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Entropy in hot 161,162Dy and 171,172Yb nuclei
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The density of accessible levels at low spin in the (3He,ag) reaction has been extracted for the161,162Dy and
171,172Yb nuclei. The entropy of the even-odd and even-even nuclei has been deduced as a function of exci-
tation energy. The entropy of one quasiparticle outside an even-even core is found to be 1.70~15! kB . This
quasiparticle picture of hot nuclei is well accounted for within a simple pairing model. The onset of two, four,
and six quasiparticle excitations in the162Dy and 172Yb nuclei is discussed and compared to theory. The
number of quasiparticles excited per excitation energy is a measure for the ratio of the level energy spacing and
the pairing strength.

PACS number~s!: 21.10.Ma, 24.10.Pa, 25.55.Hp, 27.70.1q
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I. INTRODUCTION

In 1936, Bethe introduced the Fermi gas to descr
nuclear properties at high temperature@1#. This simple inde-
pendent particle model has been modified by including
sidual interactions between the nucleons. In the low exc
tion region long-range pair correlations play an importa
role and are roughly described within the so-called ba
shifted Fermi-gas model@2#.

There is evidence for the existence of paired nucle
~Cooper pairs! at low temperature. In high-spin physics, th
backbending phenomenon is a beautiful manifestation of
breaking of pairs. The mechanism is induced by Corio
forces tending to align single-particle angular mome
along the nuclear rotational axis@3,4#. Theoretical models
also predict reduction in the pair correlations at higher te
peratures@5–7#.

The breaking of pairs is difficult to observe as a functi
of intrinsic excitation energy. Recent theoretical@7# and ex-
perimental@8,9# works indicate that the process of breaki
pairs takes place over several MeV of excitation energy. T
corresponding critical temperature is measured to beTc
;0.5 MeV/kB @10#, wherekB is Boltzmann’s constant.

The aim of this paper is to extract the entropy of t
161,162Dy and 171,172Yb isotopes, and deduce the number
excited quasiparticles as function of excitation energy.
Sec. II we describe the experimental techniques and ana
ing tools. Section III presents results for the entropy usin
simple pairing Hamiltonian with an even and odd number
fermions distributed overL single-particle levels with double
degeneracy. This is a model, which for small numbers
fermions, typically less than 20, can be solved numerica
yielding all possible eigenstates. It results in the full lev
density and can in turn be used to extract thermodynam
quantities. Since we expect pairing correlations to be imp
tant in nuclei, such a simple model should mimic to a cert
extent the entropy extracted from the experimental level d
sity. In Sec. IV we present the experimental findings a
relate them to the simple pairing model of Sec. III. Conclu
ing remarks are given in Sec. V.
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II. EXPERIMENTAL METHODS

The Oslo cyclotron group has developed a method to
tract nuclear level densities at low spin from measuredg-ray
spectra@8–12#. The main advantage of utilizingg rays as a
probe for level density is that the nuclear system is like
thermalized prior to theg emission. In addition, the metho
allows for the simultaneous extraction of level density a
g-strength function over a wide energy region.

The experiments were carried out with 45 MeV3He pro-
jectiles accelerated by the MC-35 cyclotron at the Univers
of Oslo. The experimental data were recorded with
CACTUS multidetector array@13# using the (3He,ag) reac-
tion on 162,163Dy and 172,173Yb self-supporting targets. The
charged ejectiles were detected with eight particle telesco
placed at an angle of 45° relative to the beam direction. E
telescope comprises one SiDE front and one Si~Li ! E back
detector with thicknesses of 140 and 3000mm, respectively.

An array of 28 NaIg-ray detectors with a total efficienc
of ;15% surrounded the target and particle detectors
addition, two Ge detectors were used to monitor the s
distribution and selectivity of the reactions.

From the reaction kinematics the measureda-particle en-
ergy can be transformed to excitation energyE. Thus, each
coincidentg ray can be assigned to ag-cascade originating
from a specific excitation energy. The data are sorted int
matrix of (E,Eg) energy pairs. At each excitation energyE
the NaI g-ray spectra are unfolded@14#, and this matrix is
used to extract the first-generation~or primary! g-ray matrix
with the well-established subtraction technique of Ref.@15#.

The resulting matrixP(E,Eg), which describes the pri-
mary g spectra obtained at initial excitation energyE, is
factorized according to the Brink-Axel hypothesis@16,17# by

P~E,Eg!}r~E2Eg!s~Eg!. ~1!

The assumptions and methods behind the factorization
this expression are described in Refs.@11,12#, and only a
short outline is given here.
©2000 The American Physical Society06-1
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Both the level densityr and the g-energy-dependen
functions are unknown. In the new iteration procedure@12#
the firstr0 function is simply taken as a straight line, and t
first s0 is calculated from Eq.~1!. Then newr ands func-
tions are analytically calculated by minimizing the lea
squares fitx2 to the data setP. This procedure is repeate
until a global minimum is obtained with respect to the valu
at all (E, Eg) pairs. About 50 iterations are necessary
fitting the;150 free parameters to the;1500 data points of
P. Due to methodological problems in the first-generat
procedure, we only use data withg energiesEg.1 MeV and
excitation energiesE.2.5 and 4.0 MeV in the odd-even an
even-even isotopes, respectively@12#.

It has been shown@12# that if one solution forr ands is
known, it is possible to construct infinitely many solutio
with the samex2 using the substitution

r~E2Eg!→A exp@a~E2Eg!#r~E2Eg! ~2!

and

s~Eg!→B exp~aEg!s~Eg!, ~3!

whereA, B, anda are arbitrary parameters. In the new pro
uct of these two functions, a factorAB exp(aE) is left over,
which is absorbed inP, since the sum(Eg

P(E,Eg) is unde-
termined.

In the case of162Dy, Fig. 1 demonstrates how the param
etersA anda are determined to obtain a level density fun
tion ~data points! with correct number of levels around th
ground state~histogram!. In addition, the parameters repro

FIG. 1. The extracted level density for162Dy reproduces both
known levels~histogram! at low excitation energy and the neutro
resonance spacing atBn ~triangle! by proper adjustment of the pa
rametersA anda of Eq. ~2!.
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duce the level density calculated from the spacing of neut
resonances at the neutron binding energyBn , see inset of
Fig. 1.

In the following, we concentrate only on the informatio
given by the level density, which is assumed to be indep
dent of particularg-ray decay routes.

III. ENTROPY FROM A SIMPLE PAIRING MODEL

The level density1 r defines the partition function for the
microcanonical ensemble, the latter being the appropr
one for statistical descriptions of isolated systems such
finite nuclei. The partition function for the canonical e
semble is related to that of the microcanonical ensem
through a Laplace transform

Z~b!5E
0

`

dEr~E!exp~2bE!. ~4!

Here we have definedb51/kBT, whereT is the temperature
and kB is Boltzmann’s constant. Since we will deal wit
discrete energies, the Laplace transform of Eq.~4! takes the
form

Z~b!5(
E

DEr~E!exp~2bE!, ~5!

whereDE is the energy bin used.
In nuclear and solid-state physics, thermal properties h

mainly been studied in the canonical and grand-canon
ensemble. In order to obtain the level density, the inve
transformation

r~E!5
1

2p i E2 i`

i`

dbZ~b!exp~bE!, ~6!

is normally used. Compared with Eq.~4!, this transformation
is rather tricky to perform since the integrand exp„bE
1 ln Z(b)… is a rapidly varying function of the integratio
parameter. In order to obtain the density of states, appr
mations like the saddle-point method, viz., an expansion
the exponent in the integrand to second order around
equilibrium point and subsequent integration, have been u
widely, see e.g., Refs.@19,20#. For the ideal Fermi gas, thi
gives the following density of states:

r ideal~E!5
exp~2AaE!

EA48
, ~7!

wherea in nuclear physics is a factor typically of the ord
a5A/8 with units MeV21, A being the mass number of
given nucleus.

1Hereafter we user for the level density in the microcanonica
ensemble. Furthermore, since we are dealing with a system
discrete energies from a quantal system, the microcanonical p
tion function is defined by the number of states at a given energE
@18#.
6-2
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ENTROPY IN HOT 161,162Dy AND 171,172Yb NUCLEI PHYSICAL REVIEW C 62 024306
Ideally, the experiment should provide the level density
function of excitation energy and thereby the ‘‘full’’ part
tion function for the microcanonical ensemble. In the mic
canonical ensemble we could then extract expectation va
for thermodynamical quantities like temperatureT, or the
heat capacityC. The temperature in the microcanonical e
semble is defined as

^T&5S dS~E!

dE D 21

. ~8!

It is a function of the excitation energy, which is the releva
variable of interest in the microcanonical ensemble. Ho
ever, since the extracted level density is given only at d
crete energies, the calculation of expectation values likeT,
involving derivatives of the partition function, is not reliab
unless a strong smoothing over energies is performed.
case is discussed at large in Ref.@9# and below. Another
possibility2 is to employ the Laplace transformation of E
~5! in order to evaluate various thermodynamical quantit
in the canonical ensemble. As an example, we can eval
the entropy in the canonical ensemble using the definition
Helmholtz free energy

F~T!52kBT ln Z~T!5^E~T!&2TS~T!. ~9!

Note that the temperatureT is now the variable of interes
and the energyE is given by the expectation valuêE& as
function ofT. Similarly, the entropyS is also a function ofT.

In this section, we extract the exact level density from
simple theoretical model.3 The Hamiltonian we use to obtai
the eigenvalues and the level densityr(E) is the simple pair-
ing Hamiltonian

H5(
i

« iai
†ai2

1

2
G (

i j .0
ai

†aı̄
†
āaj , ~10!

wherea† anda are fermion creation and annihilation oper
tors, respectively. The indicesi andj run over the number o
levelsL, and the labelı̄ stands for a time-reversed state. T
parameterG is the strength of the pairing force while« i is
the single-particle energy of leveli.

We assume that the single-particle levels are equidis
with a fixed spacingd. Moreover, in our simple model, th
degeneracy of the single-particle levels is set to 2J1152,
with J51/2 being the spin of the particle. Introducing th
pair-creation operator

Si
15aim

† ai 2m
† , ~11!

2The transformation to the canonical ensemble represents a
smoothing.

3A similar analysis within the framework of several BCS ansa
based approaches was done by Do”ssinget al. in Ref. @7#. Whereas
our approach includes all possible eigenvalues in order to determ
the level density, Do”ssing et al. perform their diagonalization
within a space spanned by number-projected states. The qualit
behavior of their results is, however, similar to that presented h
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one can rewrite the Hamiltonian in Eq.~10! as

H5d(
i

iNi2
1

2
G (

i j .0
Si

1Sj
2 , ~12!

where

Ni5ai
†ai ~13!

is the number operator. The latter commutes with the Ham
tonianH. In this model quantum numbers like seniorityS are
good quantum numbers, and the eigenvalue problem ca
rewritten in terms of blocks with good seniority. Loose
speaking, the seniority quantum numberS is equal to the
number of unpaired particles, see Ref.@21# for further de-
tails.

The reason why we focus on such a simple model is tw
fold. First, we expect the ground state of nuclei to be larg
dominated by pairing correlations. This is mainly due to t
strong singlet1S0 state in the nucleon-nucleon interactio
see e.g., Refs.@22–24#. For even-even systems this is typ
cally reflected in an energy gap between the ground state
the first excited state, a gap that is larger than that see
odd nuclei. This is taken as an evidence of strong pair
correlations in the ground state. More energy is needed
order to excite the system when all fermions are paired,
when we have a system with an even number of partic
Since pairing correlations are important in nuclear syste
we expect the above model to exhibit at least some of
properties seen in finite nuclei.

Second, for particle numbers up toN;18, the above
model can be solved exactly through numeric
diagonalization,4 since seniority is a good quantum numbe
This means that we can subdivide the full eigenvalue pr
lem into minor blocks with given seniority and diagonaliz
these separately. In our case we use for the even systeN
512 particles which are distributed overL512 twofold de-
generate levels giving a total of

S 2L

N D 5S 24

12D 52.704.156 ~14!

states. Of this total, forS50, i.e., no broken pairs, we hav

S L

N/2D 5S 12

6 D 5924, ~15!

states. Since the Hamiltonian does not connect states
different seniorityS, we can diagonalize a 9243924 matrix
and obtain all eigenvalues withS50. Similarly, we can sub-
divide the Hamiltonian matrix intoS52, S54, . . . andS
512 ~all pairs broken! blocks and obtainall 2.704.156 ei-
genvalues for a system withL512 levels andN512 par-
ticles. As such, we have theexact density of levelsand can

a

-

ne

ive
e.

4With 18 particles, one needs;3GB of memory to store the
largest seniority matrix. This is fully feasible with present comp
ers.
6-3
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M. GUTTORMSENet al. PHYSICAL REVIEW C 62 024306
compute observables like the entropy, heat capacity,
This numerically solvable model enables us to compute
actly the entropy in the microcanonical and the canon
ensembles for systems with odd and even numbers of
ticles. In addition, varying the level spacingd and the pairing
strengthG, may reveal features of, e.g., the entropy whi
are similar to those of the experimentally extracted entro
Recall that the nuclei studied represent both even-even
even-odd nucleon systems.

Here we study two systems in order to extract differen
between odd and even systems, namely by fixing the num
of doubly degenerated single-particle levels toL512,
whereas the number of particles is set toN511 andN512.
Figure 2 pictures the ground state of these systems and
sible excited states.

These two systems result in a total of;33106 eigen-
states. In the calculations, we choose a single-particle l
spacing ofd50.1, which is close to what is expected for ra
earth nuclei. In this sense, if we are to assign energies
units MeV, our results may show some similarity with e
periment. We select three values of the pairing stren
namely G51, 0.2 and 0.01, resulting in the ratiod5d/G
50.1, d5d/G50.5 andd5d/G510, respectively. The firs
case represents a strong pairing case, with almost degen
single-particle levels. The second is an intermediate c
where the level spacing is of the order of the pairing streng
while the last case results in a weak pairing case. As sh
below, the results for the latter resemble to a certain ex
those for an ideal gas.

The calculational procedure is rather straightforwa
First we diagonalize the large Hamiltonian matrix~which is
subdivided into seniority blocks! and obtain all eigenvalue
E for the odd and even particle case. This defines also
density of levelsr(E), the partition function and the entrop
in the microcanonical ensemble. Thereafter, we can ob
the partition function Z(T) in the canonical ensembl
through Eq.~5!. The partition functionZ(T) enables us in
turn to compute the entropyS(T) using

FIG. 2. Simple illustration of the ground state and possible
cited states~4 and 5 quasiparticles! for a system with 12 doubly
degenerate single-particle levels. The properties of the mode
governed by the level spacingd and the pairing strength paramet
G ~the illustration is withG50). For the even system with 1
particles, the first excited state is a two-quasiparticle state co
sponding to the breaking of one pair. The first excited state in
odd system with 11 particles is a single quasiparticle state.
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S~T!5kB ln Z~T!1^E~T!&/T. ~16!

Since this is a model with a finite number of levels a
particles, unless a certain smoothing is done, the micro
nonical entropy may vary strongly from energy to energ
This is seen in Fig. 3, where we plot the entropy for the o
~upper part! and even~lower part! system usingd5d/G
50.5. The entropy is given by discrete points, since we
not have eigenvalues at all energies. However, we can
perform a moderate smoothing which conserves the b
features of the model, namely an increase in entropy w
pairs are broken. This was performed with a Gauss
smoothing

S̃i5

(
k

Sk exp„2~Ei2Ek!
2/2s2

…

(
k

exp„2~Ei2Ek!
2/2s2

…

, ~17!

whereSk and Ei ,k are the entropies and energies from t
diagonalization of the pairing Hamiltonian.S̃ is the
smoothed entropy. With a smoothing parameter ofs50.2

-

re

e-
e

FIG. 3. Entropy in the microcanonical ensemble as function
excitation energyE for d50.5. The upper and lower panels sho
the results for the odd and even systems, respectively. Results
and without a Gaussian smoothing are displayed. If we wish
make contact with experiment, one can assign units of MeV toE.
The entropyS/kB is dimensionless.
6-4
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ENTROPY IN HOT 161,162Dy AND 171,172Yb NUCLEI PHYSICAL REVIEW C 62 024306
we see that the smoothed entropy still keeps track of
points where the entropy experiences an increase du
breaking of pairs.

Figure 3 clearly reveals the energies where two, thr
four and so forth quasiparticles are created, i.e., where
den increases in entropy take place. For the even system
the ground state atEGS522.44, the first seniorityS52 ~for-
mation of two quasiparticles! state appears at an excitatio
energy ofE52.2, the firstS54 state appears atE54.06 and
the firstS56 state is atE55.41. Note well that in the figure
of calculations we do not show the absolute energies. If
wish to employ units in MeV, the first excited state for th
even system would be close to what is expected experim
tally.

For the odd system, the first excited states are just o
quasiparticle states, i.e., excitations of the last and le
bound single particle. Since the level spacing is mu
smaller around the ground-state energy for the odd c
~with energyEGS521.65), these states appear rather clo
to the ground state. When a pair is broken, we create a th
quasiparticle state~one broken pair plus a quasiparticle!, or
seniorityS 53 state. This appears at an excitation energy5 of
E52.01, while the seniorityS55 state~two broken pairs
plus one quasiparticle! appears atE53.58. We note from
Fig. 3 that at an energy ofE;8 – 9, the entropy starts de
creasing~population inversion!, reflecting thereby the limited
size of our model.

For d50.5, where the single-particle spacing is only h
the pairing strength, the energy eigenvalues are fairly w
distributed over the given energy range. If we decreased,
however, we approach the degenerate limit, and the eig
values and the entropy are sharply concentrated around t
eigenvalues where pairs are broken. This is seen in Fig. 4
d50.1 for the even case withN512. The odd case withN
511 exhibits a similar behavior. Clearly, if we wish t
evaluate the temperature according to Eq.~8! for d50.1,

5Note that the first state with a broken pair appears at a lo
excitation energy for the odd system, as expected.

FIG. 4. Entropy in the microcanonical ensemble as function
excitation energyE for d50.1. If we wish to make contact with
experiment, one can assign units of MeV toE. The entropyS/kB is
dimensionless.
02430
e
to

e,
d-
ith

e

n-

e-
st
h
se
e
e-

f
ll

n-
se

or

even with a strong smoothing, we cannot obtain reliable v
ues for, e.g.,T. Thus, rather than performing a certa
smoothing, we will choose to present further results for
entropy in the canonical ensemble, using the Laplace tra
form of Eq. ~5!.

The results for the entropy in the canonical ensemble
functions ofT for the above three sets ofd5d/G are shown
in Fig. 5. For the two cases with strong pairing, we see
clear difference in entropy between the odd and the e
system. The difference in entropy between the odd and e
systems can be easily understood from the fact that
lowest-lying states in the odd system involve simply the e
citation of one single particle to the first unoccupied sing
particle state, and is interpreted as a single-quasipar
r

f

FIG. 5. Entropy in the canonical ensemble as function of te
peraturekBT for odd and even systems ford50.1 ~upper panel!,
d50.5 ~central panel! andd510 ~lower panel!. If we wish to make
contact with experiment, one can assign units of MeV tokBT. The
entropyS/kB is dimensionless.
6-5
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state. These states are rather close in energy to the gr
state and explain why the entropy for the odd system ha
finite value already at low temperatures~recall also the dis-
cussion in connection with Fig. 3!. Higher lying excited
states include also breaking of pairs and can be describe
three-, five- and more-quasiparticle states. Ford510, the
odd and even systems merge together already at low
peratures, indicating that pairing correlations play a ne
gible role. For small single-particle spacing, also the diff
ence in energy between the first excited state and the gro
state for the odd system is rather small.

For our choice ofd we observe that the maximum entrop
is of the order of S;14kB in the canonical ensemble
whereas in the microcanonical ensemble, see Figs. 3 an
the maximum value isS;10–12kB . Obviously, when per-
forming the transformation to the canonical ensemble, si
we have a small system, there may be larger fluctuation
expectation values like the entropy. In the limitN→`, the
two ensembles should result in equal values forT, E, andS,
see Ref.@18# for an in depth discussion.

For d50.5 we note that at a temperature ofkBT
;0.5–0.6, the even and odd system approach each ot6

The temperature where this occurs corresponds to an ex
tion energŷ E& in the canonical ensemble of^E&;4.7–5.0.
Recalling Fig. 3, this corresponds to excitation energ
where we have 4–6 quasiparticles, seniorityS5426, in the
even system and 5–7 quasiparticles, seniorityS55 – 7, in
the odd system. The almost merging together of the even
odd systems at these temperatures, can be retraced t
features seen in Fig. 3. For higher excitation energies in
3, we saw that higher seniority values show less mar
bumps in the entropy, indicating that the level density
higher excitation energies contains many more states
that we are getting closer to a phase where pairing play
less significant role.

For small systems like finite nuclei, where the size of t
system is not large compared to the range of the strong
teraction, the entropy is not an extensive quantity, i.e., it d
not scale with the size of the system@18#. However, it may
be fruitful to investigate whether the entropy is an extens
quantity with respect to the number of quasiparticles,
which case it goes likeS5nS1, with n the number of quasi-
particles andS1 as the single quasiparticle entropy. A po
sible test of the extensivity is to employ the difference
entropy between the odd and even systems as function o
excitation energy,Sodd2Seven. With the assumptionSodd
5noddS1 andSeven5nevenS1, we can in turn define the num
ber of quasiparticles in the odd and even systems as

nodd~^E&!5
Sodd

Sodd2Seven
and neven~^E&!5

Seven

Sodd2Seven
,

~18!

respectively. The odd system has one more quasiparticle
the even system, i.e.,nodd5neven11.

6If we wish to make contact with experiment, we could aga
assign units of MeV tokBT andE.
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Before we proceed, the reader should, however, note
for the simple model employed here, we choose to pres
the results fornodd and neven as functions of the averag
energy in the canonical ensemble^E&. This implies also that
the entropies which enter the above definitions are functi
of ^E(T)&. This choice is done in order to keep the link
the microcanonical ensemble. The reason for this choice
be seen from Figs. 3 and 4. If we were to calculate
entropy difference of the odd and even system in the mic
canonical ensemble as function of the excitation energy,
theoretical model would have given us a highly fragmen
difference. Thus the choice of the presentation in the can
cal ensemble. However, the basic features such as wher
various numbers of quasiparticles appear are preserved in
canonical ensemble as well, see the discussion below.

Figure 6 shows the number of quasiparticles in the o
and even systems for the three values ofd using the defini-
tion in Eq. ~18!. We note that for all cases the differenc
between the odd and even systems remain equal and clo
one, demonstrating that the entropy is an extensive quan
as function of the number of quasiparticles. Furthermore,
d50.5 ~central panel!, we see that the excitation energie
where 1,2,3, . . . quasiparticles appear, agree with the resu
discussed in Fig. 3 in the microcanonical ensemble. To g
an example, for the odd system, three quasiparticles ap
at an energy of̂ E&51.8, which should be compared to th
exactly calculated one in the microcanonical ensemble oE
52.01. Five quasiparticles show up at^E&53.4, which again
should be compared to the result obtained in the micro
nonical ensemble ofE53.58. The agreement for the eve
case is slightly worse. Ford50.1, the strong pairing case, w
note that more energy is needed in order to create 2,4, . . . and
3,5, . . . quasiparticles in the even and odd systems, resp
tively. This agrees also with the microcanonical result of F
4. For the weak pairing cased510, higher seniority states
appear already at low excitations energies, indicating t
pairing plays a minor role, as expected.

This feature can also be seen from Fig. 5, where the
ference in entropy between the odd and even systems is
ligible even at low temperatures. Both Figs. 5 and 6 tell
that a quasiparticle picture for the weak pairing case is
the relevant one.

Figure 6 carries also an interesting message. If one
extract the number of quasiparticles as function of excitat
energies, the steepness of the curve provides useful infor
tion about the relation between the single-particle spac
and the pairing strength.

In summary, varyingd allows us to extract qualitative
information about thermodynamical properties such as
entropy and the number of quasiparticles in even and
systems. Especially, two properties are worth paying att
tion to concerning the discussion in the next section. Fi
for the two cases with strong pairing (d50.1 andd50.5),
Fig. 5 tells us that at temperatures where we have 4–6 q
siparticles in the even system and 5–7 quasiparticles in
odd system, the odd and even system tend to merge toge
This reflects the fact that pairing correlations tend to be l
important and we approach the noninteracting case. For
weak pairing case,d510, the odd and even systems yie
6-6
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similar results at much lower temperatures. In a sim
model with just pairing interactions, it is thus easy to s
where, at given temperatures and excitation energies, ce
degrees of freedom prevail. For the experimental result
the next section, this may not be the case since the inte
tion between nucleons is much more complicated. The h
however is that pairing may dominate at low excitation e
ergies and that the features seen in, e.g., Fig. 5 are qua
tively similar to the experimental ones.

Second, we can read from Fig. 6 the excitation ene
where different numbers of quasiparticles appear. With a
alistic value for the level spacing, a comparison with expe
ment may tell us something about the strength of the pai
force.

FIG. 6. Number of quasiparticlesn in the canonical ensembl
for different values ofd for even and odd particle systems. Resu
for d50.1 are shown in the upper panel,d50.5 in the central pane
and d510 in the lower panel. If we wish to make contact wi
experiment, one can assign units of MeV toE. The number of
quasiparticlesn is dimensionless.
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental level densityr(E) at excitation energy
E is proportional to the number of levels accessible ing
decay. For the present reactions the spin distribution is c
tered around^J&;4.4\ with a standard deviation ofsJ
;2.4\ @25#. Hence, the entropy7 can be deduced within the
microcanonical ensemble, using

S~E!5kB ln N~E!5kBln
r~E!

r0
, ~19!

whereN is the number of levels in the energy bin at ener
E. The normalization factorr0 can be determined from th
ground-state band in the even-even nuclei, where we h
N(E);1 within a typical experimental energy bin o
;0.1 MeV.

The extracted entropies for the161,162Dy and 171,172Yb
nuclei are shown in Figs. 7 and 8. In the transformation fr
level density to entropy we use Eq.~19! with r0;3 MeV21.
The entropy curves are rather linear, but with small osci
tions or bumps superimposed. The curves terminate arou
MeV below their respective neutron binding energies due
the experimental cut excludingg rays withEg,1 MeV. All
four curves reachS;13kB , which by extrapolation corre-
sponds toS;15kB at the neutron binding energyBn .

The calculations for odd and even systems~see Fig. 3!
show clear increases in the entropy at the excitation ener
where Cooper pairs are broken. This behavior is not v
pronounced in the experimental data, probably due to

7The experiment reveals the level density and not the state
sity. Thus, also the observed entropy reveals the number of lev
The state density can be estimated byrstate;(2J11)r level

;9.8r level .

FIG. 7. Observed entropy for161,162Dy as function of excitation
energyE.
6-7
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sidual couplings in real nuclei. In particular, our pairin
model excludes collective excitations, which are known
contribute strongly at low excitation energy. For172Yb in
Fig. 8 one can identify bumps at 1.5 MeV and 2.8 MeV
excitation energy, that could be interpreted as increased
tropy due to the breaking of two and four quasiparticl
respectively.

For the odd system the valence particle~or hole! is ex-
pected to perform blocking, and indeed the calculations

FIG. 8. Observed entropy for171,172Yb as function of excitation
energyE.

FIG. 9. Entropy difference in161Dy compared to162Dy ~upper
panel! and in 171Yb compared to172Yb ~lower panel!. The lines
through the data points indicate the average values found.
d.
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Fig. 3 reveal effects of smearing out the entropy structure
function of excitation energy. The smoother experimen
entropy curves for161Dy and 171Yb ~see Figs. 7 and 8! seem
also evident, in particular for the161Dy case.

The experimental entropy of the even-odd system follo
closely the entropy for the even-even system, but the ev
odd system has an entropy excess. The difference of ent
in the even-odd system compared to the even-even syste
evaluated in Fig. 9 for161,162Dy and 171,172Yb. The observed
entropy differences in the microcanonical ensemble in
1.5 MeV ,E,5.5 MeV excitation region are;1.8(1)kB
and;1.6(1)kB for dysprosium and ytterbium, respectivel

The experimental level density can be used to determ
the canonical partition functionZ(T). However, in the evalu-
ation of Eq.~5!, we have to extrapolate the experimentalr
curve to;40 MeV. Here, we use the back-shifted level de
sity formula of Refs.@26,27# with

r5 f
exp@2AaU#

12A2a1/4U5/4s
, ~20!

where the back-shifted energy isU5E2E1 and the spin
cutoff parameters is defined throughs250.088 8A2/3AaU.
The level density parametera and the back-shift paramete
E1 are defined bya50.21A0.87 MeV21 andE15C11D, re-
spectively, where the correction factor is given byC1
526.6A20.32 according to Ref.@27#. The factorf is intro-
duced by us to adjust the theoretical level density to exp
ment atE;Bn21 MeV. The parameters employed are list
in Table I. From our semiexperimental partition function, t
entropy can be determined from Eq.~16!. The results are
shown in Fig. 10. The entropy curves show a splitting
temperatures belowkBT50.5–0.6 MeV, which reflects the
experimental splitting shown in the microcanonical plots
Figs. 7 and 8. However, the strong averaging produced
the summing in Eq.~5!,8 modifies the entropy due to com
ponents from the theoretical extrapolation ofr. Even so, the
curves agree qualitatively with the calculations in Fig. 5 u
ing d50.5. The effect of pairing seems in both cases
vanish above 0.5–0.6 MeV. This agrees with our previo

8At a temperature of 0.6 MeV, the difference between the entr
obtained from the data@which is the input to the canonical partitio
function of Eq.~5!# and that which includes the data and the bac
shifted Fermi-gas model is less than 10%. The relative differe
between the odd and the even systems is however less affecte

TABLE I. Parameters used in the back-shifted Fermi-gas f
mula for the extrapolation of the experimental level density cur

Nucleus D ~keV! a ~MeV21) C1 ~keV! E1 ~keV! f

161Dy 793 17.46 21298 2505 1.400
162Dy 1847 17.56 21296 551 1.138
171Yb 680 18.40 21273 2593 0.376
172Yb 1606 18.50 21271 335 0.465
6-8
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work @10#, giving a critical temperature ofkBTc50.5 MeV
for the existence of pair correlations.

The observation that one quasiparticle carries 1.7kB of
entropy, can be utilized to estimate the number of quasip
ticles as function of excitation energy. Analogously to E
~18!, we estimate from the experimental entropiesSeo andSee

in neighboring even-odd and even-even isotopes the ent
difference Seo2See. The number of quasiparticles in th
even-odd and even-even systems is given by Eq.~18!, except
that the odd system is replaced by an odd-even nucleus
the even system by an even-even nucleus.

The extracted number of quasiparticlesn(E) in 162Dy and
172Yb is shown in Fig. 11. Note here that the experimen
data show a much smoother entropy in the microcanon
ensemble. Thus, Fig. 11 portrays the number of quasip
cles as functions of the excitation energy in the microcano
cal ensemble.

The number of quasiparticles raises to a level ofn;2
aroundE51.5–2 MeV, which could be a signal for the fo
mation of two quasiparticle states. However, the creation
four and six quasiparticles shows no clear steplike functi
The breaking of additional pairs is spread out in excitat
energy giving a rather smooth increase in the number
quasiparticles as function of excitation energy. In the exc
tion region 0.5–5 MeV then(E) curve gives on the averag
1.6 MeV of excitation energy to create a quasiparticle p
This value is consistent with pairing gap parameters of
mass region, see Table I. The theoretical calculation9 with
d50.5 gives an energy of 1.7 MeV per broken pair, which
close to the experimental finding of 1.6 MeV. Hence, with
single-particle spacing ofd50.1–0.2 MeV, the pairing
strength is determined toG50.2–0.4 MeV.

FIG. 10. Semiexperimental entropyS for 161,162Dy and 171,172Yb
calculated in the canonical ensemble as function of tempera
kBT.
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V. CONCLUSIONS

The entropy as function of excitation energy has be
extracted for the161,162Dy and 171,172Yb nuclei. The ob-
served entropy excess in the even-odd nuclei compare
the even-even nuclei is interpreted as the entropy for a sin
quasiparticle~particle or hole! outside an even-even core
The entropy excess remains at a level of;1.7kB as function
of excitation energy. A simple pairing model with an equ
distant level spacing ofd and a pairing strength ofG, gives a
qualitatively similar description of these features.

The number of excited quasiparticles has been extra
from data. The onset of two quasiparticle excitations see
evident; however, the breaking of additional pairs is smea
out in excitation energy and is difficult to observe. The ma
mum number of excited quasiparticles is measured to bn
;6 at an excitation energy of 5.5 MeV in the162Dy and
172Yb isotopes.

The quasiparticle picture has been a success in descri
rotational bands in cold nuclei. The present results indic
that quasiparticles also can describe certain thermodynam
properties of hot nuclei. This gives hope for realistic mod
ing of nuclei up to high intrinsic energy with several qua
particles excited.

9The reader should keep in mind that the number of particles
the theoretical calculation and experiment are rather different
experiment, if one assumes132Sn as closed shell core, the numb
of valence protons and neutrons is of the order of;30–40. How-
ever, performing the above theoretical calculations with say 10
14 particles results in qualitatively similar results as those prese
here. The energy gap between the ground state and the first se
ity S52 state changes also slightly as the number of particles
creases. To give an example, with ten particles the excitation en
is 1.95 whereas with 12 particles as here the spacing is 2.21.

re

FIG. 11. Number of quasiparticlesn in 162Dy ~upper panel! and
172Yb ~lower panel! as function of excitation energy. The lines in
dicate the levels of two, four, and six quasiparticles.
6-9



fo
nd

on.
ian
f

M. GUTTORMSENet al. PHYSICAL REVIEW C 62 024306
ACKNOWLEDGMENTS

The authors are grateful to E. A. Olsen and J. Wikne
providing the excellent experimental conditions. A.B. a
s.

J.

F.
an

F.
an

. S

d,

er
,

-
Z

02430
r

M.H-J. acknowledge many discussions with Ben Mottels
We wish to acknowledge the support from the Norweg
Research Council~NFR!, and from the Serbian Ministry o
Science and Technology.
d J.

m.

s.

.

s,

.F.

s.
@1# H.A. Bethe, Phys. Rev.50, 332 ~1936!.
@2# T.D. Newton, Can. J. Phys.36, 804 ~1956!.
@3# L.L. Riedingeret al., Phys. Rev. Lett.44, 568 ~1980!.
@4# A. Faessler, K.R. Sandhya Devi, F. Gru¨mmer, K.W. Schmid,

and R.R. Hilton, Nucl. Phys.A256, 106 ~1976!.
@5# B.R. Mottelson and J.G. Valatin, Phys. Rev. Lett.5, 511

~1960!.
@6# K. Muhlhans, E. Muller, U. Mosel, and A. Goodman, Z. Phy

A 313, 133 ~1983!.
@7# T. Do”ssinget al., Phys. Rev. Lett.75, 1276~1995!.
@8# T.S. Tveter, L. Bergholt, M. Guttormsen, E. Melby, and

Rekstad, Phys. Rev. Lett.77, 2404~1996!.
@9# E. Melby, L. Bergholt, M. Guttormsen, M. Hjorth-Jensen,

Ingebretsen, S. Messelt, J. Rekstad, A. Schiller, S. Siem,
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