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The classical notion of excitability refers to an equilibrium state that shows under the influence of
perturbations a nonlinear threshold-like behavior. Here, we extend this concept by demonstrating
how periodic orbits can exhibit a specific form of excitable behavior where the nonlinear threshold-
like response appears only after perturbations applied within a certain part of the periodic orbit,
i.e., the excitability happens to be phase-sensitive. As a paradigmatic example of this concept, we
employ the classical FitzHugh-Nagumo system. The relaxation oscillations, appearing in the oscil-
latory regime of this system, turn out to exhibit a phase-sensitive nonlinear threshold-like response
to perturbations, which can be explained by the nonlinear behavior in the vicinity of the canard tra-
jectory. Triggering the phase-sensitive excitability of the relaxation oscillations by noise, we find a
characteristic non-monotone dependence of the mean spiking rate of the relaxation oscillation on the
noise level. We explain this non-monotone dependence as a result of an interplay of two competing
effects of the increasing noise: the growing efficiency of the excitation and the degradation of the
nonlinear response. Published by AIP Publishing. https://doi.org/10.1063/1.5045179

The classical concept of excitability refers to a specific non-
linear response of a system to perturbations of its rest
state. While for small perturbations the system reacts only
with a linear relaxation directly back to the rest state, for
larger perturbations above a certain threshold it reacts
with a large non-linear response, called excitation. Such
a behavior can be observed, for example, when a neuron
in the quiescent state receives a presynaptic impulse and
reacts with the emission of a spike. Until the non-linear
response has terminated, the system is not susceptible
to further excitations. Only after the system has again
reached the rest state, can it be excited again. We study
here the case where the rest state is not a stationary state
but a stable periodic orbit. Then, the response of the sys-
tem to perturbations may be nonuniform along the orbit.
Of particular interest is the case where the non-linear
response to perturbations above threshold appears only in
a certain part of the periodic orbit. We call this situation
phase-sensitive excitability and demonstrate that the oscil-
latory regime of the FitzHugh-Nagumo system can serve
as an example for this type of behavior. It is well known
that for other parameter values, the FitzHugh-Nagumo
system has an excitable equilibrium. In this case, a pertur-
bation above threshold induces a response in the form of
a single spike. We present a completely different scenario.
Perturbations are now applied to the regime of periodic
spiking. If these perturbations act close to the passage near
the unstable equilibrium, they may evoke a response in
the form of a subthreshold oscillation and in this way pre-
vent the system for a certain time from spiking. There
are many cases where the triggering of an excitable sys-
tem by noise can result in a characteristic non-monotone
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dependence of the system behavior on the noise intensity.
This also holds for our example of the oscillatory regime
of the FitzHugh-Nagumo system, where we can demon-
strate that the spiking frequency becomes minimal at an
intermediate noise level.

I. INTRODUCTION

In their groundbreaking work from 1946, Wiener and
Rosenblueth,1 having observed propagating contractions in
the cardiac muscle, developed the fundamental concept of
an excitable system: exciting a state of rest by perturbations
above a certain threshold, the system reacts with a non-
linear response. Subsequently, the system needs a certain time,
called the refractory period, until it can be excited again.
This concept provided an extremely successful framework for
understanding a large variety of real-life systems.2 Beginning
from biological systems, where it describes not only cardiac
tissue3 but also certain functionalities of organisms,4,5 and
behavioral aspects of individuals, or of whole populations,6,7

it has been translated to gene regulatory networks,8 chemical
reactions,9 laser systems,10 and semiconductors,11 and last but
not least, it has become one of the key principles of theoretical
neuroscience.12–16

We extend the concept of excitability by considering as
the rest state of the system a stable periodic orbit rather than an
equilibrium. In this case, the nonlinear threshold-like response
may additionally depend on the phase of the oscillation at
which the impulse acts such that an excitation may occur only
if a super-threshold perturbation is applied within a certain
part of the periodic orbit. We shall use the regime of relaxation
oscillations in the FitzHugh-Nagumo system as an example
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071105-2 Franović, Omel’chenko, and Wolfrum Chaos 28, 071105 (2018)

FIG. 1. Phase plane for (1) with
b = 0.99, ε = 0.05, I(t) = 0: relaxation
oscillation orbit (green), maximal canard
(red), and nullclines (dash-dotted). Inset:
region close to the unstable equilibrium.
In the region of phase-sensitive excitabil-
ity (green stripe), the maximal canard
passes close to the relaxation oscillation
orbit such that small perturbations may
deviate a solution to make an extra round
trip around the unstable equilibrium.

of this general concept of phase-sensitive excitability. In the
context of neuroscience, this spiking regime can already be
considered as the “excited state” of a neuron. Nevertheless,
here we shall consider this periodic regime as the “rest state”
in the sense of Refs. 1 and 2 and shall study its nonlinear
threshold-like response to perturbations, which in this case
manifests as a reduced spiking activity. Note that in Ref. 17
a similar model was considered but with the rest state given
by the subthreshold oscillations and with the excited state
associated to the large-amplitude oscillations. Using multi-
scale techniques and the canard trajectories, we shall ana-
lyze in detail the specific mechanism realizing the non-linear
excitations in our system.

In Ref. 18, it has been pointed out that excitable sys-
tems can respond to noise in a specific way, showing a
characteristic non-monotone dependence on the noise level.
Such effects have been studied extensively and the FitzHugh-
Nagumo system in the regime of an excitable equilibrium
represents one of the classical examples.18–20 There, it is
the mean spiking regularity of noise-induced oscillations that
shows a characteristic maximum, called coherence resonance,
at an intermediate noise level. Our study of the FitzHugh-
Nagumo system in the oscillatory regime will demonstrate
that also the relaxation oscillation shows a non-monotone
response to noise: here, however, it is the mean spiking rate
that shows a characteristic minimum at an intermediate noise
level. This effect is most pronounced for intermediate values
of the time-scale separation (ε ≈ 0.05), while in the singu-
lar limit ε → 0, the effect disappears. This is the reason
why the effect has not been observed in the detailed study
of Muratov and Vanden-Eijnden,21 where the behavior of
the FitzHugh-Nagumo system under the influence of noise
has been investigated by singular perturbation techniques.
We believe that our parameter regime can be adequate in
the context of neuroscience and that the effect of phase-
sensitive excitability may be of importance both for determin-
istic inputs in coupled network systems and for the case of
stochastic input signals.

II. THE FITZHUGH-NAGUMO OSCILLATOR

Our basic example for the mechanism of phase-sensitive
excitability is the FitzHugh-Nagumo system

εẋ = x − x3/3 − y,

ẏ = x + b + I(t). (1)

In the context of neuroscience, x and y correspond to the neu-
ronal membrane potential and the ion-gating channels, respec-
tively. The time-dependent input signal I(t) can be used to
resemble intrinsic noise in the opening of the ion-channels.22

The smallness of the parameter ε reflects the time-scale sepa-
ration between the dynamics of x and y. The system has been
extensively studied as a slow-fast system, using the singular
limit ε → 0, cf. Ref. 23 for an overview on the determinis-
tic case and Refs. 2, 19, 20, and 24–26 for different scenarios
with noise. Classical results for the case without input sig-
nal I(t) show that system (1) undergoes a supercritical Hopf
bifurcation at b = 1 such that for decreasing b a branch of
small-amplitude oscillations of period O(

√
ε) appears. Then,

for b = bc ≈ 1 − ε/8, there is a rapid transition to large-
amplitude relaxation oscillations of period O(1).27 From the
neuroscience point of view, this corresponds to the transition
from the quiescent state to the spiking regime via subthreshold
oscillations. In order to explain the mechanism of phase-
sensitive excitability, we consider the slow-fast structures in
the phase space for the relaxation oscillations at b < bc in
the system (1). Figure 1 shows the relaxation oscillation orbit
together with the nullclines of the vector field. During the
passage close to the unstable equilibrium, located at the inter-
section of the nullclines, the relaxation oscillation orbit is
excitable in the following sense: there is an exponentially thin
layer of trajectories, called maximal canard, such that any per-
turbation large enough to elevate the state from the periodic
orbit to a point above these trajectories will cause the sys-
tem to make at least one loop around the unstable equilibrium
before proceeding again along the relaxation oscillation orbit.
Smaller perturbations or perturbations in directions below
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the relaxation oscillation orbit will not give rise to such a
response.

The maximal canard trajectories are characterized by the
fact that they follow the whole unstable branch of the slow
manifold, which in first approximation is given by the part
of the nullcline y = x − x3/3 lying in between the two folds,
cf. Ref. 28. Already exponentially small deviations from the
maximal canard cause the solutions to rapidly depart from it,
traveling in either direction towards one of the stable branches
of the slow manifold (dotted curves in Fig. 1). A maximal
canard trajectory can readily be determined numerically by
selecting an initial condition closely below the upper fold
(x, y) = (1, 2/3), and from there integrating backward in time.
Following one of the canard trajectories in this way, one finds
a region where it passes extremely close to the relaxation
oscillation orbit. Along this part of the relaxation oscillation
orbit, the maximal canard acts as a threshold for perturba-
tions such that super-threshold perturbations cause a nonlinear
response with an extra excitation loop around the unstable
equilibrium.

III. RESPONSE TO NOISE

Having understood the response of the system to single
impact perturbations of different size, we examine now the
response to Gaussian white noise

I(t) = Dξ(t),

of varying amplitude D. Figure 2 shows typical realizations of
trajectories for three different levels of noise. The plots show
that for low noise level (a), the noise-induced excitation loops
occur rarely and are well confined by the spiral structure of the
maximal canard. For increasing noise level (b), they become
more frequent, but at the same time they get increasingly
blurred by the noise. For the largest noise level (c), the preva-
lence of the small excitation loops decreases again since the
efficiency of the confinement by the deterministic maximal
canard is reduced.

To study this process in more detail, we introduce a
Poincaré section at

x = x0 = −0.99, y < x0 − x3
0/3, (2)

i.e., we record passages through a vertical line extending
below the unstable fixed point. In Fig. 3(a), we show the
sampled return times �T between successive crossing events,
obtained for the same noise levels as used in Fig. 2. The his-
tograms show that for all three noise levels one can clearly
distinguish between return times �T ≈ TR corresponding to
relaxation oscillation cycles and those corresponding to exci-
tation loops �T ≈ TE. For the time trace shown in Fig. 3(b),
we have shaded the corresponding time intervals accord-
ingly. Panel (c) shows the corresponding variances σR,E for
each of the two separate peaks of the return time distribu-
tion, and panel (d) shows their relative size for varying noise
level D. One can observe that there is a prevalence of exci-
tation loops for intermediate values of the noise level D ≈
10−2. Above this value, the variances for each of the peaks
start to increase, indicating an increasing degradation of the
nonlinear response by noise. The excitation loops delay the

FIG. 2. Response of the relaxation oscillation to different levels of noise: (a)
D = 0.003, (b) D = 0.01, and (c) D = 0.03. Left panels: noisy trajectories in
the phase plane together with the deterministic relaxation oscillation orbit and
maximal canard. Top panels: corresponding time traces x(t) from the panels
above. Bottom panels: longer time traces indicating the prevalence of noise
induced small excitation loops for the middle noise level D = 0.01.

occurrence of the next spike and thus affect the mean spik-
ing rate of the system 〈R〉, measured as the average number
of large-amplitude oscillations per time. Figure 4 shows that
the spiking rate exhibits a non-monotone dependence with
increasing noise level D, where the minimum of 〈R〉 coincides
with the maximal fraction of small excitation loops shown in
Fig. 3(d).

Note that this effect is most pronounced for intermedi-
ate values ε ≈ 0.05 of the time-scale separation. This is due
to the fact that the duration of the excitation loop, given to
the leading order by the linearization at the unstable equilib-
rium, which is a weakly undamped center, scales like O(

√
ε).

Hence, the delaying effect on the spikes and the consequent
decrease of the spiking rate become small in the singular limit.

IV. EXCITATION EFFICIENCY AND DEGRADATION

The non-monotone dependence of the spiking rate 〈R〉(σ )

can be explained as the result of two competing effects of
the increasing noise: the increasing efficiency of the excita-
tion and the degradation of the nonlinear response. To study
this competition in more detail, we consider the return times
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FIG. 3. (a) Sampled return times �T
between subsequent crossings of the
Poincaré section (2) for different noise
levels. The two peaks in the distribu-
tions correspond to relaxation oscillations
�T ≈ TR (red) and noise-induced exci-
tation loops �T ≈ TE (blue). (b) Time
trace for D = 0.01 with respective time
intervals �T colored accordingly. [(c)
and (d)] Variances σR,E and relative size
nE/nR from the two separate peaks of the
return time distributions for varying noise
level.

�T̃ , associated to the Poincaré section (2) with x0 = −0.2.
In this case, the excitation loops do not lead to additional
crossing events and the corresponding return time �T̃ mea-
sures the round trip time of each relaxation oscillation together
with the included excitation loops. For small noise, the cor-
responding histograms in Fig. 5(a) show distributions with
well separated peaks centered around �T̃ ≈ TR + kTE, where
k ∈ {0, 1, 2, 3, . . . } counts the number of excitation loops
between two successive Poincaré events. We observe that for
D < 10−2 there is not only an increasing number of such
excitation loops, cf. Fig. 3(d) but also an increasing num-
ber of multiple successive excitation loops. This can be seen
from the corresponding probabilities of successive loops for
varying noise intensity D given in Fig. 5(b). It underlines
the increasing efficiency of the excitation process, driven by

FIG. 4. Non-monotone response to noise of a phase-sensitive excitable peri-
odic orbit: mean spiking rate 〈R〉 of the relaxation oscillations of (1) shows a
characteristic minimum at an intermediate noise level D ≈ 10−2.

noise in the subcritical range D < 10−2. Above this value, the
degradation effect takes over, which consists in the loss of cor-
relation between the number of included excitation loops and
the total duration of the corresponding relaxation oscillation
cycle.

In order to quantify the degradation effect, we have cal-
culated the noise-dependence of the correlation coefficient
δ between the number k of small loops the unit performs
between the two successive passages of the Poincaré cross-
section, and the first return time �T̃ being in the corre-
sponding interval [TR + (k − 1

2 )TE, TR + (k + 1
2 )TE]. Evalu-

ating numerically this correlation coefficient, we see the onset
of a strong decay above the critical noise level of D <≈
10−2, indicating the degradation of the nonlinear response, see
Fig. 5(c). Similar effects have been described in Refs. 29 and
30 as noise-induced linearization.

V. DISCUSSION AND OUTLOOK

It is important to remark that a periodic orbit emerging in
a transition from an excitable equilibrium, as it happens in the
FitzHugh-Nagumo system, does not necessarily inherit phase-
sensitive excitability from the excitability of the preceding
equilibrium. This can be seen, e.g., for the active rotator

θ̇ = 1 + b − sin θ + Dξ(t), θ ∈ R/2πZ, (3)

where a saddle-node infinite period (SNIPER) bifurcation
at b = 0 mediates a transition from excitable to oscillatory
behavior. However, the periodic solution at b = 0.02 shows
no phase-sensitive excitability, and the dependence of the
spiking rate on the noise level is monotone, cf. Fig. 6(a). On
the other hand, for the FitzHugh-Nagumo system with a noise
term

√
D/εξ(t) added to the fast variable x so to resemble the
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FIG. 5. (a) Histograms of first return
times �T̃ to a Poincaré section (2) with
x0 = −0.2. (b) Relative frequency of two
successive excitation loops. (c) Correla-
tion coefficient between the number of
excitation loops in a relaxation oscillation
cycle and its duration �T̃ .

action of synaptic noise,22 the excitable behavior and the non-
monotone dependence can be observed in a similar way, cf.
Figs. 4 and 6(b).

The presented concept of phase-sensitive excitability
establishes a natural extension of the classical concept of
excitability of equilibria to periodic orbits, offering a gen-
eral framework for describing certain nonlinear effects in
driven or interacting oscillatory systems. It resembles the
main properties of the classical case:

(i) nonlinear threshold-like response to perturbation impulses
and

(ii) non-monotone response to noisy inputs of increasing
amplitude.

The nature of the non-monotone dependence on the noise
level for phase-sensitive excitability in the regime of relax-
ation oscillations of the FitzHugh-Nagumo system is qual-
itatively distinct from the two classical cases concerning
the FitzHugh-Nagumo model where the rest state is given
by an excitable equilibrium or conforms to the regime of
subthreshold oscillations before the canard explosion (b >

bc ≈ 1 − ε/8). In both the classical examples, the excited
state conforms to a relaxation oscillation (spike), and the
applied noise affects the regularity of noise-induced oscil-
lations such that it becomes maximal for the optimal noise
intensity.17–20 The qualitative similarity between these two
cases is to be expected because the subthreshold oscilla-
tions become indistinguishable from an equilibrium in the

FIG. 6. (a) Monotone mean spiking rate 〈R〉 of
the active rotator (3). (b) Non-monotone mean
spiking rate of the relaxation oscillations of (1)
with I(t) = 0 and adding instead noise of varying
levels to the fast variable.
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singular limit ε → 0. As opposed to that, our scenario of
phase-sensitive excitability involves the regime of relaxation
oscillations as the rest state, the subthreshold oscillations con-
form to the excited state, and the applied noise affects the
mean spiking frequency such that it becomes minimal at an
intermediate noise level.

In the context of neuroscience, the resonant effect con-
sisting in a reduction of the spiking frequency of neural
oscillators within a certain range of intermediate noise levels
has been referred to as inverse stochastic resonance. Such an
inhibitory action of noise has been observed experimentally31

and has also been discussed in several model studies, con-
cerning the impact of external or intrinsic noise on single32–34

or coupled neurons.35,36 The effect has been suggested as a
potential paradigm for computational tasks that either require
reducing the neuronal spiking frequency without chemical
neuro-modulation or involve generating episodes of bursting
activity in neurons that are not endogenously bursting. The
generic mechanism behind the effect has typically been linked
to bistability of the underlying deterministic dynamics, which
exhibits coexistence between an equilibrium and a stable limit
cycle. For such a scenario, the noise induces a switching
between the corresponding metastable states, with the spik-
ing frequency decreasing at a certain range of intermediate
noise levels where the transition rate from the quasi-stationary
to oscillatory state becomes much smaller than the one in
the opposite direction. The noise-driven effect reported here
is based on a qualitatively distinct mechanism, because the
deterministic dynamics is monostable, and the excitations off
the limit cycle emerge due to phase-sensitive excitability of
the associated orbit, derived from the multi-scale structure of
the system.

Revisiting earlier work on coupled oscillator systems, one
can find instances where effects that could be explained as
a result of phase-sensitive excitability have been reported.
Indeed, some of the results in Ref. 37 about space-time pat-
terns in a coupled network of FitzHugh-Nagumo oscillators
seem to be based on the phase-sensitive excitability of the
relaxation oscillations. Also, the alternating behavior reported
in Ref. 38 could possibly be an effect of phase-sensitive
excitability. These examples may underline the importance of
the abstract concept as such, offering a general framework and
a unifying view for a variety of closely related phenomena.
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