
Implementation and Benchmarking of New FFT

Libraries in Quantum ESPRESSO

Dušan Stanković, Petar Jovanović, Aleksandar Jović, Vladimir Slavnić,
Dušan Vudragović, and Antun Balaž

Scientific Computer Laboratory, Institute of Physics Belgrade,
University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

{dusan.stankovic,petar.jovanovic,aleksandar.jovic,vladimir.slavnic,
dusan.vudragovic,antun.balaz}@ipb.ac.rs

Abstract. Quantum ESPRESSO (QE) software package allows electro-
nic-structure calculations and materials modeling at the nanoscale, based
on density-functional theory, plane waves, and pseudopotentials. It ex-
tensively uses Fast Fourier Transform (FFT) during all computations. In
addition to the built-in FFT libraries, QE enables integration of newly
developed FFT algorithms. Since Fastest Fourier Transform of the East
(FFTE) library has shown performance comparable with the widely used
and vendor-supplied libraries, the same behavior is foreseen in QE. In
this paper we present FFTE-enabled and thread-enabled FFTW3 exten-
sions of QE, together with benchmarking and performance results.

Keywords: FFT, Quantum ESPRESSO, multithreading, hybrid
parallelism, OpenMP, MPI.

1 Introduction

Quantum Espresso is an integrated suite of open-source codes for electronic
structure calculations and materials modeling at the nanoscale. It is based on
density-functional theory, plane waves and pseudopotentials [1].

Fourier transformation is used in a large part in calculations performed in
QE, so any gains in FFT performance would be positively reflected in the per-
formance of the entire QE suite. Most major hardware platforms, along with
their corresponding numerical libraries, are already supported in QE (such as
IBM ESSL, Intel MKL, SGI SCSL and so on), which include routines for FFT
calculations. Also, the open-source FFTW (version 2) and FFTW3 libraries [2]
are supported.

Parallelization in Quantum ESPRESSO is achieved using MPI and OpenMP,
and hybrid parallelism using both MPI and OpenMP together is currently sup-
ported only with the internally supplied FFTW library. The work on imple-
menting the support for the open-source FFTE library was motivated by its
performance results [3], so it was expected to show better performance than the
open-source libraries already supported in QE. The work on implementing the
support for hybrid FFTW3 library was considered because hybrid parallelism

M. Dulea et al. (eds.), High-Perf. Comp. Infrastr. for South East Europe’s 155

Research Communities, Modeling and Optimization in Science and Technologies 2,

DOI: 10.1007/978-3-319-01520-0_19, c� Springer International Publishing Switzerland 2014



156 D. Stanković et al.

is becoming more important, as computing nodes on modern HPC systems of-
ten comprise many CPU cores. Since the open-source FFTW3 library is widely
used, and has both multi-threaded routines, and serial thread-safe routines, it
was selected for implementation.

2 Quantum ESPRESSO Code Structure and Applied
Modifications

Quantum ESPRESSO is written mostly in FORTRAN 90. It has a modular
structure, with different modules for higher level domain specific calculations
(for example, CP or PW modules), and also some general purpose parts which
are then used in many other modules (for example FFT calculations or time
logging).

The development of this project used QE 5.0 as a baseline, and was localized to
the parts of the code responsible for FFT calculations. Analysis of the QE source
code revealed that all the routines for performing FFT are located in a file named
fft scalar.f90. Routines for 1D, 2D and 3D FFT are defined in this file. They serve
as wrappers and invoke corresponding routines of the aforementioned numerical
libraries, where the actual computation is performed. Selecting which particular
numerical library will be used is performed by conditional compilation, using pre-
processor directives (such as #ifdef, #elif, #endif and so on). Whenever a
numerical library supporting FFT is found during the configuration phase of
the QE software package, a corresponding macro parameter is defined in the
Makefile, and is used to select an appropriate compilation path. For example,
when the FFTW3 library is used, a macro parameter named __FFTW3 will be
defined, and only the code where FFTW3 routines are called will be compiled.

2.1 Enabling FFTE Library in Quantum ESPRESSO

We have extended QE to utilize the FFTE numerical library for performing FFT
in 1D, 2D or 3D. The version of FFTE used is 5.0, accessible on the website [3].
FFTE is written in Fortran, supports parallelism with MPI, OpenMP, or both
when hybrid variant is used. Also, FFT transformations for up to 3 dimensions
are supported. Code development was done according to Quantum ESPRESSO
development manual [4], which defines guidelines regarding the programming
style.

A new macro parameter named __FFTE was created, and used in parts of the
source code whenever a FFTE routine is called, or some initialization is per-
formed. The configure script was also modified so that the configuration process
can recognize if the FFTE library is present on the system, whether on the sys-
tem path, or in the path specified during configuration. If the library is found,
the __FFTE macro parameter is added to the Makefile. Variables needed to ini-
tialize FFTE, or store data between execution of FFTE routines were introduced
as to be easily distinguishable by their prefix (ffte_).



Implementation and Benchmarking of New FFT Libraries 157

In Quantum ESPRESSO, an internal decomposition of the data is used to
perform 3D FFT transforms as a combination of multiple calls to serial 1D and
2D FFT routines, which are divided among processes. MPI is used for communi-
cation and data exchange in-between these phases. The reason for this approach
is to avoid performing unnecessary transforms of subsections of the large 3D grid
which already have zero values, as this pattern is common in data sets used by
QE. A more detailed explanation of this decomposition can be found in Ref. [5].

It should be mentioned that the FFTE library does not support computation
on many Fourier Transforms (on different arrays), in a single routine call. This
can have some impact on the performance, because in QE there are many calls
to 1D and 2D routines needed to complete transform on the entire data set. Also,
when using FFTE, an initialization routine needs to be called before each trans-
form, which includes even more overhead during execution. Significant drops in
performance were not observed during our testing, but these factors should be
considered when using the FFTE library in other projects.

2.2 Enabling FFTW3 Threading in Quantum ESPRESSO

Second extension of QE is related to support of threading of the FFTW3 li-
brary, which would enable hybrid parallelism (when used combined with the
MPI), since it is already supported in Quantum ESPRESSO. The FFTW3 li-
brary supports threading in two modes:

– implicit, where an additional library libfftw3_omp has to be installed; in this
case, FFTW3 routines support multi-threaded execution internally, so they
are called like the serial ones, and

– explicit, where serial routines are used, but are called from within multiple
threads running in parallel; this is possible because routines for FFT execution
are thread-safe.

The following pseudocode representation roughly shows how the two threading
modes were implemented in Quantum ESPRESSO (for the implicit mode, a
single internally threaded routine call performs nsl transforms on arrays with
length of dim_z, and for the explicit mode each routine call is serial):

– implicit

fftw_execute_many_dft(fw_plan , c, cout , nsl , dim_z)

– explicit

#pragma omp for

for i=1 to nsl

offset =(i-1)* dim_z

fftw_execute_dft(fw_plan , c[offset], cout[offset ])

end for



158 D. Stanković et al.

The FFTW3 library supports reusing of plans, and also supports calculation of
many transforms within a single routine call. This allows greater flexibility when
using multiple transforms, and is optimal in terms of performance. More details
on this can be found in Ref. [6].

In order to use implicit threading, FFTW3 thread initialization routines had
to be called before calling any FFTW3 routines for FFT planning and execution.
After the thread initialization has been successfully performed, the code for
serial version can be reused, and threading is done automatically in the library
routines.

With explicit threading, some modifications had to be made with the code.
Because in the serial version many 1D or 2D transforms are aggregated in a
single call for efficiency, execution had to be split into separate routine calls for
each transform. This way, we actually had many routine calls, which can then
be called from parallel threads. An OpenMP parallel for region was inserted,
where in each iteration of the loop, FFT is performed on a separate sub-array.
Since these routines are executed in parallel, and there are no data dependencies
between loop iterations, this approach could be applied successfully.

3 Performance Tests

Here we will present performance tests done to compare newly supported FFTE
library, and also performance of threaded FFTW3 library. Benchmarks were
performed so that the performance was compared to most similar numerical
libraries already supported in Quantum ESPRESSO.

3.1 FFTE Performance

We have tested Quantum ESPRESSO with enabled FFTE library, and com-
pared it with the FFTW3 library that is already supported. These tests show
only performances of serial libraries, since threaded FFTE was not implemented
(because it wasn’t always reliable when built with some compilers).

The cluster used for testing is made of nodes containing two AMD Magny-
Cours Opteron 6174 processors, with 12 cores each. Nodes are connected via
Infiniband network. The GCC compiler suite [7] was used in testing on this clus-
ter. Our implementation was tested on benchmarks for PW module of Quantum
ESPRESSO. FFTE Code was compiled with gfortran, version 4.1.2 with flags
-O3, and the FFTW3 library was compiled with gcc, version 4.1.2 with flags

-O3 -fomit-frame-pointer -fstrict-aliasing -fno-schedule-insns

-ffast-math.

For the first test, up to 6 computing nodes were used (up to 72 processes).
Execution times and scaling of the PW module are shown in Figure 1 for the
case when the number of MPI processes is increased, and in Figure 2 when the
problem size is increased, and the number of MPI processes stays constant (24
MPI processes were used in this test).



Implementation and Benchmarking of New FFT Libraries 159

Fig. 1. Performance of the PW module of QE FFTE extension compared with the
QE FFTW3 implementation: (left) Execution times of QE FFTW3/FFTE codes for
different number of MPI processes; (right) Speedup in the execution time of QE
FFTW3/FFTE codes as a function of a number of MPI processes (execution time
on 1 MPI process used as a baseline)

Fig. 2. Performance of the PW module of QE FFTE extension compared with the QE
FFTW3 implementation: execution times as a function of 3D FFT mesh size

It can be seen that the FFTE library slightly outperforms FFTW3 in both
cases (execution times are lower for the FFTE). The gap in performance grows
as the size of the problem grows, so the FFTE seems suitable for large test cases.
The difference in performance that is related to the problem size is also exhibited
in the test case with the increasing number of MPI processes. As the number of
MPI processes grows, each process gets less and less data to compute, and the
difference in execution time diminishes. Because of this, the FFTE library shows
worse speedup than the FFTW3.

3.2 FFTW3 Threaded Performance

For the performance testing of the threaded FFTW3 library, an FFTW (version
2) library internally supplied with Quantum ESPRESSO was selected for com-
parison. This was done because it was the only library supporting threading in



160 D. Stanković et al.

the hybrid mode (when used together with the MPI), and is also open-source
and widely available.

Implementation of threaded FFTW3 was tested on a cluster with Intel Xeon
processors, with two quad-core CPUs per node, and with Gigabit Ethernet in-
terconnecting network. Library code was compiled with the Intel’s icc compiler
version 11.1 with the -O3 flag, and Intel’s ifortran was used for compilation of
Quantum ESPRESSO.

Hybrid extension of the FFTW3 library was also tested with benchmarks for
the PW module of QE. Tests were conducted again in the similar way, increasing
the number of CPU cores in one case, and increasing input grid size in another.
Configurations of 2 and 4 threads per MPI process were used, and also compared
to the pure MPI case. Both threading variants (implicit and explicit) were tested
with the FFTW3 library, and its performance is shown along with the internally
supplied FFTW library (labeled as FFTW internal) in Figures 3 and 4. Total
number of computing cores at some point is fixed, and is equal to a number of
MPI processes times the number of threads per MPI process.

From this we see that both threading variants implemented for FFTW3 out-
perform the internal FFTW when executed with hybrid parallelism for most
cases. Although, both threaded libraries are still slower than the pure MPI ver-
sion. This is probably due to the fact that for the type of input data used with
Quantum ESPRESSO, the overhead related to the thread management is prob-
ably greater than benefits of reduced MPI communication. Evidence for this are
runs with four threads per MPI process, where performance gets significantly
worse.

Fig. 3. Performance of the PW module of QE FFTW3 threaded extensions compared
with the internal QE FFTW hybrid implementation and pure MPI FFTW3 imple-
mentation: Execution times of QE FFTW3 implicit and explicit/internal FFTW/pure
MPI codes for different number of MPI processes



Implementation and Benchmarking of New FFT Libraries 161

Fig. 4. Performance of the PW module of QE FFTW3 threaded extensions compared
with the internal QE FFTW hybrid implementation and pure MPI FFTW3 implemen-
tation: QE FFTW3 implicit and explicit / internal FFTW execution times as functions
of 3D FFT mesh size.

These results agree with what was presented in Ref. [5], where similar thing
was investigated, and was shown that threading does not increase performance
in all cases. Better performance was observed only in some cases where the
number of MPI processes was significantly large. Also, Quantum ESPRESSO
has other ways to control parallelism in software (for example, task groups,
pools of processes, etc.) which is related to a particular input data set. Because
these options were not primarily designed with hybrid parallelism in mind, it
is not easy to fine tune Quantum ESPRESSO to achieve optimal performance
when threading is used.

It is also worth mentioning that no significant difference in performance be-
tween implicit and explicit variants of FFTW3 threading was noticed. Looking
at how threading is implemented in those two cases, an advantage of the explicit
mode is that the OpenMP parallel region is created only once, and inside of it
there are calls to many routines where FFT is computed. This should be optimal
with regards to the overhead related to thread creation and synchronization. On
the other hand, when using implicit threading, a new OpenMP parallel region
has to be created with every routine call. However, because an advanced FFTW3
interface is used with implicit threading mode, it allows many transforms on dif-
ferent arrays to be aggregated in a single routine call from FORTRAN. It is
possible that the native implementation of FFTW3 threaded library is aware of
that, and that it successfully avoids unnecessary creation of parallel regions for
each separate Fourier Transform.



162 D. Stanković et al.

4 Conclusions

In this project two extensions to Quantum ESPRESSO were implemented: the
support for FFTE library for computing Fourier Transform in the serial mode,
as well as the FFTW3 library in threaded mode. These extensions showed better
performance compared to default QE libraries (open-source FFTW version 2 and
3 were selected for comparison). In the case of the FFTE library, performance
increase could be significant when the large charge density mesh is requested for
the simulation of a physical system. Both the explicit and implicit variants of
FFTW3 threading showed better performance compared to internally supplied
FFTW (version 2) when tested in hybrid configuration (two and four threads
per MPI process), and while still not faster than the pure MPI version, should
be considered when there is a need for hybrid parallelism. It is expected that a
much larger problem size and more CPU cores are needed in order to get sat-
isfactory performance of the hybrid FFTW3, which can match, or even surpass
the performance of the pure MPI version.

Acknowledgements. Numerical results were obtained on the PARADOX clus-
ter at the Scientific Computing Laboratory of the Institute of Physics Belgrade
and on the NIIFI SC in Hungary. We acknowledge the support by the Serbian
Ministry of Education, Science and Technological Development under projects
No. ON171017 and III43007, and by the European Commission under FP7
projects HP-SEE, PRACE-2IP, PRACE-3IP and EGI-InSPIRE.

References

1. Quantum ESPRESSO official web site, http://www.quantum-espresso.org
2. Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3. Proceedings

of the IEEE 93, 216 (2005)
3. FFTE: A Fast Fourier Transform package, http://www.ffte.jp/
4. Developer’s Manual for Quantum ESPRESSO,

http://www.quantum-espresso.org/?page_id=47

5. Spiga, F.: Implementing and Testing Mixed Parallel Programming Model into Quan-
tum ESPRESSO. In: Science and Supercomputing in Europe - research highlights
2009, CINECA Consorzio Interuniversitario, Bologna (2010)

6. FFTW3 advanced interface, http://www.fftw.org/doc/Advanced-Interface.html
7. GCC compiler suite, http://gcc.gnu.org/


