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Weak ergodicity breaking in the Schwinger model

Jean-Yves Desaules ,1 Debasish Banerjee ,2,3 Ana Hudomal ,1,4 Zlatko Papić ,1 Arnab Sen ,5 and Jad C. Halimeh 6,7,*
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As a paradigm of weak ergodicity breaking in disorder-free nonintegrable models, quantum many-body scars
(QMBS) can offer deep insights into the thermalization dynamics of gauge theories. Having been first discovered
in a spin- 1

2 quantum link formulation of the Schwinger model, it is a fundamental question as to whether QMBS
persist for S > 1

2 since such theories converge to the lattice Schwinger model in the large-S limit, which is the
appropriate version of lattice QED in one spatial dimension. In this work, we address this question by exploring
QMBS in spin-S U(1) quantum link models (QLMs) with staggered fermions. We find that QMBS persist at
S > 1

2 , with the resonant scarring regime, which occurs for a zero-mass quench, arising from simple high-energy
gauge-invariant initial product states. We furthermore find evidence of detuned scarring regimes, which occur
for finite-mass quenches starting in the physical vacua and the charge-proliferated state. Our results conclusively
show that QMBS exist in a wide class of lattice gauge theories in one spatial dimension represented by spin-S
QLMs coupled to dynamical fermions, and our findings can be tested on near-term cold-atom quantum simulators
of these models.

DOI: 10.1103/PhysRevB.107.L201105

Introduction. Quantum many-body scars (QMBS) form
an intriguing paradigm of ergodicity breaking in interacting
systems that are typically expected to thermalize due to their
nonintegrability and spatial homogeneity [1–8]. QMBS com-
prise eigenstates of low entanglement entropy [9,10], many
of which reside in the middle of the spectrum, and are often
separated roughly equally in energy [11,12]. These eigenstates
are nonthermal, forming a “cold” subspace that is weakly con-
nected to the rest of the Hilbert space. Consequently, quenches
starting in initial states with high overlap with these non-
thermal states do not show typical thermalization, but instead
exhibit long-lived coherent dynamics [13,14]. This behavior
is of particular interest to fundamental investigations of the
eigenstate thermalization hypothesis (ETH) [15–20], as it has
been linked to novel mechanisms for avoiding thermalization
in closed quantum systems based on spectrum generating
algebras [21–24] and embedding of nonthermal eigenstates
[25] (see recent reviews [26,27]). Moreover, given that QMBS
constitute high- or even infinite-temperature states, when the
system is initially prepared in them it will not dephase its
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information, which is pertinent to applications in quantum
memory and information processing [28–31].

QMBS are also relevant to gauge theories [32–36], which
describe the interactions of elementary particles mediated by
gauge bosons through an extensive set of local constraints
[37–39]. A paradigmatic example of the latter is Gauss’s law
in quantum electrodynamics (QED), where the distribution of
charged matter strictly specifies the allowed configurations of
the surrounding electromagnetic field [40]. Recently, a con-
certed experimental effort has emerged for the implementation
of gauge theories in synthetic quantum matter (SQM) devices
[41–51]. This has been facilitated in large part due to the great
progress achieved in the precision and control of SQM setups
[52,53], making the quantum simulation of gauge theories a
realistic endeavor [54–60]. Due to the complexity of these ex-
periments, the implementations often focus on quantum link
formulations of gauge theories, where spin-S operators model
the gauge fields, which in QED span an infinite-dimensional
Hilbert space [61]. This has allowed the first large-scale re-
alization of the spin- 1

2 U(1) quantum link model (QLM) in
1 + 1 dimensions [(1 + 1)D] using ultracold atoms [50,51].

The first experimental observation of QMBS was achieved
in a Rydberg-atom setup implementing the PXP model [1], a
paradigm of QMBS which maps to the spin- 1

2 U(1) QLM [33].
Such a mapping breaks down at S > 1

2 , and it remains an open
question whether QMBS persist at larger link spin lengths in
the QLM formulation of QED, and, if they do, what their form
will be. In this Letter, we show that QMBS are ubiquitous in
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lattice gauge theories for all values of spin S � 5
2 accessible

in numerical simulations. For a zero-mass quench, QMBS
arise when the system is prepared in the extreme vacua of the
spin-S U(1) QLM, which are the most highly excited vacuum
states of lattice QED. Furthermore, we find that preparing
the system in the physical (least excited) vacua or in the
charge-proliferated state can still lead to detuned scarring
behavior for certain massive quenches, similar to the case of
S = 1

2 that has recently been demonstrated experimentally in
a tilted Bose-Hubbard optical lattice [7]. The nonthermalizing
dynamics due to QMBS provides a useful benchmark for the
upcoming realizations of larger-S lattice gauge theories in
cold-atom quantum simulators and the exploration of their
out-of-equilibrium properties [48,57].

U (1) quantum link model. The Schwinger model, or QED
in 1 + 1 dimensions, is possibly the simplest gauge theory
with dynamical matter that shows nontrivial phenomena like
confinement [62,63]. A discrete version of the Schwinger
Hamiltonian on a lattice is provided by the Kogut-Susskind
formulation, which is also reached in the large-S limit of the
QLMs being studied here. The (1 + 1)D spin-S U(1) QLM is
given by the Hamiltonian [64,65]

Ĥ =
L∑

j=1

[
J

2a
√

S(S + 1)
(σ̂+

j ŝ+
j, j+1σ̂

−
j+1 + H.c.)

+ μ

2
(−1) j σ̂ z

j + g2a

2

(
ŝz

j, j+1

)2
]
. (1)

Here, J = 1 sets the energy scale, μ is the fermionic mass,
and g2 is the gauge coupling strength. Throughout this work,
we will set the lattice spacing to a = 1 and employ periodic
boundary conditions, with L denoting the number of lattice
sites. The matter field on site j is represented by the Pauli
operator σ̂ z

j , and the electric (gauge) field at the link between

sites j and j + 1 is represented by the spin-S operator ŝz(+)
j, j+1.

The generator of the U(1) gauge symmetry of Hamiltonian (1)
is

Ĝ j = σ̂ z
j + (−1) j

2
+ ŝz

j−1, j − ŝz
j, j+1, (2)

which can be interpreted as a discretized version of Gauss’s
law relating the matter occupation on site j to the electric-field
configuration on its neighboring links. We will work in the
physical sector of Gauss’s law: Ĝ j |φ〉 = 0, ∀ j.

Due to the gauge symmetry imposed by the generator (2),
one can integrate out the matter fields in the Hamiltonian
(1), resulting in a constrained spin system. For S = 1

2 , this
corresponds to the PXP model [33]. For larger S, the resulting
model differs from generalizations of the PXP model already
explored in the literature [13,66]. In the companion article
[67], we derive the relevant constrained spin-S model corre-
sponding to the spin-S U(1) QLM for any value of S [68].
Exact diagonalization (ED) techniques resolving the trans-
lation and spatial-inversion symmetries have been employed
to study the eigenstates of these models. Time-evolution re-
sults are obtained either directly from the ED results or by
time evolving the initial state using sparse matrix exponential
techniques.

FIG. 1. Quantum many-body scars in the spin-S U(1) QLM:
Overlap of the extreme vacuum |0−〉 with the eigenstates of the
quench spin-S U(1) QLM Hamiltonian (1) at μ = g = 0. At all
considered values of S, distinctive towers of eigenstates arise that
are equally spaced in energy (see insets). These are a hallmark of
quantum many-body scars. These results are obtained by exact diag-
onalization calculations, where L denotes the number of matter sites,
and periodic boundary conditions are employed. The color indicates
the density of data points, with yellow color representing higher
density. In all cases, the Hilbert space has more than 4×105 states,
with at least 2.5×104 states belonging to the relevant symmetry
sectors of the extreme vacua.

Resonant scarring. The physical vacuum of Ĥ is its ground
state at µ→ ∞ and g2 > 0. In the case of half-integer S,
there are two doubly degenerate physical vacua. These can
be defined on a two-site two-link unit cell using as quan-
tum numbers the eigenvalues σ z

j and sz
j, j+1 of the matter and

electric field operators σ̂ z
j and ŝz

j, j+1, respectively, explicitly

reading as |σ z
1 , sz

1,2, σ
z
2 , sz

2,3〉 = |+1,± 1
2 ,−1,± 1

2 〉. For inte-
ger S, the physical vacuum is nondegenerate, and reads as
|σ z

1 , sz
1,2, σ

z
2 , sz

2,3〉 = |+1, 0,−1, 0〉. Henceforth, we will de-
note |0+〉 = |+1,+ 1

2 ,−1,+ 1
2 〉 for half-integer S and |0+〉 =

|+1, 0,−1, 0〉 for integer S, with the subscript denoting the
sign of g2.

On the other hand, the extreme vacua of Ĥ are
high-energy states that can be realized as doubly degen-
erate ground states of Eq. (1) at µ→ ∞ and g2 < 0:
|σ z

1 , sz
1,2, σ

z
2 , sz

2,3〉 = |+1,±S,−1,±S〉. Henceforth, we will
denote |0−〉 = |+1,+S,−1,+S〉, with the subscript again in-
dicating the sign of g2.

We will further consider the charge-proliferated state,
which is the ground state of Eq. (1) at µ→ −∞ and g2 >

0. For half-integer S, it is nondegenerate and reads as
|CP〉 = |−1,− 1

2 ,+1,+ 1
2 〉. For integer S, we obtain two dou-

bly degenerate ground states: |CP〉 = |−1,−1,+1, 0〉 and
|−1, 0,+1,+1〉.
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FIG. 2. Dynamics of the fidelity in the wake of a quench by the
spin-S U(1) QLM (1) at µ= g = 0 starting in either the extreme
vacuum |0−〉 (solid blue curve), the physical vacuum |0+〉 (dashed
red curve), or the charge-proliferated state |CP〉 (dashed-dotted black
curve). The qualitative conclusion is that regardless of the value of
S, prominent revivals appear in the fidelity dynamics only when
the initial state is the extreme vacuum, whereas for other states the
dynamics is thermal. Note that for S = 1

2 , the physical and extreme
vacua are identical.

With respect to the eigenstates of Hamiltonian (1) at µ=
g = 0, we find through ED that only |0−〉 exhibits the overlap
behavior indicative of scarring for general S (see Fig. 1). Just
as in the known case of S = 1

2 , we also see at other values
of S signatures of 2SL + 1 towers equally spaced in energy
(see insets), exhibiting large overlap with |0−〉, particularly
in the middle of the spectrum. The overlap of the top band
of states can be further enhanced by considering a truncated
version of the QED gauge field [67]. Note how for all values
of S that we consider, there is a prominent zero-energy mode
with the largest overlap. The presence of these eigenstates is
evidence of weak ergodicity breaking in the model. Due to
the scaling term 1/

√
S(S + 1), the ground-state energy E0 is

approximately independent of S at µ= g2 = 0, and we find
numerically that E0 ≈ −0.32L. As the spectrum is symmet-
ric around zero, we can use this along with the number of
towers to get the approximate energy spacing between towers
as �E ≈ −2E0/(2SL) ≈ 0.32/S. We note that the various
approximation schemes for scarred eigenstates in the PXP
model also show good results for QLMs with larger S [67].

The presence of scarred eigenstates can be detected using
the global quench: the system is prepared in some initial state
|ψ (0)〉 and let to evolve under unitary dynamics, |ψ (t )〉 =
e−iĤt |ψ (0)〉, generated by the Hamiltonian Ĥ . The state
|ψ (0)〉 is a highly nonequilibrium state, i.e., it is a super-
position of a large number of eigenstates of Ĥ , resulting
in complex dynamics that we characterize using the fidelity,
F (t ) = | 〈ψ (0)〉 ψ (t )|2. In the case of S = 1

2 , |0+〉 = |0−〉, as
the last term of Eq. (1) is an inconsequential energy constant
since (ŝz

j, j+1)2 = 1. Quenching this vacuum state with Ĥ at

µ= 0 is known to lead to scarring behavior for S = 1
2 [1,33],

and this is exhibited in the revivals of the fidelity, shown in the

FIG. 3. Dynamics of the mid-chain entanglement entropy for the
same quench and initial states considered in Fig. 2. For all considered
values of the link spin length S, an anomalously low and slowly
growing entanglement entropy arises when the initial state is the ex-
treme vacuum. Preparing the system in the charge-proliferated state
or the physical vacuum leads to a fast growth in the entanglement
entropy except for the case of S = 1

2 , where the physical and extreme
vacua are the same.

top left panel of Fig. 2. For comparison, we have included the
fidelity dynamics for |ψ (0)〉 = |CP〉, which shows no revivals,
in agreement with what is established in the literature for this
quench when S = 1

2 [26].
However, once the link spin length is S > 1

2 , we find
that the fidelity dynamics exhibits revivals only when
the system is initialized in the extreme vacuum |ψ (0)〉 =
|0−〉, whereas neither the physical vacuum |0+〉 nor the
charge-proliferated state |CP〉 give rise to scarring behav-
ior; see Fig. 2 for S = 1, 3

2 , 2. We have checked that
the other vacua |σ z

1 , sz
1,2, σ

z
2 , sz

2,3〉 = |+1,±M,−1,±M〉 with
1
2 < M < S and higher-energy charge-proliferated states are
also not scarred states [67]. From the previous estimate of
the energies of scarred towers, we expect the revival period to
be T ≈ 6.25πS. However, in practice the energy spacing be-
tween towers varies throughout the spectrum. So the relevant
energy spacing is the one near E = 0, where the scarred states
have the higher overlap with |0−〉. This provides an estimate
of T ≈ 5.13πS, which agrees much more accurately with the
numerical data.

We explore the effect of scarring on the dynamics of the
mid-chain entanglement entropy SL/2(t ), shown in Fig. 3 for
S = 1

2 to 2. SL/2 is defined as the von Neumann entropy for the
reduced density matrix describing one half of the chain. In all
cases, starting in the extreme vacuum leads to an anomalously
low SL/2(t ) exhibiting significantly slower growth, whereas
preparing the system in the charge-proliferated state leads to
a rapid increase of the entanglement entropy. Except for the
case of S = 1

2 where the extreme and physical vacua are the
same, starting in the physical vacuum leads to qualitatively
similar behavior to that of the charge-proliferated state, with
a rapid growth in SL/2(t ). These findings are consistent with

L201105-3



JEAN-YVES DESAULES et al. PHYSICAL REVIEW B 107, L201105 (2023)

FIG. 4. Dynamics of the electric flux (3) in the TL for a resonant
quench (μ = g = 0) starting in the extreme vacuum for different
values of S. Inset shows the difference between −1 and the first
minimum of the normalized electric flux, plotted as a function
of S.

nonthermal scarred dynamics only when the initial state is
prepared in the extreme vacuum.

We now investigate the fate of scarring in the thermody-
namic limit (TL). Using infinite matrix product states [69],
which work directly in the TL, we calculate the dynamics of
the electric flux

E (t ) = 1

L

L∑
j=1

〈ψ (t )| ŝz
j, j+1 |ψ (t )〉 , (3)

which is an order parameter associated with the global Z2

symmetry of the Hamiltonian (1). The corresponding results
are shown in Fig. 4. Due to the computational cost of these
simulations, where convergence is achieved at a maximal
bond dimension of 550 and a time step of 0.0005/J , we
can only reach relatively short times. Nevertheless, scarred
revivals in E (t ) are clearly visible in Fig. 4 at all accessible
values of S.

To quantify ergodicity breaking, in the inset to Fig. 4 we
plot the deviation of the first minimum in E (t ) from −1 as a
function of S. For sufficiently large S, we expect the data to
saturate to some well-defined value between 0 (perfect scar-
ring) and 1 (full thermalization). While the available values
remain far from 1, the deviation clearly grows with S, indicat-
ing a weakening of scarring towards the Kogut-Susskind limit
S → ∞. At the same time, there is no convergence of the data
with respect to S, implying that larger values of S are needed
in order to reach a reliable conclusion about the existence of
ergodicity breaking in the S → ∞ limit.

As such, we have demonstrated that for a quench at µ=
g = 0, the spin-S U(1) QLM (1) exhibits scarring behavior
when the system is initially prepared in an extreme vacuum.
The underlying scarring mechanism is precession of a “large”
spin of magnitude SL [70]. The relation between scarring and
the Hilbert space constraint can be firmed up by studying
the structure of the adjacency graph of the Hamiltonian [67].
These extreme vacua are product states that can be naturally
explored in SQM experiments [50,51] even though they are
otherwise inaccessible in lattice QED.

Detuned scarring. In a recent study [7], it has been shown
theoretically and demonstrated experimentally that there are
scarring regimes beyond the resonant one discussed above.
This was demonstrated in the spin- 1

2 U(1) QLM by starting

FIG. 5. The spin-S U(1) QLM also exhibits detuned scarring [7],
where the physical vacuum |0+〉 and the charge-proliferated state
|CP〉 can lead to scarred dynamics when quenched by Hamiltonian
(1) at small nonzero values of μ and g2. Here, we set μ = 0.486J
and g2 = 0.6J , and the overlap of each of |0+〉 and |CP〉 with the
corresponding eigenstates of Hamiltonian (1) are shown for L = 20
and S = 3

2 . Towers of eigenstates equally spaced in energy emerge,
indicating the presence of QMBS. We confirm this picture by cal-
culating the dynamics of the fidelity in the wake of this quench.
For all accessible evolution times, we find consistent revivals in the
fidelity, strongly indicative of scarred dynamics. The color indicates
the density of data points, with yellow color representing higher
density.

in the charge-proliferated state and performing a quench at
finite mass (detuning).

Motivated by the question as to whether QMBS persist
in lattice QED for physically relevant initial states, we ex-
plore these detuned scarring regimes in the spin- 3

2 U(1) QLM
starting in either the physical vacuum |0+〉 or the charge-
proliferated state |CP〉. As shown in Fig. 5, the overlap of
these initial states with the eigenstates of the quench Hamilto-
nian (1) at µ= 0.486J and g2 = 0.6J shows distinctive towers
equally spaced in energy, similar to the known case of S = 1

2
[7]. Also displayed in Fig. 5 is the fidelity dynamics for each
of |0+〉 and |CP〉 upon quenching them with this Hamiltonian,
where we see persistent revivals up to all considered evolution
times. We also arrive at a similar picture for other values of
S, and in fact we find a wide range of values of (μ, g2) over
which scarring behavior emerges [67].

Given that |0+〉 and |CP〉 are both physically relevant in
lattice QED in one spatial dimension, and since the latter has
been shown to be achieved at relatively small values of S both
in [68,71,72] and out of equilibrium [73], our results suggest
that QMBS may play a role for understanding dynamics in
physically interesting regimes as well.

Summary. In conclusion, we have demonstrated an abun-
dance of QMBS in the paradigmatic spin-S U(1) QLM, a
staple of modern SQM experiments on lattice gauge theo-
ries. We have shown that the regime of resonant scarring for
quenches at zero mass, prevalent in the literature in the case of
S = 1

2 , is also present in the case of S > 1
2 when the system is

initially prepared in an extreme vacuum, where the local elec-
tric field takes on its largest possible eigenvalue. This has been
demonstrated by ergodicity-breaking properties of many-body
eigenstates, obtained using ED, as well as by showing the
existence of quantum revivals in local observables in the TL
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using infinite matrix product state method. The extreme vacua
associated are not physical as ground states in lattice QED,
but they are product states easily implementable in SQM
experiments [48,57]. These experiments, in particular, could
provide key insight into the persistence of ergodicity break-
ing upon approaching the limit S → ∞, which our classical
simulations cannot reliably access.

We have also presented evidence of detuned scarring in the
spin-S U(1) QLM arising from quenches at small nonzero
mass and electric-field coupling, when the system is ini-
tially prepared in either the physical vacuum, where the local
electric field takes on its lowest possible eigenvalue, or the
charge-proliferated state. While the scarring phenomenology
is similar to the resonant case, the initial states associated with
detuned scarring are physically relevant as low-energy states
in lattice QED. Given that recent works have shown conver-
gence to the latter limit in and out of equilibrium already at
S � 3

2 , our results suggest that this detuned scarring regime
may already exist in lattice QED.

In compliance with EPSRC policy framework on research
data, this publication is theoretical work that does not require
supporting research data.
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