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Recent quantum simulation by Google [Nature 612, 240 (2022)] has demonstrated the formation of
bound states of interacting photons in a quantum-circuit version of the XXZ spin chain. While such bound
states are protected by integrability in a one-dimensional chain, the experiment found the bound states to
be unexpectedly robust when integrability was broken by decorating the circuit with additional qubits, at
least for small numbers of qubits (≤ 24) within the experimental capability. Here we scrutinize this result
by state-of-the-art classical simulations, which greatly exceed the experimental system sizes and provide a
benchmark for future studies in larger circuits. We find that the bound states consisting of a finite number of
photons are indeed robust in the nonintegrable regime, even after scaling to the infinite-time and infinite-
system size limit. Moreover, we show that such systems possess unusual spectral properties, with level
statistics that deviates from the random matrix theory expectation. On the other hand, for low but finite
density of photons, we find a much faster onset of thermalization and significantly weaker signatures of
bound states, suggesting that anomalous dynamics may only be a property of dilute systems with zero
density of photons in the thermodynamic limit. The robustness of the bound states is also influenced by
the number of decoration qubits and, to a lesser degree, by the regularity of their spatial arrangement.

DOI: 10.1103/PRXQuantum.5.010316

I. INTRODUCTION

Recent advances in quantum simulators based on ultra-
cold atoms, trapped ions, and superconducting circuits
[1–8] have opened a window to studying far-from-
equilibrium dynamics and thermalization in isolated
many-body systems [9–12]. The behavior of generic ther-
malizing systems is described by the eigenstate thermal-
ization hypothesis (ETH) [13–15], which seeks to explain
the process of thermalization at the level of the system’s
energy eigenstates. In certain systems, the ETH can break
down, allowing for new types of dynamical behavior and
phases of matter to emerge [16]. One of the most striking
manifestations of ergodicity breakdown occurs in finely
tuned one-dimensional systems [17], which fail to thermal-
ize due to their rich symmetry structure known as quantum
integrability [18,19].

A paradigmatic quantum integrable system is the spin-
1/2 XXZ model, which describes the low-energy physics
of certain ferromagnetic materials [20]. In one spatial
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dimension, the model’s tour de force analytic solution in
the isotropic limit was presented by Bethe in the 1930s
[21]. One remarkable consequence of that solution was a
special class of eigenstates that can be viewed as bound
states of magnons—the elementary quasiparticle excita-
tions, whose signatures were observed in spectroscopic
experiments [22–24]. However, due to the challenges of
probing bound states via conventional techniques such as
inelastic neutron scattering, it has been proposed [25] that
local quenches [26–32] may provide deeper insight into
the physics of bound states [33–39]. Dynamical signa-
tures of bound states were indeed observed in systems
of 87Rb atoms in an optical lattice, realizing an effective
Heisenberg model [40].

While previous studies mostly focused on systems with
continuous dynamics governed by a static Hamiltonian,
it is also possible to construct equivalent Floquet mod-
els defined as a product of unitary matrices. Such mod-
els, whose quantum dynamics is intrinsically discrete, are
better suited for quantum devices, which operate as a
sequence of unitary gates. Quantum circuit models that
correspond to the spin-1/2 Heisenberg model in the high-
frequency limit were studied in Refs. [41,42]. Remarkably,
the Floquet circuit realization was shown to be integrable
for arbitrary parameters and not only in the small time-step
limit where it reduces via Troterrization to the Hamiltonian
model [41–43].
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The Floquet XXZ model was recently experimentally
realized using a ring of superconducting qubits connected
by high-fidelity fSim quantum logic gates [44]. These
qubits interact with each other by superconducting currents
and can host excitations in the form of trapped photons.
This setup has allowed for the preparation and observation
of bound states of a few interacting photons, which were
predicted and analytically studied in Ref. [45]. One of the
advantages was the possibility of controllably breaking the
integrability by attaching extra qubits to the main chain and
thus changing the geometry of the system. In contrast with
the expectation that the bound states are protected by inte-
grability, it was experimentally observed that these states
survive even in the non-integrable regime, as previously
suggested for the Hamiltonian version of the model [25].
However, the robustness of the bound states was not stud-
ied in detail and the question of which mechanism protects
it in the nonintegrable case remains open.

In this work, we use classical simulations, based on
exact diagonalization (ED) and matrix product states
(MPS), to gain understanding of the experiment in
Ref. [44]. Specifically, we study the statistical properties
of the Floquet spectrum in order to detect the transition
from the integrable to the nonintegrable regime. We also
employ time-evolving block decimation (TEBD) simula-
tions to investigate the evolution of bound states and their
robustness. In this way, we are able to reach far larger
system sizes, photon numbers, and timescales compared
to the quantum hardware [44]. In contrast to the experi-
ment, which has limitations due to the unwanted leakage of
photons, the photon number is conserved in our study. We
find that sectors with small but fixed photon number have
nonthermalizing spectral properties, which affect both their
level statistics and quantum dynamics. Additionally, we
confirm the experimental finding that the bound states in
these sectors persist beyond the integrable regime. While
this effect is pronounced in dilute systems containing small
photon numbers, it appears to be restricted to zero density
of excitations in the thermodynamic limit. By contrast, sec-
tors with small but finite excitation density are found to
thermalize rapidly as the photon number is increased, in
parallel with the fast decay of bound states.

The remainder of this paper is organized as follows. In
Sec. II we introduce the Floquet XXZ model that will be
the main object of our study. In Sec. III we identify anoma-
lous properties in the statistics of the Floquet quasienergy
levels, including the average ratio of consecutive gaps and
the density of states. These results are complemented by
the spectral form factor, which captures the signatures of
anomalous spectral features at an intermediate Thouless
time scale, relevant to transport. In Sec. IV we study the
evolution of bound states and their robustness to inte-
grability breaking. We perform extrapolations to infinite
system size and compare the data against the diagonal
ensemble predictions, which provides information about

the infinite-time limit. In Sec. V we discuss several cases
beyond those studied in experiment, in particular systems
with a constant filling factor and different decoration pat-
terns, including nonsymmetric ones. We summarize our
results and discuss their implications in Sec. VI. Appen-
dices provide more details about the corresponding con-
tinuous XXZ model, effects of different parameters, the
origin of peaks in the density of states, and the properties
of Floquet modes, such as their localization in the Fock
space.

II. MODEL

The experiment in Ref. [44] realized a decorated ring
of superconducting qubits, schematically illustrated in
Fig. 1(a). If the occupancy is limited to zero or one photon
per qubit, the photons can be modeled as hard-core bosons.
Since we are considering a ring of qubits, we will impose
periodic boundary conditions (PBCs) in our ED calcula-
tions, unless stated otherwise. The fundamental building
block of the circuit is a two-qubit fSim gate acting on pairs
of adjacent qubits,

fSim(θ ,φ,β) =

⎛
⎜⎜⎝

1 0 0 0
0 cos θ ieiβ sin θ 0
0 ie−iβ sin θ cos θ 0
0 0 0 eiφ

⎞
⎟⎟⎠ , (1)

where θ and β determine the nearest-neighbor hopping
amplitude and phase, while φ represents the strength of
interactions between neighboring qubits. The parameter
β mimics the external magnetic flux threading the ring.
In the following, we will primarily consider the case
fSim(θ ,φ,β = 0) = fSim(θ ,φ).

Figure 1(a) is a sketch of the model with decorations
attached to every other site as in Ref. [44]. The number
of photons will be denoted by N and the total number of
sites by L = Lsites + Ldecor, which includes both the sites

(a) (b)

FIG. 1. (a) Sketch of the XXZ circuit model with L = 14 + 7
sites (7 unit cells). Filled dots denote a bound state of N = 3 pho-
tons. Here, the integrability-breaking decorations are attached to
every other site. (b) An example of the corresponding quantum
circuit with L = 4 + 2 sites. The circuit consists of fSim (boxes)
and SWAP gates (vertical lines). The alternating layers of gates
acting on even or odd bonds and decorations are denoted by blue,
red, and green color, respectively, matching the unitaries Ueven,
Uodd, and Udec in (a). Our classical MPS simulations in iTensor
[46] follow this diagram and assume open boundary conditions.
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on the ring Lsites and the extra sites Ldecor. The sketch also
depicts a state with N = 3 adjacent photons, which will
typically be used as the initial state in our simulations.
Note that there is another, similar configuration of three
adjacent photons, that is simply shifted by one lattice site.
This configuration is inequivalent to the one in Fig. 1(a)
because it is connected to two decorations instead of one.
As specified below, we will occasionally find it useful to
average the results over these two initial states. In addition
to the layout shown here, in Sec. V we will also consider
other decoration patterns. In general, we find the dynami-
cal properties are highly sensitive to the number of photons
and the decoration pattern.

Figure 1(b) shows the corresponding quantum circuit,
which consists of fSim and SWAP gates. The states of the
even, odd, and decoration qubits are denoted by |ei〉, |oi〉,
and |di〉, respectively. Our classical TEBD simulations fol-
low the layout in Fig. 1(b) and, for convenience, assume
open boundary conditions (OBCs). We emphasize that
the results below are insensitive to the choice of bound-
ary conditions, as we will demonstrate good agreement
between TEBD with OBCs and ED with PBCs. The circuit
is defined by first applying fSim gates across all odd bonds,
then across all even bonds. Since the even and odd bonds
are thus not equivalent, the system is invariant to trans-
lation by two lattice sites of the main chain. Additional
gates which couple to the integrability-breaking extra sites
|di〉 are subsequently applied, which can further reduce the
symmetry of the full system depending on the pattern of
arrangement of the extra sites. The coupling parameter θ ′
is used to tune between the integrable and nonintegrable
regimes, while the interaction strength φ = φ′ is the same,
both along the main chain and between the chain and the
decorations. The one-cycle unitary operator is then

ÛF =
∏

extra bonds

fSim(θ ′,φ)

︸ ︷︷ ︸
Ûdec

×
∏

even bonds

fSim(θ ,φ)

︸ ︷︷ ︸
Ûeven

∏
odd bonds

fSim(θ ,φ)

︸ ︷︷ ︸
Ûodd

. (2)

As shown in Appendix A, the Hamiltonian of the XXZ
model corresponds to the Trotter-Suzuki expansion of this
unitary in the φ, θ , θ ′ → 0 limit.

The isotropic XXX version of the model in Eq. (2) was
first proposed in Ref. [41], while the Floquet XXZ model
was formulated in Ref. [42] and analytically studied in
detail in Ref. [45]. The latter used the Bethe ansatz to
derive the dispersion of bound states containing an arbi-
trary number of photons. These bound states are formed
by stable magnon quasiparticles, and there are two different
phases depending on the ratio of θ and φ: (1) gapped phase

φ > 2θ , where bound states of any photon number exist for
any momentum, and (2) gapless phase φ < 2θ where the
bound states are only present for a finite range of momenta.
The maximal group velocity was found to decrease with
the number of photons in the bound state. Quantum sim-
ulations [44] have later confirmed the analytical relations
between the velocity of quasiparticles and their momen-
tum. However, analytical solutions are not available for
the nonintegrable case, where the integrability is broken
either by adding certain perturbations or by changing the
geometry of the system. We will use classical simulations
to numerically study this regime.

A. Circular orthogonal ensemble

Before we analyze in detail the Floquet spectrum of
Eq. (2), we must understand the relevant symmetries of
the model as they affect the random matrix theory ensem-
ble describing the spectrum after breaking the integrability
[47]. For example, the undecorated model with PBCs is
invariant under translation by two sites, due to the even
and odd layers of fSim gates being applied separately. Such
a circuit is also invariant under spatial inversion. How-
ever, attaching extra qubits to some of the sites reduces
the symmetry of the full system. Regular patterns with
decorations on every nth site will preserve some form of
translation invariance, although with a larger unit cell. Fur-
thermore, the system can be inversion symmetric only if
the decoration pattern itself is also inversion symmetric.
However, in some cases, such as that with decorations on
every other site, the inversion of the decorations can be
incompatible with the inversion of the main ring due to
different reflection axes, so the full system only has trans-
lation symmetry, even though the decoration pattern is still
inversion-symmetric. This will be discussed in more detail
in Sec. V B.

For a general unitary matrix ÛF , the level statistics
is expected to conform with the circular unitary ensem-
ble (CUE). However, as will be apparent in Secs. III A
and V B, in most cases studied here we obtain the circular
orthogonal ensemble (COE) statistics instead. COE would
trivially ensue if ÛF = ÛT

F , however this is not the case
here for any arrangement of decorations. Our calculations
show that the necessary conditions for COE level statistics
are an inversion-symmetric decoration pattern and equal
parameters for the fSim gates on the even and odd bonds
along the ring, as defined in Eq. (2). Additionally, the
mirror axis for inversion needs to be centered on a site,
not on a bond between two sites. If R̂ is the inversion-
symmetry operator, which reflects the qubits along this
axis, we then have R̂ÛoddR̂ = Ûeven, R̂ÛevenR̂ = Ûodd, and
R̂ÛdecR̂ = Ûdec. For simplicity, we define a modified one-
cycle unitary operator

Û ′
F =

√
ÛdecÛevenÛodd

√
Ûdec. (3)
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The operators ÛF and Û ′
F have the same spectrum, since

they differ only by a time shift. It is now easy to see
that Û ′

F = R̂Û ′T
F R̂. This can be understood as an additional

symmetry, which relates the evolution operator and its
transpose, resulting in COE level statistics. Our situation is
reminiscent of Ref. [48], where the Floquet spectrum was
shown to have COE instead of CUE statistics if there is a
transformation which connects the two steps of the Floquet
unitary.

Another possibility is when the mirror axis is between
two adjacent sites, leading to R̂ÛoddR̂ = Ûodd and
R̂ÛevenR̂ = Ûeven. We then have Û ′

F = R̂Û ′
FR̂, meaning that

R̂ is simply another symmetry of Û ′
F which needs to be

resolved. The level statistics in the sector where R̂ has
eigenvalue +1 is then CUE. The only deviations from this
expectation are found for small numbers of decorations
such as two or four adjacent decorations, where the level
statistics after resolving the R̂ symmetry is somewhere
between COE and CUE. However, it seems to increase
towards CUE as the density of decorations or the number
of photons is increased. There are also special cases, which
are inversion symmetric in respect to both types of mirror
axes, such as the pattern with decorations on every third
site. In those cases, the level statistics stays COE even after
resolving the R̂ symmetry. In contrast, all nonsymmetric
decoration arrangements were found to exhibit CUE level
statistics.

III. SPECTRAL PROPERTIES

In this section we analyze the spectrum of our unitary
circuit model in Eq. (2). This model does not have a Hamil-
tonian representation in general, since the mapping to the
XXZ model (Appendix A) is only valid in the dt → 0 limit.
As a consequence, the system does not have eigenstates
in the usual sense. However, we can instead compute the
eigenstates of the one-cycle evolution operator ÛF Eq. (2),
which are known as the Floquet modes. The corresponding
Floquet quasienergy spectrum is periodic, with periodic-
ity 2π/T, where T is the time length of one cycle. We set
the units such that T = 1. We will investigate properties
of the Floquet modes and quasienergies by studying their
level statistics and the density of states, which tell us about
the behavior of the system at very late time scales corre-
sponding to the Heisenberg time. We follow these results
by studying the spectral form factor, which reveals similar
information at the intermediate Thouless time, relevant for
transport.

A. Level statistics

In order to determine whether our model Eq. (2) is inte-
grable or chaotic, we study the statistics of its quasienergy
levels εn. In particular, we examine the level statistics
ratio, r = min(sn, sn+1)/max(sn, sn+1), characterizing the

0.40

0.45

0.50

0.55

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.25

0.30

0.35

0.40

0.45

0.50

0.55

〈r
〉

θ′/π

L = 20 + 10
30 + 15
40 + 20
N = 4

L = 16 + 8
18 + 9

20 + 10
N = 5

〈r
〉

L = 20 + 10
30 + 15
40 + 20
50 + 25
60 + 30
70 + 35
80 + 40

N = 3

A B C D E

L → ∞

(b)

(a)

FIG. 2. Statistics of the Floquet quasienergies. Average ratio
of consecutive energy gaps 〈r〉 for different values of θ ′ with
fixed θ = π/6, φ = 2π/3, β = 0. The horizontal dashed lines
are 〈r〉P ≈ 0.386 and 〈r〉COE ≈ 0.527. (a) N = 3 photons for dif-
ferent system sizes indicated in the legend. The relevant Hilbert-
space dimensions range from dimL=20+10 = 406 to dimL=80+40 =
7021. The vertical lines A, B, C, D, and E mark several values of
θ ′/π (0.10, 0.35, 0.65, 0.75, and 0.95, respectively) that will be
studied later in more detail. Inset: linear extrapolation to L→∞.
(b) The case of N = 4 photons and N = 5 photons (inset), with
the largest Hilbert-space dimensions dimL=40+20 = 24405 and
dimL=20+10 = 14253, respectively. In all the plots, we resolve
the translation symmetry and consider only the k = 0 momentum
sector.

spacing of adjacent quasienergy gaps sn = εn+1 − εn [49].
When computing 〈r〉, we omit any exact degeneracies,
although such degeneracies are typically absent as long
as θ ′ 	= 0. An integrable system is expected to follow the
Poisson distribution with the average value 〈r〉P ≈ 0.386,
while in the chaotic regime the expected distribution for
our case, as explained in Sec. II A above, is the circular
orthogonal ensemble (COE) with 〈r〉COE ≈ 0.527 [47,50].
We vary the hopping amplitude θ ′ between the main chain
and the extra sites from 0 to π and plot the corresponding
〈r〉(θ ′). Figure 2(a) shows the results for N = 3 photons
for various chain lengths, while the extrapolation to an
infinitely large system L→∞ is plotted in the inset. This
result should be contrasted against the results for N = 4
and N = 5 photons in Fig. 2(b).

Turning on the coupling to the decorations is expected
to break integrability, which can indeed be observed in
Fig. 2, where the value of 〈r〉(θ ′) rapidly jumps towards
〈r〉COE as soon as θ ′ 	= 0. For N ≥ 4 photons, as soon
as θ ′ � 0.05π , the level statistics remains pinned to the
COE value, in agreement with the usual expectation for
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integrability breaking in Hamiltonian systems [51]. How-
ever, the case with N = 3 photons shows a visible depar-
ture from these expectations, exhibiting pronounced dips
towards the Poisson value at special values of θ ′—see
Fig. 2(a). Furthermore, we find that the positions of the
dips in 〈r〉 depend on the main chain hopping amplitude θ ,
but not on the interaction strength φ or the flux through the
ring β, see Appendix C. No emergent symmetry, which
would explain the dips at certain values of θ ′, could be
identified. Instead, below we will relate the presence of
dips with special structures in the density of states of the
quasienergy spectrum.

We note that in all cases plotted in Fig. 2, the value of
〈r〉(0) lies below the Poisson line, even though the model
is known to be integrable at θ ′ = 0. This is simply due to a
large number of degeneracies that arise in the Floquet spec-
trum due to the disconnected decorations, which produces
a strong peak in the probability distribution at zero level
spacing. Namely, even though there is no hopping to the
extra sites when θ ′ = 0, there are still states where one or
more photons are frozen in these additional sites. A state
with all photons outside the main chain has zero energy,
as do some states with two separate photons on the main
chain and all other photons outside. We found that com-
pletely removing the extra sites brings 〈r〉(0) closer to 〈r〉P,
as expected. We also note that, while the hopping ampli-
tudes inside the main chain and between the chain and the
extra sites are different, θ 	= θ ′, the nearest-neighbor inter-
action strength is equal in both cases φ = φ′. This means
that the photons frozen in the decorations can still interact
with other photons.

The intriguing features in the level statistics observed
in Fig. 2(a) can be understood from the density of states
(DOS). The intuition is that sharp peaks in DOS signal
a large number of degeneracies in the spectrum, which
can decrease the value of 〈r〉. In Fig. 3(a), we plot the
normalized DOS curves for N = 3 and N = 5 photons at
several values of θ ′ that were marked by A–E in Fig. 2(a).
Both photon numbers exhibit a peak at ε = 0 when θ ′ =
0, which is explained by the previously discussed large
number of zero modes due to the extra sites. This zero-
energy peak is much more prominent for N = 3 and its
relative height decreases with N . The results for N = 4
(not shown) are in between those for N = 3 and N = 5,
with more peaks than N = 5, but still overall flatter than
N = 3. As θ ′ is increased, the DOS curves become more
flat. However, several other notable peaks are present for
N = 3. Although these peaks are visible at all θ ′, they are
particularly sharp at those values where 〈r〉 deviates from
〈r〉COE (e.g., θ ′ ∈ [0.25π , 0.45π ] and θ ′ ∈ [0.75π , 0.85π ]),
see Figs. 2(a) and 3(a), signaling high nonuniformity in the
quasienergy spectrum. The peaks in DOS are not present
for the nonsymmetric patterns of extra sites, such as a
single or three decorations, which will be discussed in
Sec. V B.

(a)

(b)
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FIG. 3. (a) Density of states (DOS) for different values of θ ′,
normalized by the average over the entire quasienergy spectrum
[the labels A–E are defined in Fig. 2(a), while 0 denotes the
integrable case θ ′ = 0]. The main panel corresponds to N = 3
photons in a system size L = 80 + 40, while the inset shows
N = 5 in L = 20 + 10. In both cases, θ = π/6, φ = 2π/3. (b)
Distribution of the 1000 smallest quasienergy gaps (i.e., about
15% of all levels) throughout the Floquet spectrum, normalized
by the local DOS. Data is for N = 3 photons in system size
L = 80 + 40 at θ = π/6, φ = 2π/3, θ ′ = 0.35π , i.e., for the
point labeled B in (a).

At θ ′ = 0, the peaks in DOS correspond to exact and
near degeneracies in the spectrum. Since DOS is prob-
ing aggregated features of the spectrum, at finite θ ′ the
peaks do not necessarily demonstrate the presence of near
degeneracies between neighboring energy levels that are
required for 〈r〉 to anomalously reduce. However, we find
that the smallest gaps between quasienergies are indeed
disproportionately concentrated in the towers. In Fig. 3(b),
we see that the 1000 smallest quasienergy gaps (normal-
ized by the local DOS) at point B align closely with the
location of the towers. Further discussion of the origin
of peaks in DOS based on the quasiparticle dispersion
relation can be found in Appendix B.

B. Spectral form factor

The level statistics quantities considered above derive
from the properties of eigenvalues of the Floquet uni-
tary, hence they describe the behavior of the system at
late times. In order to gain information about intermediate
times, we study the spectral form factor (SFF) [52]:

K(t) =
∑
m,n

eit(εn−εm), (4)
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which is defined in terms of two-point correlations
between the Floquet quasienergies, εn. As we set the time
period of one unitary cycle to T = 1, the time in the above
equation is equal to the number of cycles, t = nc.

SFF is known to exhibit starkly different behavior in
integrable and chaotic systems, see Refs. [53–56] for some
recent examples. In both cases, the SFF at short times
is governed by microscopic details of the system and
therefore it is nonuniversal. After this initial transient,
in integrable systems (Poisson ensemble) the SFF stays
approximately constant KP(t) ≈ H, around the value equal
to the Hilbert space dimension H. In nonintegrable sys-
tems, SFF first reaches a global minimum and, around the
Thouless time tTh, it starts to grow approximately linearly,
according to the predictions of random matrix theory, until
it saturates by the Heisenberg time tH ∼ H. The level
statistics and the DOS studied above naturally pertain to
the times of order tH, where the discreteness of the Floquet
quasienergy spectrum is resolved.

SFF is typically noisy and suffers from a lack of self-
averaging [57,58]. In order to smoothen its time depen-
dence, we chose to average it over the flux through the
ring β. This parameter does not qualitatively affect the
level statistics, as confirmed in Appendix C. Addition-
ally, after averaging over 100 values of β ∈ [0,π ], we also
compute the moving average at each time point by taking
into account the nearest 60 points, which finally results in
relatively smooth curves. The averaged SFFs for N = 3
photons, L = 60 + 30 sites and different values of θ ′ are
shown in the inset of Fig. 4(a). After an initial period

of nonuniversal behavior, the SFF for θ ′ = 0 assumes an
approximately constant value, confirming that the system
is integrable. In contrast, a clear linear ramp followed by
saturation emerges for all studied values of θ ′ > 0, con-
sistent with broken integrability. We note that the SFF for
θ ′ = 0 saturates at a higher value than θ ′ > 0, where the
plateau is exactly as expected at H. The reason for this is
a large number n0 of zero modes in the integrable case,
which increases the late-time value of the SFF to H + n2

0
(at θ ′ = 0).

Furthermore, the Thouless time tTh can be extracted
from the SFF data. This time gives us the onset of the
linear ramp, i.e., the universal behavior described by the
random matrix theory. The COE prediction for SFF in the
time window 0 < t < H is [47]

KCOE(t) = 2t − t ln(1 + 2t/H), (5)

as shown by the dashed black curve in Fig. 4. In principle,
the Thouless time could be defined as the smallest time
for which K(t) = KCOE(t). However, since K(t) is typi-
cally not smooth enough even after averaging, in practice
we use the following criterion to determine the Thouless
time [59]:

ln(K(tTh)/KCOE(tTh)) = 0.4. (6)

The precise value of the filtering parameter 0.4 is unim-
portant, as long as it is finite but not too small. In Fig. 4,
we plot the extracted Thouless time together with the

(a) (b)

FIG. 4. (a) Comparison of the level statistics ratio 〈r〉 and the Thouless time extracted from the spectral form factor (SFF) for N = 3
photons, L = 60 + 30. The labels A, B, C, D, and E mark the special values of θ ′ from Fig. 2. Inset: SFF time series for several values
of θ ′ indicated in the main panel. The data was averaged over β and smoothened by a moving average (see text). Note the logarithmic
scale on both the x and y axis. The horizontal dashed lines mark the saturation values, H and H + n2

0, while the vertical line at nc = H
is the Heisenberg time. The dashed black curve is the COE prediction for the linear ramp. The agreement with COE becomes better
as N increases. (b) Same as panel (a) but for N = 5 and L = 14 + 7, which shows a much clearer linear ramp in the SFF and better
agreement with the random matrix theory at late times.
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average level-spacing ratio 〈r〉 for N = 3 and varying θ ′.
Interestingly, the two curves exhibit very similar features,
which means that the previously observed deviations in the
level statistics for N = 3 leave an imprint on the trans-
port properties. The latter—as defined by the Thouless
time—occurs later in systems that are farther away from
the nonintegrable case, as defined by 〈r〉.

The agreement of SFF with the random matrix-theory
prediction KCOE is not particularly good for N = 3 pho-
tons. This supports our previous observation that the
energy spectra in small photon-number sectors have spe-
cial properties, e.g., as seen in fluctuations of the level
statistics and the nonmonotonic DOS. The agreement with
COE becomes better as the number of photons N increases,
as can be seen for N = 5 in Fig. 4(b). The number of zero
modes at θ ′ = 0 is now much smaller than the Hilbert-
space dimension, so the dashed horizontal lines at H and
H + n2

0 are visually indistinguishable. There is also less
variance in K(t) curves for different values of θ ′ > 0,
which is reflected in the almost constant value of the
extracted Thouless time, as shown in the same figure. This
is in line with the level-spacing ratio 〈r〉, which shows
no oscillation with θ ′ for this photon number but instead
remains approximately constant around 〈r〉COE.

C. Summary

In this section, we have studied the spectral properties
of the Floquet unitary in Eq. (2). We confirmed that inte-
grability is generally broken by θ ′ 	= 0 in large system
sizes. However, at special values of θ ′, for N = 3 photons
we also observed a pronounced tendency towards restora-
tion of the Poisson level statistics, see Fig. 2(a). We have
related these features in the level statistics to the peaks in
the DOS in Fig. 3(a), resulting from an interplay between
the geometry of the decorations and the small photon clus-
ters forming the bound states. As these properties derive
from the quasienergy spectrum of the Floquet operator,
they implicitly relate to the behavior of the system at the
very late Heisenberg time. Nevertheless, the study of the
SFF showed that similar signatures at these special val-
ues of θ ′ can also be observed at the intermediate Thouless
time. A natural question, addressed next, is how these fea-
tures relate to the dynamics from the special subset of
initial conditions associated with bound states of photons.

IV. DYNAMICS OF BOUND STATES

Thus far, we have focused on generic aspects of ther-
malization at the level of the entire Floquet spectrum of
the decorated XXZ circuit in Eq. (2). However, one of the
motivations behind the experiment [44] to study this par-
ticular model is the fact that its integrable version hosts
a special class of ballistically propagating bound states.
While such bound states are here protected by integrabil-
ity, they represent only a fraction of all eigenstates and

therefore it is not hard to imagine that they may persist,
due to some other protective mechanism, after integrability
is broken. We now examine in detail the stability of such
states after decorating the circuit to break its integrability.

In the Ising limit of the Hamiltonian version of the XXZ
model, Jz  J , an N -particle bound state corresponds to
N adjacent spins being flipped [25],

|000.. 1 · · · 1︸ ︷︷ ︸
N

..000〉. (7)

Even far from the Ising limit when Jz ≥ J , the behavior of
an N -particle bound state can be understood by starting
from such an initial state, which is no longer an eigen-
state. The same is true for the Floquet XXZ circuit, with
the Hamiltonian Ising limit corresponding to φ  θ .

Starting from the initial state (7), the “bound-state prob-
ability” (BSP) after nc cycles is given by

B = nT

nT + nS
, (8)

where nT = 〈ψ(nc)|
∑

j
∏j +(N−1)

i=j n̂i|ψ(nc)〉 is the proba-
bility of finding photons in N adjacent sites, where the
indices i and j label the sites on the main chain. Con-
versely, the probability of any other N -photon configura-
tion was denoted nS.

The BSP was experimentally measured in Ref. [44] and
found to gradually decay over time even at θ ′ = 0. This
decay was due to experimental imperfections rather than
an intrinsic property of the model. For an ideal implemen-
tation of the XXZ circuit, the BSP drops rapidly before
fluctuating around a steady finite value, as will be shown
below. However, once integrability breaking terms are
introduced into the circuit, there is no requirement for
the N -photon bound states to continue to be stable at
late times. Below, we focus on understanding the effect
of integrability breaking on BSP dynamics using TEBD
simulations implemented in iTensor [46].

The BSP dynamics for N = 3, 4, and 5 photon bound
states is presented in Figs. 5(a)–5(c) for various strengths
of the integrability breaking θ ′. By increasing θ ′ from 0 to
π/2, the decorations become more strongly coupled to the
main chain and the bound states are eventually destroyed.
However, at intermediate θ ′ the BSP does not decay to
zero, even after many cycles. This is true even when θ ′
is comparable in size to the natural energy scale along the
chain, θ ′ ≈ θ . For larger bound states, θ ′ introduces large,
slow oscillations into the BSP that are independent of sys-
tem size. The origin of these oscillations will be explained
in Appendix F.

Typically, an infinitesimally small perturbation is suffi-
cient to destroy integrability in the thermodynamic limit
L→∞ and infinite time limit t→∞. We access these lim-
its by extrapolating the numerical data for the BSP via
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(a)

(d) (e)

(b) (c)

FIG. 5. (a)–(c) Dynamics of the bound-state probability (BSP) with θ = π/6, φ = 2π/3, for N = 3 photons (a), N = 4 (b), and N =
5 (c), at fixed system size L = 300 + 150. Data is obtained using TEBD with bond dimension χ = 256 and open boundary conditions.
(d) Time average of the BSP over 100 cycles using TEBD and extrapolated to L→∞. We also averaged over two inequivalent
initial states (7). The extrapolation errors are smaller than the size of the symbols in the plot. Inset: average BSP for different photon
numbers N at fixed L = 300 + 150. Data was averaged over 150 cycles and obtained using TEBD with bond dimension χ = 320
for 3 ≤ N ≤ 12, θ = π/6, φ = 2π/3 and varying θ ′. (e) Diagonal ensemble prediction for the probability to remain in a bound
state, averaged over two possible initial configurations. Data in this panel is obtained using ED with PBCs, on system sizes N = 3,
L = 30 + 15 (with Hilbert-space dimension dim = 14189); N = 4, L = 20 + 10 (dim = 27404); N = 5, L = 14 + 7 (dim = 20348);
N = 6, L = 12 + 6 (dim = 18563). Inset: extrapolation to infinite system size for translation invariant initial configurations, averaged
over states with k = 0 and k = π/2 momenta.

two methods: time averaging the TEBD results and eval-
uating the diagonal ensemble predictions from ED data.
The latter directly takes the t→∞ limit by assuming that
the off-diagonal elements of the density matrix average out
to zero [15,50]. These two methods have different advan-
tages and limitations. While the TEBD method allows
us to study dynamics in very large systems, these sim-
ulations become computationally more expensive as the
evolution time increases, which limits the total number of
cycles. On the other hand, the diagonal ensemble predic-
tion provides information about the BSP at infinite time.
This avoids the problems associated with long time scales
for decay, which have been observed in quenches involv-
ing low density of quasiparticle excitations [60]. However,
the diagonal ensemble requires a computation of the com-
plete eigenspectrum using ED, which limits the maximal
system size. The total Hilbert-space size is constrained by
the amount of RAM available for diagonalization, while
our implementation relies on 128-bit integers to represent
basis configurations, which limits the maximal number
of sites L ≤ 128, irrespective of the photon number N .

In principle, the latter restriction can be lifted using a
more flexible encoding of the basis states, at the cost of
sacrificing some of the computation efficiency.

For the TEBD time average of the BSP, we consider
100 cycles between cycle nc = 20 and cycle nc = 120 for
a variety of system sizes ranging from L = 20 + 10 to L =
300 + 150. In this way, we exclude the data at very short
times, which may be impacted by nonuniversal effects. By
fitting the average BSP at each system size according to
BSP(L, θ ′) = α(1/L)+ BSP∞ we extrapolate to L → ∞
and obtain the result plotted in Fig. 5(d). This procedure
was repeated for several photon numbers N . In each case,
the initial state was chosen according to Eq. (7), which
is not translation invariant. As discussed in Sec. II, there
are two such inequivalent configurations and our results
are averaged over both. We find that the bound states are
robust for a finite range of θ ′, which decreases as the size
of the bound states increases.

We also address how the robustness changes as the
bound states increase in size, but continue to be dilute rel-
ative to the total system size, N/L � 1. We calculate the
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BSP for bound states between sizes N = 3 and N = 12,
averaged over nc = 150 cycles, to find BSP(N , θ ′). The
results for a fixed number of sites L = 300 + 150 are plot-
ted in the inset of Fig. 5(d), where it can be seen that the
BSP(N , θ ′) curves are starting to converge for larger val-
ues of N . These results suggest that large but dilute bound
states continue to be robust.

The diagonal ensemble results, which directly access
the infinite time limit t→∞ of the BSP, can be seen in
Fig. 5(e). These results are consistent with the extrapolated
TEBD results, suggesting small bound states are robust for
a finite range of θ ′. In particular, the N = 3 bound states
appear to be robust up to values of the integrability break-
ing that are comparable to the on-chain hopping terms.
As N becomes larger the bound states appear to become
less robust, however, both Figs. 5(e) and 5(d) suggest the
N = 4, N = 5, and N = 6 bound states are robust for a
finite range of θ ′.

For our diagonal ensemble calculations in Fig. 5(e)
we also averaged over two inequivalent initial configura-
tions (7). Since these states break translation invariance,
we have to work in the full Hilbert space and therefore
cannot obtain enough data points for reliable system-size
scaling. However, if we form a translation-invariant ini-
tial state, we can restrict to a particular momentum sector
and reach much larger system sizes. This allows us to
extrapolate the diagonal ensemble value for BSP to L→∞,
as shown in the inset of Fig. 5(e), where we have aver-
aged over the k = 0 and k = π/2 sectors. We chose these
two values of momenta because we found that they cap-
ture the extremal behavior of BSP at small θ ′: the latter
is particularly robust for k = 0 and decays most rapidly
for k = π/2, hence their average qualitatively captures the
behavior of BSP obtained by averaging over all momen-
tum sectors in the main panel of Fig. 5(e). We empha-
size that the observed sensitivity to the momentum sector
at N = 3 is found to rapidly diminish in larger photon
sectors.

In summary, we have shown that the regular decoration
pattern, chosen in Ref. [44], gives rise to robust signa-
tures of bound states beyond the integrable regime of
the XXZ circuit for photon numbers N ≤ 5. At long but
finite times, these signatures are well converged in sys-
tem size, as confirmed by TEBD simulations. Moreover,
similar conclusions are obtained by considering finite-size
scaling of the diagonal ensemble results, pertaining to
infinite time, that can be accessed in ED simulations. In
Appendix E we show that other observables can reveal a
signature of bound states by probing the memory of the
initial configuration in Eq. (7) as the system evolves in
time. Furthermore, the dynamics of BSP studied above is
also reflected in the properties of Floquet eigenstates, in
particular their localization in the Fock space and their
overlap on the initial state in Eq. (7), which is discussed
in Appendix F.

V. FINITE DENSITY OF EXCITATIONS AND
OTHER DECORATION PATTERNS

Up to this point, we have mostly focused on the exper-
imental setup of Ref. [44], restricting to the case with
integrability-breaking decorations on every other site and
small numbers of photons N≤6. In this section, we con-
sider other cases that were not studied previously. In par-
ticular, we will now fix the filling factor instead of fixing
the total photon number, which will allow us to investigate
convergence to the thermodynamic limit by growing both
the system size and the number of excitations, as conven-
tionally done in the literature. Moreover, we will explore
other decoration patterns, including those with decorations
on every nth site where the system still retains translational
invariance, as well as completely random patterns, which
break all the symmetries.

A. Fixed filling factor

When we extrapolate systems with small but fixed pho-
ton numbers to the infinite number of sites, they become
infinitely dilute. By contrast, the thermodynamic limit
is conventionally taken by keeping the density constant.
Thus, we introduce the filling factor ν = N/Lsites and
study properties of our circuit as both N and Lsites are
simultaneously increased such that ν remains constant.

As done previously for fixed N , we average the BSP (8)
over a certain number of cycles and investigate its depen-
dence on θ ′. In particular, the averaging was done between
cycles nc = 100 to nc = 200, after the initial drop in bound
state survival. The time-averaged value is then extrapo-
lated to the thermodynamic limit, while keeping ν fixed,
using a quadratic fit in 1/L, see Fig. 6. Here we set the fill-
ing factor to ν = 1/10, but the results for other ν values

FIG. 6. Time-averaged BSP extrapolated to infinite system
size. Filling factor is fixed to ν = N/Lsites = 1/10. For com-
parison, we also replotted the case of fixed N = 3 from Fig. 5.
Inset: BSP dynamics for L = 1000 + 500 and N = 100. All data
is obtained by TEBD with bond dimension χ = 256.
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are similar. In contrast to dilute systems with fixed photon
numbers, the average BSP now drops to very small values
already at θ ′ ≈ 0.05π . Due to a very slow decay rate of the
BSP for very weak integrability breaking θ ′ � 0.05π , we
expect Fig. 6 to provide only an upper bound, as the extrap-
olated value of the BSP would likely be smaller with an
access to a longer time window. However, the TEBD cal-
culations become significantly more time consuming with
increasing number of cycles, which is a limiting factor in
very large systems.

In the inset of Fig. 6 we show the evolution of BSP for
N = 100 photons in system size L = 1000 + 500, and sev-
eral values of θ ′ obtained using TEBD. Unlike the case of
fixed but small photon numbers, the large-N bound states
are less resilient to integrability breaking by coupling to
the extra sites. The BSP quickly decreases with the num-
ber of cycles, as can be seen in the inset, where we show
only the relatively small coupling strengths θ ′ ∈ [0, 0.1π ].
The extrapolated values in Fig. 6 point to the conclusion
that very small photon-number sectors we studied up to
this point have unconventional properties, which are not
shared by thermodynamically large sectors with nonzero
filling factor ν.

B. Other decoration patterns

In this section, we consider the level statistics and BSP
dynamics for different patterns of decorations. In Fig. 7
we show the average level-spacing ratio 〈r〉(θ ′) for N = 3
photons and five different types of decoration arrange-
ments. The first one [Fig. 7(a)] is only a single decoration,
while the second one [Fig. 7(b)] consists of three decora-
tions attached to sites 2, 4, and 6. Both of these patterns
break translation symmetry, which limits the system sizes
we can reach. Unlike the level statistics in Fig. 2(a), where
〈r〉 was oscillatory for N = 3, here we observe no such
oscillations. Instead, 〈r〉 first increases to the COE value
and then starts to decrease around θ ′ ≈ 0.3π . The decrease
is not present in larger photon numbers, with the 〈r〉(θ ′)
curve becoming flat already at N = 4. Thus, we conclude
that N = 3 displays anomalous level statistics properties,
irrespective of the decoration pattern.

We have also examined the DOS for the patterns of
extra sites in Figs. 7(a) and 7(b). The DOS distribution
in these cases differs from Fig. 3(a) in that it loses the
sharp peaks, but the overall shape stays approximately the
same and becomes flatter with increasing number of pho-
tons (data not shown). The peaks likely disappear because
the new decoration pattern is no longer translation invari-
ant, and the eigenstates, which were previously degenerate
are no longer related by symmetry, hence they generally
have different energies.

Note that the 〈r〉 plateau is more pronounced and closer
to the COE value for three decorations compared to a
single decoration. This trend continues as we add more

(a)

(b)

(c)

(d)

(e)

FIG. 7. Level statistics for different decoration patterns (both
translation symmetric and nonsymmetric). Data is for N = 3
photons, θ = π/6, φ = 2π/3, and various system sizes spec-
ified in legends. The horizontal dashed lines are expectations
for the relevant ensembles, 〈r〉P ≈ 0.386, 〈r〉COE ≈ 0.527, and
〈r〉CUE ≈ 0.597. (a) One decoration on site 2. (b) Three decora-
tions on sites 2, 4, and 6. (c) Random nonsymmetric patterns. (d)
Decorations on every site, in the momentum k = 0 and inversion-
symmetric I = +1 sector. (e) Decorations on every third site,
k = 0, I = +1 sector.

decorations. In Fig. 7(c) we show several random patterns
where the number of extra sites is equal to half the number
of sites inside the ring. We again observe similar behavior,
with an initial plateau followed by a decrease in 〈r〉. How-
ever, the plateau is now at the CUE value 〈r〉CUE ≈ 0.597
instead of 〈r〉COE ≈ 0.527. As explained in Sec. II A, this
is due to all of the studied random patterns breaking inver-
sion symmetry, unlike the previous cases of one and three
decorations. It might seem surprising that 〈r〉 is nonmono-
tonic with system size in Fig. 7(c), but this is simply due to
choosing completely different patterns for each system size
and could be avoided by averaging over several random
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patterns for each L. The DOS distribution for the cases in
Fig. 7(c) again has no peaks for θ ′ 	= 0 and is noticeably
flatter than the previously considered patterns.

We have also considered two examples of periodic pat-
terns, one with decorations attached to every site of the
main ring [Fig. 7(d)] and the other with decorations on
every third site [Fig. 7(e)]. The first case is invariant to
translations by two sites and inversion, which swaps the ith
site (decoration) with (Lsites − i)th [(Ldecor − i)th], so these
symmetries must be resolved in order to obtain the correct
level statistics. We note that the full system is not inversion
symmetric for the usual periodic pattern with decorations
on every other site, even though the arrangement of deco-
rations itself is. This is due to first applying the fSim gates
on odd bonds and then on even bonds, Eq. (2). There is
no reflection axis, which simultaneously preserves both the
decoration pattern and the order of even and odd fSim gate
layers. Similar to previous results in Fig. 2(a), for N = 3
we again observe deviations from 〈r〉COE at certain values
of θ ′. However, the 〈r〉(θ ′) curve is now symmetric around
θ ′ = π/2 with an integrable point in the middle. This is
similar to the case in Fig. 12(a) in Appendix C, where
〈r〉(θ ′) is symmetric around θ = π/2. As can be seen from
Eq. (1), this value of the hopping amplitude corresponds to
a photon moving to the neighboring site with probability
1, so it is not surprising that this is a special case.

For the second periodic pattern [Fig. 7(e)], the sym-
metries of the full system are translation by six sites and
inversion, which preserves this arrangement of decora-
tions. In this case, we also observe oscillations in 〈r〉(θ ′),
but the local minima and maxima are at different values of
θ ′ compared to the other patterns. As before, all oscilla-
tions disappear for N = 4 or more photons. For all studied
periodic patterns with decorations on every nth site, the
DOS still exhibits pronounced peaks for N = 3 and to
some extent for N = 4.

In summary, none of the considered patterns that break
translation invariance exhibit oscillations in 〈r〉(θ ′) that
were visible in Fig. 2(a). Instead, 〈r〉 first reaches a plateau
and then starts to slowly decay at larger values of θ ′. The
plateau is at 〈r〉COE for inversion-symmetric patterns and
at 〈r〉CUE for nonsymmetric ones. For the patterns, which
preserve some form of translation symmetry, the level
statistics shows similar properties to the experimental case
of decorations on every other site, with deviations from
〈r〉COE for N = 3, albeit with minima and maxima in 〈r〉 at
different locations. Any observed anomalies disappear in
larger numbers of photons N ≥ 4.

Finally, we have also investigated the robustness of
bound states for various decoration patterns. In Fig. 8 we
plot the averaged BSP for N = 3 photons, Lsites = 300
sites on the main chain averaged over nc = 100 cycles
between cycles nc = 50 and nc = 150. For a decoration
on every second site we average over the two possible
N = 3 photon initial states around the center of the chain.
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FIG. 8. Time-averaged BSP over 100 cycles for different dec-
oration patterns in the N = 3 excitation sector for Lsites = 300.
The fixed parameters are θ = π/6, φ = 2π/3, and χ = 256. In
the case of decorations on every second (third) site the results
were averaged over two (three) nonequivalent initial bound-
state configurations. The random pattern results were averaged
over five different patterns with decorations on half of the sites,
Ldecor/Lsites = 1/2.

We perform a similar averaging over the three possible ini-
tial states for the case of a decoration on every third site.
For randomly allocated decorations we instead average
over five different random patterns with the initial bound
state at the center of the chain. These results suggest the
robustness of the bound states is more dependent on the
density of decorations Ldecor/Lsites than on the actual pat-
tern. The bound states survive for larger values of θ ′ when
the number of decorations is smaller. The average BSP
decays over a similar range of θ ′ for random patterns with
Ldecor/Lsites = 1/2 and for the periodic case of the same site
density. For the case of decorations on every site there is
a peak at θ ′ = π/2, which corresponds to the near inte-
grable point as seen in Fig. 7(d). As before, the bound
states become increasingly less robust as the number of
photons grows.

VI. CONCLUSIONS AND DISCUSSION

We have performed systematic classical simulations of
the Floquet XXZ circuit on a 1D chain with integrabil-
ity breaking decorations. This study was motivated by
the recent Google experiment [44], which realized the
same model on a ring of superconducting qubits and
investigated the dynamics of its bound states. Surpris-
ingly, the bound states were observed to be resilient to
integrability-breaking perturbations in the form of extra
qubits attached to the ring. We have analyzed the level
statistics of this model and simulated the dynamics of
bound states, confirming that some of these states indeed
survive in certain parts of the nonintegrable regime, even
for an infinite number of qubits and at infinite time. In
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contrast to much previous work, the focus of Ref. [44]
and our own was on dilute systems containing few exci-
tations. Such models have been studied in the context of
“weak” quenches [60,61], the onset of quantum chaos in
few-body systems [62], and meson bound states [63–69].
As we have demonstrated, the latter are amenable to clas-
sical simulations in large numbers of qubits, providing
useful benchmarks for future studies on improved quantum
hardware.

One of our most significant findings is that small but
fixed photon-number sectors show unusual properties in
several respects. In particular, the robustness of bound
states depends on the photon number, with larger states
decaying more rapidly as the coupling to the integrability-
breaking extra sites is increased. Moreover, the energy
spectrum for N = 3 photons has unusual level statistics,
which deviates from the expectation for a chaotic system
even for strong couplings to the integrability-breaking dec-
orations. As discussed in more detail in Appendices B
and D, this can be attributed to the presence of spe-
cial eigenstates in the energy spectrum. These eigenstates
have a relatively simple structure, which is related to one-
photon and two-photon states, while the rest of the photons
are located in the decorations. The proportion of such
states is large enough only in sufficiently dilute systems.
When the decoration pattern is periodic, some of these
eigenstates are related by translation and are therefore
degenerate in energy, which results in prominent peaks
in the DOS and affects the level statistics. The devia-
tions in level statistics were shown to leave an imprint
in the dynamics of bound states by slowing down the
thermalization.

Additionally, we have investigated systems with
constant filling factors and their extrapolation to the
thermodynamic limit. Such systems are no longer dilute
and our findings indicate that they do not support stable
bound states when integrability is broken. This is in stark
contrast with the bound states in very dilute systems with
small photon numbers, such as the one studied in exper-
iment [44]. Moreover, we have explored other decoration
patterns, including both periodic and nonperiodic ones. A
brief summary of all considered systems is given in Table I.
Our calculations suggest that the peaks in the density of
states disappear when the pattern is not periodic, which
destroys the translation symmetry of the full system. This
is likely a consequence of certain eigenstates no longer
being degenerate. We also find that the inversion symmetry
of the decoration patterns (or lack of it) influences the level
statistics. In particular, inversion-symmetric patterns are
consistent with COE and nonsymmetric with CUE statis-
tics in the chaotic regime. Deviations from these values
were observed only for N = 3 photons and were found to
diminish as the number of photons is increased. However,
our results do not indicate a link between the irregularities
in the level statistics and the robustness of bound states,
although both properties are most prominent in dilute sys-
tems. For example, nonperiodic decoration patterns result
in level-spacing ratios consistent with random matrix the-
ory, implying that the integrability is indeed fully broken,
while the few-photon bound states remain robust in that
regime.

One advantage of the classical simulations performed in
this work is direct access to the system’s properties at finite
energy densities. Thus, the model considered here would

TABLE I. Brief summary of different systems studied in this work. N is the number of photons, Lsites is the number of sites on the
main chain, and Ldecor the number of decorations, while ν = N/Lsites is the filling factor. Periodic patterns are those with decorations
on every single, second, third, fourth, or fifth site.

N Ldecor/Lsites pattern robust bound states level statistics DOS Figs.

1 7(d)
1/2 2(a), 3

3 1/3 periodic � oscillating 〈r〉(θ) sharp peaks 7(e)
1/4
1/5

3 single decoration non-periodic � 〈r〉COE plateau then decrease no peaks 7(a)
three decorations 7(b)

3 1/2 random � 〈r〉CUE plateau then decrease no peaks 7(c)

1
4 and 5 1/2 periodic � 〈r〉COE for θ ′ � 0.05π relatively flat 2(b), 3(a)

1/3

4 and 5 single decoration non-periodic � 〈r〉COE for θ ′ � 0.05π relatively flat not shown
three decorations

4 and 5 1/2 random � 〈r〉CUE for θ ′ � 0.05π relatively flat not shown

ν = 1/10 1/2 periodic ✗ not computed not computed 6
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be useful for benchmarking quantum algorithms that target
states at a finite energy density [70]. Moreover, it would be
interesting to explore other models that host bound states,
e.g., the chiral Hubbard model [45], and investigate if such
models exhibit similar behavior in relation to the density
of excitations and integrability breaking by changing the
geometry of the system, as described in this work.
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Note added.—Recently, we became aware of Ref. [71],
which also studied the stability of bound eigenstates in the
special case of N = 3 photons and decorations on every
second qubit. Based on perturbative arguments and the
scaling of inverse participation ratio, Ref. [71] concluded
that N = 3 eigenstates slowly lose their bound-state char-
acter in the L→∞ limit. Our finite-size scaling analysis
above suggests that the bound state probability remains
finite in this limit for N = 3, however this cannot rule
out the possibility of a much larger length scale, at which
all dynamical signatures of bound states would ultimately
disappear at infinite time.

APPENDIX A: CONTINUOUS MODEL

For simplicity, here we assume a decoration pattern
where one extra site is attached to every even site of the
main ring with PBCs. The continuous XXZ Hamiltonian,
which corresponds to the unitary circuit from Eqs. (1)
and (2) in the dt → 0 limit is

HXXZ =
Lsites∑
i=1

J (eiβσ i
+σ

i+1
− + e−iβσ i

−σ
i+1
+ )+ Jz(σ

i
zσ

i+1
z )

+
Ldecor∑
i=1

J ′(eiβσ 2i
+ σ

ei− + e−iβσ 2i
− σ

ei+ )+ J ′
z(σ

2i
z σ

ei
z )

+
Lsites∑
i=1

hz(i)σ i
z +

Ldecor∑
i=1

he
zσ

ei
z , (A1)

where ei are the integrability-breaking extra sites attached
to even sites 2i. The local field is hz(2i + 1) = −2Jz on
odd sites, hz(2i) = −3Jz on even sites and he

z = −Jz on
extra sites. Additionally, if we impose OBCs and an even
number of sites, the local field is hz(1) = −Jz on the first
site and hz(L) = −2Jz on the last site. The corresponding
unitary circuit parameters are θ = 2Jdt, φ = 2Jzdt, θ ′ =
2J ′dt, and φ′ = 2J ′

zdt. This continuous model can be easily
generalized to an arbitrary decoration pattern by changing
the local fields.

APPENDIX B: ORIGIN OF PEAKS IN THE
DENSITY OF STATES

The sharp peaks in DOS can be attributed to the exis-
tence of special eigenstates with a relatively simple struc-
ture obtained by combining single-photon and two-photon
states. Analytical expressions for the dispersions of a sin-
gle photon or N -bound photons in the integrable (non-
decorated) circuit are known [45]. Adding the decorations
with θ ′ = 0 results in an additional zero-energy band in
the single-photon dispersion, since all the photons in the
extra sites are frozen. This means that, for example, single-
photon and two-photon eigenstates are still present in the
three-photon spectrum at θ ′ = 0, since we can just move
the remaining photons to the decorations, where they will
have zero energy.

In Fig. 9(a), we compare the actual two-photon Flo-
quet spectrum (dots) with the states constructed from two
single-photon states (crosses). The color scale represents
the deviation from the nearest analytically constructed
state. The agreement is remarkably good, which is not
surprising given that the system is very dilute and only
nearest-neighbor interactions are present. The two bands
at the bottom of the plot are two-photon bound states,
which are also in agreement with analytical expressions
from Ref. [45]. Figure 9(a) is for the integrable case with
no extra sites. Adding the decorations leads to the appear-
ance of two additional bands, see Fig. 9(b) and compare
with (a). The first one is a bound-state band, which cor-
responds to one photon in the main chain and another in
adjacent decoration and is completely flat. The second one
is a wider band of single-photon states corresponding to
one photon inside and the other in a nonadjacent deco-
ration. This wider band is centered around zero and has
high DOS on its edges, which coincides with the peaks
around ±π/3 in three-photon DOS from Fig. 3(a). Another
smaller peak in DOS around −0.75π comes from the flat
band of two bound photons.

We can conclude from the previous discussion that the
three-photon DOS is strongly influenced by special single-
and two-photon eigenstates. This effect is not so prominent
in DOS for four or more photons. This is because the num-
ber of special states is much smaller compared to the total
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(a)

(b)

FIG. 9. (a) Comparison of the actual dispersion of two-photon
states for the integrable case θ ′ = 0 with no extra sites (dots) and
the theoretical prediction for two separate noninteracting photons
(crosses) and two bound photons (dashed lines). The color scale
corresponds to the deviation between each dot and the closest
cross. (b) Same as (a) but with added extra sites, while θ ′ = 0.

Hilbert-space size but also due to the special states becom-
ing more uniformly distributed through the quasienergy
spectrum. In Appendix D we quantify this and show that
the proportion of special states for a fixed photon number
N becomes asymptotically independent of the system size
L. However, the saturation value still strongly depends on
N , e.g., the special states comprise as many as 70% of all
states for N = 3 but only 1% for N = 8.

This previous analysis can now be extended to finite
values of θ ′. Analytical expressions for the single-photon
dispersion are not available in this case, but can be eas-
ily numerically computed for different coupling strengths
θ ′. There are still three different bands, since each unit
cell contains three sites. We then construct three-photon
bands by taking combinations of the single-particle bands,
neglecting the interactions between the particles. This is a
good approximation in a dilute system, even with nonzero
interaction strength. For three photons we obtain ten dif-
ferent bands, one for each combination of the three bands.
We label the combination in which all photons come from
the first band 111, two photons in first and one in second
112, one photon in the first, second, and third 123, etc. The

(a)

(b)

FIG. 10. (a) Bands of special states constructed by taking lin-
ear combinations of numerically obtained single-photon bands
for θ ′ ∈ [0,π ]. Here we consider the case of N = 3 separate pho-
tons. The bands are labeled by three numbers, stating if each
photon is in the first (1), second (2), and third (3) single-photon
band. (b) Corresponding DOS. The bright regions can be related
to the peaks in Fig. 3. The vertical lines A, B, C, D, and E mark
special values of θ ′ from Fig. 2.

dependence of these bands of special states on θ ′ is shown
in Fig. 10(a). As θ ′ is increased, the bands move and cross
each other.

The DOS is typically higher near the edges of the bands,
so we expect the DOS to be amplified when two bands
cross. The edges of 222 and 123 bands overlap around θ ′ =
0.35π , which is where the level-spacing ratio deviates the
most from 〈r〉COE. Several other bands also overlap around
this point. The DOS plot for the special bands shown in
Fig. 10(b) roughly corresponds to the peaks in Fig. 3(a).
Therefore, as in the θ ′ = 0 case, the peaks in DOS at θ ′ 	=0
are also explained by the special states, which comprise
a large proportion of the Hilbert space in systems with
smaller numbers of photons, such as N = 3. However, it
is not obvious from Fig. 10(b) in which θ ′ regions the
level statistics deviates the most from the value expected in
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chaotic systems. In particular, there are three very promi-
nent peaks around θ ′ = 0.65π , where the level-spacing
distribution is actually very close to COE. We conjecture
that these peaks are not narrow enough to lead to a suf-
ficient number of degeneracies that could affect the level
statistics. One might expect that the specially constructed
states are a better approximation for a noninteracting sys-
tem and that the 〈r〉(θ ′) dependence would look different at
smaller values of the interaction strength φ. This, however,
is not the case, as shown in Appendix C, where it can be
observed that the level statistics barely changes with φ.

APPENDIX C: EFFECT OF PARAMETERS θ , φ,
AND β

Throughout this paper, we have mostly considered the
parameters θ = π/6, φ = 2π/3, and β = 0, which were
used in the experiment from Ref. [44]. In this Appendix,
we explore the effects of changing these parameters. First
we perform a scan of the parameter space over a range
of interaction strengths φ and couplings to the extra sites
θ ′ while keeping the hopping amplitude inside the ring
fixed to π/6. The BSP for an initial state of N = 3 bound
photons, Eq. (7), averaged over the first nc = 50 uni-
tary cycles, is shown in Fig. 11. Here we also average
over two nonequivalent initial configurations, although
the plot looks very similar without averaging. The results
are symmetric to reflection around the φ = π and θ ′ = π

axes, which is unsurprising as these reflections result only
in minus signs in certain matrix elements from Eq. (1)
[sin(2π − θ ′) = − sin(θ ′) and ei(2π−φ) = e−iφ].

The region of interest is the bottom part of this figure,
with intermediate φ and small θ ′. There is a minimal
value of interaction strength required for the survival of

FIG. 11. Bound-state probability averaged over nc = 50
cycles and two different initial configurations. L = 40 + 20, N =
3, θ = π/6, β = 0, θ ′ ∈ [0, 2π ], and φ ∈ [0, 2π ].

bound states, φmin ≈ π/3 ≈ 2θ . This is in line with pre-
vious analytical results, which state that the bound states
exist for any momentum in the gapped regime φ>2θ
[45]. The maximal decoration coupling, which supports the
bound states, is around θ ′ = π/3 and does not significantly
depend on φ. There are also additional regions where the
bound states remain stable, such as around φ = π/3 and
θ ′ = π . However, the θ ′ = π line is a special case since
there is no hopping from the main chain to the extra sites,
see Eq. (1). We therefore did not focus on these regions of
the phase diagram. We have also investigated the cases of
N = 4 or more photons in the initial bound state and these
plots show similar features to N = 3. The main difference
is that the region with robust bound states shrinks in the θ ′
direction with increasing N , which is consistent with our
results from Figs. 5(d) and 5(e).

In Fig. 12 we plot the average level-spacing ratio 〈r〉(θ ′)
for several values of the parameters θ , φ, and β. As can
be observed in Fig. 12(a), the oscillations in 〈r〉(θ ′) are
visible for all values of the hopping amplitude θ , but the
exact positions of the local minima and maxima depend on
θ . The most distinctive case is θ = π/2, where the level
statistics is close to Poisson for most values of θ ′. Accord-
ing to Eq. (1), this is a special case where the hopping
probability on the main chain is 1 in each cycle. Addition-
ally, we note that the 〈r〉(θ ′) curve is the same for θ and
π − θ .
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FIG. 12. Level statistics for different values of parameter θ (a),
φ (b), and β (c). The only parameter that significantly affects the
results is the hopping amplitude θ . We note that θ = π/2 is a
special case where the probability of hopping to the neighboring
site is 1 in each cycle, see Eq. (1). It is therefore not surprising
that this case is close to being integrable.

010316-15



HUDOMAL, SMITH, HALLAM, and PAPIĆ PRX QUANTUM 5, 010316 (2024)

In contrast to θ , the other two parameters φ and β have
almost no effect on the level statistics. The dependence
on the nearest-neighbor interaction strength φ is shown in
Fig. 12(b). This further supports the conclusion that the
deviations from 〈r〉COE are mainly a consequence of three
separate photon states whose energies do not depend on φ.
The magnetic flux through the ring β has even less influ-
ence on the results, see Fig. 12(c). However, it does change
the actual energy levels. For this reason, the parameter β
was very useful for averaging the spectral form factor in
Sec. IV.

APPENDIX D: DENSITY OF EXCITATIONS

We have previously attributed the deviations from the
chaotic level statistics and sharp peaks in DOS to the
existence of special eigenstates in Sec. B. These features
were more pronounced for small photon numbers such as
N = 3. In Fig. 13 we show the proportion of some simple
basis configurations in total Hilbert spaces of systems with
different fixed numbers of photons N and increasing num-
ber of sites L. In particular, these are the configurations
with all photons outside the main chain, just one photon
inside, two separate photons inside, and two bound pho-
tons inside. The special eigenstates that affect the spectral
statistics are superpositions of such configurations. They
are highly degenerate in energy, due to diluteness of the
system and large number of possible configurations of pho-
tons in the extra sites, which results in peaks in DOS and
deviations in the average ratio of consecutive energy gaps.

For all photon numbers considered, the proportion satu-
rates at some constant value as the size increases and the
system becomes sufficiently dilute. Indeed, the saturation
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FIG. 13. Proportion of special configurations for different pho-
ton numbers N and system sizes L = Lsites + Ldecor. The dec-
orations are on every other site. These simple states can be
constructed by combining single-photon and two-photon config-
urations with photons in the extra sites.

value is much larger for N = 3 (approximately 70%) than
it is in cases of more photons (e.g., around 1% for N = 8).
This explains why the special states have much stronger
effects on the spectra of systems with small photon num-
bers. Such states are still present in large-N systems, but
their proportion is negligible and thus has practically no
influence on the energy spectrum. We note that the pro-
portion of special states depends on the ratio between the
number of decorations and the number of sites Ldecor/Lsites,
which is equal to 1/2 in the case shown here. More
decorations would result in a larger proportion of these
states.

APPENDIX E: MEMORY OF THE INITIAL STATE

The BSP is not the only local observable that reveals
the unusual behavior of the bound initial states at finite
θ ′. Persistent nonthermalizing behavior can also be seen in
the site occupation, ni = 〈n̂i〉. Since the integrability break-
ing decorations make up one third of the total sites on the
chain, we would expect a third of the photons to be located
on them after a short time when the system has sufficiently
thermalized. Instead, we find that this is only true at larger
θ ′ � π/3. The fraction of photons located on the decora-
tions as θ ′ is varied shows very similar behavior for bound
states of different sizes.

In the integrable case, larger bound states propagate
more slowly due to their small group velocity [44,45]. This
behavior appears to persist in the nonintegrable model. A
large fraction of photons in the bound state remain in the
vicinity of their initial sites even after many cycles. In

FIG. 14. Continued occupation of sites initially occupied by
an N = 12 photon bound state after nc cycles. Data is obtained
by TEBD for a system size L = 300 + 150, bond dimension χ =
320 for θ = π/6, φ = 2π/3 and a few values of θ ′ indicated in
the legend. Inset: ninit/N for bound states of sizes N = 3 to N =
12 at different values of θ ′. Data is obtained by TEBD for 150
cycles and the same parameters as in the main plot.
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Fig. 14, we show ninit = ∑
i∈initial sites ni for an N = 12 pho-

ton bound state for different θ ′, demonstrating this robust
nonthermalizing behavior. The average of ninit for different
size bound states can be seen in the inset of Fig. 14. From
this perspective, the bound states appear to grow more
robust as they increase in size. This at first seems to be in
contradiction with the BSP results from Fig. 5. However,
the BSP measures the overlap with the N -photon bound
state as a whole, while ninit also captures the case when
the bound state loses photons from the edges while its core
stays robust and does not move away significantly from its
initial position. This is precisely what happens for large-N
bound states. Since we are considering hardcore bosons,
the photons from the middle of the bound state can only
hop to the decorations and back, while the photons at the
edge can move further away along the chain and become
detached from the rest.

APPENDIX F: PROPERTIES OF FLOQUET
MODES

In Sec. IV, we demonstrated the robustness of the bound
states in the dynamics. These results are naturally reflected
in the anomalous properties of special eigenstates associ-
ated with bound states, which we investigate in detail in
this Appendix. As a generic measure of eigenstate local-
ization in the Fock space, it is customary to study the
inverse participation ratio (IPR). For a (normalized) eigen-
state |ψi,k〉 of the Floquet unitary ÛF with momentum k,
we define the IPR as

IPRk =
∑

n

|〈ψi,k|kn〉|4, (F1)

where, for convenience, we take |kn〉 to be the momen-
tum basis states. For sufficiently small θ ′, the eigenstates
with largest support on the bound state can be uniquely
identified with the aid of the BSP in Eq. (8). In a fixed
momentum sector, there are four bound eigenstates cor-
responding to the largest BSP: two which have all the
excitations on the main chain, and two where one of the
excitations is on a decoration. A natural question is how
localized these eigenstates are in the Fock space, e.g.,
whether their IPR asymptotically converges to a constant
or decays as a power law, L−α

sites, in the limit Lsites → ∞.
In Fig. 15 we plot the averaged IPR of the four bound

eigenstates for θ ′ = 0.1π and different system sizes in
the N = 3 sector. We find the IPR has strong fluctuations
between different system sizes, even after averaging over
the four bound states in the given momentum sector. Con-
trasting the linear plot against the log-log plot shown in the
inset of Fig. 15, it is difficult to ascertain the asymptotic
behavior of IPR, in particular for larger values of θ ′ such
as 0.3π , where power-law decay remains a possibility. For
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FIG. 15. Finite-size scaling of IPR, Eq. (F1), for three values
of θ ′. We plot the average IPR for the four bound eigenstates in
k = 0 momentum sector. Inset shows the same data on a log-log
scale.

this reason, in the main text we focused on the dynam-
ical properties, which show smoother convergence while
(at finite times) are also readily accessible in experiment.

A finer characterization of the Floquet modes is obtained
by plotting their overlap with the bound initial state (7),
against the number of pairs of neighboring occupied sites
on the main chain, 〈ψ |∑i n̂in̂i+1|ψ〉, in each Floquet
mode. This is shown in Figs. 16(a) and 16(b), for the
case of N = 3 photons, contrasting the integrable case with
that of θ ′ = 0.2π . For N = 3, the number of neighbor-
ing occupied sites can be at most 2, corresponding to a
three-photon bound state. Alternatively, the value 1 corre-
sponds to two neighboring and one separate photon, while
0 implies three separate photons. The integrable case, θ ′ =
0, in Fig. 16(a) displays three separate sectors, one of
which contains the bound states (red points). The energies
of these sectors overlap, but there is no mixing between the
states. The overlapping energies are a consequence of the
periodic Floquet spectrum, while in the Hamiltonian XXZ
model these sectors are separated by energy gaps. As θ ′ is
increased, the system becomes nonintegrable and the sec-
tors start to mix. At θ ′ = 0.2π , Fig. 16(b), the bound states
have almost merged with the bulk, but still remain visible.
This is no longer the case after θ ′ = 0.3π , which is con-
sistent with the results of Figs. 5(d) and 5(e) where it was
shown that the bound states are robust only up to this point.

The overlap plots for larger numbers of photons display
similar features to N = 3. At θ ′ = 0, there are N sepa-
rate sectors, which are defined by the number of pairs of
adjacent photons. The bound Floquet modes slowly mix
with the other sectors as the coupling to the decorations in
increased. The case of N = 5 and θ ′ = 0.1π is shown in
Fig. 16(c). Here we see three prominent towers of states,
which are related to the oscillations in the BSP in Fig. 5(c).
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(a) (b) (c)

FIG. 16. Overlap of the initial state with the eigenstates of the one-cycle evolution operator. (a),(b) N = 3 photons in system size
L = 30 + 15 for θ ′ = 0 and θ ′ = 0.2π , respectively. (c) N = 5 photons in system size L = 14 + 7 with θ ′ = 0.1π . The color scale is
the number of pairs of adjacent occupied sites on the main chain (see text).

These oscillations can be attributed to photons from the
bound-state hopping onto the extra sites and back. The
towers appear as soon as θ ′ 	=0 and persist until approx-
imately θ ′≈0.3π . The distance between the towers and
therefore the oscillation frequency depends approximately
linearly on θ ′. Moreover, the shape and height of the tow-
ers depend on the number of decorations attached to the
initially occupied sites.

Intriguingly, we find that the towers are more prominent
for the five-photon initial bound state with two decora-
tions on the second and fourth site [Fig. 16(c)] than for
the state with three decorations on the first, third, and fifth
site. Upon closer inspection, some towers of high-overlap
states can also be discerned for N = 3 in Fig. 16(b). How-
ever, they are not as well differentiated as for N = 5, and
do not appear to be equally spaced in energy, which is
the reason why the oscillations in BSP at θ ′ = 0.2π are
irregular, see Fig. 5(a). Interestingly, the towers do not
become better resolved with increasing the photon num-
ber and the case of N = 5 actually features the sharpest
towers and corresponding oscillations in BSP and various
local observables, such as the number of photons in the
extra sites. As a side note, similar looking towers of states
are often found in systems that host “quantum many-body
scars” [72–74], however, it is not clear whether similar
physics occurs in the present case.
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[54] B. Bertini, P. Kos, and T. Prosen, Exact spectral form factor
in a minimal model of many-body quantum chaos, Phys.
Rev. Lett. 121, 264101 (2018).

[55] A. Chan, A. De Luca, and J. T. Chalker, Solution of a min-
imal model for many-body quantum chaos, Phys. Rev. X 8,
041019 (2018).
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body scars and weak breaking of ergodicity, Nat. Phys. 17,
675 (2021).

[73] S. Moudgalya, B. A. Bernevig, and N. Regnault, Quan-
tum many-body scars and Hilbert space fragmentation:
A review of exact results, Rep. Prog. Phys. 85, 086501
(2022).

[74] A. Chandran, T. Iadecola, V. Khemani, and R. Moessner,
Quantum many-body scars: A quasiparticle perspective,
Annu. Rev. Condens. Matter Phys. 14, 443 (2023).

010316-20

https://doi.org/10.1103/PhysRevLett.121.264101
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevE.102.062144
https://doi.org/10.1103/PhysRevLett.78.2280
https://doi.org/10.1103/PhysRevB.101.174312
https://doi.org/10.1103/PhysRevB.105.174207
https://arxiv.org/abs/2307.04466
https://doi.org/10.1103/PhysRevB.105.125413
https://doi.org/10.21468/SciPostPhys.10.4.088
https://doi.org/10.1038/nphys3934
https://doi.org/10.1103/PhysRevA.95.023621
https://doi.org/10.21468/SciPostPhys.5.3.027
https://doi.org/10.1103/PhysRevLett.122.130603
https://doi.org/10.1103/PhysRevB.99.195108
https://doi.org/10.1038/s41467-022-35301-6
https://doi.org/10.1103/PRXQuantum.3.040309
https://doi.org/10.1103/PRXQuantum.2.020321
https://doi.org/10.1103/PRXQuantum.5.010317
https://doi.org/10.1038/s41567-021-01230-2
https://doi.org/10.1088/1361-6633/ac73a0
https://doi.org/10.1146/annurev-conmatphys-031620-101617

	I.. INTRODUCTION
	II.. MODEL
	A.. Circular orthogonal ensemble

	III.. SPECTRAL PROPERTIES
	A.. Level statistics
	B.. Spectral form factor
	C.. Summary

	IV.. DYNAMICS OF BOUND STATES
	V.. FINITE DENSITY OF EXCITATIONS AND OTHER DECORATION PATTERNS
	A.. Fixed filling factor
	B.. Other decoration patterns

	VI.. CONCLUSIONS AND DISCUSSION
	. ACKNOWLEDGMENTS
	. APPENDIX A: CONTINUOUS MODEL
	. APPENDIX B: ORIGIN OF PEAKS IN THE DENSITY OF STATES
	. APPENDIX C: EFFECT OF PARAMETERS , , AND 
	. APPENDIX D: DENSITY OF EXCITATIONS
	. APPENDIX E: MEMORY OF THE INITIAL STATE
	. APPENDIX F: PROPERTIES OF FLOQUET MODES
	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


