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Bridging quantum criticality via many-body scarring
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Quantum dynamics in certain kinetically-constrained systems can display a strong sensitivity to the initial
condition, wherein some initial states give rise to persistent quantum revivals—a type of weak ergodicity
breaking known as “quantum many-body scarring” (QMBS). Recent work [Yao, Pan, Liu, and Zhai, Phys. Rev.
B 105, 125123 (2022)] pointed out that QMBS gets destroyed by tuning the system to a quantum critical point,
echoing the disappearance of long-range order in the system’s ground state at equilibrium. Here we show that
this picture can be much richer in systems that display QMBS dynamics from a continuous family of initial
conditions: As the system is tuned across the critical point while at the same time deforming the initial state,
the dynamical signatures of QMBS at intermediate times can undergo an apparently smooth evolution across the
equilibrium phase transition point. We demonstrate this using the PXP model—a paradigmatic model of QMBS
that has recently been realized in Rydberg atom arrays as well as ultracold bosonic atoms in a tilted optical
lattice. Using exact diagonalization and matrix product state methods, we map out the dynamical phase diagram
of the PXP model with the quenched chemical potential. We demonstrate the existence of a continuous family
of initial states that give rise to QMBS and formulate a ramping protocol that can be used to prepare such states
in experiment. Our results show the ubiquity of scarring in the PXP model and highlight its intriguing interplay
with quantum criticality.
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I. INTRODUCTION

Quantum many-body scarring (QMBS) is a form of weak
ergodicity breaking in which a small number of states retain
memory of their initial wavefunction despite the rest of the
system thermalizing (see recent reviews [1–4]). The set of
models hosting QMBS states has rapidly expanded in recent
years [5–20], including experimental realizations in several
cold atom platforms [21–25]. At the same time, the underlying
origin of memory-retaining initial states remains the subject of
ongoing work. Some recently identified mechanisms giving
rise to such phenomena include proximity to an integrable
model [19,26,27], dynamical symmetry [5,28–32], and eigen-
state embedding constructions [33].

Signatures of QMBS were initially observed in experi-
ments on Rydberg atom arrays [21], where energy cost due to
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van der Waals interactions strongly disfavors two neighboring
atoms occupying excited states—a form of kinetic constraint
called the Rydberg blockade [34]. When the Rydberg block-
ade is strong, the atoms are described by an effective “PXP”
model [35,36]. This is a one-dimensional (1D) chain of
spin-1/2 degrees of freedom, where the spin-up state |1〉 cor-
responds to a Rydberg atom occupying an excited state (and,
similarly, for the spin-down state |0〉, which denotes an atom
in the ground state). Thus, the number of up spins translates
into the number of Rydberg excitations, and we will use such
nomenclature interchangeably. The PXP Hamiltonian for N
atoms takes the form (in units h̄ = 1)

HPXP(μ) = �

N−1∑
j=0

Pj−1XjPj+1 + μ

N−1∑
j=0

Qj, (1)

where X = |1〉 〈0| + |0〉 〈1| is the Pauli-X operator describing
the Rabi flipping of each atom. Below we will set the Rabi
frequency to � = 1. The projector P = |0〉 〈0| implements
the constraint by preventing the Rabi flip from generating
any neighboring excitations. The complementary projector,
Q = 1 − P = |1〉 〈1|, counts the number of excitations in the
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system and thus defines the chemical potential term μ. We
will consider two types of boundary conditions for the Hamil-
tonian in Eq. (1): For analytical considerations and exact
diagonalization simulations, we will use periodic boundary
conditions (PBCs), which are implicit in Eq. (1) after identi-
fying site j + N ≡ j. For matrix product state simulations in
large systems, we will instead use open boundary conditions
(OBCs), where the first and the last flip term are taken to be
X0P1 and PN−2XN−1, respectively.

In the absence of chemical potential (μ = 0), the PXP
model displays nonthermalizing dynamics when initialized in
the Néel state, |ψ (0)〉 = |Z2〉 ≡ |1010...10〉 [21]. Evolving
this state with the Hamiltonian in Eq. (1), one observes that the
return probability periodically reaches values close to unity
[6]. By contrast, other initial states exhibit fast equilibration,
as expected in a chaotic system. Conversely, this atypical
dynamics is also reflected in ergodicity breaking amongst a
subset of eigenstates of the PXP model [27,37,38], even in
the presence of perturbations [39,40] or in energy transport at
infinite temperature [41].

The chemical potential term plays a central role in this
paper. When the chemical potential is tuned to μc ≈ −1.31,
the PXP ground state undergoes an Ising phase transition
[35,42], associated with a spontaneous breaking of Z2 sym-
metry [43–46]. The signatures of this transition have been
observed in programmable Rydberg atom quantum simula-
tors [47]. This equilibrium phase transition (referred to as
“EPT” throughout this paper) is in the same universality
class as the one induced by varying the quark mass in the
Schwinger model of quantum electrodynamics in (1 + 1)-
dimension [48]. The lattice formulation of the latter, known as
the U(1) quantum link model, exactly maps to the PXP model
in Eq. (1) for the case of spin-1/2 degrees of freedom [49].

The effect of chemical potential on scarring in the PXP
model has also been the subject of much attention. On the
one hand, Ref. [37] studied the effect of μ on the revivals
of |Z2〉 state, finding that μ �= 0 restores thermalizing be-
havior. On the other hand, suitable periodic modulations of
μ can enhance scarring and have been studied extensively
[50–56]. In particular, a recent study [24] has found that new
QMBS regimes can emerge for μ > 0, even in the absence
of a periodic drive. One example is the polarized state, |0〉 =
|000....0〉. While in the absence of chemical potential the |0〉
state is believed to thermalize [21], at moderate values of the
chemical potential, it starts to revive, much like the Néel state.
This raises the question about the existence of a larger family
of scarred initial states in the PXP model in the presence of a
chemical potential.

Another natural question concerns the interplay between
criticality and QMBS. While the EPT has a profound effect
on the low-energy physics of the PXP model, it is not obvious
that it should directly impact QMBS, which manifests in the
quench dynamics at infinite temperature. Nevertheless, Ref.
[57] recently argued that there is a link between this EPT and
QMBS. Namely, when tracing the eigenstates responsible for
the quantum revival of the |Z2〉 state, Ref. [57] found that
these states merge with the thermal bulk of the energy spec-
trum as the EPT is approached. On the contrary, upon moving
away from the EPT towards μ → −∞, the degenerate ground
states acquire high overlap with the |Z2〉 state and its partner

translated by one site, |Z̄2〉 ≡ |0101 . . .〉. Thus, the |Z2〉 state
can only thermalize as one approaches the EPT, suggesting
a connection between QMBS and criticality. This was also
demonstrated experimentally in the Bose-Hubbard quantum
simulator [58]. Moreover, by investigating the quantum Ising
model in transverse and longitudinal fields, Ref. [59] argued
that QMBS from the |Z2〉 state is smoothly connected to in-
tegrability by continuously turning off the constraint, induced
by the longitudinal field.

In this paper, we map out the dynamical phase diagram of
the PXP model corresponding to global quenches of the chem-
ical potential from some initial value μi to an arbitrary final
value μf. This provides a means of probing out-of-equilibrium
dynamics from more complex initial states beyond |Z2〉 or
|0〉, which had been accessed in previous experiments by tak-
ing the limits μi → ±∞. We identify QMBS regimes in the
dynamical phase diagram based on signatures of ergodicity
breaking, such as the deviation of observable expectation val-
ues from the canonical ensemble predictions and the presence
of quantum revivals. Our results show that the previously
known scarring regimes, associated with |Z2〉 and |0〉 states,
indeed break down when approaching the EPT, either via
μi → μc or μf → μc, in agreement with Refs. [57,58]. How-
ever, we also find a new QMBS regime corresponding to the
initial state being the ground state near the EPT. Using the
time-dependent variational principle (TDVP) framework for
QMBS, developed in Ref. [60], we identify a semiclassical
picture behind QMBS dynamics. Across much of the phase
diagram away from the EPT point, the QMBS dynamics can
be understood in terms of a periodic trajectory that passes
through the |0〉 state, with the radius of the trajectory con-
trolled by the chemical potential. Allowing for a continuous
family of initial states—the ground states of HPXP(μi )—we
find surprisingly robust QMBS signatures at intermediate
times that smoothly bridge across the EPT. We work out
a ramping protocol for the preparation of such states, pro-
viding a recipe for probing the dynamical phase diagram in
experiment.

The remainder of this paper is organized as follows. We
start by presenting the results of numerical simulations of
the dynamical phase diagram of the PXP model for global
quenches of the chemical potential in Sec. II. In Secs. III–V
we analyze in detail the various regimes of this phase diagram.
Section III contains a brief introduction to the TDVP formal-
ism that will be useful for the semiclassical interpretation of
the results. In Sec. IV we focus on QMBS regimes of the phase
diagram, while Sec. V discusses the special case when the sys-
tem is initialized in the ground state near the EPT. In Sec. VI,
we show how the dynamical phase diagram can be probed
in experiment by preparing the desired ground states using a
ramping protocol. Our conclusions are presented in Sec. VII,
while Appendices contain details of the TDVP formalism,
finite-size scaling analysis, and additional characterizations of
the phase diagram.

II. DYNAMICAL PHASE DIAGRAM OF THE PXP MODEL

In this paper we are interested in the following out-of-
equilibrium probe of the PXP model in Eq. (1): start from
the ground state of HPXP(μi ) and then evolve with the same
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Hamiltonian but generally different chemical potential value
HPXP(μf ). We assume a closed system evolving under uni-
tary Schrödinger dynamics. Since the energy level spacings
in the PXP model are expected to obey the Wigner-Dyson
distribution for all values of μ [6,35], the nonequilibrium
dynamics induced by quenching μ should be described by
random matrix theory [62]. In particular, quenching the chem-
ical potential by a large amount ∼O(1) should initialize the
system in a generic high-temperature state, which is expected
to lead to rapid thermalization according to the eigenstate
thermalization hypothesis (ETH) [63–65]. This means that
the expectation value of any local observable should converge
towards the value predicted by the canonical ensemble within
any symmetry-resolved sector of the many-body Hilbert
space. Deviation from this prediction, i.e., ergodicity break-
ing, can be detected through a number of probes, two of which
we utilize.

One probe of ergodicity breaking, convenient in the context
of QMBS, is quantum fidelity or return probability of the
wavefunction to its initial value,

F (t ) = |〈ψ (0)|ψ (t )〉|2. (2)

For a thermalizing initial state, F (t ) rapidly drops to a value
close to zero and remains exponentially small in system size
at late times. Therefore, if the average fidelity over a time
interval 
�−1 is much larger than ∼O( exp(−N )), we ex-
pect nonergodic behavior. However, one should exclude trivial
cases such as μi ≈ μf when the ground state of HPXP(μi ) is
approximately an eigenstate of HPXP(μf ), as this would lead
to the system getting “stuck” in an eigenstate, with fidelity
F (t ) ≈ 1 and potentially never decaying. To avoid such cases,
we compute the difference δF between minimal fidelity and
maximal fidelity over a time window t ∈ [t0, t1], with t0 = 1
and t1 = 20. This window is large enough to exceed the ini-
tial relaxation on the scale ��−1 (thus excluding the high
fidelity near t = 0), yet small enough (t1 � N/�) to be free of
the boundary effects. The obtained δF in the μi − μf plane
is shown in Fig. 1(a). The fidelity has been evaluated in a
system of N = 51 atoms using matrix product state (MPS)
[66] simulations based on the algorithm in Ref. [61], and
we have checked that the results agree closely with exact
diagonalization for systems with N < 30 atoms. We note that
t0 = 1 in Fig. 1(a) was chosen to be just slightly longer than
the initial relaxation period, as modulating μ alters the period
of the fidelity revivals. Setting t0 > 1 results in a qualitatively
similar phase diagram, but with a reduced overall scale for δF ,
as the window with larger t0 may miss the first (and typically
the largest) revival peak.

Before we comment on the interesting regimes of the phase
diagram, we note that we have also computed the deviation of
an observable expectation value from the thermal ensemble
prediction, shown in Fig. 1(b). This provides a complemen-
tary probe of ergodicity breaking that is more amenable to
experimental measurements. For the observable, we chose
the density of excitations in the system, n = (1/N )

∑N
j=1 Qj ,

which is readily available in existing experimental setups
[21,24]. After quenching the system, we compute the inte-
grated mean-square deviation of the excitation density from
the thermal value over the time window between t0 = 10 and

FIG. 1. Dynamical phase diagram for global quenches starting
in the ground state of HPXP(μi ) and evolving with HPXP(μf ). (a) The
difference between maximal and minimal revival fidelity δF over
time interval 1 � t � 20 following the quench. Regions with strong
fidelity revivals have been enumerated (see the text for details).
(b) Same as (a) but the color bar showing the deviation of the exci-
tation density from the thermal value, Eq. (3). Data is obtained using
MPS simulations [61] for a chain of N = 51 atoms with OBCs, max-
imum bond dimension χ = 128 and time step δt = 0.025. Dashed
lines mark the EPT at μc ≈ −1.31. In both plots, the cross marks
the point (μi = −0.76, μf = 1.60) that will be analyzed in Sec. IV.
The diamond marks the optimal reviving point in the μi = μc plane,
which will be discussed in Sec. V.

t1 = 20,

MSD(n) = 1

t1 − t0

∫ t1

t0

|〈ψ (t )|n|ψ (t )〉 − nth|2 dt . (3)

The thermal value is defined as

nth = Tr(ρthn), (4)

where the thermal density matrix is given by the usual
Boltzmann-Gibbs expression, ρth = exp(−βH )/Z , with
the partition function Z = Tr exp(−βH ) and the inverse
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temperature β determined from the condition

〈ψ (0)|HPXP(μf )|ψ (0)〉 = Tr(ρthHPXP). (5)

The plot of MSD(n) is shown in Fig. 1(b), where the bright
nonergodic regions match those of high fidelity in Fig. 1(a).
The color contrast is stronger in the fidelity plot due to the
exponential sensitivity of that quantity. A few distinct regimes
where fidelity displays large-amplitude oscillations have been
marked by (1)–(7) in Fig. 1(a). These regions will be analyzed
in detail in the subsequent sections. There, we will argue that
regions (1), (2), and (3) can be identified as QMBS regimes.
Regions (1) and (3) fall under the “universality class” of |Z2〉
and |0〉 QMBS behavior, as we explain in Sec. III. On the other
hand, while the dynamics in region (2) has some similarities
with regions (1) and (3), in Sec. IV we will highlight the
distinctions of this QMBS regime. As it turns out, regions (4),
(5), (6), and (7) have a simple origin, which will be explained
briefly in Appendix A.

A few comments are in order. The QMBS fidelity appears
to vary smoothly between regions (1) and (2) in Fig. 1(a),
while they are separated by the EPT (indicated by the dashed
line). In fact, we find the most robust revivals correspond to
the ground state precisely at the EPT point (highlighted by
the diamond in Fig. 1). That is to say, although δF may be
smaller than other regions, the revivals decay more slowly
over time, and this behavior persists with increasing N . This
intriguing case will be addressed in detail in Sec. V. Here we
note that we have confirmed the existence of QMBS across the
critical point in much larger systems (N � 400 spins) using
MPS numerics. This is in contrast to the μf = μc case, where
we see no ergodicity breaking in Fig. 1(a), as also expected
from Refs. [57,58].

III. TIME-DEPENDENT VARIATIONAL PRINCIPLE AND
PERIODIC ORBITS FOR MANY-BODY SCARRING

Without chemical potential, quantum dynamics from the
|Z2〉 state in the PXP model can be visualized as a classical pe-
riodic orbit [60,67,68]. This is accomplished in the framework
of the time-dependent variational principle (TDVP) [69–71],
which we briefly review in this section. TDVP establishes a
parallel between many-body dynamics in the PXP model and
the analogous dynamical phenomena of a single particle in a
stadium billiard, in which the wavepackets are anomalously
long-lived when prepared along the periodic orbits of the
corresponding classical billiard [72,73]. TDVP will provide
a natural semiclassical language for interpreting the essential
features of the dynamical phase diagram in Fig. 1.

A. A brief overview of TDVP formalism

The starting point of TDVP is to specify a variational
manifold of states M, parameterized by some continuous
variable, and then project the Schrödinger dynamics into that
manifold in a way that manifestly conserves the energy. The
nature of states belonging to M determines to what extent
we can interpret the dynamics as “semiclassical”. For exam-
ple, it would be simplest to consider a manifold spanned by
tensor products of spin-coherent states. This would yield a
“mean-field” description for the dynamics, where each atom

precesses independently. However, the Rydberg blockade in-
trinsically builds in local correlations into the system, due
to the fact that any neighboring excitations, |. . . 11 . . .〉, are
projected out of the Hilbert space. Ordinary spin-coherent
states clearly violate this blockade condition.

Another way of defining a manifold, which naturally ac-
commodates the Rydberg blockade constraint, is to take the
span over MPS states with bond dimension χ controlling
the amount of correlations necessary to capture the projected
dynamics [71]. To simplify matters as much as possible, we
will consider the dynamics to be spatially periodic with a
(infinitely repeated) unit cell of size K (below we will be
primarily interested in small unit cells with K = 1, 2). For a
1D chain of size N , the resulting MPS ansatz is given by

|ψMPS({x})〉 =
∑
{σ }

Tr

(
N/K−1∏

m=0

Aσ1+Km (x1)Aσ2+Km (x2)

× AσK+Km (xK )

)
|σ1σ2σ3 · · · σN 〉. (6)

Here Aσ (xi) are (χ × χ )-dimensional matrices that depend
on variational parameters xi = (θi, φi ), where the angles θi, φi

are akin to the Bloch sphere angles of each spin in the unit
cell. The physical degree of freedom σi = 0, 1 labels the basis
states of a single spin. Following Refs. [60,74], in order to
make things analytically tractable, we will restrict to χ = 2
and chose

A1(θi, φi ) =
(

0 e−iφi

0 0

)
, A0(θi, φi ) =

(
cos θi 0
sin θi 0

)
. (7)

Due to A1A1 = 0, this ansatz ensures that configurations with
neighboring spin-up are forbidden, thus our manifold M =
span{|ψMPS(x)〉 |∀x} is consistent with the Rydberg blockade.

With the choice of ansatz in Eqs. (6) and (7) and setting
K = 1, we are left with only two variational degrees of free-
dom, (θ, φ). Choosing (0,0) recovers the state |0〉 ≡ |000 . . .〉,
while (π/2, π/2) corresponds to the equal-weight superposi-
tion of the two Néel states,

|Z+〉 ≡ 1√
2

(|Z2〉 + |Z̄2〉). (8)

Note that with K = 1 unit-cell periodicity, the states |Z2〉,
|Z̄2〉 do not individually belong to the manifold. Instead, if we
extend the ansatz to K = 2, then (θ1, θ2) = (0, π/2) recovers
the |Z2〉 state. Thus, our manifold with bond dimension χ = 2
captures the initial product states that we expect to play an
important role for QMBS dynamics in the PXP model.

After defining the manifold, the next step is to minimize
the difference between exact Hamiltonian dynamics and its
projection to the manifold,

min
{x}

∥∥∥∥ih̄
∂

∂t
|ψMPS({x})〉 − H |ψMPS({x})〉

∥∥∥∥. (9)

This results in the Euler-Lagrange equations of motion for the
classical variables x [71]. In the case of the PXP model, this
step can be performed analytically in the limit of N → ∞ to
obtain the equations of motions for the θ and φ angles, see
Appendix B for K = 1 and Refs. [60,74] for some K = 2
and K = 3 examples. Integrating this system of differential
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FIG. 2. Sketch of the TDVP manifold M for the PXP model with chemical potential μ. Red regions represent areas of high leakage where
the TDVP approximation breaks down, as quantified by Eq. (10). The Néel state is denoted by |Z2〉 ≡ |1010 . . .〉 and its translated partner—the
anti-Néel state is |Z̄2〉 ≡ |0101 . . .〉, while |Z+〉 = (|Z2〉 + |Z̄2〉)/

√
2. The polarized state is |0〉 ≡ |0000 . . .〉. (a) For a two-site unit cell K = 2

and μ = 0, the |Z2〉 state lies on a periodic trajectory identified in Ref. [60]. We also illustrate the trajectory of the |0〉 state, which is predicted
by TDVP to evolve to |Z+〉; however, this point lies within a region of high leakage where the TDVP dynamics does not accurately describe
the quantum evolution. This is consistent with the |0〉 state thermalizing at μ = 0. (b) Taking K = 1 we focus on the evolution of the |0〉 state
trajectory as μ is varied. For μ = 0, the trajectory is periodic but passes through a region of high leakage. When μ �= 0, the trajectory shrinks,
whilst gradually exiting the high leakage area, and QMBS dynamics starts to emerge in the full system. In this regime, the QMBS dynamics
can be seen as an oscillation between |0〉 and a new state |0̄(μ)〉 defined in Eq. (11). Finally, in the extreme μ → ±∞ limit, the orbit shrinks
to a point.

equations yields the trajectory in M taken by |ψMPS({θ,φ})〉
during the course of quantum evolution. Figure 2 shows a
pictorial representation of the manifold and the projection of
exact dynamics into it, for the cases of interest in the PXP
model perturbed by the chemical potential.

Importantly, beyond equations of motion, it is possible
to estimate “quantum leakage”: the difference between exact
quantum evolution and its projection into the manifold [60].
Quantum leakage γ is defined as the instantaneous rate at
which the exact wave function leaves M,

γ 2 = lim
N→∞

1

N

∥∥∥∥iH |ψMPS(x)〉 +
∑

j

ẋ j∂x j |ψMPS(x)〉
∥∥∥∥

2

. (10)

Red regions in Fig. 2 indicate areas of large γ 2. In these
high-leakage regions, the instantaneous TDVP dynamics is
expected to poorly capture the exact dynamics. Consequently,
trajectories passing through such regions will generally be of
limited accuracy. On the other hand, as first noted in Ref.
[60], the special property of the PXP phase space is that it
has regions of remarkably low leakage, such as the region
traversed by the semiclassical orbit associated with the |Z2〉
state. This is depicted in Fig. 2(a) where the orbit is sketched,
lying within a region of low leakage. Note that, in general,
there can exist multiple periodic orbits within the same mani-
fold [67].

B. TDVP interpretation of the dynamical phase diagram

Much of the PXP dynamical phase diagram in Fig. 1 can be
understood by considering the trajectory of the polarized state
in the TDVP manifold introduced above. Figure 2(b) sketches
this trajectory for three different values of the chemical poten-
tial μ. Within TDVP, a periodic orbit exists even for μ = 0.
However, the orbit passes through the superposition of the two
Néel states |Z+〉, which is located in the high-leakage region.
The TDVP dynamics is therefore not a good approximation in
this case, which accounts for the absence of revivals observed
in the full quantum dynamics.

The addition of a finite chemical potential μ contracts the
trajectory and pushes it into a low-leakage region, as shown in

the middle panel of Fig. 2(b), effectively allowing the revivals
from the polarized state to emerge. As we will explain in
Sec. IV, in this intermediate range of μ, the ground state
of HPXP(μ′) (where μ �= μ′) occupies an antipodal position
on the orbit, corresponding to a chemical-potential dependent
state we label |0̄(μ)〉, given by Eq. (7) for unit-cell size K = 1,

|0̄(μ)〉 = |ψMPS(θmax, φmax)〉, (11)

with angles (θmax, φmax) denoting the antipodal point in the
TDVP orbit of the initial polarized state, see Fig. 2(b). As μ

has the effect of deforming the trajectory, the antipodal angles
also depend on μ, as will be specified in Eq. (16) below. Note
that the sign of μ has no effect on the deformation of the
particular orbit discussed here, as we explain in Appendix C.
Finally, in the extreme limit μ → ±∞, the trajectory is re-
stricted to the vicinity of the initial state and the dynamics is
effectively frozen, as shown in the right panel of Fig. 2(b).

IV. SCARRING IN GAPPED REGIMES
OF THE PHASE DIAGRAM

In this section we focus on regions (1), (2), and (3) of the
phase diagram in Fig. 1, in particular for the values of the
chemical potential away from the EPT. Based on the discus-
sion of TDVP in Sec. III and Fig. 2, the origin of regions
(1) and (3) can be understood by examining the form of the
PXP ground state in the presence of chemical potential. When
μi → −∞, excitations are favored and the ground state is
(for PBCs) a superposition of the two Néel states |Z+〉 in
Eq. (8). By contrast, μi → ∞ penalizes excitations, therefore
the ground state is the polarized state |0〉. The superposition
state |Z+〉 is known to display revivals when quenched to
μf = 0 [37], while the polarized state revives when quenched
with μf �= 0 as shown more recently in Refs. [24,55]. By
continuity, these limiting cases explain the mechanism behind
revivals in regions (1) and (3) of Fig. 1. In the remainder of this
section, we focus on the more interesting region (2) where the
prequench initial state is an entangled state with low overlap
on both |0〉 and |Z2〉 states.
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FIG. 3. Dynamics of quantum fidelity and entanglement entropy,
following a global quench of the chemical potential, μ∗

i = −0.76 →
μ∗

f = 1.6, corresponding to the point marked by the cross in Fig. 1(a).
Quantum fidelity for the initial state |ψ (0)〉 defined as the ground
state of the PXP model with μ∗

i . Also shown is the projection of
the time-evolved state on the |Z2〉 and |0〉 states. While the overlap
with the |Z2〉 state is low throughout the evolution, the overlap with
|0〉 reaches relatively high values between the main revival peaks.
(b) Growth of entanglement entropy SE (t ) for the same initial state
|ψ (0)〉 as in (a), as well as for a random state |σRandom〉 and |Z+〉
state. The initial state |ψ (0)〉 has strongly suppressed entanglement
growth compared to the other cases. Data is for system size N = 28
obtained using exact diagonalization with PBCs.

A. Scarring in region (2) of the phase diagram

We focus on region (2) of the phase diagram in Fig. 1 and
pick (μ∗

i , μ
∗
f ) = (−0.76, 1.60) as an illustrative point in this

region, marked by the cross in Figs. 1(a) and 1(b). QMBS
dynamics at this point was first noted in Ref. [24] and here
we will characterize it in detail and explain its origin. The
evolution of fidelity and overlap with the polarized and Néel
state are shown in Fig. 3(a), where persistent fidelity revivals
can be observed while the overlap with |Z2〉 remains neg-
ligible throughout the evolution. Curiously, while the initial
state at μ∗

i has low overlap with |0〉, the evolved state does
develop a relatively high overlap with |0〉 state, approximately
half way between the main revival peaks—see the green line
in Fig. 3(a). This is reminiscent of the |Z2〉 state, which in
the pure PXP model undergoes state transfer to |Z̄2〉 at half
the revival period [60], implying that the ground state of
HPXP(μ∗

i ) is related to the polarized state.
Another tell-tale signature of QMBS is a slower growth of

entanglement entropy SE (t ) for special initial states. The en-
tanglement entropy is defined as the von Neumann entropy of
the reduced density matrix, ρA = TrB|ψ (t )〉〈ψ (t )|, obtained
by tracing out degrees of freedom belonging to one half of the
chain (denoted B). We plot the dynamics of SE (t ) in Fig. 3(b).
Compared to both |Z+〉 and a random state in the constrained
Hilbert space |σRandom〉, the entropy growth from the ground
state of HPXP(μ∗

i ) is strongly suppressed. Moreover, for the
latter state, we observe clear oscillations in the time series of
SE (t ), reminiscent of entropy dynamics in the PXP model in
the absence of chemical potential [6].

We emphasize that the special point (μ∗
i , μ

∗
f ) is represen-

tative of the entire region (2) in the phase diagram, where
similar QMBS phenomenology is numerically observed. In
the remainder of this section, we use TDVP to garner a further

understanding of this QMBS regime from a semiclassical
point of view.

B. TDVP analysis of scarring in region (2)

Before we apply TDVP to extract the semiclassical de-
scription of the dynamics in Fig. 3, we need to make sure that
the PXP ground state in the presence of chemical potential is
represented within the manifold spanned by states in Eq. (6).
In a recent paper [75], a method of “optimal steering” has
been devised to smoothly prepare a class of PXP ground
states based on the minimization of quantum leakage along
the trajectory. To show that the detuned PXP ground states are
captured in the TDVP manifold, here we follow a simpler ap-
proach of optimizing the overlap |〈ψMPS({x})|ψ (μi )〉|2, where
|ψ (μi )〉 is the ground state of the PXP model in Eq. (1). For
a unit cell size K = 1, we performed exhaustive numerical
sampling at system size N = 20 and found that most states
belonging to the TDVP manifold (>90% of them) can be
approximated with better than 98% accuracy by a ground
state of Eq. (1). Conversely, we numerically find that PXP
ground states with nonzero μ can be well captured by low
bond dimension MPS states. Intuitively, this is expected due to
the area-law entanglement scaling of the gapped PXP ground
state. As a side note, we mention that in order to prepare
the states in the TDVP manifold with unit cell K � 2, we
need to make two modifications to the preparation procedure:
(i) we need to allow chemical potential to be different for
different atoms within the unit cell; (ii) we need to include
a unit-cell modulated pulse in the z direction. As explained in
Appendix D, after these generalizations, one can also success-
fully prepare TDVP states with K � 2. While we do not have
a general proof, this provides a numerical confirmation of the
representability of the ground states of the PXP model with
a suitably-defined generalization of the chemical potential
within the TDVP manifold.

Having established that our prequench ground state at ar-
bitrary μi can be approximately mapped to an MPS state in
the K = 1 TDVP manifold for some variational parameters
(θ, φ), we now proceed to describe the dynamics from this
initial state using the classical dynamical system defined by
(θ (t ), φ(t )). From Eq. (9), one can derive the TDVP equa-
tions of motion for K = 1 and arbitrary chemical potential μ

(see Appendix B for details),

θ̇ = − cos θ cos φ(1 + sin2 θ ), (12)

φ̇ = μ + sin φ

sin θ
(1 − 4 sin2 θ − sin4 θ ). (13)

Unlike the special case μ = 0, where φ variables can be set
to zero in the flow-invariant subspace [60], for general values
of μ one must consider both θ and φ variables simultaneously
[67].

Integrating Eqs. (12) and (13), we plot the phase space θ, φ

portrait for the chemical potential value μf = 1.6 in Fig. 4(a).
The grayscale background indicates the quantum leakage at
any given point in the manifold,

γ 2 = sin6θ

1 + sin2θ
, (14)
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FIG. 4. (a) Phase space portrait of quantum dynamics within the K = 1 TDVP manifold for the PXP model with μf = 1.6. Grey shading
indicates quantum leakage (darker regions represent larger leakage). The trajectory of the |0〉 state for the given value of μf is highlighted in
red, while colored symbols indicate the location of the PXP ground states corresponding to various μi indicated on the color bar. The ground
states with μi≈−0.76 can be seen to lie close to the point, which is antipodal to the |0〉 state in its trajectory. With changing μf, this trajectory
either expands or compresses, meaning all ground states will lie on this antipodal point for some μf. (b) In region (2) of the phase diagram, for
a given μf , |0̄(μf )〉 state is well approximated by a detuned PXP ground state with some μi. Color bar shows the highest overlap between the
|0̄(μf )〉 state, given by Eq. (16) for a range of fixed μf ∈ [−5, 5], and the family of ground states of HPXP(μi ). Dashed lines denote the EPT.
For negative chemical potentials, especially relevant for region (1) of the phase diagram, the mapping requires an additional phase pulse, as
described in Appendix D. (c) Matching the detuned PXP ground state with a |0̄〉 state becomes progressively more difficult at the critical point
(dashed line) as system size N is increased. In contrast to panel (b), here we fix the PXP ground state at μi and vary μf to find the optimal
|0̄(μf )〉 state with the highest overlap. All plots are obtained using exact diagonalization with PBCs and system size N = 20 in panels (a) and
(b).

which only depends on θ variable (see Appendix B). By inte-
grating the equations of motion for μf = 1.6, starting from the
polarized state |ψMPS(0, 0)〉, we obtain the trajectory plotted
in red color in Fig. 4(a). Generally, for any |μf| �= 0, the polar-
ized state has a periodic orbit within TDVP. When μf is large,
the orbit is pinned around θ = 0. Decreasing |μf| stretches the
orbit until the maximal point in the trajectory eventually tends
towards the |Z+〉 superposition state, (θ, φ) ≡ (π/2, π/2).
Due to the quantum leakage gradient, the |Z+〉 point is not
reached for any finite time, consistent with the lack of revivals
from the polarized state in the full quantum dynamics for
sufficiently small values of μf. Thus, we conclude that the
orbit corresponding to the cross in Fig. 1(a) is a compro-
mise between two competing effects: the orbit is sufficiently
stretched so that it has nontrivial dynamics, while at the same
time, by being not stretched too much, it can avoid the large
leakage in the vicinity of |Z+〉 state.

To verify this picture across the entire region (2), we study
the projection of the PXP ground state at μi, |GS(μi )〉, to
the TDVP manifold. We numerically maximize the overlap
|〈ψMPS(θ, φ)|GS(μi )〉|2, with the MPS state given in Eq. (6).
We plot the resulting (θ, φ) phase space coordinates for a
variety of μi in Fig. 4(a), where the colored dots correspond
to the ground states from our phase diagram in Fig. 1(a).
As expected, some of the ground states are “distant” from
|Z+〉 or |0〉 but tend towards either in their respective limits.
All successfully optimized ground states lie on the same φ

plane in Fig. 1(a), such that the deformation of the trajectory
means they will correspond to some maximum point μf on the
polarized state trajectory, denoted by the state |0̄〉. By analogy
with the Néel state, whose translation partner—the anti-Néel
state—displays identical scarring behavior [19], here we have
a similar relation between |0〉 and |0̄(μf )〉 states. The main
difference with the anti-Néel state is that |0̄〉 state depends on
the value of μf.

To substantiate this further, we analytically derive the
phase-space coordinates corresponding to |0̄(μf )〉. Using
Eq. (12), we see that the turning point in the gradient of θ

along the trajectory is governed by cos φ. A sign flip therefore
must occur when φ = ±π/2. Because energy is exactly con-
served along a TDVP trajectory, |0̄(μf )〉 must have the same
energy as the polarized state. For states belonging to K = 1
TDVP manifold, the energy density is given by

E (θ, φ)/N = sin θ

1 + sin2 θ
(μf sin θ + 2 cos2 θ sin φ). (15)

For the polarized state, E (0, 0) = 0 and, setting φmax = π/2,
allows us to determine the θmax coordinate of the |0̄(μf )〉
turning point,

sin θmax = (|μf| −
√

μ2
f + 16

)
/4. (16)

In Fig. 4(b) we test the overlap of the state |0̄(μf )〉, with the
MPS angles given by Eq. (16), against the family of ground
states of HPXP(μi ). We scan through a set of values μf ∈
[−5, 5] and, for each μf , plot the maximum overlap obtained
by maximizing over μi. Although μf < 0 is not particularly
relevant for region (2), we note that the optimization fails
there. This, however, can be fixed by including an additional
phase pulse, as explained in Appendix D. Comparing Fig. 4(b)
to Fig. 1(a), we see a striking correspondence between the
successful optimization and region (2) in the phase diagram,
which confirms that the QMBS phenomena in region (2) are
indeed associated with |0̄(μf )〉 state.

Finally, in Fig. 4(c) we study the system size scaling of
the mapping between the PXP ground state with chemical
potential and states in the TDVP manifold. We scan for the
maximal overlap of the ground state at some μi with the set of
all |0̄(μf )〉 states in the interval μf ∈ [−20, 20]. Remarkably,
for the vast majority of region (2) when μi > 0, we see a
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near perfect overlap between the ground state and |0̄(μf )〉,
independent of system size—suggesting that the TDVP state
captures well the PXP ground state in region (2). Nevertheless,
in Fig. 4(c) we also observe a breakdown of the mapping at
the EPT point μi = μc. This is expected since the ground
state at the critical point develops a diverging entanglement
entropy and the χ = 2 MPS approximation must deteriorate
as system size is increased, since an area-law state cannot
capture the critical ground state in the thermodynamic limit.
This naturally leads to the question: Is the observed scarring
in the critical ground state an artefact of finite size and what is
its origin?

V. INTERPLAY BETWEEN SCARRING AND CRITICALITY

We now focus on the nature of QMBS regime when
quenching from the critical ground state at μi = μc. Despite
the complexity of this state, we find robust signatures of er-
godicity breaking. Long-time memory retention from states
in energy close to an EPT has previously been observed in
the LMG model [76,77]. We find similar behavior between
regions (1) and (2) in Fig. 1(a). For example, by fixing μi =
μc and scanning μf to determine the largest δF , we find the
most robust revivals occur at μf = 0.633—a point marked by
the diamond in Fig. 1. This turns out to be one of the best
reviving points in all of regions (1), (2), and (3), including
the |Z2〉 and |0〉 initial states. As discussed above, the TDVP
semiclassical formalism is not well suited for describing this
case as it cannot capture the diverging entanglement entropy
of the initial state. This immediately raises the question if the
observed QMBS behavior is a finite-size effect and whether
one should rather expect a sharp boundary between regions
(1) and (2) in Fig. 1 in the thermodynamic limit.

To probe the robustness of QMBS revivals in the thermo-
dynamic limit, we simulated the quench μi = −1.31 → μf =
0.6 in large systems up to N = 401 using MPS in Fig. 5. The
fidelity, plotted in Fig. 5(a), demonstrates that revivals exist
in all accessible system sizes. The fidelity is not an intensive
quantity, therefore it is generically expected to decay in the
N → ∞ limit, as indeed can be observed in Fig. 5(a). Thus,
to compare different system sizes, we take the fidelity at the
first revival peak F1 and plot its density − log(F1)/N against
1/N , in the inset of Fig. 5(a). This serves as an indicator
of ergodicity breaking at a finite time that can be properly
scaled to the thermodynamic limit. For a random state in the
constrained Hilbert space of the PXP model, whose dimension
grows asymptotically as ∼φN , where φ = (1 + √

5)/2 is the
golden ratio [36], the fidelity density at late times asymp-
totically approaches the value log φ ≈ 0.48, with O(1/N2)
corrections. Contrary to this expectation, the fidelity density
in Fig. 5(a) continues to decrease as N → ∞ and extrapolates
to a value smaller than 0.01, signaling nonergodicity in the
thermodynamic limit at a finite time scale t ∼ 5/�, which is
well beyond the initial relaxation.

In Fig. 5(b) we observe a slow growth of entanglement
entropy following the same quench. In contrast to previous
QMBS cases in the literature, where the system was initialized
in a product with zero entropy, here we start from a critical
ground state whose entropy is expected to diverge logarith-
mically with system size according to the Cardy-Calabrese

FIG. 5. Fidelity and entanglement entropy dynamics for the
quench from the critical ground state with μi = −1.31 to μf = 0.6.
(a) Fidelity revivals persist up to the largest system size N = 401.
While the fidelity decays with N , the fidelity density of the first
revival peak − log(F1)/N , plotted against inverse system size 1/N ,
extrapolates to a value close to 0 (inset), indicating nonergodic be-
havior in the thermodynamic limit at a finite time. (b) Dynamics of
the half-chain entanglement entropy SE (t ) for the same quench. We
scale the entropy by the critical value given by the Cardy-Calabrese
formula with central charge c = 1/2 [78], which collapses the data to
1 at t = 0 (inset shows the unscaled entropy). The growth of entropy
is seen to be linear, with pronounced oscillations. Data is obtained
by MPS simulations with OBCs, bond dimension χ = 300, and time
step δt = 0.025.

formula, Scrit = (c/6) log(N/π ) [78]. The universal prefactor
is determined by the central charge c of the conformal field
theory, which is c = 1/2 for our critical point in the Ising
universality class. Scaling the data by Scrit indeed yields a
good collapse at time t = 0. At later times, the entropy grows
linearly with time. On top of linear growth, we observe promi-
nent oscillations that are typically found in QMBS systems,
e.g., the |Z2〉 initial state in the PXP model [6]. The ampli-
tude of these oscillations is roughly independent of system
size, as can be seen in the inset of Fig. 5(b). At much later
times, which are inaccessible to MPS methods, we expect the
entropy to saturate to a value proportional to the volume of
the subsystem. Apart from the diverging entropy of the initial
state, the overall picture from Fig. 5 is broadly similar to
previous studies of QMBS dynamics [1]. What remains to be
explained is why the critical ground state is poised towards
QMBS-like dynamics.

To identify the microscopic origin of this robust ergodicity
breaking in the vicinity of μf = 0.633, we plot the overlap
of the initial critical ground state with the eigenstates of the
postquench Hamiltonian in Fig. 6. The overlap exhibits clear
towers of eigenstates, which are emblematic of QMBS. While
these features are present throughout the spectrum, the dom-
inant contributions to the initial state come from low-energy
eigenstates. In order to approximate their characteristics, we
can treat them as magnons with a given momentum k on top
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FIG. 6. Overlap between the ground state at the critical point
μi = μc = −1.31 and the eigenstates of the PXP model with μf =
0.633. The color indicates the density of datapoints. The red dashed
lines indicate multiples of the energy of a k = π excitation on top
of the ground state. This matches well with the scarred towers in the
relevant part of the spectrum. The inset shows the first set of excited
states, with the grey dashed lines indicating the expected energy for
noninteracting pairs of excitations with momenta k and −k. Due to
the flatness of the band near k = π and k = 0, the lines are denser
near the scarred states, leading to sharper towers and better revivals
(see further analysis of the magnon dispersion in Fig. 7 below). Data
is obtained by exact diagonalization for system size N = 28 with
PBCs.

of the ground state. For μf = 0, this has been shown to give
a good approximation of scarred states even at relatively high
energies when using magnons with momentum k = π [79].
Similarly, we find this to be true in our case near μf = 0.6,
where much of the low-energy spectrum can be approximately
reconstructed from pairs of noninteracting magnons with mo-
menta k and −k, see the dashed lines in Fig. 6 and inset.
Note that the PXP model is gapped for μf = 0.633, hence
the ground state and the first tower in Fig. 6 are separated
by a finite energy that is independent of N in sufficiently large
systems.

A detailed analysis of the magnon dispersion as a function
of chemical potential is presented in Fig. 7. The dispersion
relation for several values of μf is shown in Fig. 7(a). For μf <

0.6, the single-magnon band merges with the two-magnon
continuum, causing the downward slope near k = 0. Near
μf = 0.6, the band becomes remarkably flat for small k, co-
inciding with the one-magnon and two-magnon bands barely
touching. At that point, the energies of the first excited states
at k = 0 are well approximated by twice the energies of the
single-magnon states, indicating that they correspond to a pair
of two noninteracting magnons with momenta k and −k. This
is illustrated in Fig. 7(b) and the inset of Fig. 7(a). This simple
picture of noninteracting excitations allows us to predict the
energies of the low-energy excited states based solely on the
dispersion relation of the single-magnon states. In particular,
the flatness of the band near k = 0 and k = π means that
the eigenstates near the scarred ones have approximately the
same energy. This implies that tower of states will be sharper,
and that the effective energy spacing, which determines the
dynamics at intermediate times, is the spacing between the
towers. In turn, the fact that magnons are very weakly inter-

FIG. 7. (a) Dispersion relation of the low-lying excitations of the
PXP model for several values of the chemical potential μf, shown
in different colors. When μf ≈ 0.6, the dispersion becomes visibly
flat near both k = 0 and k = π momenta. Inset shows the difference
between the actual energies of the first excited states in the spectrum
and their approximation by a pair of two noninteracting excitations.
For all momenta k, the best agreement between the approximation
and exact energy is attained at μf ≈ 0.6. (b) Low-energy spectrum
of the PXP model with μf = 0.6 – the value with the best revivals
when quenching from the critical ground state. The ground state and
first excited states are indicated, along with energies corresponding
to a noninteracting pair of excitations with momenta k and −k. In this
instance, we see the approximate excitations and exact energy levels
lie close to each other. Data is obtained by exact diagonalization for
system size N = 24 with PBCs.

acting means that the spacing between these towers will be
approximately equal.

In summary, we showed that QMBS in the critical ini-
tial state can persist due to (i) the postquench Hamiltonian
HPXP(μf ) having a gapped spectrum with a sufficiently
flat band of the low-lying magnon excitations and (ii) the
magnons are weakly interacting and their multiplets give rise
to regularly spaced QMBS-like towers in the spectrum. While
this scenario is reminiscent of Ref. [80], where quantum
revivals in some nonintegrable models were related to the
low-lying quasiparticle states, in our case the chemical po-
tential needs to be finely tuned to a value μf ≈ 0.6 to meet
the conditions (i) and (ii). Indeed, as seen in Fig. 1, varying
μf around this value leads to a sharp decay of QMBS revivals.
In contrast to the PXP model with μi = 0 and the |Z2〉 initial
state, the QMBS eigenstates in the μi = μc case are clearly
skewed towards the low-energy part of the spectrum; however,
this allows the QMBS revivals to persist in large systems,
despite the highly entangled initial state.
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VI. EXPERIMENTAL PROTOCOL

Finally, in this section we address the experimental obser-
vation of the phase diagram in Fig. 1. The key step is the
preparation of the PXP ground state in Eq. (1). The protocol
below is directly applicable to Rydberg atom arrays [22];
however, it can also be adapted to ultracold bosons in a tilted
optical lattice, where the chemical potential μ maps to the en-
ergy mismatch between the Hubbard interaction and electric
field, which induces a tilt potential [24].

Ground-state preparation is accomplished via a “ramping”
procedure utilized in related experiments [21,45,47,81,82].
This assumes fine control of the chemical potential that is
varied in time, μ = μ(t ). Taking the chemical potential very
large, μ → ±∞, one can prepare |0〉 and |Z2〉 states. Starting
in one of these states, one can then ramp to a desired ground
state in the interior of our phase diagram in Fig. 1 by evolving
with a time-dependent PXP Hamiltonian HPXP(μ(t )), where
μ(t ) is appropriately parameterized for adiabatic evolution,
as specified below. The adiabaticity implies that the ramping
will not be able to prepare the critical ground state after
a finite time in the thermodynamic limit. Therefore, with
finite resources, we can only hope to approach the critical
point from different gapped regions of the phase diagram. We
start the ramp either in |Z2〉 or |0〉, depending on whether
we are in a ordered (μ < μc) or disordered (μ > μc) phase,
respectively.

Specifically, we make use of the following ramp:

μ(t ) = A

(t − B)2
− A

(t − C)2
+ μc, (17)

where A, B, and C are tunable parameters. One particularly
successful choice was found to be A = ∓40, when ramping
from |0〉 or |Z2〉, respectively, B = 30, and C = −0.1. An ex-
ample of this ramping curve is plotted in the inset of Fig. 8(b).
We include μc due to the need for a much slower ramp as the
gap between the ground state and first excited state closes in
the vicinity of the EPT.

After specifying the ramp and the initial state, we evolve
by the PXP Hamiltonian in the presence of chemical potential,
Eq. (17), until some time t . The evolution time is determined
by numerically minimizing 1 − |〈ψ (t )| GS(μtarget )〉|2, where
|GS(μtarget )〉 is the state we are trying to prepare. Figure 8(a)
illustrates the success of the ramping procedure. For system
sizes ranging from N = 6 to N = 14, we have ramped to pre-
pare the ground states from μ = ±6, in increments δμ = 0.5,
towards the critical point, μc = −1.31. Figure 8(b) shows the
time that the ramp took for each ground state. We see the ramp
time is insensitive to system size in gapped regions of the
phase diagram, while it sharply increases near μc and exhibits
strong fluctuations with N . For fixed ramp parameters, we
expect it will take an infinite amount of time to prepare the
critical ground state in the N → ∞ limit.

Finally, to verify our preparation scheme in large sys-
tems, we repeated the preparation of the detuned PXP ground
states for system sizes of N = 51, 75, and 101 using MPS
simulations with bond dimension χ = 128 and the ramping
protocol in Eq. (17), with the same A, B, C parameters. The
inset of Fig. 8(a) demonstrates that the ramping continues
to successfully reproduce the desired ground state with high

FIG. 8. (a) The success of preparing the PXP ground state at
chemical potential μ by ramping the chemical potential according
to Eq. (17). The total ramp time is varied for each point to maximize
the overlap, which is plotted on the y axis. For μ > μc, the initial
state is |0〉 (square symbols), while for μ < μc we start the ramp
in the |Z2〉 state (triangles). Separate optimizations were performed
for different system sizes N , shown in the same plot. Black dashed
line (in all the panels) denotes the critical point μc. Inset: Using
the optimal parameters and average ramping time determined in
smaller sizes in the main panel, we prepare the ground states for
the same values of μ in much larger system sizes N = 51, 75, 101.
The preparation in this case was done using the MPS method with
time step δt = 0.025 and maximum bond dimension χ = 128. While
in the gapped phases the preparation remains successful, there is a
visible drop near the critical point. (b) Total ramp time tramp returned
by the optimizations in the main panel (a). Inset shows the ramping
curve μ(t ) in Eq. (17). We observe an increase of the ramp time and
strong finite-size fluctuations at the critical point. The data in the
main panels (a) and (b) was computed using exact diagonalization
in k = 0 momentum and p = +1 inversion symmetry sector with
PBCs.

fidelity, with the exception of the critical point where we see
a clear drop in overlap with the target state. This suggests
the ramping procedure is a viable method for generating de-
sired ground states even in large systems. With this in hand,
along with the already existing capabilities to quench with
a detuned PXP Hamiltonian and conduct measurements of
local observables [21,22], all the tools are, in principle, avail-
able to reconstruct the dynamical phase diagram in Fig. 1.
In particular, local fidelity measurements [24] can be used
to approximate the numerically computed global fidelity in
Fig. 1(a). This would allow to experimentally verify the per-
sistence of QMBS across the phase diagram and its robustness
near the critical point.

VII. CONCLUSIONS AND DISCUSSION

We have mapped out the dynamical phase diagram of the
PXP model, based on ergodicity breaking in its dynamics
following the global quench of the chemical potential. We
have demonstrated the existence of extended regions, which
harbor QMBS phenomena, either associated with the pre-
viously studied initial conditions, such as |Z2〉 and |0〉, or
with new entangled states such as |0̄(μ)〉. The mechanisms
giving rise to these QMBS phenomena, in particular the
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underlying periodic trajectories, were identified within the
TDVP framework. We have analyzed in detail the robust-
ness of QMBS when the system is tuned to the EPT point,
arguing that this is not an obstacle for QMBS, provided
that the postquench Hamiltonian is tuned in such a way that
the low-lying quasiparticle excitations are weakly interacting
and possess a flat energy-momentum dispersion. This enables
different QMBS regions in the dynamical phase diagram to
connect smoothly, bridging across the EPT. Finally, we have
also outlined an adiabatic preparation scheme that allows to
map out the same phase diagram in experiments on Rydberg
atoms and ultracold bosons in tilted optical lattices, both of
which have recently realized the PXP model in the presence of
a tunable chemical potential. In light of these experiments, our
discussion of the phase diagram above was restricted to finite
times; however, in Appendix F we discuss the corresponding
phase diagram for time t → ∞. We note that the existence of
a continuous family of QMBS states, tunable by the chemi-
cal potential, is of independent interest in quantum-enhanced
metrology, for which QMBS states were shown to be
advantageous [83–85].

One motivation behind this work is the open problem of
identifying all initial conditions associated with QMBS. For
the pure PXP model it had originally appeared that only the
|Z2〉 and |Z3〉 = |100100...100〉 states are special in this re-
gard [21]; however, more recent explorations of the chemical
potential [24] have revealed that the latter can also stabilize
QMBS from a different initial state |0〉. In this paper, we
have shown that these two product states share the semi-
classical description and belong to a larger family, which
also includes some other weakly-entangled states such as
|0̄(μ)〉 state. While we have numerically related these initial
states and their quench dynamics, it is not obvious how to
relate them at the level of a spectrum-generating su(2) al-
gebra, which has provided an elegant description of revivals
from the |Z2〉 state in the pure PXP model [29]. Moreover,
our investigation focused on the dynamics with periodicity
K = 1 and it would be interesting to extend it to K � 2.
For example, it is known that |Z3〉 = |100100100 . . . 100〉
state also exhibits revivals in the pure PXP model model
[37]. However, this state necessitates a TDVP description
with K = 3 unit cell, which already gives rise to an intri-
cate phase space at the semiclassical level [67]. It would be
interesting to understand the dynamical phase diagram asso-
ciated with such states that have larger unit cells, either in the
PXP model or analogous models for larger Rydberg blockade
radii.

Finally, our results for the initial state at the critical point
suggest that QMBS dynamics is not necessarily associated
with preparing the system in a product state or even an
area-law entangled state, but in principle allows for highly-
entangled initial states. In this case, QMBS dynamics is more
strongly temperature dependent, as the initial state has domi-
nant support on the relatively low-lying energy eigenstates of
the postquench Hamiltonian. The key ingredient for making
this work was to suppress the interaction between quasiparti-
cles and flatten their energy dispersion. It would be interesting
to understand how to engineer such conditions in other models
and thereby realize similar dynamics from highly-entangled
initial states.
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APPENDIX A: OTHER REGIONS
OF THE PHASE DIAGRAM

Several regions of the phase diagram in Fig. 1 exhibit fi-
delity revivals that have a simple origin that can be understood
without invoking QMBS. Here we explain in more detail these
regions labeled (4), (5), (6), and (7). It is useful to consider
the inverse participation ratio (IPR), one of the traditional
measures of ergodicity of the eigenfunctions introduced in the
context of Anderson localization [86]. The IPR is defined as

IPR = 1∑
E |〈E |ψ〉|4 , (A1)

and it intuitively tells us about how many basis states |E〉 the
state |ψ〉 has support on. For example, if |ψ〉 is a basis state,
its IPR will be 1, while if |ψ〉 is homogeneously spread over
the entire Hilbert space, the IPR will be equal to the Hilbert
space dimension. Note that IPR is a basis-dependent quantity
and, in our case, we have a natural choice of eigenstates |E〉
of HPXP(μf ) as the basis states.

The logarithm of IPR for μi ground states with respect to
μf eigenstates is plotted in Fig. 9. This allows us to further
distinguish between different regions. For conventional |Z2〉
scarring we expect the IPR to be on the order of system size
N , since the |Z2〉 state has high overlap with a band of N + 1
scarred eigenstates of HPXP(0) but low overlap with the rest.
This is evidenced in region (1) of Fig. 9. On the other hand,
the band of scarred eigenstates associated with |0〉 state in the
detuned PXP model is “tilted” to one edge of the spectrum, so
we expect the IPR to be smaller. In general, the regions with
high IPR are expected to be ergodic, while the least interesting
regimes are characterized by very low IPR, such as around the
μi = μf diagonal and in regions (5) and (6). The IPR is not as
low in parts of regions (4) and (7) visible in this figure, but it
decreases with increasing |μi| and |μf| as the ground state of
HPXP(μi ) approaches an eigenstate of HPXP(μf ).
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FIG. 9. Logarithm (base 10) of the IPR of the ground state of
HPXP(μi ) with respect to the eigenstates of HPXP(μf ). All the labels
have the same meaning as in Fig. 1. Data is obtained using exact
diagonalization in the sector with k = 0 momentum and p = +1
inversion symmetry for size N = 26 with PBCs.

Large |μf| leads to the number of excitations in the sys-
tem becoming effectively conserved, splitting the Hamiltonian
into several sectors with an energy difference proportional to
|μf|. The dynamics in these sectors also becomes more regu-
lar, and even integrable at |μf| → ∞ [35]. Additionally, initial
states with a number of excitations close to the minimum
(maximum) effectively have overlap with very few eigenstates
in the low (high) energy spectrum, leading to oscillations. For
example, region (4) [i.e., μi > 0, −μf 
 1] roughly corre-
sponds to the polarized state in the strongly detuned regime,
since the initial ground state has significant overlap with |0〉
for μi > 0. In the μi → ∞ limit, it is expected to become the
exact mirror image of region (3), given that the polarized state
has the same dynamics for ±μf (see Appendix C). Similarly,
region (7) [μi < 0, μf 
 1] has a simple explanation in terms
of |Z+〉 state in the strongly detuned regime.

The origin of revivals in region (5) [μf < μi < −1.3] is
perhaps not immediately obvious, since the initial state in
that case does not have high overlap with one of the pre-
viously studied states such as |0〉 or |Z+〉. We now briefly
investigate this region. The fidelity and the average number
of excitations after quenching from μi = −2.5 to μf = −6
can be seen in Figs. 10(a) and 10(b). The quenched state
maintains high overlap with the |Z+〉 state, with peaks in
the middle between the fidelity revivals, see Fig. 10(a). This
situation is reminiscent of the |0̄〉 state in region (2), which
periodically evolves to |0〉 and back. Although it oscillates,
the overlap with |Z+〉 never drops to zero. In contrast, the
overlap with |0〉 is constantly zero. In Fig. 10(b) we also see
that the average occupation is remarkably stable, fluctuating
only slightly around ≈0.47. As explained above for regions
(4) and (7), such behavior arises due to the fact that in the
large-μ limit states with near-extremal number of excitations
only have support on a small number of eigenstates at the
edge of the spectrum. This can be seen in Fig. 10(c), which
shows the overlap of the initial state and the eigenstates. The
splitting of eigenstates into sectors, effective conservation of

FIG. 10. Dynamics and eigenstate properties of the PXP model
quenched from μi = −2.5 to μf = −6, corresponding to region (5)
of the phase diagram in Fig. 1. (a) Fidelity of the initial state |ψ (0)〉,
i.e., the ground state of HPXP(−2.5), as well as the overlap with both
the polarized state |0〉, and superposition state |Z+〉. (b) The average
number of excitations remains nearly constant in time. (c) The over-
lap of the initial state with eigenstates of HPXP(−6) reveals that the
latter split into sectors based on the value of n̂, leading to |ψ (0)〉 only
having support on the low-energy spectrum. Data obtained by exact
diagonalization for N = 28 with PBCs.

n̂ and high overlap with the ground state are all apparent.
Further evidence comes from the inverse participation ratio
(IPR), which we find to be very low in this region, indicat-
ing overlap with only a small number of eigenstates, as will
be shown below. Finally, region (6) [μi < μf < −1.3] has a
similar phenomenology to its mirroring region (5).

In summary, we have argued that regions (4), (7), and part
of (5) correspond to regimes where μf has a large absolute
value, leading to a simple oscillatory dynamics due to Hilbert
space becoming disconnected, while in regions (5) and (6),
μf ≈ μi causes the initial state to be close to an eigenstate of
the postquench Hamiltonian.

APPENDIX B: DERIVATION OF TDVP EQUATIONS
OF MOTION AND QUANTUM LEAKAGE

In this section we first derive the TDVP equations of mo-
tion and then compute the instantaneous leakage rate. These
derivations follow Appendices A and C of Ref. [67].

1. Equations of motion

The TDVP equations of motion can be derived as the
saddle point equations for the following Lagrangian [69,71]:

L = i

2
(〈ψMPS|ψ̇MPS〉 − 〈ψ̇MPS|ψMPS〉) − 〈ψMPS|H |ψMPS〉,

(B1)

where it will be convenient to split our Hamiltonian into
two terms, H = HPXP + Hμ. Unlike Ref. [67], we restrict to
K = 1, which greatly simplifies the calculation. Throughout
this section we will consider mixed MPS transfer matrices,
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denoted by

T B
C =

∑
σ

B̄σ ⊗ Cσ , (B2)

where B and C are arbitrary MPS tensors. The MPS transfer
matrix for the PXP ansatz chosen in the main text takes the
form

T A
A = T =

⎛
⎜⎜⎝

cos2 θ 0 0 1
cos θ sin θ 0 0 0
cos θ sin θ 0 0 0

sin2 θ 0 0 0

⎞
⎟⎟⎠. (B3)

The dominant left and right eigenvalues of the transfer matrix
are equal to 1, and the corresponding eigenvectors are

|R) =

⎛
⎜⎜⎝

1
cos θ sin θ

cos θ sin θ

sin2 θ

⎞
⎟⎟⎠, (L| = (1 0 0 1), (B4)

which obey (L|R) = 1 + sin2 θ . We also introduce the fol-
lowing shorthand for a three-site local Hamiltonian term
contracted with MPS tensors on every site:

H = HA,A,A
A,A,A =

∑
σi

Āσ1 Āσ2 Āσ3 hσ1,σ2,σ3
σ4,σ5,σ6

Aσ4 Aσ5 Aσ6 . (B5)

Using the mixed transfer matrix expression, it is straightfor-
ward to compute

f = −iN

(
L
∣∣T ∂φA

A

∣∣R)
(L|R)

= N
2 sin2 θ

cos 2θ − 3
, (B6)

with T ∂φA
A =

⎛
⎜⎜⎝

0 0 0 −i
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠. (B7)

Next we compute the expectation value of the Hamiltonian.
We find the two terms are

〈ψ |HPXP|ψ〉 = N
(L|HPXP|R)

(L|R)
= N

2 cos2 θ sin θ sin φ

1 + sin2 θ
,

(B8)

and

〈ψ |Hμ|ψ〉 = N
(L|Hμ|R)

(L|R)
= Nμ

sin2 θ

1 + sin2 θ
. (B9)

The total expectation value is given by 〈ψ |H |ψ〉 =
〈ψ |HPXP|ψ〉 + 〈ψ |Hμ|ψ〉, which yields the energy density,
Eq. (15) in the main text.

To get the equations of motion for θ and φ, we need to
compute

η = ∂θ f = −4N
sin 2θ

(cos2 θ − 3)2
. (B10)

From there the equations of motion are given by

θ̇ = 1

η
∂φ〈ψ |H |ψ〉, φ̇ = −1

η
∂θ 〈ψ |H |ψ〉, (B11)

which lead to Eqs. (12) and (13) in the main text.

2. Instantaneous leakage

The instantaneous leakage is given by

�2(θ ) = ‖|ψ̇〉 − iH |ψ〉‖2

= 〈ψ |H2|ψ〉c − 2θ̇ Im (〈∂θψ |H | ψ〉c)

+ (θ̇ )2 Re (〈∂θψ | ∂θψ〉c) − 2φ̇ Im(〈∂φψ |H | ψ〉c)

+ (φ̇)2 Re(〈∂φψ | ∂φψ〉c) + 2φ̇θ̇ Re(〈∂φψ | ∂θψ〉c).

(B12)

Due to the gauge choice, the leakage depends on connected
correlators defined as

〈∂θψ |∂θψ〉c = 〈∂θψ |∂θψ〉 − 〈∂θψ |ψ〉〈ψ |∂θψ〉.
In order to evaluate these connected correlators, we introduce
the projector on the dominant subspace, P = |R)(L|/(L|R),
and its complement Q = 1 − P . We also introduce T , which
is obtained by re-summing the contribution of the nondomi-
nant subspace of T in

∑∞
q=0 T q and is defined from T −1 =

Q(1 − QTQ)−1Q.
Let us now evaluate the various terms involved in the

instantaneous leakage. Taking each term one by one, we find
that

〈∂θψ | ∂θψ〉c = N

(L | R)

(
L

∣∣ T ∂θ A
∂θ A + T A

∂θ AT −1T ∂θ A
A

+ T ∂θ A
A T −1T A

∂θ A − T A
∂θ APT ∂θ A

A

∣∣ R
)
, (B13)

which after a straightforward calculation evaluates to

〈∂θψ |∂θψ〉c = N

1 + sin2 θ
. (B14)

Turning our attention to the term 〈∂θψ |H |ψ〉c, we find that
this evaluates to

N

(L | R)

(
L
∣∣H∂θ A + HT −1T A

∂θ A + T A
∂θ AT −1H − 3HPT A

∂θ A

∣∣R)
.

(B15)

This yields

〈∂θψ |H |ψ〉c = −iN cos θ cos φ + N
cos θ sin θ

(1 + sin2 θ )2
φ̇. (B16)

As we are only interested in the imaginary part, we can discard
the second term and are left with

Im (〈∂θψ |H |ψ〉c) = −N cos θ cos φ = N

1 + sin2 θ
θ̇ . (B17)

The expressions containing the derivatives with respect to φ

can be calculated similarly. Starting with 〈∂φψ |∂φψ〉c which
we compute as

N

(L | R)

(
L
∣∣T ∂φA

∂φA + T A
∂φAT −1T ∂φA

A

+ T ∂φA
A T −1T A

∂φA − T A
∂φAPT ∂φA

A

∣∣R)
. (B18)

Evaluating this term, we find

〈∂φψ |∂φψ〉c = N
cos2 θ sin2 θ

(1 + sin2 θ )3
. (B19)
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The next term to compute is the cross term

〈∂φψ |∂θψ〉c = N

(L | R)

(
L
∣∣T ∂φA

∂θ A + T A
∂θ AT −1T ∂φA

A

+ T ∂φAT −1T∂θ A − T∂θ APT ∂φA
∣∣R)

. (B20)

The result after evaluating Eq. (B20) is

〈∂φψ |∂θψ〉c = −iN
cos θ sin θ

(1 + sin2 θ )2
; (B21)

however, because its real part is identically zero, we get no
contribution from this term. We now compute 〈∂φψ |H |ψ〉c as

〈∂φψ |H |ψ〉c = N

(L | R)

(
L
∣∣H∂φA + HT −1T A

A∂φA

+ T A
∂φAT −1H − 3HPT∂φA

∣∣R)
. (B22)

We find this can be expressed as

〈∂φψ |H |ψ〉c = N cos θ cos φ + iN
cos2 θ sin2 θ

(1 + sin2 θ )3
φ̇. (B23)

We now move onto the terms involving the square of the
Hamiltonian, H2. The connected correlator in this case is

〈ψ |H2|ψ〉c = N
(L|H(2) + 2HT −1H − 5HPH|R)

(L | R)
, (B24)

where H(2) is the product of two overlapping local Hamil-
tonian terms. As the local Hamiltonian spans three sites, the
two terms will both act upon one, two, or three shared sites.
Evaluating this expression, we obtain

〈ψ |H2|ψ〉c = N sin6 θ

1 + sin2 θ
+ N cos2 θ sin2 θ (φ̇)2

(1 + sin2 θ )3

+ N (θ̇ )2

1 + sin2 θ
. (B25)

Substituting each of these into the equation for the leakage,
we finally arrive at

�2 = N
sin6 θ

1 + sin2 θ
.

Rescaling this by the system size yields the intensive expres-
sion for the leakage γ 2, Eq. (14), quoted in the main text.

APPENDIX C: RELATION BETWEEN μ AND −μ

It is interesting to note that for μ and −μ the eigenstates
are simply related by the application of the operator � =∏N

j=1 Zj , with Z = Q − P. The same operator maps a state
with energy E to −E . This can be easily seen by considering
an eigenstate |E〉 of HPXP(μ) with energy E . First let us
consider the commutation relation between HPXP and �. As
Z commutes with P and Q but anticommutes with X , it means
that

�HPXP(μ) = −HPXP(−μ)�. (C1)

As a consequence

HPXP(−μ)(� |E〉) = −�HPXP(μ) |E〉 =−E (� |E〉), (C2)

showing that � |E〉 is an eigenstate of HPXP(−μ) with energy
−E . This means that the spectral properties are the same for

±μ and that the ceiling state of HPXP(μ) becomes symmetry-
breaking for μ > 1.31.

Similarly, it is important to further note the relation be-
tween μ and −μ with respect to the TDVP equations of
motion, Eqs. (12) and (13). In general, flipping the sign of μ

may not result in identical dynamics; however, this is not the
case when considering the dynamics of the polarized state. As
|0〉 has TDVP angles (0,0), at this point φ̇ = μ. On the other
hand, θ̇ has no μ dependence and so is unaffected by the a
sign flip and the only dependence on φ comes from the cos(φ)
term, which has the property cos(φ) = cos(−φ). Because of
this, a sign flip of μ does not affect the dynamics of θ and
simply flips Eq. (13). This means that the dynamics of |0〉 are
symmetric under the sign flip and the shrinking of the orbit in
Fig. 2 occurs for both ±μ.

APPENDIX D: PREPARATION OF STATES
IN THE TDVP MANIFOLD

Here we demonstrate that the states belonging to the TDVP
manifold with K = 1, 2 unit cell can be represented as ground
states of the PXP model with a suitably generalized chemical
potential term. To show this correspondence, we numerically
optimize the overlap |〈ψMPS({x})|�(w)〉|2, where |�(w)〉 is
the ground state of the PXP model with a K-site periodic
density modulation,

H (w) =
N−1∑
j=0

Pj−1XjPj+1 +
N−1∑
j=0

w jQ j, (D1)

where w = (w1,w2, . . . ,wK ) is a generalization of the chem-
ical potential term that is periodic (with period K) but takes
different values for different atoms within the unit cell. The
Hamiltonian H (w) reduces to the PXP Hamiltonian with uni-
form chemical potential in Eq. (1) for K = 1.

Furthermore, in order to prepare the states in larger TDVP
manifolds with unit cells K � 2, we found it necessary to act
on the ground state of Eq. (D1) with a unit-cell modulated
phase pulse,

�(γ ) =
N/K−1∏

j=0

e−iγK ZK j+(K−1) · · · e−iγ2ZK j+1 e−iγ1ZK j , (D2)

where Zi denotes the usual Pauli-Z matrix on site i and
γ1, . . . , γK are variational parameters in addition to w.

Our extensive numerical sampling in system sizes N � 18
confirms that the ansatz in Eqs. (D1) and (D2) allows for an
accurate approximation of states in the TDVP manifold after
optimizing for (w, γ ). As this is performed at relatively small
system sizes, here we verify that these results can be extended
to larger systems. As a test case, we choose a particularly
interesting TDVP trajectory, which starts at (θ1, θ2, φ1, φ2) =
(1.25π , 2.985, 0.166, 0.188). This trajectory was derived in
Ref. [67] within a K = 2 TDVP ansatz and it belongs to a
regular region of the manifold, giving rise to fidelity oscilla-
tions in the full quantum dynamics. We choose this trajectory
to show that the ansatz can capture trajectories of interest in
larger manifolds. We optimize for 30 states evenly spaced
along this TDVP trajectory between time t = 0 and t = 6 in
system sizes ranging from N = 6 to N = 18. The optimization
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FIG. 11. Preparing the states along a particular K = 2 TDVP
trajectory (defined in the text) using the ansatz in Eqs. (D1) and
(D2). A set of states on the trajectory up to time t = 6 are variation-
ally approximated in system sizes N = 6 − 18, finding the optimal
parameters w, γ . The optimized parameters are then extrapolated
to size N = 22 and the resulting overlap with the TDVP states is
plotted, illustrating the success of the optimization (overlap is >97%
along the entire trajectory). Inset shows the scaling of the overlap for
the most poorly approximated point on the trajectory as a function of
system size N . The overlap decays slowly and its extrapolation yields
high overlap for this point even in large systems (e.g., overlap ∼90%
at size N ∼ 50).

yields an overlap close to 1 for all the points on the trajectory
and yields a set of optimal (w1,w2) and (γ1, γ2) for different
N . Over the range of N , we found γ changes little so we do
not re-optimize this in larger N but simply take the average
from smaller sizes. On the other hand, we find w for different
values of N fits well the empirical formula w j = aebN+c + d ,
where a, b, c, and d are fitting parameters depending on w1

and w2. With this information, we can calculate (w1,w2),
(γ1, γ2) for larger system sizes via extrapolation. The resulting
overlap in system size N = 22 is shown in Fig. 11. We see
that the ansatz successfully captures the entire trajectory (up
to 97% overlap in this system size). In the inset of Fig. 11
the minimum overlap found along the trajectory is plotted as
a function of system size, showing that it decays very slowly
and allows to prepare the TDVP states on the trajectory with
accuracy of 90% or better in large systems N ∼ 50.

APPENDIX E: SINGLE MODE APPROXIMATION

In Sec. V we have discussed the revivals from the critical
ground state based on the structure of the low energy spec-
trum at μf = 0.633. In this section we provide more details
of this analysis, in particular on the range of μ that it can
be applied to. Ref. [79] showed that for μf = 0, the scarred
states throughout the spectrum could be well approximated as
a collection of magnons with momentum π . Here, we show
that this analysis also holds for μf ≈ 0.6, especially in the
low-energy part of the spectrum. In turn, the ground state
at μi = μc = −1.31 can be understood as mainly being a
superposition of these multimagnon states.

In Fig. 12 one can see the low-energy spectrum resolved by
momentum for three different values of μf. The data for the
overlap of the same eigenstates with the ground state at μf =

FIG. 12. Low-energy spectrum of the PXP model for three
values of μ. The red crosses correspond to the energies of a non-
interacting pair of excitations with momenta k and −k. For μ = 0.1,
the first band merges with the two-magnon continuum. For μ = 1.2,
the first excited state with k = 0 has an energy that differs from that
of two noninteracting magnons. Data is for system size N = 24 with
PBCs.

μc = −1.31 is also plotted in Fig. 13. Note that, as this ground
state has k = 0, only the eigenstates with the same momentum
value will have a nonzero overlap. For too small values of μ,
the one-magnon states merge into the two-magnon continuum

FIG. 13. Overlap between the ground state at μi = μc = −1.31
and the low-energy eigenstates of the PXP model with various values
of μ for N = 24 and PBCs. The states are the same as in Fig. 12
with k = 0, and panels correspond to μf = 0.1, 0.6, and 1.2 respec-
tively (from left to right). The red lines correspond to the expected
energy of two and four magnons with momentum π on top of the
ground state. The grey line correspond to the expected energy of two
magnons with momentum k and −k on top of the ground state. Due to
the flatness of the band and the weak interactions between magnons,
the towers of states are sharper around μ = 0.633.
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near k = 0, causing the band to bend downwards. As a conse-
quence, the noninteracting magnon pairs approximation is less
accurate for k �= π , and the critical ground state has increased
overlap with them. On top of this, the band being far from flat
at the edges means that the towers of states are not sharp, i.e.,
states near the top of the towers have a non-negligible energy
difference. As their energy separation from the ground state is
roughly twice that of a single-magnon with momentum k, the
flatter the band the more similar in energy the states will be.

For μf ≈ 0.6, the single-magnon band barely touches
the two-magnon continuum. The magnon-pair approximation
now holds well for all values of k. Consequently, one can see
that the overlap of the critical ground state with two-magnon
states built out of magnons with momentum k �= π is very
low. Among these, the states with the highest overlap are the
ones made from magnons with momentum close to 0 or π .
As the band is flat near these points, they have approximately
the same energy as the scarred states and so do not lead to
dephasing until late times.

Finally, when μf becomes too large, the nature of the ex-
citations changes and the π magnons no longer describe the
elementary excitations in the system. Indeed, for μf 
 1, the
ground state is simply the polarized state and the excitations
are just a single flipped 1 on top of the background of 0.
So the first excited state with k = 0 is simply a symmetric
superposition of the state |100 · · · 0〉 and its translations. As
any kind of excitation with k = π will need at least one 1 site,
adding two of them that are noninteracting will never lead to
the correct excited state at k = 0. This can already be seen
for μf = 1.2 in the bottom panel of Fig. 12, as the lowest red
cross—corresponding to the expected energy of two nonin-
teracting magnons—is far above the actual first excited state
with k = 0. This again impacts the sharpness of the towers
of states, especially the spacing between the first and second
excited state, which grows with μf.

APPENDIX F: DYNAMICAL PHASE DIAGRAM
IN THE INFINITE-TIME LIMIT

In the main text, we explored the dynamical phase diagram
using two probes based on the dynamics at intermediate time
scales: fidelity revivals and the deviation of average density of
excitations from its thermal value. Here we directly address
the long-time behavior of the system using the latter quantity.
We study the average density of excitations evaluated in the
diagonal ensemble,

n̄ = lim
T →∞

1

T

∫ T

0
〈ψ (t )|n|ψ (t )〉dt =

∑
j

|c j |2n j, j, (F1)

where c j = 〈Ej | |ψ (0)〉 and n j,k = 〈Ej | n |Ek〉. The initial state
|ψ (0)〉 is the PXP ground state at some μi, while Ej , |Ej〉
are the eigenvalues and eigenstates of the quench Hamilto-
nian HPXP(μf ). In the second equality of Eq. (F1), we have
assumed that the off-diagonal elements average out to zero
in the infinite-T limit. This is true in the absence of spectral
degeneracies, as integrating off-diagonal contributions over
time corresponds to integrating e−irt with r �= 0 being essen-
tially a random number. Thus, each contribution will give a
finite number that will go to zero as it is multiplied by 1/T

FIG. 14. The norm of the scaled difference of the number of
excitations between the diagonal and canonical ensembles when
quenching the initial ground state of HPXP(μi ) to HPXP(μf ). All the
labels are the same as in Fig. 1. Data is obtained using exact diago-
nalization in the momentum k = 0 and p = +1 inversion symmetry
sector for system size N = 28 with PBCs.

and the limit T → ∞ is taken. The quench Hamiltonian is
generally nondegenerate after resolving the momentum and
inversion symmetries (our calculations are mostly performed
in the sector with k = 0 and p = +1). An exception to this
occurs at μf = 0 where the spectrum contains an extensive
number of “zero modes” [37,87]. In that case, the off-diagonal

FIG. 15. Scaled difference of the expectation values between the
diagonal and canonical ensembles. (a) For μi = μc = −1.31, there
is a large difference around μf = 0.5 that does not vary much with
system size. Notably, we also see that to the left of that point the dif-
ference between the ensembles increases with system size. (b) Cross
cuts through the phase diagram with a fixed value of μi indicated
on the color bar. The middle peak corresponds to region (1), while
the two negative peaks on the bottom right correspond to regions
(2) and (3), from left to right respectively. Data is obtained by exact
diagonalization for system size N = 26 with PBCs.
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contributions between all eigenstates with E = 0 must also be
counted.

After evaluating n̄, we compute the difference between
the diagonal and canonical ensembles, δn = n̄ − nth, where
nth was defined in Eq. (4). This allows to quantify ergodic-
ity breaking via the deviation from the thermal value in the
infinite-time limit, as shown in Fig. 14. Comparing this with
the original phase diagram in Fig. 1, we see that the main
regions (1), (2), and (3) associated with QMBS still show
visible signatures. In other regions, such as region (5), the
diagonal and canonical ensemble averages happen to be equal
but this does not imply thermalization—rather, the difference
between ensembles is small because the dynamics is reduced
to a superposition of only a few eigenstates. Similarly, we
notice that region (2) and region (3) are intersected by a flat
line where |δn| � n̄, which is completely insensitive to the
initial state (i.e., independent of μi). This line passes through
the vicinity of the diamond point, discussed in Sec. V, where
we emphasized that the relevant dynamics occurs at lower
effective temperatures than the other parts of region (1) and
(2). Consequently, we expect |δn|/n̄ to be suppressed. Indeed,

as we discuss in Fig. 15 below, this apparent discontinuity
between regions (1) and (2) is related to the fact that δn takes
opposite signs in the two regions, thus it crosses zero at their
interface.

Figure 15(a) shows that at the critical point there is still a
sizable difference between the two ensembles in various sys-
tem sizes. The maximum difference is closer to μf = 0.5 than
to the fidelity maximum of 0.633. The latter is a compromise
between the flatness of the band and the level of interactions of
the magnons. As the long-time behavior should not depend on
the spacings of the towers, it is not surprising that the optimal
μf is much closer to 0.5, where the level of interactions of the
magnons seems the lowest. Figure 15(b) shows a cut through
the phase diagram at fixed μi values shown on the color bar.
The change of sign between region (1) versus regions (2) and
(3) is clearly visible, hence there has to be a point where δn
passes through zero. This crossing appears to be unrelated to
thermalization as the deviation from the canonical ensemble is
still pronounced on either side of the crossing. This could be
caused by the particular choice of the observable, and it is pos-
sible that other observables may not exhibit such a behavior.
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