
INFOTEH-JAHORINA Vol. 8, Ref. E-V-8, p. 721-725, March 2009.

 721

DWARF – OKRUŽENJE ZA AUTORIZOVANO UPRAVLJANJE YUM/APT
REPOZITORIJUMIMA

DWARF – THE FRAMEWORK FOR AUTHORIZED YUM/APT REPOSITORIES
MANAGEMENT

Dušan Vudragović, Antun Balaž, Vladimir Slavnić, Aleksandar Belić, Laboratorija za primenu računara u nauci, Institut za
fiziku, Pregrevica 118, 11080 Beograd, Srbija

Dusan Vudragovic, Antun Balaz, Vladimir Slavnic, Aleksandar Belic, Scientific Computing Laboratory, Institute of Physics
Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Sadržaj – Većina savremenih RPM kompatibilnih Linuks sistema koristi YUM ili APT alate za
automatsko preuzimanje, konfiguraciju i instalaciju softverskih paketa. Upravljanje paketima se
zasniva na konceptu softverskog repozitorijuma - lokacije sa koje se paketi preuzimaju i instaliraju
na racunar, uz automatsko razresavanje medjuzavisnosti paketa. Kada softverski repozitorijum
koristi i organizuje veliki broj saradnika iz različitih institucija, pristup repozitorijumu treba
omogućiti svakom od njih. U ovom radu je opisano DWARF okruženje koje omogućava
autentifikovani i autorizovani prenos RPM paketa i kreiranje APT/YUM repozitorijuma korišćenjem
digitalnih sertifikata. DWARF je realizovan kao veb aplikacija koja pruža autorizovano
organizovanje strukture repozitorijuma, prenos RPM paketa i nezavisnu izgradnju različitih delova
repozitorijuma, odnosno repozitorijuma kao celine. DWARF se trenutno koristi u SEE-GRID-SCI
Grid e-Infrastrukturi.
Abstract – The most of modern RPM-compatible Linux systems use YUM or APT tools for
automating retrieval, configuration and installation of software packages. These package
management utilities rely on the concept of software repository - storage location from which
software packages may be retrieved and installed on a computer, with automatic resolution of
package dependencies. When a software repository is managed and organized by many contributors
from different institutions, access to the repository has to be provided to each of them. In this paper
we describe the DWARF framework that allows RPM uploading and creation of APT and YUM
repositories, with the authentication and authorization based on digital certificates. The DWARF is
implemented as a web application that offers authorized repository structure organization, RPMs
uploading, and independent building of different parts of repositories, as well as building of all
repositories. The DWARF is currently deployed by the SEE-GRID-SCI Grid eInfrastructure.

1. INTRODUCTION

Applications for most operating systems (OS) consist of
multiple files that must be copied to specific locations on the
computer's file system so that the application can be
successfully executed. This is true for all common PC OS,
such as MS-DOS [1] or Microsoft Windows [2], as well as
for Linux [3] and other Unix-like OS [4].

In the typical case of Linux or some other Unix-like OS,

additional issues must also be considered. Unix-like OS is
always a multiple-user system, so it tracks the ownership of
files precisely, using a well defined system of file
permissions. Administrators can grant access to files on a
per-user or per-group basis, and can control how users may
access those files, for example, allowing some users the
permission to read only certain files, while others may be
given write access to the same set of files. Administrators can
also deny access rights to the same set of files to some other
users. So, installation of an application on Linux requires
consideration of all these details. After files are copied into
their appropriate locations, they must be configured to have
correct permissions and correct ownerships.

Administrators occasionally need to upgrade or remove
installed software from the computer. Usually, software
upgrades are done by the removal of the application (its old
version), followed by the installation of the new version of
the application. However, upgrades have additional issues,
since all applications must be properly configured before they
can be used. The upgrade of an installed application takes its
current configuration into account, preserving old
configuration information and applying it to the newly
installed version.

All these steps make installation of a new application onto

Unix or Linux system a labor-intensive process. To further
complicate matters, Unix applications have primarily been
distributed as source code. Typically, the source code is
provided in some sort of archive that first must be unpacked.
After unpacking the source code, it should be configured to
support the options and systems, and then compiled so as to
produce an executable program that can run on a particular
operating system.

After compiling the source code, the application should

be installed by putting all of its components (executable
programs, libraries, documentation, configuration files, etc.)

 722

into the correct locations on a hard drive and setting correct
permissions on all those files. Sometimes, it is needed to
perform other steps to prepare the system for the software
(allocate space for log files, create special user accounts
associated with the application, etc.).

For all these reasons, typically a package management

system is used to simplify the software installation and
maintenance process. The package management system is a
collection of tools used to automate the process of installing,
upgrading, configuring, and removing software packages
from a computer.

In such a framework, the software is distributed in

packages, usually encapsulated into a single file. The
package, together with the software itself, often contains
metadata information that describe the package’s details,
including its name, checksums, and dependencies on any
other packages that it needs to work. It may also include
information on how to configure the package for use and how
to remove the package cleanly when it is no longer required.
The package manager then uses this information to install,
configure, and remove packages as requested by the
user/administrator. Upon installation, metadata is stored in a
local package database.

2. PACKAGE MANAGEMENT SYSTEMS

Package management systems present a uniform and
simple way for users to install and remove software with a
single command. Different management systems usually
provide many command-line and even graphical interfaces
for interactive software installation. They also allow non-
interactive installations, which is ideal for automated/non-
attended maintenance of computers.

Each package manager system relies on the format and

metadata of all the packages it is used to manage. That is,
each package manager needs a group of files to be bundled
for the specific package along with the appropriate metadata,
such as dependencies etc. Often, a core set of utilities
manages the basic installation of packages, while package
managers are built on top of them, and use these utilities to
provide additional functionality.

By the nature of free software, packages under similar or

compatible licenses are available for the use on a number of
operating systems. These packages can be combined and
distributed using configurable and internally complex
packaging systems to handle many possible permutations of
the order different applications can be installed and to
manage version-specific dependencies and conflicts. Some
packaging systems of free software are also themselves
released as free software. One typical difference between
package management in proprietary operating systems, such
as Mac OS X [5] and Windows, and those in free software
OS, such as Linux, is that free software systems permit third-
party packages to also be installed and upgraded through the
same mechanism, whereas the package management system
of Mac OS X and Windows will only upgrade software
provided by Apple [6] and Microsoft [7], respectively (with
the exception of some third party drivers in Windows). The
ability to continuously upgrade third party software is

typically added by adding the URL of the corresponding
repository to the package management's configuration file.

RPM [8] (Red Hat Package Manager) is one of the

frequently utilized package management systems. Originally
developed by Red Hat [9] for Red Hat Linux [10], RPM is
now used by many Linux distributions. It has also been
ported to some other operating systems, such as Novell
NetWare [11] (as of version 6.5 SP3) and IBM's AIX [12] as
of version 4.

Working behind the scenes of the RPM Package Manager

is the RPM database. It consists of a single database
containing all the metadata information of the installed
packages and multiple databases used for indexing purposes.
The database is used to keep track of all files that are changed
and created when a user installs a package, thus enabling the
user to reverse the changes and easily remove the package
later. If the database gets corrupted (which is possible if the
RPM client is killed etc.), the index databases can be
recreated using a command-line RPM interface.

Each RPM package has a label, which contains the

following information: software name, software version
(version taken from the original upstream source of the
software), package release (number of times the package has
been rebuilt using the same version of the software), and
architecture the package is built for. Additionally, libraries
are distributed in two separate packages for each version.
One contains the precompiled code, while the second one
contains the development files such as headers, static library
files, etc. for the library in question. Those packages have
“devel” appended to their name field. RPM files with the
“noarch” extension refer to files that do not depend on
computer's architecture, i.e. that do not to be compiled for a
specific architecture (usually configuration files and/or
scripts, that may rely on other packages, or programs written
in interpreted programming languages).

Since RPM Package Manager is popular, one can find

many places where the thousands of free application
packages are made available publicly. These storage
locations from which software packages may be retrieved and
installed on a computer are called software repositories.

The default installer for RPM packages does not follow
dependency information automatically. It requires the user to
manually download additional missing RPMs potentially
required by the package being installed. Moreover, circular
dependencies between mutually dependent RPMs cannot be
satisfied with the default RPM installer unless the user is
aware that it is necessary to specify both of the RPMs
together. This leads to what is known as “dependency hell”,
particularly for packages with many dependencies, each of
which has its own large set of dependencies, and so on. For
this reason, wrappers around the RPM installer tool have
been created to help avoid such problems.

The most powerful and the most popular open source
wrappers around the default RPM installer are: Advanced
Packaging Tool [13] (APT) and Yellow dog Updater
Modified [14] (YUM). Both of them are providing command-
line and graphical user interfaces for retrieval, configuration

 723

and installation of software packages, either from binary files
or by compiling source code. Also, in order to find software
and resolve dependencies, both of them rely on the concept of
software repositories.

APT was originally designed as a front-end for Debian

[15] package management system, but it has since been
modified to also work with the RPM Package Manager
system via apt-rpm [16]. The Fink project [17] has ported
APT to Mac OS X for some of its own package management
tasks, and APT is also available in OpenSolaris [18]
(included in Nexenta [19] OS distribution). The Telesphoreo
[20] is a project dedicated to porting APT to smartphone
devices - currently to the iPhone [21].

YUM is a full rewrite of its predecessor tool, Yellow dog

Updater (YUP), and was developed primarily in order to
update and manage Red Hat Linux. Since then, it has been
adopted by Red Hat Enterprise Linux [22], Fedora [23],
CentOS [24], and many other RPM-based Linux
distributions, including Yellow Dog Linux [25] itself, where
it has replaced the original YUP utility.

When using each of two mentioned tools, an install

directive is followed by the name of one or more packages
desired for installation. Each package is usually specified just
by the name of the package, and not by the full filename that
contains information on the version and architecture. The
APT or YUM will consult the configured software
repositories and offer possible choices to the user.
Alternatively, a specific distribution can be selected by
specifying the package name with the version of the
distribution. Because all packages contain the list of
dependencies specified for installation, they will also be
automatically retrieved and installed from software
repository, if available. This was an original distinguishing
characteristic of APT and YUM package management
systems, preventing software installation failure due to
missing dependencies, by automatically trying to satisfy all
specified dependencies.

Another feature APT and YUM tool has is a remote

repository retrieval of packages. A configuration file with a
list of software repositories is used to locate the desired
packages and retrieve them, and also to obtain information
about all available (but possibly uninstalled) packages.

3. DWARF ACHITECTURE AND IMPLEMENTATION

In user/development communities where large number of
partners/collaborators from different institutions jointly
contribute to applications and RPMs built from applications’
sources, it is useful to create a unique software repository that
collects all such RPMs. In this case, in order to upload new
version of a package, access to the repository should be
granted to all contributors. This can be solved via a creation
of a shared file system, but for security, scalability and
reliability reasons, this is not a good approach. In this paper
we describe DWARF framework, which provides such a
collaborative environment for application developers/users.

The widely-used Public Key Infrastructure [26] (PKI)

includes policies and procedures needed to create, manage,

store, distribute, and revoke digital certificates. In such
approach, each user has its own personal digital certificate, an
electronic document which incorporates a digital signature
which binds together a personal public key with an identity –
information such as the name of a person or an organization,
their address, etc. In a typical PKI scheme, the signature will
be provided by a certificate authority (CA), an entity which
issues digital certificates for use by other parties, and which
is trusted by all involved entities.

Using PKI infrastructure, the newly developed DWARF
framework provides possibility for RPM uploading and
creation of APT and YUM repositories, with the
authentication and authorization of users based on digital
certificates. The DWARF architecture is shown in Fig. 1.

Fig. 1. Overview of the DWARF architecture.

DWARF is implemented as a web application and it is

composed of the DWARF web portal, DWARF modules and
DWARF database.

DWARF web portal [27], the frontend of the DWARF

framework is implemented as a PHP [28] script under
Apache HTTP server [29] on top of Secure Sockets Layer
[30] (SSL). SSL protocol is a stronger authentication system
that provides confidentiality, integrity, and authentication at
the transport level. It is standardized as the Transport Layer
Security protocol [31]. HTTP runs on top of SSL, which
provides all the needed cryptographic strength. Integration at
the server level allows the server to retrieve the
authentication parameters negotiated by SSL, and SSL
achieves authentication via public-key cryptography in digital
certificates. There are a couple of different options for adding
SSL to Apache. We use the Apache mod_ssl implementation
[32]. This module provides the necessary SSL information as
additional environment variables to the SSI [33] and CGI
[34] namespace.

The super-user, whose digital certificate’s distinguish

name is defined in the configuration file of the portal, is
allowed to perform the authorization and other tasks in all
sections of the repository from the DWARF web portal. In
this way, each connection to the DWARF portal is secured,
authenticated and authorized.

The DWARF web portal home page, shown in Fig. 2,

gives an overview of repository structure together with
information on the context of each repository, and latest
build's timestamp.

 724

From the DWARF web portal, an authenticated and

authorized user can perform following operations on the
repository:
• Create and change repository structure – Users are free

to create paths to new distributions and components, by
specifying chosen names. In the current implementation
of the DWARF framework, the users are able to create
APT and YUM repositories, as well as to create a
MIRROR to an existing remote repository.

• Package uploading – Users can upload different
software packages, but only to sections of the repository
to which they are authorized as contributors.

• Build repository – After each RPM upload, a user should
build the repository structure. If not, a system will do it
automatically, through a cron job.

DWARF modules are implemented as bash scripts that

handle build action on repositories.

After an appropriate APT repository structure is created

from the DWARF portal, the RPMs must be indexed to create
the APT database. This is done by the APT DWARF module,
which uses the genbasedir tool [35] for this purpose. It
analyzes the RPM packages in a directory tree and builds
information files so that that directory tree can be used as an
APT repository.

The YUM DWARF module does the similar action when

appropriate YUM repository structure is created. For this
purpose yum-arch [36] and createrepo [37] tools are used.
The yum-arch tool creates a headers directory, which
supports older versions of YUM. It searches recursively
through a repository structure for RPM packages, and
includes all of them in the header data. The createrepo tool
creates repository information to support newer versions of
YUM (and possibly other repository client programs), and it
also searches recursively for RPM packages to include in the
repository data. To minimize problems with different YUM
clients, both kinds of YUM repository data for each
repository are created. The extra repository information is
relatively small and does not affect proper function of the
software repository.

The MIRROR DWARF module is responsible for

mirroring some existing software repository locally. To
synchronize remote software repository with the local, lftp
tool [38] is used. Through the DWARF web portal, a user can
specify a set of command-line switches that should be used to
control the repository synchronization process. One example
is enabling of the delete switch, which will ensure that the
files in the local repository that are not present in the remote
directory are deleted. Second example is the use of only-
newer option, which forces lftp tool to download only newer
files than the existing ones. Another very useful option is the
exclude switch, which allows specification of files and
directories that should be skipped during the synchronization.
The DWARF log file will contain more information about the
syncing process, if verbose switch is turned on. By default,
each mirror repository will be synchronized six times a day
via a cron job.

The DWARF database contains information on security,
repositories type, repositories metadata, mirror repositories,
and logging information. All information about users and
users’ permissions on different repository sections is stored
here. Also, DWARF database contains metadata repository
information on build’s timestamps, contexts, and descriptions
of the repositories, as well as repository types. The rules on
how to create mirror repositories and information on when
and with which options repositories are built are kept in
DWARF database. In addition, for security reasons, the
database contains a table with all users’ actions recorded. The
DWARF database is realized using MySQL database
technology [39].

Fig. 2. Screen shot of the DWARF web portal.

Once the repository is constructed, it must be made

available by HTTP and FTP servers configured and working
on the DWARF web portal. The DWARF framework
provides configurations that must be included in the local
HTTP and FTP servers’ configuration files in order to
provide the context of repositories.

4. CONCLUSION

We have presented the DWARF framework that provides
a collaborative environment for RPM uploading and creation
of APT and YUM repositories, with the authentication and
authorization based on digital certificates. The DWARF is
implemented as a web application that offers authorized
repository structure organization, RPMs uploading, and
independent building of different sections of repositories, as
well as rebuilding of all repositories. The DWARF
framework consists of the DWARF web portal, DWARF
modules and DWARF database. It is currently deployed by
the SEE-GRID-SCI Grid eInfrastructure [40].

ACKNOWLEDGEMENTS

This work is supported in part by the Ministry of Science
and Technological Development of the Republic of Serbia
through research grant No. OI141035, and by the European
Commission through projects CX-CMCS (FP6), SEE-GRID-
SCI (FP7) and EGEE-III (FP7).

REFERENCES

[1] MS-DOS 6 Technical Reference,
http://technet.microsoft.com/en-us/library/cc743176.aspx

 725

[2] Official Microsoft Windows Website,
http://www.microsoft.com/Windows/

[3] The Linux Foundation, http://www.linux-foundation.org/

[4] Unix-like Definition by The Linux Information Project,
http://www.linfo.org/unix-like.html

[5] Official Mac OS X website,
http://www.apple.com/macosx/

[6] Apple Inc., http://www.apple.com/

[7] Microsoft Corporation, http://www.microsoft.com/

[8] Red Hat RPM Guide,
http://docs.fedoraproject.org/drafts/rpm-guide-en/index.html

[9] Red Hat official web page, http://www.redhat.com/

[10] History of Red Hat Linux,
http://fedoraproject.org/wiki/History

[11] NetWare Cool Solutions,
http://www.novell.com/coolsolutions/netware/

[12] IBM AIX page, http://www-
03.ibm.com/systems/p/os/aix/

[13] Wikipedia: Advanced Packaging Tool,
http://en.wikipedia.org/wiki/Advanced_Packaging_Tool

[14] Yum website, http://yum.baseurl.org/

[15] Official Debian website, http://www.debian.org/

[16] Apt-rpm home page, http://apt-rpm.org/

[17] Fink project homepage, http://www.finkproject.org/

[18] The OpenSolaris developer community website,
http://www.opensolaris.org/

[19] Nexenta OS website, http://www.nexenta.org/

[20] Bringing Debian APT to the iPhone,
http://www.saurik.com/id/1

[21] Apple's iPhone website, http://www.apple.com/iphone/

[22] Red Hat Enterprise Linux homepage,
http://www.redhat.com/rhel/

[23] Fedora Project homepage, http://www.fedoraproject.org/

[24] Official CentOS site, http://www.centos.org/

[25] Yellow Dog Linux home page,
http://en.wikipedia.org/wiki/Yellow_Dog_Linux

[26] Ed Gerck, Overview of Certification Systems: x.509,
CA, PGP and SKIP, The Black Hat Briefings '99,
http://www.securitytechnet.com/resource/rsc-
center/presentation/black/vegas99/certover.pdf

[27] Scientific Computing Laboratory of the Institute of
Physics Belgrade, DWARF web portal, https://dwarf.scl.rs/

[28] PHP: Hypertext Preprocessor, http://www.php.net/

[29] The Apache HTTP Server Project,
http://httpd.apache.org/
[30] The SSL Protocol: Version 3.0, Netscape's final SSL
3.0 draft (November 18, 1996),
http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.
txt

[31] SSL/TLS in Detail, Microsoft TechNet.,
http://technet.microsoft.com/en-us/library/cc785811.aspx

[32] The Apache Interface to OpenSSL,
http://www.modssl.org/

[33] Apache Tutorial: Introduction to Server Side Includes,
http://httpd.apache.org/docs/1.3/howto/ssi.html

[34] RFC3875: The Common Gateway Interface (CGI)
Version 1.1, http://www.ietf.org/rfc/rfc3875.txt

[35] Jorge Godoy, Alfredo Kojima, Claudio Matsuoka,
APT+RPM HOWTO,
http://www.ccl.net/cca/software/UNIX/updating-redhat/apt-
howto/

[36] Yum-arch - Linux man page,
http://linux.die.net/man/8/yum-arch

[37] Createrepo - Linux man page,
http://linux.die.net/man/8/createrepo

[38] Lftp - Linux man page,
http://linux.die.net/man/1/lftp

[39] MySQL database website,
http://www.mysql.com/products/database/

[40] SEE-GRID eInfrastructure for regional eScience,
http://www.see-grid-sci.eu/

