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We provide detailed insights into a link between structural and optical disorder of resonant optical
structures, in particular, distributed Bragg reflectors (DBRs) and resonant microcavities (μCs). The
standard (targeted) DBR structures have periodic square-wave–like refractive-index profiles, and their
optical performance is determined by the refractive-index ratio of the two applied materials (n12 ¼ n1=n2,
n1 > n2) and the number of DBR periods (N). It is well known that its structural disorder strongly affects its
optical properties, but, despite that, this influence has not been quantitatively addressed in the literature. We
propose a precise quantitative definition for a structural disorder of a single DBR unit cell (disorder factor
DF), completing the set of DBR fundamental parameters (n12, N, DF). Then we expose the basis for the
effective refractive-index approximation (ERIA), showing that, as long as DBR optical properties are
concerned, the influence of increasing structural disorder (DF↑) is virtually identical to the influence of
decreasing refractive-index ratio (n12↓), with the latter influence being easily quantified. Making use of the
ERIA method, simple analytical formulas, which enable rapid insights into the reflectivity and stop-band
width of DBRs with different types of transient layers at the heterointerfaces, are derived and the results
validated, via both transfer-matrix simulations and direct experimental measurements of imperfect DBRs.
The insights of the ERIA method are then further applied on resonant μCs, providing a comprehensive link
between their structural disorder and subsequent deterioration of their quality (Q) factor.
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I. INTRODUCTION

Distributed Bragg reflectors (DBRs) are fundamental
building blocks of numerous optoelectronic devices, such
as resonant-cavity light-emitting diodes [1], vertical-cavity
surface-emitting lasers [2], polariton lasers [3], and semi-
conductor saturable absorber mirrors [4]. The requirements
to achieve DBR high peak reflectivity and a wide stop band
combine (i) a high refractive-index ratio between the two
employed materials n12 ¼ n1=n2ðn1 > n2Þ, (ii) a high
number of DBR periods N, and (iii) high structural quality,
that is, flat and abrupt DBR interfaces [5]. The combination
of materials with different structural and mechanical
properties often constrains the formation of flat and abrupt
interfaces resulting in the final structure deviation from the
targeted one. This issue (commonly referred to as structural
disorder) causes undesired photon scattering (commonly
referred to as optical or photonic disorder) leading to
deterioration of DBR optical performance.
While the influence of (i) refractive-index ratio and

(ii) number of periods on DBR optical performance is clear

(and easy to calculate), the influence of (iii) structural
disorder remains largely unaddressed in the literature. One
of the reasons for the last item is that there is no consensus
on a clear quantitative definition for DBR structural
disorder, thus impeding quantitative insights.
The origins of structural disorder of DBRs can be

roughly divided into two main groups: (i) random thickness
fluctuations, affecting interface flatness, and (ii) formation
of transient layers (TLs) at the DBR heterointerfaces
(intermixing), affecting interface abruptness [6]. To get
insights into optical properties of DBRs with or without
TLs at the interfaces, several methods have been reported in
the literature, such as transfer-matrix simulations (TMSs)
[5], coupled-mode theory [7,8], and the hyperbolic tangent
substitution technique [9]. Concerning the DBRs with TLs
at the interfaces, TMSs represent the most frequently
applied method. This method, via discretization of the
refractive index in the graded transient regions, determines
DBR optical properties (i.e., its peak reflectivity and stop-
band width). This approach, however, does not provide
comprehensive insights into the link between the DBR
structural disorder and its optical deterioration or a deeper
qualitative understanding of the calculated stop-band
parameters.

*Corresponding author.
gacevic@isom.upm.es

PHYSICAL REVIEW APPLIED 9, 064041 (2018)

2331-7019=18=9(6)=064041(18) 064041-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.9.064041&domain=pdf&date_stamp=2018-06-27
https://doi.org/10.1103/PhysRevApplied.9.064041
https://doi.org/10.1103/PhysRevApplied.9.064041
https://doi.org/10.1103/PhysRevApplied.9.064041
https://doi.org/10.1103/PhysRevApplied.9.064041


In this work, we propose a precise quantitative definition
of theDBRunit-cell structural disorder (disorder factorDF).
With this definition, we complete the set of quantitative
parameters which fully determine the DBR optical perfor-
mance:n12,N, andDF. Given aDBRwith a certain degree of
structural disorder (n12, N, DF > 0), we further show that
the effect of increase in structural disorder (DF↑) on DBR
optical properties is practically identical to the effect of a
decrease in refractive-index ratio (n12↓), with the latter
influence being easily quantified. This observation is the
essence of the effective refractive-index approximation
(ERIA) method and allows any imperfect DBR (n12 > 1,
N, DF > 0) with a nearly constant structural disorder
(DF ¼ const) to be substituted with its standard-DBR
counterpart (DBR’) with a perfect structure but a reduced
refractive-index ratio (i.e., n012 < n12, N0 ¼ N, D0

F ¼ 0).
Consequently, the ERIAmethod allows rapid calculations of
optical properties and a deeper qualitative understanding of
disordered DBRs. The results obtained by the method are
validated via both TMSs and direct experimental measure-
ments of imperfect DBRs.
DBRs are widely used in different resonant optical

devices, perhaps most noticeably in resonant microcavities
(μCs). Over the last half century, huge advances have been
made in the field of solid-state lighting, thanks mainly to
the development of a wide variety of direct-band-gap III-V
and II-VI materials. The potential of the technology has
been demonstrated by the commercialization of light-
emitting diodes and edge-emitting laser diodes in a wide
wavelength range (from ultraviolet to infrared) [10]. In
recent decades, significant efforts have been dedicated to
extend the field of edge-emitting devices to the field of
vertical-cavity ones. However, two important problems
arise when device design changes from an edge-emitting
to a vertical-cavity one.
The first problem is related to injection of electrical

current through usually thick DBRs which surround the
device active region. The conduction- and valence-band
profiles of standard (perfect) DBRs are often characterized
by high band offsets at the interfaces, which can fully block
the current flow through the structure. This problem is
particularly important in the case of vertical-cavity surface-
emitting laser structures, and, to surmount it, several groups
have reported that, with intentional grading of DBRs, i.e.,
the intentional introduction of TLs at their interfaces, the
electrical resistance of the vertical structure can be signifi-
cantly reduced [11–14]. This improvement, however, is at
the cost of reduced DBR reflectivity and, consequently,
a reduced quality (Q) factor of the resonant μC.
The second problem is related to Q-factor precise

control. Note that the Q factor directly affects properties
such as the spectral purity of resonant-cavity light-emitting
diodes [15], the threshold current of vertical-cavity surface-
emitting lasers [16], and the exciton-photon coupling of
polariton lasers [17]. The influence of cavity disorder on

dispersion in cavity resonant wavelength, cavity detuning,
and polariton broadening, as well as the cavityQ factor, has
been studied in different materials from III-V and II-VI
groups, with all studies confirming that cavity disorder has
a strong impact on each of these parameters [18–24]. In the
specific case of the Q-factor studies, several authors
reported that, with sufficiently small excitation spots
(a few microns in size), the impact of structural disorder
on measurement can be avoided, leading to experimentalQ
values in close agreement with the theoretical ones [19,21].
Despite that (and similar to the case of DBRs), the link
between the two remains unexplained.
In this article, the insights of the ERIA method are

further exploited to provide a comprehensive link between
the resonant μC structural disorder and the deterioration of
its Q factor. Obtained results are validated via TMSs of
resonant μCs containing DBRs with graded interfaces.

II. OPTICAL PROPERTIES OF DBRs

Before a detailed analysis of imperfect DBRs is given,
a brief explanation concerning a standard (perfect) DBR
design is given for clarity.

A. A standard DBR: Perfect synchronization
of reflected components

A standard DBR structure is designed in a way which
maximizes its reflectivity at a given (targeted) wavelength.
When monochromatic light with the targeted wavelength
hits the DBR structure perpendicularly, all reflected com-
ponents (created at each DBR interface) reflect back
“in phase.” The perfect synchronization of the reflected
components is the driving mechanism for the maximization
of the DBR reflectivity at this specific wavelength [see an
example of a GaN=AlN DBR structure in Fig. 1(a)], and it
relies on the following three rules:

(i) Each layer has a quarter-wavelength optical thickness.
The wave passage forward and backward through a
single DBR layer thus brings the total phase gain of π.

(iii) According to the Fresnel law, the refraction at
every odd interface (nGaN > nAlN) brings no phase
gain, whereas refraction at every even interface
(nAlN < nGaN) brings π phase gain.

(iii) According to the Fresnel law, there is no phase gain
due to wave transmission at the DBR interfaces.

The combination of (i)–(iii) allows for perfect synchro-
nization of all reflected components (it can be easily shown
that the components reflected after multiple reflections also
satisfy the perfect synchronization condition).
The main optical properties of a DBR are summarized in

three stop-band parameters: stop-band position (targeted
wavelength, λ), stop-band height (peak reflectivity, R), and
stop-band width (Δλ=λ). In the case of a standard DBR,
these three parameters can be calculated making use of the
following formulas:
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λ ¼ 4n1d1 ¼ 4n2d2; ð1Þ

R ¼
�
1 − ns

n0
n2N12

1þ ns
n0
n2N12

�2

; n12 ¼ n1=n2; ð2Þ

Δλ
λ

¼ 4

π
sin−1

���� n12 − 1

n12 þ 1

����; n12 ¼ n1=n2; ð3Þ

where n1 and n2 (d1 and d2) are the first and second quarter-
wave layer refractive indices (thicknesses), respectively
(corresponding to the GaN and AlN layers in Fig. 1,
respectively), n0 and ns are the surrounding media refrac-
tive indices (commonly air and substrate, respectively), n12
is the refractive-index ratio (n1=n2), and N is the number of
DBR periods (stacks) [5]. Note that the stop-band height
(peak reflectivity) of a DBR placed between two media
with known refractive indices (n0 and ns) is a two-
parameter function (a function of refractive-index ratio
n12 and the number of periods N). Concerning the formula

for the stop-band width, it, strictly speaking, holds for
DBRs with an infinite number of periods (N ¼ ∞);
however, it is commonly used to calculate the stop-band
width of DBRs with an arbitrary number of periods since it
is a very good approximation. Therefore, the stop-band
width is a one-parameter function, depending solely on the
refractive-index ratio n12.

B. An imperfect DBR: Desynchronization
of reflected components

Real DBRs deviate (slightly or significantly) from
their targeted design. This deviation is commonly referred
to as the structural disorder. Note that Eqs. (2) and (3)
express the peak reflectivity and stop-band width of perfect
DBRs. The equations take into consideration only the
refractive-index ratio (n12) and the number of DBR
periods (N), but they do not account for DBR structural
disorder, which may have a significant impact on its optical
performance.

FIG. 1. (a) Perfect synchroniza-
tion of reflected components of an
incident monochromatic light with
the targeted wavelength λ. Perfect
synchronization is achieved via
DBR design, taking care of
the phase gain due to wave pro-
pagation, reflection, and trans-
mission. Fresnel coefficients for
perpendicular reflection (r) and
transmission (t) are shown, for
clarity. (b) Components reflected
across one unit cell of an ideal
GaN=AlN DBR and their corre-
sponding phasors. (c) Components
reflected across one unit cell of
a nonideal GaN=AlN DBR with
homogeneous transient layers at
the interfaces and their correspond-
ing phasors. Phase thicknesses of
the transient layers are designated,
for clarity. (b) and (c) demonstrate
that the origin of decrease in peak
reflectivity in the latter structure is
desynchronization of the reflected
components [25].
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As previously commented, the main origin of structural
disorder is the deterioration of DBR interfaces, in terms of
either flatness or abruptness [6]. The interface deterioration
leads to a “weakening” of the resonant condition resulting
in the creation of reflected components which are no longer
perfectly synchronized. This desynchronization affects the
DBR optical performance, reducing its peak reflectivity and
stop-band width; the stop-band position (λ), on the other
hand, remains (nearly) unaffected [25].
To account for the impact of structural disorder on DBR

peak reflectivity and stop-band width, a clear quantitative
definition of it is necessary first.

1. Structural disorder of a DBR unit cell:
A quantitative approach

Let us suppose that, due to technological limitations
the fabrication of a DBR, which is designed as shown in
Fig. 1(b) (standard DBR) results in a structure with homo-
geneous TLs at the interfaces, as shown in Fig. 1(c)
(imperfect DBR).
Next, let us assume (for simplicity) that the refractive-

index variation (Δn ¼ nmax − nmin) along the DBR is
relatively small, i.e., ½ðnmax − nminÞ=ðnmax þ nminÞ� ≪ 1.
Bearing this limitation in mind, we approximate the
average refractive index n̄ of a DBR simply as n̄ ¼
½ðnmax þ nminÞ=2�. A small variation of refractive index
along the DBR structure further implies that

(i) the intensity of the wave vector k is nearly constant
along the DBR structure, k ¼ ½ð2πn̄Þ=λ�.

Next, according to the Fresnel law, the reflection
coefficient (r) at the interface is r¼½ðn1−n2Þ=ðn1þn2Þ�
and is much smaller than 1 (for example, for the GaN=AlN
interface, this value is r ≈ 0.1). This result has two
important consequences. In a first-approximation analysis
(see Fig. 1 for clarity),
(ii) the contribution of multiple reflections to the

total reflectivity can be neglected (since r ≫ r2 ≫
r3 ≫ …), and

(iii) the incident-wave intensity is nearly constant along
one DBR unit cell [the reflected intensity is propor-
tional to r2ðr2 ≈ 0.01Þ, implying that approximately
99% of the incident power is transmitted across one
GaN=AlN interface].

According to the adopted approximations (i)–(iii), in the
case of the targeted (perfect) DBR, the wave reflected
across one unit cell consists of two major (directly
reflected) components [see the sketch and the phasor
diagram in Fig. 1(b)]. These two reflected components
have the same intensity (r) and phase (π), and they yield
total reflection coefficient r0, which we refer to as the “unit-
cell optical response”: r0 ¼ −2r [Fig. 1(b); the negative
sign is due to the phase].
In the case of the resulting (imperfect) DBR with homo-

geneous TLs [with refractive indices nTL¼½ðn1þn2Þ=2� and
“phase thicknesses” of α and β, respectively; see Fig. 1(c)],

the reflected wave consists of four (major) directly reflected
components. The four reflected components have nearly the
same intensity [approximately equal to r=2; see the Fresnel
coefficients in Fig. 1(a) and the depiction in Fig. 1(c)] but
different phases, yielding a total reflection coefficient, i.e.,
a unit-cell optical response of r1 ¼ −rðcos αþ cos βÞ [see
Fig. 1(c)] [25]. As can be seen when comparing the two
phasor diagrams [Figs. 1(b) and 1(c)], the resulting reflected
wave in the latter case has the same phase (π) but an
attenuated intensity. Bearing in mind that the latter (imper-
fect) structure is an undesired result when trying to fabricate
the former (perfect) structure, this undesired attenuation can
be used as a quantitative measure of the DBR unit-cell
structural ideality, or simply as its ideality factor (IF):

IF ¼ r1
r0

¼ 1

2
ðcosαþ cos βÞ: ð4Þ

Similarly, for a quantitative measure of the structural
disorder of the resulting DBR unit cell, i.e., its disorder
factor (DF), the following definition can be used:

DF ¼ r0 − r1
r0 þ r1

: ð5Þ

It is easy to show that

DF ¼ 1 − IF
1þ IF

ð6Þ

and that an ideal unit cell [that of the perfect DBR, Fig. 1(b)],
has the ideality factor 1 (IF ¼ 1) and disorder factor zero
(DF ¼ 0). In general, 1 ≥ IF > 0, while 0 ≤ DF < 1.

2. Effective refractive-index approximation: A DBR
with homogeneous transient layers (discrete case)

Note that the formation of TLs affects only the intensity
(not the phase) of the reflectedwave [Fig. 1(c)]; in that sense,
the same optical response would be obtained on a unit cell
with a reduced refractive-index ratio n012ðn012<n12Þ. To get
insight into the optical properties of the resulting imperfect
DBR (with structural disorder), we can, therefore, approxi-
mate the resulting structure to a standard DBR (zero
structural disorder) with the same number of periods (N)
but a reduced refractive-index ratio n012 by keeping the
optical responses of the two DBR unit cells identical; in
other words, the response of one unit cell of the DBR with
homogeneous TLs (r1) should match that of its standard
DBR counterpart (DBR0, r00): r1 ¼ r00. It is easy to show that
this reduced refractive-index ratio n012, whichwewill refer to
as the effective refractive-index ratio of the DBR under
study, is
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n012 ¼
ð1þ n12Þ − IFð1 − n12Þ
ð1þ n12Þ þ IFð1 − n12Þ

¼ n12
1þDF=n12
1þDFn12

: ð7Þ

Since the unit-cell optical thickness should be preserved,
the following relation holds, n01d1 þ n02d2 ¼ n1d1 þ n2d2,
which, combined with Eqs. (1) and (7), yields refractive
indices of the equivalent standard-DBR counterpart:

n01 ¼ n1
2

1þ 1þDF
n1
n2

1þDF
n2
n1

; n02 ¼ n2
2

1þ 1þDF
n2
n1

1þDF
n1
n2

; ð8Þ

expressed as a function of the refractive indices and
disorder factor of the DBR under study [25]. Note that,
by applying the ERIAmethod, the original four-layer DBR,
with parameters n1, n2, and DF > 0, is substituted for its
standard-DBR counterpart, with parameters n01, n02, and
D0

F ¼ 0. The two structures have practically identical
optical properties (as confirmed in Sec. III). Thus, the
relevant optical properties of the imperfect DBR under
study can be directly calculated by making use of its
standard-DBR counterpart, making use first of Eq. (7) (to
find the effective refractive-index ratio n012) and then of
Eqs. (2) and (3) (describing perfect DBRs):

R¼

0
B@1− ns

n0
n2N12
�
1þDF=n12
1þDFn12

�
2N

1− ns
n0
n2N12
�
1þDF=n12
1þDFn12

�
2N

1
CA

2

; n12 ¼ n1=n2; ð9Þ

Δλ
λ

¼ 4

π
sin−1

���� 1 −DF

1þDF

n12 − 1

n12 þ 1

����
¼ 4

π
sin−1

����IF n12 − 1

n12 þ 1

����; n12 ¼ n1=n2: ð10Þ

Equations (9) and (10) calculate the peak reflectivity and
stop-band width of any imperfect DBR with a (nearly)
constant structural disorder, making use of the complete set
of its fundamental parameters (n12, N, DF).

3. Effective refractive-index approximation: A DBR
with graded transient layers (continuous case)

The previous results can be generalized to DBRs with
arbitrarily graded interfaces (i.e., DBRs containing TLs
with a continuously changing refractive index) by discretiz-
ing the refractive index down to the monolayer scale.
Assuming that M is the total number of monolayers
contained in one DBR unit cell, that nðmÞ is the refractive
index of the mth monolayer, and that I0 is the intensity of
the incident wave (which remains nearly constant along one
DBR period), we can calculate the intensity of the wave
reflected across one DBR unit cell Ir1:

Ir1 ¼
XM−1

m¼0

nðm − 1Þ − nðmÞ
nðm − 1Þ þ nðmÞ e

2iðm=MÞπI0: ð11aÞ

Bearing the adopted approximations in mind, consider-
ing the refractive index as a function of the incident-wave
phase n ¼ nðφÞ, the sum of discrete components can be
written in a more convenient integral form leading to the
DBR unit-cell optical response

r1 ¼
Ir1
I0

¼
Z

π

0

−n0ðφÞdφ
2n̄

e2iφ; ð11bÞ

where n0ðφÞ denotes the first derivative of the func-
tion nðφÞ.
Recalling, further, that a unit cell of a standard

DBR, with refractive-index ratio n1=n2 has the optical
response r0 ¼ ðIr0=I0Þ ¼ −2r ≈ −½ðn1 − n2Þ=n̄�, we
arrive at the unit-cell optical response attenuation, i.e.,
the ideality factor of the resulting structure in the case of
graded TLs:

IF ¼ r1
r0

¼ 1

2ðn1 − n2Þ
Z

π

0

n0ðφÞe2iφdφ: ð12Þ

Once the ideality and disorder factors are known, the set
of relevant DBR parameters is closed (n12, N, and DF),
allowing calculation of its peak reflectivity and stop-band
width via Eqs. (9) and (10), respectively.
A DBR unit-cell ideality factor is a function of the DBR

TL properties, i.e., their thicknesses and their refractive-
index profiles. Similar to the quarter-wave-layer thickness
(λ=4), which can be expressed in terms of the targeted
wavelength phase change upon propagation (π=2), both TL
thicknesses (α and β) and their refractive-index profile
[nðφÞ] can be represented as a function of phase (which is
convenient for mathematical analysis). Table I depicts and
represents analytically refractive-index profiles of DBRs
with no TLs [standard (ST) DBR], and with homogeneous
(H), linearly graded (L), sine-wave graded (SW), bipar-
abolically graded (BP), uniparabolically graded (UP), and
interdiffused (ID) TLs [9,11–14,26]. The presence of TLs
(H, L, SW, BP, UP, and ID) attenuates the optical response
of a single DBR unit cell, with respect to that of the STone.
The attenuation, i.e., the resulting unit-cell ideality factor is
calculated in each of the mentioned cases as a function of
TL thicknesses (α and β) and the specific refractive-index
profile [nðφÞ] via Eq. (12) (see Appendix A for details).
Finally, for quantitative comparison, numerical examples
for specific TL thicknesses α ¼ β ¼ 60° ¼ π=3 are also
given, for clarity.

III. VALIDATION OF THE ERIA METHOD

A. Theoretical validation

For theoretical validation of the ERIA method, a 20-
period GaN=AlN DBR, with refractive-index ratios of
2.50=2.05, centered at 405 nm, is considered. The targeted
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structure thus has 20 stacks of 40.5 nm and 49.4 nm
GaN=AlN layers. We further assume that, due to interface
intermixing, different types of TLs are formed at the
interfaces (we note that the TLs can also be intentionally
grown), resulting in (i) homogeneous, (ii) linear, (iii) sine-
wave, and (iv) interdiffused profiles, as presented in Table I.
For simulations, the phase thicknesses of the transient

layers are set to α ¼ β ¼ 60° ¼ π=3 for structures (i)–(iii).
For structure (iv) the diffusion length is set to LD ¼ 6 nm.
The targeted refractive-index profile and the resulting one,
for each of the structures (i)–(iv), are shown on the left-
hand side of Figs. 2(a)–2(d).
The reflectivity of each of the structures (i)–(iv) is

determined by the TMSs [5]. Then the properties of their

FIG. 2. Theoretical validation
of the ERIA method. A 20-period
GaN=AlN DBR, with refractive-
index ratio of 2.50 = 2.05 centered
at 405 nm, is considered a tar-
geted structure. The resulting
(real) structures have transient
layers at the interfaces in the
(a) homogeneous, (b) linear,
(c) sine-wave, or (d) interdiffused
form (left panels; only the first six
periods are shown, for clarity).
The right panels compare reflec-
tivity profiles of the real struc-
tures with those obtained on their
standard-DBR counterparts deter-
mined via the ERIA method.
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equivalent standard DBRs are found by making use of the
ERIA method, and the reflectivity profile of these DBRs is
calculated by the TMSs as well. The two reflectivity
profiles are compared on the right-hand side of each panel
in Figs. 2(a)–2(d). As can be seen, the two reflectivity
profiles are in virtually perfect agreement, thus validating
that the ERIA method is convenient for an estimation of
both peak reflectivity and stop-band width of imperfect (but
highly periodic) DBR structures.

B. Experimental validation

Figure 3(a) represents the results obtained by measuring
the reflectivity of a 20-period GaN=AlN DBR, centered at
405 nm, grown by plasma-assisted molecular beam epitaxy
in a Riber Compact 21 reactor. The targeted structure has
20 stacks of 40.5 nm and 49.4 nm GaN=AlN layers (for
growth details, see Gačević et al. [25]). The reflectivity
spectra of obtained DBRs are measured at room temper-
ature at nearly normal incidence (approximately equal to
8°) with a commercial JASCO V-630 spectrophotometer.

TEM images of the resulting DBR reveal a highly
periodic structure [Fig. 3(b)] [25]. However, strong inter-
mixing at the DBR interfaces is observed, resulting in thick
and nearly homogeneous (Al,Ga)N transient layers. The TL
thicknesses are estimated at about 50 and 10 nm, respec-
tively, with their phase thicknesses thus being approxi-
mately 100° and 20° [Fig. 3(b)]. The periodic formation of
TL “weakens” the resonant condition, leading to the
creation of reflected components which are no longer
perfectly synchronized. Consequently, DBR optical proper-
ties deteriorate, as previously explained and experimentally
observed in Fig. 3(a). The reflectivity profile of the
resulting structure has a common “DBR-like” shape, but,
however, significantly reduced stop-band parameters
(height and width) with respect to the expected ones
[see the nominal and measured reflectivity in Fig. 3(a)].
Making use of the phasor diagrams of the nominal and

resulting structures [Fig. 3(c)] and previously derived
formulas, the ideality factor of the structure is estimated
at IF ≈ 0.38 (DF ≈ 0.45). Making use of the ERIA method,
the resulting DBR with the fundamental parameters
n12 ¼ 1.219, N ¼ 20, and DF ¼ 0.45 can be substituted
for its standard-DBR counterpart (DBR’) with the param-
eters n012 ¼ 1.077, N0 ¼ 20, and D0

F ¼ 0.
Figure 3(a) shows the simulated reflectivity profile of the

equivalent standard-DBR counterpart, with the parameters
as calculated using the ERIA method. As can be seen, the
result obtained via ERIA modeling fits very well the
experimental reflectivity measurement, particularly con-
cerning the stop-band height and width of the measured
DBR and its simulated standard-DBR counterpart. It is
worth noticing that the differences in the “short-wavelength”
lateral fringes of the two structures arise from the absorption
onset of theGaN layerswhereas the differences in the “long-
wavelength” lateral fringes are due to the “second-order
Fabry-Perot reflectivity modulation” which arises at the
GaN/sapphire interface. Neither of the two effects is
considered in theoretical simulations, for simplicity.

IV. ERIA AS A LINK BETWEEN STRUCTURAL
DISORDER AND Q-FACTOR DETERIORATION

OF RESONANT μCs

Before the ERIA method is applied to imperfect μCs,
a brief summary of the μC Q factor is given, for clarity.

A. Q factor of resonant μCs

The Q factor of an arbitrary resonator is defined as the
total stored energy divided by the energy lost per 1 rad of
the oscillating cycle. In the case of optical cavities, the total
energy is directly proportional to the number of stored
photons, with the Q factor thus being 2π times the inverse
of the fraction of bouncing photons lost per full oscillating
cycle. The origins of losses are leaks (L), occurring through
the surrounding mirrors, and absorption (A), originating

FIG. 3. (a) Reflectivity profile obtained from measurement and
simulations: a nominal 20-period GaN=AlN DBR targeted at
405 nm and an equivalent standard-DBR counterpart determined
by the ERIA method. (b) TEM image of the DBR cross section
revealing strong intermixing at DBR interfaces. (c),(d) Sketches
of the nominal and actual structures with their phasor diagrams
according to the ERIA method [25].
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from the μC layers. Consequently, the expected Q factor
can be decomposed into two contributing terms
Q−1 ¼ Q−1

L þQ−1
A , which are related to their correspond-

ing losses in the following way: L ¼ 2πQ−1
L and A ¼

2πQ−1
A [21]. In the further analysis, only an empty μC is

addressed. The lack of active region (most commonly
realized in the form of quantum wells) reduces the amount
of absorbed photons to a virtually zero value (A ≈ 0 and
QA ≈∞), yielding Q−1 ¼ Q−1

L .
Structural imperfections of the resonant μCs, such as

layer intermixing and thickness variations, weaken the
cavity resonant condition, affecting the synchronization
of photons (otherwise perfectly synchronized) bouncing
back and forth through the cavity medium. This desynch-
ronization enhances photon leaks through the surrounding
mirrors, leading to the subsequent deterioration of the Q
value. These additionally leaked photons are a direct
consequence of undesired structural disorder.
For practical applications, planar μCs with high Q

factors are usually required. To achieve that, resonant
cavity is sandwiched between two highly reflective
DBRs, their targeted reflectivity (R) normally being
approximately in the 0.99 range. For a comprehensive
insight into a link between μC structural disorders and the
consequent Q factor, a detailed understanding of the
correlation between the structural and the optical disorder
of high-reflectivity DBRs is first required. In the following
section, this issue is addressed in detail.

B. A link between structural and optical disorder
of high-reflectivity DBRs

The DBR reflectivity (R) quantifies the fraction of
reflected power, whereas DBR transmittivity (T) quantifies
the fraction of transmitted power (both vs total incident
power and at the targeted wavelength λ). The sum of the
two parameters is equal to unity, Rþ T ¼ 1, as long as
DBR absorption is neglected (as in the present case).
Switching to the corpuscular nature of light, the two
parameters directly determine the fraction of reflected to
transmitted photons on a DBR structure (at the targeted
wavelength λ). Bearing, further, in mind that, when dealing
with a high-reflectivity DBR (R ≈ 1, i.e., T ≪ 1), the
following holds: ðn0=nsÞ½1=ðn2N12 Þ� ≪ 1, allowing for fur-
ther simplifications of reflectivity formula, given in Eq. (2)
[the binomial approximation ð1þ xÞa ≈ 1þ ax is used,
where jxj ≪ 1 and a is an arbitrary real number]:

R ¼
 
1 − n0

ns
1

n2N
12

1þ n0
ns

1
n2N
12

!
2

≈
�
1 − 4

n0
ns

1

n2N12

�
; ð13Þ

i.e.,

T ≈ 4
n0
ns

1

n2N12
: ð14Þ

Structural imperfections of the resulting DBR weaken
the resonant condition allowing additional (undesired)
photon leaks through the structure. Substituting the result-
ing DBR (n12, N, DF) for its standard-DBR counterpart
DBR’ (n012, N

0 ¼ N, D0
F ¼ 0), the undesired leaks D (D

stands for disorder) can be easily quantified:

D ¼ T 0 − T ≈ 4
n0
ns

�
1

n02N12

− 1

n2N12

�

¼ 4
n0
ns

1

n2N12

��
1þDFn12
1þ DF

n12

�
2N − 1

	
; ð15Þ

where T stands for transmission through the targeted DBR
and T 0 stands for transmission through the resulting
(imperfect) DBR. Finally, the fraction of undesired to
desired photon leak through a highly reflective DBR is
given on the left-hand side of the equation,

D
T
¼
��

1þDFn12
1þ DF

n12

�
2N − 1

	
≈ 2NDF

�
n12 − 1

n12
−DF

�
;

ð16Þ

whereas its further simplified form (making use of the
binomial approximation again) is given on the right-hand
side. This simplified form holds for high-reflectivity DBRs
(T ≪ 1) with, in addition, relatively low structural disorder
(DF ≪ 1). Note that Eq. (16) relates the optical disorder of
the entire optical resonator—in this case, high-reflectivity
DBR—to a structural disorder of its fundamental building
block, i.e., its unit cell. It shows that disorder has a
cumulative impact on the undesired to desired photon leak
ratio (D=T). In the case of structures with a relatively low
unit-cell disorder, the D=T ratio increases nearly linearly
with an increasing number of periods.

C. A link between resonant μC structural disorder
and its Q factor

In a standard planar μC, photons are stored in its middle
part (in the resonant cavity itself) and leak through both the
top and bottom mirrors (the following analysis addresses
photon losses at the targeted wavelength λ). As previously
stated, the Q factor of an optical oscillator is 2π times
the inverse of the fraction of bouncing photons lost per
oscillating cycle: L ¼ 2πQ−1 (we remind the reader that
photon losses due to absorption are neglected in the present
case). In the specific case of planar μCs, the fraction of
photons lost per oscillating cycle can also be expressed as the
ratio between the fraction of photons leaked through
the surrounding mirrors over one “full cavity cycle,”
ðT þDÞtop þ ðT þDÞbottom, and the number of performed
field oscillations during this cycle: q (note that the photons
bounce back and forth through theguidingmedium,with one
full cavity cycle consisting of a photon entire back-and-forth
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passage through the guiding medium). Combining the
previous equations,we arrive at the equationwhich expresses
the Q factor as a function of the photon leaks (both desired
and undesired) and the resonant cavity length q:

2πQ−1 ¼ L ¼ ðT þDÞbottom þ ðT þDÞtop
q

: ð17Þ

We assume that the resonant cavity has a nominal optical
thickness of q0λ (with q0 being an integer), denoting it
simply as q0. Concerning the surrounding mirrors, we
assume that they are characterized with the following
parameters: n1, n2, N, and DF, where n1, n2, and N denote
the DBR nominal parameters, i.e., the refractive indices
(n1 > n2) and the number of periods, respectively, and DF
denotes the disorder of the resulting DBR unit cells upon
the μC fabrication.
In planar μCs, the photons bounce back and forth

through the guiding medium. The back-and-forth bouncing
is due to photon reflection at some of the surrounding
DBRs’ interfaces. The photons penetrate, to some extent,
into surrounding DBRs, thus increasing the resonant-cavity
optical thickness from its nominal value, q0, to its effective
q value.
In the nominal (perfect) μC, the effective resonant-cavity

thickness is estimated as [27]

q ≈ q0 þ
�

n12
ðn12 þ 1Þðn12 − 1Þ

�
bottom

þ
�

n12
ðn12 þ 1Þðn12 − 1Þ

�
top
: ð18Þ

Similarly, in the nominal structure, there are only desired
photon losses TðD ¼ 0Þ, which amount to

Tbottom þ T top ≈
�
4
n0
ns

1

n2N12

�
bottom

þ
�
4
n0
ns

1

n2N12

�
top

: ð19Þ

The combination of Eqs. (18) and (19) allows us to
estimate the nominal μC Q factor:

2πQ−1 ≈

�
4 n0
ns

1
n2N
12

�
bottom

þ
�
4 n0
ns

1
n2N
12

�
top

q0 þ
�

n12
ðn12þ1Þðn12−1Þ

�
bottom

þ
�

n12
ðn12þ1Þðn12−1Þ

�
top

:

ð20Þ

In the resulting (imperfect) μC, DBR unit cells have
nonzero disorder (DF > 0), i.e., the DBR effective refrac-
tive-index ratio is reduced with respect to the nominal one:
n012 < n12. The disorder weakens the resonant condition,
allowing (undesired) photon leaks through the surrounding
mirrors. It also allows a somewhat deeper penetration of the
bouncing photons into the surrounding mirrors. It is worth
noticing that the influence of disorder on these two terms is
very different. While the former increase (undesired photon
leaks) can be very significant, the latter increase (effective
cavity length) is normally only very slight; the combination
of the two may lead to, in total, a substantial Q-factor
decrease.
To estimate the actual Q factor (Q0) of the resulting

(imperfect) μC, the ERIA method can be applied to the
surrounding mirrors. For that, the nominal refractive-index
ratios n12 of the surrounding mirrors are substituted with
the effective ones n012:

2πQ0−1 ≈

�
4 n0
ns

1
n02N

12

�
bottom

þ
�
4 n0
ns

1
n02N

12

�
top
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�
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12

ðn0
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þ1Þðn0

12
−1Þ
�
bottom

þ
�

n0
12

ðn0
12
þ1Þðn0

12
−1Þ
�
top

:

ð21Þ

Similarly, making use of Eq. (7), the Q factor of the
resulting μC is expressed only as a function of the cavity
length (q0) and the fundamental parameters of the sur-
rounding DBRs (n12, N, DF):

2πQ0−1 ≈

h
4 n0
ns

�
1
n12

1þDFn12
1þDF

n12

�
2N
i
bottom

þ
h
4 n0
ns

�
1
n12

1þDFn12
1þDF

n12

�
2N
i
top

q0 þ
�

ðn12þDFÞð1þDFn12Þ
ðn12þ1Þðn12−1Þð1−D2

FÞ
�
bottom

þ
�

ðn12þDFÞð1þDFn12Þ
ðn12þ1Þðn12−1Þð1−D2

FÞ
�
top

: ð22Þ

Finally, it is worth noticing that, when dealing with μCs with a relatively low disorder (DF ≪ 1), the binomial
approximation can be further applied:

2πQ0−1 ≈
4 n0
ns

1
n2N
12

h
1þ 2NDF

�
n12 − 1

n12

�i
bottom

þ 4 n0
ns

1
n2N
12

h
1þ 2NDF

�
n12 − 1

n12

�i
top

q0 þ
�
n12þDFð1þn2

12
Þ

ðn12þ1Þðn12−1Þ
�
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þ
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n12þDFð1þn2
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Þ
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�
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: ð23Þ
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A comparison of Eqs. (20) and (23) clearly reveals (and
quantifies) the influence of structural unit-cell disorder on
final Q-factor deterioration. More precisely, it predicts that,
despite low disorder (DF ≪ 1), the increase in photon leaks
can be significant [see the numerator in Eq. (23)] since the
impact of unit-cell disorder on it is cumulative; the disorder
is multiplied by the number of DBR periods, which is
typically large for high-Q-factor planar μCs. On the other
hand, it predicts only a very slight increase in the effective
cavity length [see the denominator in Eq. (23)] since the
impact of unit-cell disorder on it is not cumulative. In this
case, the disorder is multiplied by a constant ð1þ n212Þ,
which is typically in the 2–4 range.

D. Theoretical validation of formulas relating μC
disorder and its Q factor

For the theoretical validation of the ERIA method
applied on imperfect μCs, a μC consisting of a 3λ resonant
GaN cavity sandwiched between two GaN=AlN DBRs,
centered at λ ¼ 405 nm and fabricated on a GaN template,
is chosen. The bottom (top) DBRs both have 20 (20)
periods, and their nominal refractive-index ratio is
2.50=2.05. We suppose that the GaN=AlN interfaces are
smeared, creating linearly graded transient layers. The
phase thicknesses of all transient layers are set at
α ¼ β ¼ 60° ¼ π=3. The refractive-index profiles of the
targeted and the resulting structure are shown in Fig. 4(a)
(only the resonant cavity with the three surrounding DBR
periods are shown, for clarity).

Figure 4(b) compares the reflectivity profile of the “real”
structure [as shown in Fig. 4(a)] to that obtained on the
equivalent μC, the parameters of which have been deter-
mined via the ERIA method. The equivalent μC consists of
a 3λ GaN resonant cavity, sandwiched between two
standard DBRs with effective refractive-index ratios of
2.457/2.085 (see the linearly graded transient layers in
Table I, for clarity). The reflectivity profiles of the real
structure and that obtained for the ERIA-equivalent struc-
ture are in virtually perfect agreement. The only relevant
difference concerns a slight shift of the resonant dip
position. In the present case, the resonant wavelength is
set at 405 nm, and the resonant dip redshifts 0.78 nm (less
than 0.2%), when the ERIA method is applied [28]. The dip
shape, which is tightly related to the resonant cavity Q
factor, is closely preserved [see Fig. 4(c)].
To estimate the accuracy of the ERIA method in

determining the Q factor of disordered μCs, we compare
results obtained for the real μC with those obtained on its
equivalent μC, as determined by the ERIA method. Table II
summarizes Q-factor values (for the previously described
μC with linearly graded transient layers) when the number
of bottom (top) DBR periods vary from 10 (10) to 40 (40).
Column A makes direct use of Eq. (22) applied on the
ERIA-equivalent μC, the parameters of which can be found
in Table I (both the bottom and top ERIA-equivalent DBRs
have n1 ¼ 2.457, n2 ¼ 2.085, n12 ¼ 1.178, IF ¼ 0.827,
DF ¼ 0.095, and N ¼ 10; 15;…; 40). The Q factor of the
cavity is numerically determined using two additional
methods. In the first method, we consider the angular

FIG. 4. (a) Refractive-index
profiles of a 3λ resonant cavity
sandwiched between two 20-
period GaN=AlN DBRs. Both
targeted and resulting (real)
structures (obtained when lin-
early graded transient layers are
formed at the DBR heterointer-
faces) are shown. (b) Reflectiv-
ity of the real μC and its ERIA
equivalent μC, both assessed
via TMSs. (c) The two reflec-
tivity dips in detail. (d) Com-
parison of Q factors estimated
by the methods specified in
Table II.
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frequency ω of the propagating wave to be a complex
variable ω ¼ ωr þ iωi, and we find it to be a root of the
(2,2) element of the transfer matrix. The Q factor of both
real μC and its ERIA-equivalent μC is then calculated as
Q ¼ ½ðωrÞ=ð2ωiÞ� (see Appendix B for details) and repre-
sented in columns B and C of Table II. In the second
method, we calculate the dependence of the reflectivity on
the wavelength using the TMS and estimate the Q factor
from full width at half maximum Δλ of the reflectivity dip
[see, for example, Fig. 4(b)] at the central wavelength λ as
Q ¼ ½λ=ðΔλÞ�. The Q factors of both the real μC and its
ERIA-equivalent μC are represented in columnsD and E of
Table II. The results from Table II are also graphically
featured in Fig. 4(d). They show that the ERIA method can
be very successfully applied for the Q-factor determination
of the disordered μCs. In particular, we emphasize that the
Q factor can be directly assessed via Eq. (22).

V. DISCUSSION

A. Influence of disorder on peak reflectivity,
stop-band width and Q factor

In the previous sections, the most relevant parameters of
the planar optical resonators are analytically linked to unit-
cell disorder. These results are further graphically presented
in Fig. 5.
Figure 5(a) shows the decreases in peak reflectivity and

stop-band width of a 20-period GaN=AlN DBR as a
function of increasing unit-cell disorder. Note that, in the
case of high-reflectivity DBRs, the disorder more strongly
affects the stop-band width than the DBR peak reflectivity
itself. The background reason for this trend is that, in the
ideal structure, the transmission of photons through theDBR
is exceptionally low (in the previous case it is estimated at
T ≈ 6 × 10−4) and, despite a dramatic (relative) increase in
undesired photon leaks through the DBR structure, the
portion of leaked photons becomes comparable to the
portion of reflected photons only at relatively high disorder

values. Note that the undesired photon leaks increase as a
polynomial function, with its degree being 2N, i.e., 40 in the
present case [see Eq. (15)]. The stop-band width, on the
other hand, is directly proportional to the unit-cell ideality
factor, with the stop-band deterioration thus being nearly
linear with increasing unit-cell disorder [see Eq. (10)].
Figure 5(b) summarizes the Q-factor deterioration of a

3λ resonant GaN cavity, sandwiched between two 20-
period GaN=AlN DBRs, as a function of increasing
disorder making use of Eqs. (22) and (23). Note first that
the binomial approximation used in Eq. (23) yields a good
Q-factor estimation for low unit-cell disorder (DF < 0.1),
as expected. Since the Q factor is directly linked to the
portion of undesirably leaked photons, its deterioration
with increasing disorder is very fast. For quantitative
comparison, at DF ¼ 0.1, the corresponding DBR peak
reflectivity and stop-band width [Fig. 5(a)] decrease
approximately 0.2% and about 10%, respectively, whereas
the corresponding Q factor [Fig. 5(b)] decreases approx-
imately 73%, respectively.
As commented, the Q-factor deterioration is tightly

linked to the portion of undesirably leaked photons, and
this portion is further directly linked to the number of
DBRs periods used to “sandwich” the resonant cavity. To
demonstrate this trend, Q factors of a 3λ resonant GaN
cavity sandwiched between ideal (DF ¼ 0) and disordered
(DF ¼ 0.1) GaN=AlN DBRs with a varying number of
periods are also depicted in Fig. 5(c) [the Q values are
estimated via Eq. (22)]. This graph confirms that the same
disorder (DF ¼ 0.1) has a much stronger impact on
deterioration of a resonant cavity with a higher number
of periods. The quality factor of a disordered (Q0) vs a
targeted (Q) cavity (DF ¼ 0.1 vs 0) falls toQ0 ≈ 0.55Q and
Q0 ≈ 0.06Q values, for N ¼ 10 and N ¼ 40, respectively.
The much higher deterioration of the Q factor in the latter
case is directly linked to the cumulative influence that
disorder has on the resonant-cavity Q factor, as previously
commented.

TABLE II. Q factor estimated on a real structure and its ERIA-equivalent μC. Column A: Making use of Eq. (22) on the ERIA-
equivalent μC. Columns B and C: Making use of the ωr=2ωi value on real and ERIA-equivalent structures, respectively. Columns D and
E: Making use of the λ=Δλ value on real and ERIA-equivalent structures, respectively.

Number of DBRs’ periods

Q factor

A B C D E

Bottom Top
Equation (22) on equivalent

ERIA cavity
ωr=2ωi on
real cavity

ωr=2ωi on equivalent
ERIA cavity

λ=Δλ on
real cavity

λ=Δλ on equivalent
ERIA cavity

10 10 270 248 244 252 253
15 15 1392 1320 1300 1330 1350
20 20 7174 6840 6905 6860 6750
25 25 36 963 36 700 37 300 35 800 37 500
30 30 190 451 174 000 202 000 184 000 176 000
35 35 981 288 931 000 1 060 000 933 000 900 000
40 40 5 056 030 4 720 000 5 390 000 4 820 000 4 600 000
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Finally, let us note that the results presented in
Fig. 5(a) very likely explain experimental reflectivity
measurements obtained for a wide variety of disordered
DBRs reported in the literature; similarly, results reported
in Figs. 5(b) and 5(c) explain the experimental Q-factor
measurements (in particular, poor agreement between the
experiment and theory and strong variations in Q factor
across the cavity surface, obtained in microreflectivity

experiments) reported for a wide variety of resonant μCs
[18,19,21,25,29–35].

B. Limitations of the ERIA method

The maximization of a DBR reflectivity relies on design
which provides perfect synchronization of reflected com-
ponents. The undesired DBR structural disorder leads to
desynchronization of the reflected components, conse-
quently leading to a decrease in reflectivity. As previously
explained, the ERIA method is based on a simple obser-
vation that the same effect, i.e., the decrease in reflectivity,
is obtained when the DBR refractive-index ratio is properly
reduced. As a consequence, the optical performance of a
disordered DBR is easily quantified, simply by reducing its
refractive-index ratio to its effective value (n12 → n012)
while keeping its structural ideality.
The ERIA method departs from the precise quantitative

definition of the structural ideality (IF), i.e., disorder (DF),
of a single DBR unit cell. Then, assuming that the disorder
is preserved throughout the reflector, the method quantifies
the DBR optical deterioration. The strictly periodic refrac-
tive-index profile, assumed at the beginning, however, is a
strong condition that does not have to be satisfied for
successful application of the ERIA method. In that respect,
the applicability of the method is further discussed below.
Note that the preservation of the DBR unit-cell disorder

[see Eqs. (4) and (5)] explicitly assumes that the waves
reflected on the resulting (imperfect) DBR unit cells have
(i) the same phase—with the phases matching the phase of
the wave reflected on the targeted (perfect) unit cell—and
(ii) the same intensity—with the intensities being lower
than that of the wave reflected on the targeted (perfect)
unit cell.
The fulfillment of conditions (i) and (ii) is a necessary

and sufficient prerequisite to guarantee preservation of unit-
cell disorder DF throughout the DBR structure, and thus a
proper implementation of the ERIA method. As can be
seen, the condition of the periodically changing refractive-
index profile assumed above is stricter than the actual
required prerequisite.
Concerning the fulfillment of condition (i), it is easy to

see that it requires the conservation of the DBR unit-cell
optical thickness throughout the entire structure. Note that
the optical thickness of quarter-wave layers is directly
controlled via their thicknesses. The variations in unit-cell
optical thicknesses throughout a DBR are not common in
standard technological processes (except for rough growth
errors, such as mistaken growth times, etc.) [25]. Anyway,
it is worth noticing that varying optical thicknesses of DBR
periods implies varying phases of reflected waves (from
one DBR period to another); bearing the phasor diagram of
the structure in mind (Fig. 1), it is clear that this structural
disorder type leads to varying disorder from one period to
another (DF ≠ const). Consequently, this type of structure
is not convenient for direct application of the ERIA

FIG. 5. Influence of disorder (DF) on optical performance of
GaN=AlN planar optical resonant structures. (a) Decrease in peak
reflectivity [Eq. (9)] and stop-band width [Eq. (10)] of a 20-
period GaN=AlN DBR as a function of increasing disorder.
(b) Decrease in Q factor of a 3λ resonant GaN cavity sandwiched
between two 20-period GaN=AlN DBRs, as a function of
increasing disorder [Eqs. (22) and (23)]. (c) Q factors of a 3λ
resonant GaN cavity sandwiched between ideal (DF ¼ 0) and
disordered (DF ¼ 0.1) GaN=AlN DBRs with a varying number
of periods [Eq. (22)].
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method, as exposed in this article; further comments
concerning some cases of DBRs with DF ≠ const and
applicability of the ERIA method are included below. The
common (intrinsic) origins of the unit-cell structural dis-
order are either rough interfaces (a consequence of random
thickness fluctuations) or smeared interfaces (a conse-
quence of the two materials intermixing) [6]. On average,
neither of the two deterioration mechanisms changes the
unit-cell optical thickness, implying that condition (i) is
commonly fulfilled in real structures.
The fulfillment of (ii) in real optical resonators is, on the

other hand, more critical and less clear than the fulfillment
of (i). Semiconductor DBRs are normally constituted of
two materials with different lattice constants. The lattice
mismatch leads to a strain accumulation in an early growth
stage, with the strain then being progressively relaxed
during the growth via defect formation [36,37]. The DBR
layers are thus under alternatively tensile and compressive
strain (i.e., positive and negative stress). The strain relax-
ation leads to an overall stress reduction in the structure,
with the average stress eventually reaching zero for
sufficiently thick DBRs; from this point on, the local stress
continues to oscillate around zero, while preserving a
nearly zero average value. Thus, unlike (i), the fulfillment
of (ii) strongly depends on the properties of the two
materials applied for DBR fabrication and can vary
significantly from one material system to another.
We refer to the part of the epitaxial growth duringwhich the

stress in the structure is being reduced as a growth transient.
During this initial growth stage, significant structural changes
may happen in the DBR since strain relaxation mechanisms
(i.e., defect formation) are active. The defect formation leads
to structural damage and, most likely, to a progressive
increase in unit-cell disorder (DF↑). Once this transient is
finished, it is very likely that the structural disorder will
remain nearly constant, reaching a certain (asymptotic) value.
Note that this directly implies that, unlike its bottom part, the
DBR upper part will have a nearly constant disorder and will
thus be appropriate for ERIA modeling.
Practical applications normally require high-reflectivity

DBRs, i.e., DBRs with a high number of periods. This
implies that a very small fraction of incident photons reach
the DBR bottom part (which is inconvenient for the ERIA
method) but reflect within its top part (which is convenient
for the ERIA method). Based thus on the previous
reasoning, we speculate that, despite the varying disorder
(DF) of the real DBRs, the applicability of the ERIA
method may still be very high. In the particular case of
disordered GaN=AlN DBRs that we fabricate (with a total
of 15 DBRs; results are not presented), which contain
between 6 and 30 periods and have targeted wavelengths
varying in the (380–550)-nm range, the ERIA method
proves to be an exceptionally good analysis tool [25]. Note
that once the reflectivity measurement is performed, the IF
andDF factors are directly estimated from the measured (vs

nominal) stop-band width [see Eq. (10), for clarity]. If the
substitution of the DF (determined from the reduction of
the stop-band width) in the equation for peak reflectivity
[Eq. (9)] yields a peak reflectivity that is in good agreement
with the measured one, then the disorder of the entire DBR
can be considered nearly constant and, consequently, the
(disordered) DBR under study can be substituted with its
ERIA-equivalent counterpart [the fingerprint of a DBR
with a nearly constant disorder is (i) the reflectivity profile
shape matches the reflectivity profile shape of a standard
DBR, and (ii) the stop-band height and width are both
reduced with respect to the expected nominal value]. We
nevertheless point out that the applicability of the method
could vary significantly from one material system to
another and that additional quantitative analyses and their
comparison with experimental results are necessary to
address this issue with clarity.

VI. CONCLUSION

In summary, this work provides a detailed insight into a
link between the structural and the optical disorder of planar
resonant optical structures, in particular, DBRs and resonant
μCs. The link between the two is unraveled bymaking use of
the ERIAmethod, which shows that the optical deterioration
of a DBR (originating from its structural imperfections) can
be modeled simply by reducing the unit-cell refractive-index
ratio (n12 → n012) while keeping its structural ideality. We
first propose a precise quantitative definitionof theDBRunit-
cell ideality and disorder. Then, making use of the ERIA
method,we show that the optical response of anyDBRwith a
periodic refractive-index profile can be very well approxi-
mated using its corresponding standard-DBR counterpart.
We further derive the equivalent standard-DBR structures for
the cases involving DBRs with homogeneous, linearly
graded, sine-wave graded, biparabolically graded, unipara-
bolically graded, and interdiffused TLs at interfaces. The
results are validated making use of both TMSs and direct
experimental measurements of imperfect DBRs. In the
second part of this article, the ERIAmethod is further applied
on resonant μCs, unraveling the link between their structural
disorder and the subsequent deterioration of their Q factors.
The obtained results are validated via TMSs. The analytical
formulas derived in this article enable rapid insight (both
quantitative and qualitative) into optical properties of imper-
fect DBRs and μCs. This work establishes a base to under-
stand the link between structural disorder and the subsequent
deterioration in performance of planar optical resonators.
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APPENDIX A: IDEALITY
FACTOR DETERMINATION

In this appendix, making use of Eq. (12), ideality factors
for DBR unit cells presented in Table I are derived. The

corresponding refractive-index profiles nðφÞ are depicted
and analytically expressed in Table I, for clarity. Their first
derivatives n0ðφÞ are mathematically expressed in the
equations below as parts of the corresponding integrals.
In the following equations, δðφÞ stands for the Dirac δ
function.
Standard DBR unit cell (no TLs):

IF ¼ 1

2ðn1 − n2Þ
Z

π−

0−

�
ðn1 − n2ÞδðφÞ − ðn1 − n2Þδ

�
φ − π

2

�	
e2iφdφ ¼ 1

2
ð1þ 1Þ ¼ 1. ðA1Þ

Homogeneous TLs:

IFðα;βÞ¼
1

2ðn1−n2Þ
Z

π−ðα=2−Þ
−ðα=2−Þ


�
n1−n2

2

��
δ

�
φþα

2

�
þδ

�
φ−α

2

�	
−
�
n1−n2

2

��
δ

�
φ−π

2
−β

2

�
þδðφ−π

2
þβ

2

�	�
e2iφdφ

¼1

2
ðcosαþcosβÞ: ðA2Þ

Linearly graded TLs:

IFðα; βÞ ¼
1

2ðn1 − n2Þ
�Z

α=2

−ðα=2Þ
n1 − n2

α
e2iφdφþ

Z ðπ=2Þþðβ=2Þ

ðπ=2Þ−ðβ=2Þ
−n1 − n2

β
e2iφdφ

�
¼ 1

2

�
sin α
α

þ sin β
β

�
: ðA3Þ

Sine-wave graded TLs:

IFðα; βÞ ¼
1

2ðn1 − n2Þ

Z

α=2

−ðα=2Þ
π

α

n1 − n2
2

cos

�
π

α
φ

�
e2iφdφþ

Z ðπ=2Þþðβ=2Þ

ðπ=2Þ−ðβ=2Þ
− π

β

n1 − n2
2

cos

�
π

β

�
φ − π

2

�	
e2iφdφ

�

¼ 1

2

�
cos α

1 − 4α2=π2
þ cos β
1 − 4β2=π2

�
: ðA4Þ

1. Biparabolically graded TLs

It is worth noticing that, in all previous cases, two
conditions hold: First, the reference phase φ ¼ 0 of the
nðφÞ function is set in the middle of the first TL; second,
the refractive-index first derivative n0ðφÞ is an even
function [see Eqs. (A1)–(A4)]. These two conditions
provide that the imaginary parts of Eqs. (A1)–(A4) cancel
out, yielding positive real numbers as equation solutions,
i.e., ideality factors. In the case of parabolically graded
TLs, the n0ðφÞ is not an even function and a proper setting
of the reference phase (which would yield canceling of the
imaginary terms in the corresponding equation), under this
condition, is not trivial. Nevertheless, it is easy to show that
the ideality factor is always (i.e., for an arbitrarily set
reference phase) equal to the modulus of the complex
number obtained as a result via Eq. (12). The integration of
the first parabolically graded TL, according to its analytical
form featured in Table I and Eq. (12) yields

1

2ðn1 − n2Þ
Z

α

0

2
n1 − n2

α2
ðα − φÞe2iφdφ

¼ 1

4α2
ð−e2iα þ 2iαþ 1Þ ðA5Þ

and

���� 1

4α2
ð−e2iα þ 2iαþ 1Þ

���� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − α sinð2αÞ þ ðsin αÞ2

p
α2

:

ðA6Þ

Supposing that the resulting waves reflected at the first
and second interfaces are perfectly synchronized (i.e., in
phase), we find the ideality factor of the biparabolically
graded unit cell:
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IFðα; βÞ ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − α sinð2αÞ þ ðsin αÞ2

p
α2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − β sinð2βÞ þ ðsin βÞ2

p
β2

�
: ðA7Þ

2. Uniparabolically graded TLs

This type of unit cell contains one parabolically graded
TL and one sharp interface, with no TLs. If the waves
reflected at the two interfaces are perfectly synchronized,
then

IFðα; β ¼ 0Þ ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − α sinð2αÞ þ ðsin αÞ2

p
α2

þ 1

�
:

ðA8Þ

3. Interdiffused TLs

According to Ref. [26], the refractive-index profile of
DBRs with interdiffused TLs has the following form:

nðφÞ ¼ n1 þ n2
2

þ 2

π
ðn1 − n2Þ

X∞
m¼1

1

m
cosðmπÞ sin

�
mπ

2

�

× cosð2mφÞe−mð4πn̄Ld=λÞ2 : ðA9Þ

It is easy to show that only the first component in the
previous sum (m ¼ 1) yields a nonzero integral. After
arranging the phase of this term to match the reference
phase, as defined in the derivation of Eq. (12) [the new
phase is shifted þðπ=4Þ, i.e., φ is substituted with
½φþ ðπ=4Þ�], we get

IFðLdÞ ¼
1

2ðn1 − n2Þ
Z

π

0

4

π
ðn1 − n2Þ cosð2φÞ

× e−ð4πn̄Ld=λÞ2e2iφdφ

¼ e−ð4πn̄Ld=λÞ2 : ðA10Þ

APPENDIX B: DETERMINATION OF THE
MICROCAVITY Q FACTOR FROM THE

TRANSFER MATRIX OF THE STRUCTURE

In this appendix, the method for calculating the micro-
cavity Q factor from the transfer matrix of the structure is
derived. We consider a planar microcavity grown along the
x axis. The electric field (more precisely its complex
representative) in the region above the cavity (in air, for
example) is generally given by the expression

Eaðx; tÞ ¼ Eþ
a eiðωt−kaxÞ þ E−

a eiðωtþkaxÞ; ðB1Þ

while, in the region below the cavity (in the substrate, for
example), it reads

Ebðx; tÞ ¼ Eþ
b e

iðωt−kbxÞ þ E−
b e

iðωtþkbxÞ: ðB2Þ

In Eqs. (B1) and (B2), the x axis is directed from the air
toward the substrate, Eþ

a is the amplitude of the wave
entering the cavity from the air, E−

a is the amplitude of
the wave leaking from the cavity into the air, and Eþ

b is the
amplitude of the wave leaking from the cavity into the
substrate, while E−

b is the amplitude of the wave entering
the cavity from the substrate, ω ¼ ωr þ iωi is the angular
frequency of the wave which may also contain an imagi-
nary part that describes the time decay of the wave, while ka
and kb are the wave vectors which may also contain an
imaginary part.
The transfer matrix M relates the amplitudes of electric

fields of incoming and outgoing waves as

�
Eþ
b

E−
b

	
¼
�
M11 M12

M21 M22

	�
Eþ
a

E−
a

	
: ðB3Þ

In the case of electromagnetic-field oscillations in the
cavity, boundary conditions Eþ

a ¼ 0 and E−
b ¼ 0 are

satisfied. After the substitution of these boundary condi-
tions in Eq. (B3), one obtains that oscillations of electro-
magnetic field can be sustained only if M22 ¼ 0. From this
condition, we find the complex angular frequency ω. Its
real part determines the wavelength of the oscillating field,
while its imaginary part determines the time decay of the
field. The definition of the Q factor reads

Q ¼ 2π
W
ΔW

; ðB4Þ

where W is the total energy of the field and ΔW is its loss
during one period T of oscillation. Since the energy of the
field is proportional to the square of its amplitude, we
obtain W ∼ e−2ωit and, consequently,

Q ¼ 2π
1

1 − e−2ωiT
: ðB5Þ

Since ωiT ≪ 1 is satisfied in typical cavities, the last
equation reduces to

Q ¼ ωr

2ωi
; ðB6Þ

which is the expression that we use to calculate the Q
factor.
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