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The density of accessible levels at low spin in thidé€,ay) reaction has been extracted for &Py and
17117 h nuclei. The entropy of the even-odd and even-even nuclei has been deduced as a function of exci-
tation energy. The entropy of one quasiparticle outside an even-even core is found to (1&) kg0 This
quasiparticle picture of hot nuclei is well accounted for within a simple pairing model. The onset of two, four,
and six quasiparticle excitations in tH&Dy and "2Yb nuclei is discussed and compared to theory. The
number of quasiparticles excited per excitation energy is a measure for the ratio of the level energy spacing and
the pairing strength.

PACS numbs(s): 21.10.Ma, 24.10.Pa, 25.55.Hp, 27.70,

I. INTRODUCTION Il. EXPERIMENTAL METHODS

The Oslo cyclotron group has developed a method to ex-

In 1936, Bgthe mtroduced the Ferm|' gas to Qescrlbe[ract nuclear level densities at low spin from measuyedy
nuclear properties at high temperat(itg. This simple inde- spectral8—12]. The main advantage of utilizing rays as a

pendent particle model has been modified by including ®brobe for level density is that the nuclear system is likely

sidual interactions between the nucleons. In the low eXCitafhermaIized prior to they emission. In addition, the method

tion region long-range pair correlations play an importanty s for the simultaneous extraction of level density and

role and are roughly described within the so-called back- : : ;
shifted Fermi-gas modéP]. y-strength function over a wide energy region.

Th . id for th ist ¢ vaired | The experiments were carried out with 45 MéWe pro-
ere Is evidence for the existence ot paired nuc eon]°’ecti|es accelerated by the MC-35 cyclotron at the University
(Cooper pairsat low temperature. In high-spin physics, the

. _ _ . ! of Oslo. The experimental data were recorded with the
backbending phenomenon is a beautiful manifestation of th%ACTUS multidetector arra13] using the eHe,ay) reac-

breaking of_pa|rs. Th_e me.chanlsm is induced by Cor|ol|stion on 16216y and 17217l self-supporting targets. The
forces tending to align single-particle angular moment

. . % harged ejectiles were detected with eight particle telescopes
along the nuclear rotational ax|8,4]. Theoretical models 9 ) gntp P

also predict reduction in the pair correlations at higher tem_placed at an angle of 45° relative to the beam direction. Each
peratﬂreiS—?] P 9 telescope comprises one SE front and one SLi) E back

The breaking of pairs is difficult to observe as a functiondmector with thicknesses of 140 and 3.%&’ respecyyely.
ST 2 - . An array of 28 Naly-ray detectors with a total efficiency
of intrinsic excitation energy. Recent theoretifd] and ex-

. o . of ~15% surrounded the target and particle detectors. In
perimental[8,9] works indicate that the process of breaking - ) .

: o addition, two Ge detectors were used to monitor the spin
pairs takes place over several MeV of excitation energy. The

| e : distribution and selectivity of the reactions.
corresponding critical temperature is measured toTge From the reaction kinematics the measucegarticle en-
~0.5MeV/kg [10], wherekg is Boltzmann’s constant.

The aim of this paper is to extract the entropy of the&roy can be transformed to excitation enefyyThus, each

161,163y and L7217} isotopes, and deduce the number c)fcommdenty ray can be assigned toyacascade originating

. R . L from a specific excitation energy. The data are sorted into a
excited quasiparticles as function of excitation energy. In

Sec. Il we describe the experimental techniques and analymatnx of (E,E,) energy pairs. At each excitation energy

ing tools. Section Il presents results for the entropy using éhe Nal y-ray spectra are unfolded4], and this matrix is

simple pairing Hamiltonian with an even and odd number oftljv?tehdﬂt]o ?:I(trlid Ehﬁlr'ft'gen%?t'? Erémi?ﬂ y—rayfr%zté]lx
fermions distributed over single-particle levels with double € wel-establisned subtraction technique o '

degeneracy. This is a model, which for small numbers of The resulting matrixP(E,E,), which describes the pri-

- ; : tra obtained at initial excitation energy is
fermions, typically less than 20, can be solved numerlcall)}nary Y Spec : .
yielding all possible eigenstates. It results in the full IeveIfaCtOrlzed according to the Brink-Axel hypothe}i$,17 by

density and can in turn be used to extract thermodynamical

quantities. Since we expect pairing correlations to be impor- P(E,E,)«p(E—E.)o(E.). (1)

tant in nuclei, such a simple model should mimic to a certain 7 ’ 7

extent the entropy extracted from the experimental level den-

sity. In Sec. IV we present the experimental findings andThe assumptions and methods behind the factorization of
relate them to the simple pairing model of Sec. lll. Conclud-this expression are described in Reff$1,12, and only a

ing remarks are given in Sec. V. short outline is given here.
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a0t | duce the level density calculated from the spacing of neutron
/ resonances at the neutron binding eneBjy see inset of
Fig. 1.
In the following, we concentrate only on the information
A given by the level density, which is assumed to be indepen-
8 829 dent of particulary-ray decay routes.

Resonance spacing
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IIl. ENTROPY FROM A SIMPLE PAIRING MODEL

The level density p defines the partition function for the
microcanonical ensemble, the latter being the appropriate
one for statistical descriptions of isolated systems such as
finite nuclei. The partition function for the canonical en-
semble is related to that of the microcanonical ensemble
through a Laplace transform

Level density p [1/MeV]

20 o
i Z(,B)=JO dEp(E)exp(— BE). 4
eltelelel : .
0 05 1 15 2 25 3 35 Here we have define@= 1/kgT, whereT is the temperature
Excitation energy E MeV] and kg is Boltzmann’s constant. Since we will deal with

discrete energies, the Laplace transform of &g .takes the
FIG. 1. The extracted level density fdf?Dy reproduces both  form

known levels(histogram at low excitation energy and the neutron

resonance spacing Bt, (triangle by proper adjustment of the pa-
rametersA and a of Eq. (2). Z(B)= 2 AEp(E)exp( ~ BE), (5)

Both the level densityp and the y-energy-dependent whereAE is the energy bin used.
function o are unknown. In the new iteration proced(i2] In nuclear and solid-state physics, thermal properties have
the firstp® function is simply taken as a straight line, and themainly been studied in the canonical and grand-canonical
first o° is calculated from Eq(1). Then newp ando func-  ensemble. In order to obtain the level density, the inverse
tions are analytically calculated by minimizing the least-transformation
squares fity? to the data seP. This procedure is repeated
until a global minimum is obtained with respect to the values 1 [ie
at all (E, E,) pairs. About 50 iterations are necessary for p(E)= Z_WiJ_ixdﬁZ(ﬁ)eXp(BE), (6)
fitting the ~ 150 free parameters to the1500 data points of
P. Due to methodological problems in the first-generationis normally used. Compared with E@), this transformation
procedure, we only use data wihenergie£,>1 MeV and  is rather tricky to perform since the integrand €8R
excitation energieE>2.5 and 4.0 MeV in the odd-even and +InZ(g)) is a rapidly varying function of the integration
even-even isotopes, respectivgh?]. parameter. In order to obtain the density of states, approxi-
It has been showfil2] that if one solution fop ando is  mations like the saddle-point method, viz., an expansion of
known, it is possible to construct infinitely many solutions the exponent in the integrand to second order around the

with the samey? using the substitution equilibrium point and subsequent integration, have been used
widely, see e.g., Ref$19,20. For the ideal Fermi gas, this
p(E-E,)—Aexda(E-E,)]p(E-E,) (2)  9ives the following density of states:
exp(2yaE
and p(2\aE) &

Pideal E) = E—\/4—8

wherea in nuclear physics is a factor typically of the order
a=A/8 with units MeV %, A being the mass number of a
whereA, B, anda are arbitrary parameters. In the new prod- given nucleus.

uct of these two functions, a fact&B exp(aE) is left over,

which is absorbed i, since the suniEyP(E,Ey) is unde-

o(E,)—BexpaE,)o(E,), (3

termined. . _ !Hereafter we use for the level density in the microcanonical
In the case oft*Dy, Fig. 1 demonstrates how the param- ensemble. Furthermore, since we are dealing with a system with
etersA and o are determined to obtain a level density func- discrete energies from a quantal system, the microcanonical parti-

tion (data pointg with correct number of levels around the tion function is defined by the number of states at a given enErgy
ground statghistogram). In addition, the parameters repro- [18].
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Ideally, the experiment should provide the level density aone can rewrite the Hamiltonian in E(LO) as
function of excitation energy and thereby the “full” parti-

tion function for the microcanonical ensemble. In the micro- _ : 1 t o
canonical ensemble we could then extract expectation values H _dZ N EG”ZO SIS (12
for thermodynamical quantities like temperatufe or the
heat capacityC. The temperature in the microcanonical en-where
semble is defined as
Ni = aiTai (13)
dSE)\ !
(T)= e | (8) s the number operator. The latter commutes with the Hamil-

tonianH. In this model quantum numbers like seniotiyare

It is a function of the excitation energy, which is the relevantgo0d quantum numbers, and the eigenvalue problem can be
variable of interest in the microcanonical ensemble. HowJewritten in terms of blocks with good seniority. Loosely
ever, since the extracted level density is given only at disSPeaking, the seniority quantum numbgrs equal to the
crete energies, the calculation of expectation valuesTike number of unpaired particles, see REf1] for further de-
involving derivatives of the partition function, is not reliable tails. _ _

unless a strong smoothing over energies is performed. This The reason why we focus on such a simple model is two-
case is discussed at large in RES] and below. Another fold. First, we expect the ground state of nuclei to be largely
possibility? is to employ the Laplace transformation of Eq. dominated by pairing correlations. This is mainly due to the
(5) in order to evaluate various thermodynamical quantitiesSt'ong singlet'S, state in the nucleon-nucleon interaction,
in the canonical ensemble. As an example, we can evaluaf€€ €.9., Refd22-24. For even-even systems this is typi-
the entropy in the canonical ensemble using the definition ofally reflected in an energy gap between the ground state and

Helmholtz free energy the first excited state, a gap that is larger than that seen in
odd nuclei. This is taken as an evidence of strong pairing
F(T)=—kgTInZ(T)=(E(T))—-TYT). (99  correlations in the ground state. More energy is needed in

order to excite the system when all fermions are paired, i.e.,
Note that the temperatuf® is now the variable of interest when we have a system with an even number of particles.
and the energy is given by the expectation valugE) as  Since pairing correlations are important in nuclear systems,
function of T. Similarly, the entropysis also a function o. ~ we expect the above model to exhibit at least some of the

In this section, we extract the exact level density from aproperties seen in finite nuclei.

simple theoretical modélThe Hamiltonian we use to obtain Second, for particle numbers up té~18, the above
the eigenvalues and the level dengi(E) is the simple pair- model can be solved exactly through numerical
ing Hamiltonian diagonalizatiorf, since seniority is a good quantum number.
This means that we can subdivide the full eigenvalue prob-
lem into minor blocks with given seniority and diagonalize
these separately. In our case we use for the even syldtem
=12 particles which are distributed over= 12 twofold de-
wherea' anda are fermion creation and annihilation opera- generate levels giving a total of
tors, respectively. The indicesandj run over the number of

levelsL, and the label stands for a time-reversed state. The (2L> _

parametelG is the strength of the pairing force whilg is N

the single-particle energy of level ) ) .
We assume that the single-particle levels are equidistarfitates. Of this total, fo§=0, i.e., no broken pairs, we have

with a fixed spacingl. Moreover, in our simple model, the

degeneracy of the single-particle levels is set §otd =2, L ):(12) —924 (15)

with J=1/2 being the spin of the particle. Introducing the N/2 6 ’

pair-creation operator

1
;
H= ZI eiala;— EG”ZO ala’aa;, (10)

24
1p| =2:704.156 (14)

states. Since the Hamiltonian does not connect states with
S'=alal .. (11)  different seniorityS, we can diagonalize a 924924 matrix
and obtain all eigenvalues witf=0. Similarly, we can sub-
divide the Hamiltonian matrix int&s=2, S=4,... andS
=12 (all pairs brokei blocks and obtairall 2.704.156 ei-
denvalues for a system with=12 levels andN=12 par-
ticles. As such, we have thexact density of leveland can

The transformation to the canonical ensemble represents also
smoothing.

3A similar analysis within the framework of several BCS ansatz-
based approaches was done bisBinget al. in Ref.[7]. Whereas
our approach includes all possible eigenvalues in order to determine
the level density, Dssing et al. perform their diagonalization “With 18 particles, one needs3GB of memory to store the
within a space spanned by number-projected states. The qualitativargest seniority matrix. This is fully feasible with present comput-
behavior of their results is, however, similar to that presented hereers.
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€A Even-system N=12 Odd - system N =11 14 T T T T T
0qp 4q.p 1q.p 5q.p §=05 -
12 & = 0.5 with smoothing --- -
10d —O—
oO— @ 10
—Oo0— =
—0 C/:} 8 -
o g 6t
5d | —O-0— —0— —0 2
—0-0— —00— —00— —0— - 4k
—0-0— —0— —0-0— —O0— ,
—0-0— —0-0— —0-0— —0-0— 9 L g
—0-0— —0-0— —0-0— —0-0— L N
0! —O-0— —0-0— —0-0— —0-0— 00' .
FIG. 2. Simple illustration of the ground state and possible ex-
cited stateg4 and 5 quasiparticl¢dor a system with 12 doubly 14 : : : : :
degenerate single-particle levels. The properties of the model are §=05 -
governed by the level spacirthand the pairing strength parameter 12 4= 0.5 with smoothing ---
G (the illustration is withG=0). For the even system with 12
. . . . . . 10 T
particles, the first excited state is a two-quasiparticle state corre- &
sponding to the breaking of one pair. The first excited state in the o ] 4
odd system with 11 particles is a single quasiparticle state. ?
*E 6
compute observables like the entropy, heat capacity, etc.™ 4k ' T
This numerically solvable model enables us to compute ex- . ¢ :
actly the entropy in the microcanonical and the canonical zr I[".i | ]
ensembles for systems with odd and even numbers of par- 0 i, | I ! !
ticles. In addition, varying the level spacidgnd the pairing 0 2 4 6 8 10 12
Excitation energy F

strengthG, may reveal features of, e.g., the entropy which

are similar to those of the experimentally extracted entropy. g, 3. Entropy in the microcanonical ensemble as function of

Recall that the nuclei studied represent both even-even angcitation energyE for 6=0.5. The upper and lower panels show

even-odd nucleon systems. the results for the odd and even systems, respectively. Results with
Here we study two systems in order to extract differencesnd without a Gaussian smoothing are displayed. If we wish to

between odd and even systems, namely by fixing the numbefiake contact with experiment, one can assign units of Me¥.to

of doubly degenerated single-particle levels to=12,  The entropyS/kg is dimensionless.

whereas the number of particles is seiNe- 11 andN=12.

Figure 2 pictures the ground state of these systems and pos- _

sible excited states. S(M=ks INZ(T)+(ET)/T. (16)
These two systems result in a total f3x 10° eigen-

states. In the calculations, we choose a single-particle levébince this is a model with a finite number of levels and

spacing ofd=0.1, which is close to what is expected for rare particles, unless a certain smoothing is done, the microca-

earth nuclei. In this sense, if we are to assign energies witRonical entropy may vary strongly from energy to energy.

units MeV, our results may show some similarity with ex- This is seen in Fig. 3, where we plot the entropy for the odd

periment. We select three values of the pairing strength(upper pant and even(lower par} system usings=d/G

namelyG=1, 0.2 and 0.01, resulting in the raté&=d/G  =0.5. The entropy is given by discrete points, since we do

=0.1, 5=d/G=0.5 ands=d/G= 10, respectively. The first not have eigenvalues at all energies. However, we can also

case represents a strong pairing case, with almost degener@efform a moderate smoothing which conserves the basic

single-particle levels. The second is an intermediate castatures of the model, namely an increase in entropy when

where the level spacing is of the order of the pairing strengthpairs are broken. This was performed with a Gaussian

while the last case results in a weak pairing case. As showamoothing

below, the results for the latter resemble to a certain extent

those for an ideal gas.

The calculational procedure is rather straightforward. 2 S.exp(— (E;— Ey)?/20%)
First we diagonalize the large Hamiltonian matehich is 3= K 17)
subdivided into seniority blocksand obtain all eigenvalues ! 2 o
E for the odd and even particle case. This defines also the % exp(— (Ei —Ey)7/207)

density of levelsp(E), the partition function and the entropy

in the microcanonical ensemble. Thereafter, we can obtain ) .

the partition functionZ(T) in the canonical ensemble WhereS andE; are the entropies and energies from the
through Eq.(5). The partition functionZ(T) enables us in diagonalization of the pairing HamiltonianS is the
turn to compute the entrop$(T) using smoothed entropy. With a smoothing parametersef0.2
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16
T T I I T T T § =I 0.1 I +
14 .
121 .
£ i 3 2
=1r # 7 =
+ % ©
g8 i A : } z
< 6 i + % - 2
= : S A
s & = % i
+
L + .
2 S0t
0 1 1 + 1 1 1 1 1 I+ + 1
0 5 10 15 20 25 30 35 40 45 50
Excitation energy F
FIG. 4. Entropy in the microcanonical ensemble as function of
excitation energye for §=0.1. If we wish to make contact with
experiment, one can assign units of MeVEoThe entropyS/kg is
dimensionless. 2
=
%)
, 2
we see that the smoothed entropy still keeps track of the g
points where the entropy experiences an increase due t(§
breaking of pairs.
Figure 3 clearly reveals the energies where two, three,
four and so forth quasiparticles are created, i.e., where sud-

den increases in entropy take place. For the even system witt
the ground state &gs= — 2.44, the first senioritys= 2 (for-
mation of two quasiparticlesstate appears at an excitation
energy ofE=2.2, the firstS=4 state appears &=4.06 and

the firstS= 6 state is aE=5.41. Note well that in the figures

of calculations we do not show the absolute energies. If we
wish to employ units in MeV, the first excited state for the
even system would be close to what is expected experimen-
tally.

For the odd system, the first excited states are just one-
guasiparticle states, i.e., excitations of the last and least
bound single particle. Since the level spacing is much
smaller around the ground-state energy for the odd case

Entropy S/kp

4 | 1 1 |
(with energyEgs= — 1.65), these states appear rather close 0 0.2 0.4 0.6 0.8 1

to the ground state. When a pair is broken, we create a three Temperature kT

quasiparticle statéone broken pair plus a quasiparticler FIG. 5. Entropy in the canonical ensemble as function of tem-

seniorityS =$ state. Thi§ appears at an excitation en%u:jy peratureksT for odd and even systems fé=0.1 (upper pane|

E=2.01, while the seniorityS=5 state(two broken pairs 5 5 central pangland 5= 10 (lower pane). If we wish to make

plus one quasiparticleappears aE=3.58. We note from  contact with experiment, one can assign units of Mekg®. The

Fig. 3 that at an energy dE~8-9, the entropy starts de- entropyS/kg is dimensionless.

creasingpopulation inversiop reflecting thereby the limited

size of our model. . . L even with a strong smoothing, we cannot obtain reliable val-
For 6=0.5, where the single-particle spacing is only half es for, e.g.,T. Thus, rather than performing a certain

the pairing strength, the energy eigenvalues are fairly wel moothi’ng, wé will chéose to present further results for the

distributed over the given energy range. If. we decreas_e entropy in the canonical ensemble, using the Laplace trans-
however, we approach the degenerate limit, and the €igelsm of Eq. (5)

values and the entropy are sharply concentrated around those-l-he results for the entropy in the canonical ensemble as
eigenvalues where pairs are broken. This is seen in F_ig. 4 fcﬁmctions ofT for the above three sets 6t=d/G are shown
0=0.1 for t.he ceven case WrrN:_lZ. The Odd. case W,'tN in Fig. 5. For the two cases with strong pairing, we see a
=11 exhibits a similar behavior. Clearly, if we wish 0 ¢jo5¢ gifference in entropy between the odd and the even
evaluate the temperature according to ). for 6=0.1, g qtem. The difference in entropy between the odd and even
systems can be easily understood from the fact that the
lowest-lying states in the odd system involve simply the ex-
Note that the first state with a broken pair appears at a lowetitation of one single particle to the first unoccupied single-
excitation energy for the odd system, as expected. particle state, and is interpreted as a single-quasiparticle
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state. These states are rather close in energy to the ground Before we proceed, the reader should, however, note that
state and explain why the entropy for the odd system has for the simple model employed here, we choose to present
finite value already at low temperatur@ecall also the dis- the results forn,yy and ne.e, as functions of the average
cussion in connection with Fig.)3Higher lying excited energy in the canonical ensemR). This implies also that
states include also breaking of pairs and can be described &se entropies which enter the above definitions are functions
three-, five- and more-quasiparticle states. Ber10, the  of (E(T)). This choice is done in order to keep the link to
odd and even systems merge together already at low tenthe microcanonical ensemble. The reason for this choice can
peratures, indicating that pairing correlations play a neglibe seen from Figs. 3 and 4. If we were to calculate the
gible role. For small single-particle spacing, also the differ-entropy difference of the odd and even system in the micro-
ence in energy between the first excited state and the grounganonical ensemble as function of the excitation energy, the
state for the odd system is rather small. theoretical model would have given us a highly fragmented
For our choice ofl we observe that the maximum entropy difference. Thus the choice of the presentation in the canoni-
is of the order of S~14kg in the canonical ensemble, cal ensemble. However, the basic features such as where the
whereas in the microcanonical ensemble, see Figs. 3 and garious numbers of quasiparticles appear are preserved in the
the maximum value i$~10-1X%g. Obviously, when per- canonical ensemble as well, see the discussion below.
forming the transformation to the canonical ensemble, since Figure 6 shows the number of quasiparticles in the odd
we have a small system, there may be larger fluctuations iand even systems for the three valuessaising the defini-
expectation values like the entropy. In the liflt—, the  tion in Eq. (18). We note that for all cases the differences
two ensembles should result in equal valuesTpE, andS, between the odd and even systems remain equal and close to
see Ref[18] for an in depth discussion. one, demonstrating that the entropy is an extensive guantity
For 6=0.5 we note that at a temperature &ET  as function of the number of quasiparticles. Furthermore, for
~0.5-0.6, the even and odd system approach each bthers=0.5 (central pané| we see that the excitation energies
The temperature where this occurs corresponds to an excitashere 1,2,3... quasiparticles appear, agree with the results
tion energy(E) in the canonical ensemble ¢E)~4.7-5.0.  discussed in Fig. 3 in the microcanonical ensemble. To give
Recalling Fig. 3, this corresponds to excitation energiesan example, for the odd system, three quasiparticles appear
where we have 4—-6 quasiparticles, seniofity4—6, inthe  at an energy of E)= 1.8, which should be compared to the
even system and 5-7 quasiparticles, seniofity5—7, in  exactly calculated one in the microcanonical ensemblE of
the odd system. The almost merging together of the even and 2.01. Five quasiparticles show up(&) = 3.4, which again
odd systems at these temperatures, can be retraced to thieould be compared to the result obtained in the microca-
features seen in Fig. 3. For higher excitation energies in Figaonical ensemble oE=3.58. The agreement for the even
3, we saw that higher seniority values show less markedase is slightly worse. Fat=0.1, the strong pairing case, we
bumps in the entropy, indicating that the level density athote that more energy is needed in order to create 2,4ind
higher excitation energies contains many more states angls, ... quasiparticles in the even and odd systems, respec-
that we are getting closer to a phase where pairing plays gvely. This agrees also with the microcanonical result of Fig.
less significant role. 4. For the weak pairing casé= 10, higher seniority states
For small systems like finite nuclei, where the size of theappear already at low excitations energies, indicating that
system is not large compared to the range of the strong inpairing plays a minor role, as expected.
teraction, the entropy is not an extensive quantity, i.e., it does Thijs feature can also be seen from Fig. 5, where the dif-
not scale with the size of the systditB]. However, it may ference in entropy between the odd and even systems is neg-
be fruitful to investigate whether the entropy is an extensiveigible even at low temperatures. Both Figs. 5 and 6 tell us
quantity with respect to the number of quasiparticles, inthat a quasiparticle picture for the weak pairing case is not
which case it goes lik&=nS;, with n the number of quasi- the relevant one.
particles andS; as the single quasiparticle entropy. A pos-  Figure 6 carries also an interesting message. If one can
sible test of the extensivity is to employ the difference inextract the number of quasiparticles as function of excitation
entropy between the odd and even systems as function of thehergies, the steepness of the curve provides useful informa-
excitation energy,Sogq— Seven- With the assumptiorS,qq  tion about the relation between the single-particle spacing
=Nog¢S1 and Sgyer=NeverS1, WE can in turn define the num- and the pairing strength.

ber of quasiparticles in the odd and even systems as In summary, varyingé allows us to extract qualitative
information about thermodynamical properties such as the
Nogd (E)) = Sodd and Neyed (E)) = Seven entropy and the number of quas_iparticles in even and odd
od Soda— Seven eve Sodd— Seven’ systems. Especially, two properties are worth paying atten-

(18)  tion to concerning the discussion in the next section. First,

. L for the two cases with strong pairingg€ 0.1 and6=0.5),
respectively. The (_)dd system has one more quasiparticle thqﬂg_ 5 tells us that at temperatures where we have 4—6 qua-
the even system, i.e0o46=Neverit 1. siparticles in the even system and 5—7 quasiparticles in the

odd system, the odd and even system tend to merge together.
This reflects the fact that pairing correlations tend to be less
81f we wish to make contact with experiment, we could againimportant and we approach the noninteracting case. For the
assign units of MeV tkgT andE. weak pairing cased¢=10, the odd and even systems yield
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00 i ; ZI% AIL g P IV. EXPERIMENTAL RESULTS AND DISCUSSION
14 , , , The experimental level densip(E) at excitation energy
E is proportional to the number of levels accessibleyin
12 decay. For the present reactions the spin distribution is cen-
& 0k tered around(J)~4.4% with a standard deviation ofr,
2 ~ 2.4 [25]. Hence, the entrogycan be deduced within the
§ 8 microcanonical ensemble, using
t 6r
s p(E)
8 4+ S(E)=kgInN(E)=kgIn e (19
0
2 -
| | | whereN is the number of levels in the energy bin at energy
04 0.05 0.1 0.15 0.2 E. The normalization factop, can be determined from the
Excitation energy (E) ground-state band in the even-even nuclei, where we have

o i _ N(E)~1 within a typical experimental energy bin of
FIG. 6. Number of quasiparticles in the canonical ensemble ~0.1 MeV.

for different values of6 for even and odd particle systems. Results The extracted entropies for théel‘lﬁby and 71173y
for 6=0.1 are shown in the upper panék: 0.5 in the central panel
and 6=10 in the lower panel. If we wish to make contact with
experiment, one can assign units of MeV B The number of
quasiparticles is dimensionless.

nuclei are shown in Figs. 7 and 8. In the transformation from
level density to entropy we use EQ.9) with po~3 MeV 1.
The entropy curves are rather linear, but with small oscilla-
tions or bumps superimposed. The curves terminate around 1
similar results at much lower temperatures. In a simpld//€V below their respective neutron binding energies due to
model with just pairing interactions, it is thus easy to seetn€ €xperimental cut excluding rays withE, <1 MeV. All
where, at given temperatures and excitation energies, certaffUr curves reacts~13kg, which by extrapolation corre-
degrees of freedom prevail. For the experimental results i§PONds taS~ 15k at the neutron binding enerdy, .
the next section, this may not be the case since the interac- The calc_ulat|ons fo_r odd and even Systefn_se_Hg. 3 _
tion between nucleons is much more complicated. The hopghow clear increases in the entropy at the excitation energies
however is that pairing may dominate at low excitation en-vhere Cooper pairs are broken. This behavior is not very
ergies and that the features seen in, e.g., Fig. 5 are qualitRronounced in the experimental data, probably due to re-
tively similar to the experimental ones.

Second, we can read from Fig. 6 the excitation energy
where different numbers of quasiparticles appear. With a re- "The experiment reveals the level density and not the state den-
alistic value for the level spacing, a comparison with experi-sity. Thus, also the observed entropy reveals the number of levels.
;nent may tell us something about the strength of the pairinghe state density can be estimated Py (234 1)pievel
orce. ~9.80/0ve1-
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TABLE I. Parameters used in the back-shifted Fermi-gas for-
mula for the extrapolation of the experimental level density curve.

Nucleus A (keV) a(MeV™1) C; (keV) E; (keV) f

16lpy 793 17.46 —1298  —505 1.400
16py 1847 17.56 —1296 551  1.138
7yp 680 18.40 —1273 -593  0.376
72y 1606 18.50 -1271 335  0.465

Fig. 3 reveal effects of smearing out the entropy structures as
function of excitation energy. The smoother experimental
entropy curves fot8Dy and 1"Yb (see Figs. 7 and)&eem
also evident, in particular for th&®Dy case.

The experimental entropy of the even-odd system follows
closely the entropy for the even-even system, but the even-
odd system has an entropy excess. The difference of entropy
in the even-odd system compared to the even-even system is
evaluated in Fig. 9 for®11%Dy and 1"1*"4b. The observed
entropy differences in the microcanonical ensemble in the
1.5 MeV <E<5.5 MeV excitation region are-1.8(1)kg
and ~1.6(1)kg for dysprosium and ytterbium, respectively.

The experimental level density can be used to determine

sidual couplings in real nuclei. In particular, our pairing the canonical partition functiodi(T). However, in the evalu-
model excludes collective excitations, which are known toation of Eq.(5), we have to extrapolate the experimental

contribute strongly at low excitation energy. F&f2Yb in

curve to~40 MeV. Here, we use the back-shifted level den-

Fig. 8 one can identify bumps at 1.5 MeV and 2.8 MeV of sity formula of Refs[26,27] with
excitation energy, that could be interpreted as increased en-

tropy due to the breaking of two and four quasiparticles,

respectively.

For the odd system the valence parti¢te holg is ex-

exg 2y/au]

P=15 J2alySihg (20

pected to perform blocking, and indeed the calculations of

S D

2os 24y J ‘

o E 1 L”

o 2‘_++ db 4b4d H+“+‘+++\+ \*ll“|

;51_5:7 ¥ LA H”\‘“‘

o c

g 1 E
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Q
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where the back-shifted energy $=E—E; and the spin
cutoff parameter is defined througlr?=0.088 8A%3\/aU.

The level density parameterand the back-shift parameter
E, are defined bya=0.21A°%" MeV ! andE,;=C;+A, re-
spectively, where the correction factor is given I8
=—6.6A" 932 according to Ref[27]. The factorf is intro-
duced by us to adjust the theoretical level density to experi-
ment atE~B,— 1 MeV. The parameters employed are listed
in Table I. From our semiexperimental partition function, the
entropy can be determined from E.6). The results are
shown in Fig. 10. The entropy curves show a splitting at
temperatures belowgT=0.5-0.6 MeV, which reflects the
experimental splitting shown in the microcanonical plots of
Figs. 7 and 8. However, the strong averaging produced by
the summing in Eq(5),2 modifies the entropy due to com-
ponents from the theoretical extrapolationgfEven so, the
curves agree qualitatively with the calculations in Fig. 5 us-
ing 6=0.5. The effect of pairing seems in both cases to
vanish above 0.5-0.6 MeV. This agrees with our previous

8At a temperature of 0.6 MeV, the difference between the entropy

obtained from the datwhich is the input to the canonical partition
function of Eq.(5)] and that which includes the data and the back-
shifted Fermi-gas model is less than 10%. The relative difference
between the odd and the even systems is however less affected.

FIG. 9. Entropy difference it®'Dy compared to'®Dy (upper
pane) and in 1Yb compared to'’?¢b (lower panel. The lines
through the data points indicate the average values found.
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Temperature ke [MeV] FIG. 11. Number of quasiparticlesin %Dy (upper panéland

172yp (lower panel as function of excitation energy. The lines in-
FIG. 10. Semiexperimental entro@for '°*1*Dy and"**"%b  gicate the levels of two, four, and six quasiparticles.
calculated in the canonical ensemble as function of temperature

KgT. V. CONCLUSIONS

o - The entropy as function of excitation energy has been

work [10], giving a critical temperature digT;=0.5 MeV gy iracted for thel6216Dy and 17317%p nuclei. The ob-
for the existence of pair correlations. _ served entropy excess in the even-odd nuclei compared to

The observation that one quasiparticle carriesKsf  the even-even nuclei is interpreted as the entropy for a single
entropy, can be utilized to estimate the number of quasiparquasiparticle(particle or hol¢ outside an even-even core.
ticles as function of excitation energy. Analogously to Eq.The entropy excess remains at a levekdf.7kg as function
(18), we estimate from the experimental entrofigsandS,e  of excitation energy. A simple pairing model with an equi-
in neighboring even-odd and even-even isotopes the entropdistant level spacing af and a pairing strength @, gives a
difference Soo— See. The number of quasiparticles in the qualitatively similar description of these features.

even-odd and even-even systems is given by(E8), except The number of excited quasiparticles has been extracted
that the odd system is replaced by an odd-even nucleus arfitbm data. The onset of two quasiparticle excitations seems
the even system by an even-even nucleus. evident; however, the breaking of additional pairs is smeared

The extracted number of quasiparticlgE) in Dy and  out in excitation energy and is difficult to observe. The maxi-
172yb is shown in Fig. 11. Note here that the experimentalmMuUm number of excited quasiparticles is measured ta be
data show a much smoother entropy in the microcanonica];® at an excitation energy of 5.5 MeV in theé’Dy and
ensemble. Thus, Fig. 11 portrays the number of quasiparti- ?Yb isotopes.

cles as functions of the excitation energy in the microcanoni- | € quasiparticle picture has been a success in describing
cal ensemble. rotational bands in cold nuclei. The present results indicate

The number of quasiparticles raises to a levelnof2 that quasiparticles also can describe certain thermodynamical

aroundE=1.5-2 MeV, which could be a signal for the for- properties of hot nuclei. This gives hope for realistic model-

. ) . . ng of nuclei high intrinsic energy with several i-
mation of two quasiparticle states. However, the creation o g of nuclei up to high intrinsic energy with several quas
. . . . . __particles excited.

four and six quasiparticles shows no clear steplike function.

The breaking of additional pairs is spread out in excitation—

energy giving a rather smooth increase in the number of o S

quasiparticles as function of excitation energy. In the excita- 1he reader should keep in mind that the number of particles in

tion region 0.5-5 MeV the(E) curve gives on the average the theoretlc.?l calculatlonégzr;d expelrlmednt I?rﬁ ratherthdlﬁeren;. In

1.6 MeV of excitation energy to create a quasiparticle pair.exloerlmen » I one assum N &s closed shetl core, the number
. . . . . . of valence protons and neutrons is of the order-#0—40. How-

This value is consistent with pairing gap parameters of thi

. h Stioi ver, performing the above theoretical calculations with say 10 or
mass region, see Table I. The theoretical calculatioith 14 particles results in qualitatively similar results as those presented

6=0.5 gives an energy of 1.7 MeV per broken pair, which iSpere, The energy gap between the ground state and the first senior-
close to the experimental finding of 1.6 MeV. Hence, with aity 5=2 state changes also slightly as the number of particles in-
single-particle spacing ofd=0.1-0.2 MeV, the pairing creases. To give an example, with ten particles the excitation energy
strength is determined 6=0.2-0.4 MeV. is 1.95 whereas with 12 particles as here the spacing is 2.21.
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