influenced by coupling delay. The analysis has been specified
to the particular case of a uniform frequency distribution on
a bounded interval. While the stationary states have been
determined earlier for a similar, but a less general model [13],
the stability analysis, as presented here, has been carried out
for the first time.

We have demonstrated that the complex bifurcation
structure underlying the stability boundaries of the different
macroscopic regimes is organized by three codimension-two
bifurcation points, including the Bogdanov-Takens point, the
cusp point, and the fold-homoclinic point. Our analysis has
revealed the existence of five characteristic domains, three of
which support the monostable collective behavior, while two
admit bistability, involving either the coexistence between two
stable stationary states or the coexistence between a stationary
and a periodic solution. We have found that, depending on
the mean frequency, the onset and the suppression of the
collective mode may emerge via two qualitatively different
scenarios under variation of diversity. In particular, for a
smaller mean frequency, the onset of collective oscillations
under decreasing diversity occurs due to a Hopf destabiliza-
tion of a stationary state, whereas the oscillations are termi-
nated via a saddle-homoclinic bifurcation. Nevertheless, for
a sufficiently large mean frequency, increasing the diversity
gives rise to collective oscillations in a SNIPER bifurcation,
while the suppression of oscillations is due to an inverse Hopf
bifurcation.

The classical paradigm concerning the sequence of transi-
tions between the collective regimes in heterogeneous systems
under increasing diversity involves three characteristic states,
namely the global rest state; the synchronous state, character-
ized by macroscopic oscillations; and the asynchronous state,
based on mixed excitable and oscillatory local dynamics [13].
In addition to this paradigm, our analysis has revealed two
novel scenarios, which are hysteretic and involve a passage
through one or two bistable domains. By the first scenarios,
the transition from the global rest state to the asynchronous
state occurs via two bistable regimes, the first involving a
coexistence between a periodic solution and the rest state
and the second one featuring coexistence between the rest
state and the asynchronous state. The second hysteretic sce-
nario is similar, but the intermediate stage involves only the
coexistence between the homogeneous and the oscillatory
state.

Combining theoretical methods and numerical experi-
ments, we have shown that the basic bifurcation structure
from the delay- and noiseless case persists in the presence
of small noise or small coupling delay. Nevertheless, these
two ingredients are found to modify the stability boundaries of
the five characteristic domains. In particular, due to coupling
delay, the position of the Hopf bifurcation curve is shifted
toward the smaller diversity, which effectively promotes the
Hopf-mediated onset of macroscopic oscillations and also
enhances the parameter domain supporting bistability. Noise
is seen to affect both the fold and the Hopf bifurcations,
whereby the effective position of the fold or Hopf curve is
shifted to smaller mean frequency or smaller diversity. At the
level of macroscopic behavior, this is reflected as the promo-
tion or suppression of the onset of macroscopic oscillations
via SNIPER or Hopf bifurcation scenario, contributing in
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addition to a reduction of the two bistability domains. While
the described bifurcation structure appears to be generic for
the considered type of frequency distribution, remaining qual-
itatively similar under the influence of small noise or small
coupling delay, it would be interesting to examine whether
and how it is modified for a substantially different form of a
frequency distribution, such as a bimodal one.
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APPENDIX: CALCULATION OF THE STABILITY OF THE
STATIONARY SOLUTION OF

THE OTT-ANTONSEN EQUATION

Here we elaborate on the method applied to calculate
the stability of the stationary solutions of the Ott-Antonsen
equation (8). In particular, we first introduce the expressions
z(ω, t ) = x(ω, t ) + iy(ω, t ) and R(ω, t ) = X (ω, t ) + iY (ω, t )
for the local and the global order parameters, respectively,
transforming (8) to

ẋ = F (x, y, X,Y ) = a

2
(y2 − x2 + 1) − ωy

− Kxy(Y cos α − X sin α) − K

2
(X cos α + Y sin α)

× (x2 − y2) + K

2
(X cos α + Y sin α)

ẏ = G(x, y, X,Y ) = −axy + ωx − Kxy(Y sin α + X cos α)

+ K

2
(Y cos α − X sin α)(x2 − y2)

+ K

2
(Y cos α − X sin α). (A1)

The linearization of Ott-Antonsen equation (8) for vari-
ations ξ = (δx, δy)T , � = (δX, δY )T of the stationary solu-
tion (x0, y0) can then succinctly be written in the matrix
form as

dξ (ω, t )

dt
= A(ω)ξ (ω, t ) + B(ω)�(t ), (A2)

where the matrices of derivatives are

A(ω) =
(

∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

)
, B(ω) =

(
∂F
∂X

∂F
∂Y

∂G
∂X

∂G
∂Y

)
. (A3)

Assuming that the variation ξ (ω, t ) satisfies the ansatz
ξ (ω, t ) = ξ (ω)eλt , and similarly �(t ) = �eλt , (A2) becomes

[A(ω) − λI]ξ (ω) + B(ω)� = 0, (A4)
where I denotes the identity matrix. As shown in Ref. [40],
the continuous Lyapunov spectrum consists of the eigenval-
ues of the matrix B(ω) for all ω ∈ [ω1, ω2]. In our case,
the continuous spectrum turns out to be always stable or
marginally stable, such that the stability of the stationary
solutions is determined by the discrete spectrum. In order
to obtain the discrete spectrum, we multiply (A4) from the
left by g(ω)[A(ω) − λI]−1 and integrate over ω obtaining
C(λ)� = 0, where

C(λ) = I +
∫ ∞

−∞
dωg(ω)[A(ω) − λI]−1B(ω). (A5)

The discrete Lyapunov spectrum can then be calculated by
numerically solving the system det C(λ) = 0.

In the case of nonzero coupling delay, the same type of
analysis remains valid, while one has to replace X and Y in
the r-hand side of (A1) by their delayed counterparts X (t −
τ ) and Y (t − τ ). This leads to the same matrix C(λ) as in
(A5), with the only difference being the substitution of B(ω)
by B(ω)e−λτ .

[1] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A
Universal Concept in Nonlinear Sciences (Cambridge Univer-
sity Press, Cambridge, 2003).

[2] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R.
Spigler, Rev. Mod. Phys. 77, 137 (2005).

[3] Y. Baibolatov, M. Rosenblum, Z. Z. Zhanabaev, M. Kyzgarina,
and A. Pikovsky, Phys. Rev. E 80, 046211 (2009).
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E 87, 012922 (2013).

[5] S. Olmi, R. Livi, A. Politi, and A. Torcini, Phys. Rev. E 81,
046119 (2010).

[6] S. Strogatz, Physica D (Amsterdam) 143, 1 (2000).
[7] N. Komin and R. Toral, Phys. Rev. E 82, 051127 (2010).
[8] C. J. Tessone, A. Scirè, R. Toral, and P. Colet, Phys. Rev. E 75,

016203 (2007).

[9] D. Pazo and E. Montbrió, Phys. Rev. E 73, 055202(R) (2006).
[10] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence

(Springer-Verlag, Berlin, 1984).
[11] F. A. Rodrigues, T. K. DM. Peron, P. Ji, and J. Kurths, Phys.

Rep. 610, 1 (2016).
[12] C. J. Tessone, C. R. Mirasso, R. Toral, and J. D. Gunton, Phys.

Rev. Lett. 97, 194101 (2006).
[13] L. F. Lafuerza, P. Colet, and R. Toral, Phys. Rev. Lett. 105,

084101 (2010).
[14] E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008).
[15] E. Ott and T. M. Antonsen, Chaos 19, 023117 (2009).
[16] L. S. Tsimring and A. Pikovsky, Phys. Rev. Lett. 87, 250602

(2001).
[17] A. Pototsky and N. B. Janson, Phys. Rev. E 77, 031113

(2008).

062211-11

https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/PhysRevE.80.046211
https://doi.org/10.1103/PhysRevE.80.046211
https://doi.org/10.1103/PhysRevE.80.046211
https://doi.org/10.1103/PhysRevE.80.046211
https://doi.org/10.1103/PhysRevE.87.012922
https://doi.org/10.1103/PhysRevE.87.012922
https://doi.org/10.1103/PhysRevE.87.012922
https://doi.org/10.1103/PhysRevE.87.012922
https://doi.org/10.1103/PhysRevE.81.046119
https://doi.org/10.1103/PhysRevE.81.046119
https://doi.org/10.1103/PhysRevE.81.046119
https://doi.org/10.1103/PhysRevE.81.046119
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1103/PhysRevE.82.051127
https://doi.org/10.1103/PhysRevE.82.051127
https://doi.org/10.1103/PhysRevE.82.051127
https://doi.org/10.1103/PhysRevE.82.051127
https://doi.org/10.1103/PhysRevE.75.016203
https://doi.org/10.1103/PhysRevE.75.016203
https://doi.org/10.1103/PhysRevE.75.016203
https://doi.org/10.1103/PhysRevE.75.016203
https://doi.org/10.1103/PhysRevE.73.055202
https://doi.org/10.1103/PhysRevE.73.055202
https://doi.org/10.1103/PhysRevE.73.055202
https://doi.org/10.1103/PhysRevE.73.055202
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1103/PhysRevLett.97.194101
https://doi.org/10.1103/PhysRevLett.97.194101
https://doi.org/10.1103/PhysRevLett.97.194101
https://doi.org/10.1103/PhysRevLett.97.194101
https://doi.org/10.1103/PhysRevLett.105.084101
https://doi.org/10.1103/PhysRevLett.105.084101
https://doi.org/10.1103/PhysRevLett.105.084101
https://doi.org/10.1103/PhysRevLett.105.084101
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.3136851
https://doi.org/10.1063/1.3136851
https://doi.org/10.1063/1.3136851
https://doi.org/10.1063/1.3136851
https://doi.org/10.1103/PhysRevLett.87.250602
https://doi.org/10.1103/PhysRevLett.87.250602
https://doi.org/10.1103/PhysRevLett.87.250602
https://doi.org/10.1103/PhysRevLett.87.250602
https://doi.org/10.1103/PhysRevE.77.031113
https://doi.org/10.1103/PhysRevE.77.031113
https://doi.org/10.1103/PhysRevE.77.031113
https://doi.org/10.1103/PhysRevE.77.031113
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