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Sadržaj – Značajno ubrzanje Monte Karlo algoritma za izračunavanje funkcionalnih integrala u kvantnoj mehanici postignuto 
je upotrebom novog analitičkog metoda koji sistematski poboljšava numeričku konervenciju diskretizovanih amplituda ka 
njihovim kontinuum vrednostima. Ovakav optimizovani Monte Karlo algoritam je implementiran u SPEEDUP Monte Karlo 
kodu. U ovom radu opisujemo značajno poboljšanje ovog algoritma upotrebom kvazi-Monte Karlo metoda za efikasno 
generisanje relevantnih trajektorija za nekoliko jednostavnih kvantnih modela. 
Abstract - Significant speedup of the Monte Carlo algorithm for calculation of path integrals of a generic quantum 
mechanical theory is achieved using the new analytic method, which systematically improves numerical convergence of 
discretized amplitudes to their continuum values. This optimized Monte Carlo algorithm is implemented in the SPEEDUP 
code. In this paper we describe further significant improvements of the algorithm through the use of the quasi-Monte Carlo 
method for efficient generation of relevant trajectories for several simple quantum models. 
 
 
1. INTRODUCTION 
 

Exact solution of a given many-body model in non-
relativistic quantum theory is usually expressed in terms of 
eigenvalues and eigenfunctions of the corresponding 
Hamiltonian 

ˆ H =
ˆ p i

2

2mi

+ ˆ V (ˆ q 1,..., ˆ q M )
i=1

M

∑  ,  (1) 

where M represents the number of particles. The complete 
analytic solution of the model can be also expressed in terms 
of general transition amplitudes   A(a,b;T) = b e− iT ˆ H / h a  from 
the initial state a  to the final state b  during the time of 
propagation T . However, exact solutions can be found only 
in a very limited number of cases. Therefore, use of various 
analytic approximation techniques or numerical treatment is 
necessary for detailed understanding of the behavior of 
almost all models of interest. 

Recently introduced effective action approach [1-5] 
provides an ideal framework for exact numerical calculation 
of such quantum amplitudes. It gives systematic short-time 
expansion of transition amplitudes for a general potential, 
thus allowing accurate calculation of relevant short-time 
properties of quantum systems directly, as has been 
demonstrated in Refs. [6-8]. For numerical calculations that 
require long times of propagation to be considered, relying on 
the use of Monte Carlo method, the effective action approach 
provides improved discretized actions leading to the speedup 
in the convergence of numerically calculated discretized 
quantities to their exact continuum values. This has been 
demonstrated not only for the amplitudes, but also in Monte 
Carlo calculations of energy expectation values using the 
improved energy estimators [9, 10]. 

From inception of the path integral formalism, expansion 
of short-time amplitudes in the time of propagation was used 
for the definition of path integrals through the time-
discretization procedure [11, 12]. This is also 
straightforwardly implemented in the Path Integral Monte 
Carlo approaches [13], where one usually relies on the naive 
discretization of the action. Several improved discretized 

actions, mainly based on the Trotter formula and its 
generalizations, were developed and used in the past [14-16]. 

The effective action approach is based on the concept of 
ideal discretization [4]. It was introduced first for single-
particle 1D models [1-3] and later extended to general many-
body systems in arbitrary number of spatial dimensions [10, 
5]. This approach allows systematic derivation of higher-
order terms to a chosen order p  in the short time of 
propagation. Recursive method for deriving the discretized 
effective actions, established in Ref. [5], is based on solving 
the underlying Schrödinger equation for the amplitude. It 
represents the most efficient tool to analytically calculate 
higher-order effective actions. 

We will illustrate this approach on the example of one-
dimensional quantum theory. In this case, the transition 
amplitudes are expressed in terms of the ideal discretized 
action S* in the form 

A(a,b;T) =
1

2πT
e−S* (a,b;T ) ,   (2) 

which can be also seen as a definition of the ideal action []. 
Therefore, by definition, the above expression is correct not 
only for short times of propagation, but also for arbitrary 
large T . The ideal effective potential W  is introduced by 

S*(a,b;T) = T
1
2

b − a
T

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

+W
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  ,  (3) 

as a reminiscent of the naive discretized action, with the 
arguments usually written in the form W

a + b
2

,
b − a

2
;T

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , to 

emphasize that we will be using the mid-point prescription. 
As was shown earlier, the effective potential is symmetric in 
its second argument, and allows systematic and hierarchic 
double expansion in the form 

W (x,x ;ε) = cm,k (x)ε m −k x 2k

k=0

m

∑
m =0

∞

∑  . (4) 

If we restrict the above sum over m  to p −1, the obtained 
truncated level p  effective potential W p (x,x ;ε)  gives the 
expansion of the effective action Sp

*  to order ε p , and hence 
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the level designation p  for both the effective action and the 
corresponding potential W p

. 
As shown previously [1-3], when used in Path Integral 

Monte Carlo simulations for calculation of long time 
amplitudes, the use of level p effective action leads to the 
convergence of discretized amplitudes proportional to ε p , i.e. 
as 1/N p, where N  is the number of time steps ε = T /N  used in 
the discretization. This was implemented in the SPEEDUP 
code [17] and used in several numerical studies [6-8]. 

In this paper we present QSPEEDUP code, which 
implement the effective action approach using the SPEEDUP 
algorithm, and quasi-Monte Carlo method to efficiently 
generate relevant trajectories. We verify the correctness of 
the new code by comparison with the standard SPEEDUP 
MC implementation and study in detail the performance and 
behavior or errors of quasi-MC algorithm. In Section 2 we 
first give brief overview of the algorithm used in the 
SPEEDUP and QSPEEDUP codes. Section 3 introduces 
quasi-MC method and low-discrepancy sequences, and tests 
the performance of this method on simple but instructive 
examples of low-dimensional integrals of the Gaussian type. 
In Section 4 we describe details of quasi-MC implementation 
of the SPEEDUP code and present numerical results obtained 
for several one-dimensional quantum models. Section 5 
summarizes the obtained results. 
 
2. SPEEDUP ALGORITHM 
 

In the standard Path Integral Monte Carlo approach based 
on the use of effective actions, the time of propagation T  is 
divided into N  time steps, such that ε = T /N  is sufficiently 
small and that the effective potential (which has the finite 
radius of convergence) can be used. This applies to the 
original Feynman's definition of path integrals [11, 12, 18], 
which corresponds to p =1, as well as to the higher-order 
effective actions. The discretization of the propagation time 
leads to the following expression for the discretized 
amplitude 

AN
( p )(a,b;T) =

dq1...dqN −1

(2πε)N / 2  exp(−sN
( p ))∫  , (5) 

where SN
( p ) stands for the discretized level p  effective action, 

SN
( p ) =

(qk+1 − qk )2

2ε
+εWp (xk,x k;ε)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

k=0

N −1

∑  , (6) 

and we have used the abbreviations q0 = a, qN = b , 
xk = (qk+1 + qk ) /2, x k = (qk+1 − qk ) /2. 

The trajectory of q's is constructed using the bisection 
method [19]. The procedure starts from bisection level n = 0, 
where we only have initial and final position of the particle 
(i.e. the trajectory consists of only these two points). At the 
next bisection level n = 1, the propagation is divided into two 
time-steps, and we have to generate a coordinate q of the 
particle at the moment T /2, thus constructing the piecewise 
trajectory connecting points a  at the time t = 0, q at t = T /2, 
and b at t = T . The coordinate q is generated from the 
Gaussian probability density function centered at the mid-
point (a +b) /2, with the width σ1 = T /2 . The procedure 
continues iteratively, and each time a set of points is added to 
the piecewise trajectory. At each bisection level n  the 
coordinates are generated from the Gaussian centered at mid-

points of coordinates generated at previous level n −1, with 
the width σn = T /2n . To generate numbers η  from the 
Gaussian centered at zero we use the standard Box-Müller 
method [20], 

η = −2σ n
2 lnξ1 cos 2πξ2 ,   (7) 

where numbers ξ1
 and ξ2  are generated from the uniform 

distribution on the interval [0,1], using the SPRNG library 
[21]. If the target (maximal) bisection level is s, then at 
bisection level n ≤ s we have to generate 2n −1 numbers from  
the Gaussian distribution using the above formula, and to 
construct the new trajectory by adding to already existing 
points the new ones, according to 

q[(1+ 2i)⋅ 2s−n ] = ηi +
1
2

q[i⋅ 2s−n +1]+ q[(i +1)⋅ 2s−n +1]( )
 , (8) 

where i  runs from 0 to 2n−1 −1. This ensures that at bisection 
level s we get trajectory with N = 2s time-steps, consisting of 
N +1 points, with boundary conditions q[0] = a  and q[N] = b . 
At each lower bisection level n , the trajectory consists of 
2n +1 points obtained from the maximal one (level s 
trajectory) as a subset of points q[i⋅ 2s−n ] for i = 0,1,...,2n . 
 
3. LOW-DIMENSIONAL QUASI-MC 
 

In this Section we will first introduce low-discrepancy 
sequences and then apply quasi-Monte Carlo method for 
calculation of low-dimensional integrals of the Gaussian 
type. Since the SPEEDUP code requires calculation of high-
dimensional integrals of the similar type, this preliminary 
study is done to verify the quasi-MC algorithm to be 
implemented in the QSPEEDUP code. It is also used to 
determine the appropriate distribution of deviations from the 
exact result on an ensemble of independent quasi-MC runs, 
which then could be instrumental in estimating errors of 
quasi-MC results. In addition to this, such study can be used 
to estimate the expected improvement in the performance of 
the SPEEDUP code when quasi-MC is implemented. 

The usual implementation of the Monte Carlo method 
[22] uses pseudo-random numbers for calculation of the 
integrals. In the simplest case, if we are calculating d-
dimensional integral on a unit cube U d , and if ξi is a 
sequence of pseudo-random d-dimensional points in U d , then 
the MC estimate of the integral of the function f (x)  is given 
by the average of the function f  evaluated at the MC sample 
of points ξi

. According to the central limit theorem, such 
estimate converges to the exact value of the integral when the 
number of MC samples NMC goes to infinity. Furthermore, 
central limit theorem states that the statistical distribution of 
numerical results obtained using large number of independent 
MC samples is a Gaussian, centered at the exact value of the 
integral, with the variance σ2( f ) /NMC, where σ2( f )  is given 
by the analytic formula 

σ2( f ) = f 2(x)dx
U d

∫ − f (x)dx
U d

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

 ,   (9) 

and can be estimated as well from a single MC run. This 
gives clear statistical interpretation of errors when MC 
method is used: the distribution of deviations 
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Δ = f (x)dx −
1

NMC

f (ξi)
i=1

N MC

∑
U d
∫  ,  (10) 

is a Gaussian with the expected standard deviation 

E(Δ) =
σ2( f )
NMC

 .   (11) 

This shows the familiar convergence rate of NMC
−1/ 2 

associated with MC pseudo-random methods, and its main 
advantage: we can decrease the deviation of numerical results 
(i.e. increase the accuracy of results) by simply increasing 
NMC, the number of MC samples. 

The key property of (pseudo-)random sequences is their 
uniformity, so that any contiguous subsequence is well spread 
throughout the domain of integration. This idea has lead to 
the suggestion that using other sequences, which are more 
uniformly distributed than a random sequence, may produce 
even better results. Such sequences are called quasi-random 
or low-discrepancy sequences [23]. 

Initially it may appear that a simple d-dimensional grid 
would provide optimal uniformity. However, grids suffer 
from several difficulties. First, the number of points required 
to create even a coarse mesh grows exponentially with the 
number of dimensions. Also, grids tend to have rather high 
discrepancy, a quantity measuring the deviation from the 
uniformity of a set of points. Finally, the size of the grid 
cannot be increased incrementally. The only obvious method 
for increasing the size of a uniform grid is to halve the mesh 
size, which requires addition of 2d  times the current number 
of points. Even such an exponential increase in the number of 
points would only yield a polynomial (depending on the 
discretization approach) increase in the accuracy. 

Solution to this problem is to use infinite sequences of 
points such that for every N , the first N  terms of a sequence 
are uniformly distributed throughout the cube. In order to 
quantify this, we introduce the discrepancy DN  of the 
sequence ξi of N  points, defined as 

DN = sup
Q∈U d

number of points in Q
N

− m(Q)  , (12) 

where Q is any d-dimensional rectangle contained within U d , 
with surfaces parallel to coordinate axes, and m(Q) is its 
volume. By the law of the iterated logarithm [24], the 
expectation of the discrepancy of a random sequence is 
bounded by log log N( )N −1/ 2 . 

There are many known quasi-random sequences (Halton 
[25], Sobol’ [26], Faure [27], etc.) for which the discrepancy 
is bounded by (log N)d /N , which suggests greater uniformity 
than a (pseudo-)random sequence. In this paper we will use 
Sobol’s sequence [28, 29] for implementation of the quasi-
MC algorithm within the existing SPEEDUP code, as well as 
for a comparison with the earlier developed MC algorithm. 

In order to verify the quasi-MC algorithm, which will be 
later used in the improved version of the SPEEDUP code, we 
have considered calculation of the Gaussian-type integrals 

I = exp − xi
2

i=1

d
∑

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

U d

∫  dx  ,   (13) 

where d is the number of dimensions. In order to verify the 
expected approximate 1/NQMC

 scaling of deviations from the 
exact value of the integral, we have performed the numerical 
calculation using the large number of independent QMC 

samples for different values of dimensionality d. The first 
important observation is that the obtained distribution of 
numerical estimates for the value of the integral was always 
found to be a Gaussian, whose parameters can be found by 
fitting. The obtained distributions were centered on the exact 
values of integrals (13) within the errors estimated by the 
fitted widths of Gaussians. The typical deviations of quasi-
MC results are shown in Fig. 1 as a function of the size of a 
quasi-random sample NQMC

. As can be seen from this log-log 
graph, the deviations are proportional to NQMC

−1 . 
 

 
Fig. 1. Deviations of numerically calculated values of the integral 
(13) from the corresponding exact values, as a function of the 
number of quasi-random numbers NQMC for different 
dimensionalities d of the integral. Sobol' set in the appropriate 
number of  dimensions was used. 
 
4. QUASI-MC IMPLEMENTATION OF THE SPEEDUP 
CODE 
 

In this Section we present application of the quasi-MC 
method for calculation of quantum mechanical transition 
amplitudes, based on the modified version of the SPEEDUP 
code. We also study the statistical distribution of the obtained 
results on a large ensemble of samples, identify the 
appropriate estimate of deviations from the exact amplitudes 
and their dependence on the size of the sample, and assess the 
performance of the code. This will be done on a simple 
model of a quartic anharmonic oscillator, which however 
exhibits all features relevant for the proper assessment of the 
method and improved implementation of the algorithm. 

QSPEEDUP, the modified version of the code, uses 
Sobol’s set [28, 29] of low-discrepancy quasi-random 
numbers, instead of the pseudo-random numbers generated 
by the SPRNG library [21] in the original SPEEDUP code. In 
the previous Section we presented results for the case of low-
dimensional integrals of the Gaussian type. This allowed us 
to determine that the distribution of numerical results 
obtained by the quasi-MC algorithm is also of the Gaussian 
type. Although calculation of general transition amplitudes 
assumes calculation of discretized path integrals of much 
higher dimensionality and of a more complex type, 
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depending on the potential, the dominant behavior is still 
mostly given by the Gaussian integrals stemming from the 
kinetic part of the Hamiltonian. 

The only modification in the code was related to the use 
of quasi-random instead of pseudo-random numbers. The 
implementation of Sobol's sequence [28, 29] we used allows 
generation of quasi-random numbers in a large number of 
dimensions, which were used in the Box-Müller method to 
obtain the trajectories according to the bisection algorithm. 
QSPEEDUP code is tested on the example of calculation of 
the transition amplitudes A(0,1;1)  for the anharmonic potential 

V (x) =
1
2

mω 2x 2 +
1

24
gx 4  ,  (14) 

for the values of parameters m = 1, g =1, with the level p = 4  
effective action, and using the target bisection level s = 8, 
corresponding to 255-dimensional integrals. For such a 
physical system we have first considered a distribution the 
ensemble of 103 independently calculated transition 
amplitudes, each obtained from the sample of NQMC =108  
trajectories.  The distribution is shown in Fig. 2. As expected 
from the results of previous Section, the observed distribution 
of transition amplitudes is again Gaussian. If we fit these 
numerical results to a Gaussian function, for the mean value 
and the associated error we get the estimate 

AQMC
p =4 (0,1;1) = 0.187029267(3), while for the standard deviation 

the fitting givesσ
AQMC

p=4 = 5.6(2) ×10−9 . If the standard Monte 

Carlo method is used, for the same size of the sample we 
would get the standard deviation of around 3 ×10-6, which is 
substantially higher than the standard deviation of quasi-MC 
results presented in Fig. 2. Since the generation of qusi-
random numbers has very similar complexity to the 
generation of pseudo-random numbers using the SPRNG 
library, the obtained increase in the accuracy directly 
translates to the increase in the performance of the 
QSPEEDUP code. 
 

 
Fig. 2. Distribution of numerically calculated transition amplitudes 
for anharmonic potential (14) for the parameters given in the text 
using the QSPEEDUP code. Each amplitude is obtained using the 
sample of NQMC=108. The histogram is obtained from the ensemble 
of 103 samples. 

 
Fig. 3. Deviations of transition amplitudes calculated using the 
QSPEEDUP code from the exact value as a function of the quasi-
MC sample NQMC. The results are shown for different values of the 
target bisection level s, corresponding to the discretization with 2s-1 
time steps. 
 

In order to assess if the obtained estimate for the 
amplitude (mean value of the Gaussian) is correct, i.e. if it is 
consistent with the exact value of the amplitude, we have 
used the MC SPEEDUP code with the exceedingly large 
number of samples NMC =1012 . With such a sample we 
achieved the comparable precision for the amplitude, 
Aexact

p =4 = 0.18702926(3), which is used as our estimate for the 
exact value in further calculation of deviations of numerical 
results obtained from the QSPEEDUP code. As we see, this 
value is in excellent agreement with the mean value of the 
distribution from Fig. 2, i.e. the deployed quasi-MC 
algorithm is found to give the correct value of the amplitude. 

Since the standard deviation of quasi-MC results cannot 
be estimated using the MC approach, where one simply 
calculates the standard deviation of the sample according to 
equation (11), we have next studied the dependence of the 
deviation from the exact value of the amplitude as a function 
of the size of the sample NQMC

. Another approach would be to 
always study the distribution as in Fig. 2 and estimate the 
standard deviation from an ensemble of samples. However, 
this takes a considerable amount of time, which is not 
justified if there are other means to reliably estimate the 
deviation. Here we use the exact value of the amplitude 
obtained by the MC algorithm, and therefore simplify the 
numerical analysis considerably. The results are given in Fig. 
3. As we see, the earlier observed approximate NQMC

-1  scaling 
of deviations is present for all values of the target bisection 
level. 

Such scaling leads to the improved performance of quasi-
MC algorithm compared to the standard MC method. As 
explained earlier, generation of pseudo-random and quasi-
random numbers is of similar complexity, and therefore the 
fact that one needs much smaller size of quasi-MC sample in 
order to obtain the same accuracy as when MC algorithm is 
used presents a significant advantage. This is illustrated in 
Fig. 4, where we plot the speedup, i.e. the ratio of required 
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CPU time for the execution of MC and quasi-MC code in 
order to achieve the same deviation from the exact value of 
the amplitude. As we can see, even for a moderate value of 
the precision Δ , one obtains improvement of many orders of 
magnitude, approximately proportional to 1/Δ . 
 

 
Fig. 4. The speedup in the calculation of transition amplitudes at the 
given precision using the QPEEDUP CODE, compared with the 
required CPU time for the calculation using MC algorithm 
implemented in the SPEEDUP code. 
 
5. CONCLUSIONS 
 

In the paper we have presented quasi-MC extension of the 
SPEEDUP code for calculation of quantum mechanical 
transition amplitudes using the effective action approach. The 
improved QSPEEDUP algorithm uses Sobol’s set of quasi-
random numbers for generation of trajectories relevant for 
calculation of transition amplitudes in the path integral 
formalism. At first, we studied the distribution of numerical 
results obtained using the quasi-MC algorithm for lower-
dimensional integrals similar to the ones being calculated in 
the path integral code. The distribution is found to be 
Gaussian, with the standard deviation inversely proportional 
to the size of the sample. The same conclusions are obtained 
when quasi-MC QSPEEDUP code is applied to the 
calculation of transition amplitudes of a quartic anharmonic 
oscillator. The obtained 1/NQMC

 scaling of deviations leads to 
a significant speedup of the quasi-MC algorithm compared to 
the standard MC approach for the same accuracy of results. 
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