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Abstract. In the preceding paper, Budinski-Petković et al (2016 J. Stat. 
Mech. 053101) studied jamming and percolation aspects of random sequential 
adsorption of extended shapes onto a triangular lattice initially covered with 
point-like impurities at various concentrations. Here we extend this analysis 
to needle-like impurities of various lengths �. For a wide range of impurity 

concentrations p, percolation threshold θ∗p is determined for k-mers, angled 
objects and triangles of two dierent sizes. For suciently large impurities, 

percolation threshold θ∗p of all examined objects increases with concentration 
p, and this increase is more prominent for impurities of a larger length �. We 
determine the critical concentrations of defects p∗c above which it is not possible 
to achieve percolation for a given object, for impurities of various lengths �. It 
is found that the critical concentration p∗c of finite-size impurities decreases with 
the length � of impurities. In the case of deposition of larger objects an exception 
occurs for point-like impurities when critical concentration p∗c of monomers is 
lower than p∗c for the dimer impurities. At relatively low concentrations p, the 
presence of small impurities (but not point-like) stimulates the percolation for 
larger depositing objects.
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1. Introduction

Understanding the various aspects of eective attachment of particles to surfaces, 
involving transport, adsorption and adhesion steps, is important for many practical 
processes such as water filtration, electroflotation, separation of toner and ink particles, 
coating formation, paper making, xerography, catalysis, colloid lithography, protein 
and cell separation, food emulsion and foam stabilization, immobilization of enzymes, 
immunological assays, etc [1]. Depositing objects range in size from the micrometer 
scale down to nanometer scale, and depending on the application in question, the 
objects could be colloidal particles, polymer chains, globular proteins, nanotubes, DNA 
segments, etc. Deposition processes in which deposited particles can neither diuse 
along, nor desorb from the substrate on the time scales of the dense coverage formation 
can be studied as random sequential adsorption (RSA).

In the simplest RSA model particles are randomly, sequentially and irreversibly 
deposited onto a substrate without overlapping each other. The kinetic properties of a 
deposition process are described by the time evolution of the coverage θ(t), which is the 
fraction of lattice sites covered at time t by the deposited particles. Within a monolayer 
deposit, each adsorbed particle aects the geometry of all later placements. Due to the 
blocking of the substrate area by the previously adsorbed particles, at large times the 
coverage approaches the jammed-state value θJ, where only gaps too small to accom-
modate new particles are left in the monolayer. For a comprehensive review of RSA 
models see, e.g. [2–5].

During the process of irreversible deposition the number of deposited objects 
increases causing the growth of clusters of nearest-neighbor occupied sites. Percolation 
assumes the existence of a large cluster that reaches two opposite sides of the substrate 
[6]. Formation of a long-range connectivity in disordered systems attracts a consider-
able interest [7–17, 18] thanks to its applications in numerous practical problems such 
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as conductivity in composite materials, flow through porous media, polymerization, 
gelation, behavior of scale-free random networks such as the Internet [19], and even 
some phenomena in sociological systems [20].

In many studies of RSA the main attention is focused on deposition of regular 
shapes on spatially homogeneous, regular substrates [2], but recent interest has shifted 
to deposition of irregular objects on pre-patterned or otherwise structured or inho-
mogeneous surfaces [5, 21–24]. In real experimental situations these include minerals, 
pigments, biological membranes, wafers and other substrates that are inherently het-
erogeneous. When the scale of surface inhomogeneities is comparable to the object size, 
the underlying pattern alters the surface-particle interaction, thus imposing modified 
morphology and dynamics of the deposition process. It is of theoretical and exper-
imental interest to understand and analyze how specific surface modifications aect 
the structure of deposited layers, late-stage kinetics and percolation properties of the 
deposition process, etc.

In modeling real deposition processes, one often needs to take into account the pos-
sibility of contaminations or defects that interfere the deposition of primary particles 
and introduce a disorder into the system. Many important findings regarding the jam-
ming and percolation of various objects on disordered (or heterogeneous) substrates 
with defects (or impurities) have been reported over the past two decades. The impact 
of defects on the jamming and percolation in RSA of k-mers on a square lattice is 
studied in [25–30]. Cornette et al [25, 26] investigated numerically both the bond and 
the site percolation problems for self-avoiding walk k-mers in the presence of impuri-
ties. The contaminated lattice is built by randomly selecting a fraction of the elements 
of the lattice (either bonds or sites) that are considered forbidden for deposition. This 
research suggests that the concentration of impurities at which percolation becomes 
impossible decreases rapidly with increasing values of k. By the same model, Cornette 
et al [27] have analyzed the kinetics of the RSA process.

Centres and Ramirez-Pastor [28] have investigated the dependence of percolation 
and jamming thresholds of linear k-mers on the concentration of defects for dierent 
values of k, ranging from 2 to 64. They reported that for each fixed value of k, percola-
tion can occur when fraction of imperfect bonds ρ is smaller than critical concentration 
of defects ρ∗k at which percolation is possible only at jamming coverage. It was also 
shown that in the range 0 � ρ � ρ∗k, the percolation threshold is practically indepen-
dent on the fraction of defects.

In [29], two models are analyzed—in the first one it is assumed that some fraction 
of sites is initially occupied by nonconducting point defects, and in the second one that 
some fraction of the sites in the k-mers is nonconducting. The dependence of the perco-
lation threshold on the length of the k-mers and on the impurity concentration is ana-
lyzed. Above some critical concentration of defects, percolation is blocked even at the 
jamming limit. The authors have found that percolation of k-mers is impossible even for 
an ideal lattice if the size k exceeds a certain critical value. Recently, Tarashevich et al 
[30] have studied the influence of defects on the behaviour of electrical conductivity 
in a monolayer produced by the isotropic and anisotropic deposition of k-mers onto a 
square lattice. Two kinds of defects are involved into consideration. The defects in the 
substrate (impurities) prevent deposition of the particles. Additionally, it is supposed 
that some parts of the k-mers may be either conducting or non-conducting (defective). 
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Calculation of the electrical conductivities gave an explicit confirmation that even a 
very small concentration of any kinds of defects has strong impact on the electrical 
conductivity.

Kondrat [31, 32] extended the study of the influence of defects on jamming and 
percolation aspect of irreversible deposition to the triangular lattice and stick-shaped 
impurities. However, process of percolation cluster formation has been considered for 
point-like conductors only. The results obtained revealed that: for suciently low level 
of finite-size impurities the percolation threshold increases with the impurity concen-
tration; this eect is more apparent for larger size impurities; there exists a character-
istic value of impurity concentration (that depends on the size of impurity particles) 
above which the percolation threshold in the system becomes a decreasing function.

The analysis of more complex case of extended particles of both kinds (conductors 
and insulators) is a subject of present paper. Here we present the results of extensive 
simulations of irreversible deposition of objects of various shapes on a planar triangu-
lar lattice initially covered with needle-like impurities at various concentrations. The 
depositing objects are made by directed self-avoiding steps on the triangular lattice. 
Jamming coverages θJ and the percolation thresholds θ∗p are determined for a wide 
range of impurity concentrations p. Our present work is a continuation of the recently 
published article [33] which described the percolation and jamming properties of the 
same system, but only in the presence of point-like impurities. It has been shown that, 
for k-mers and angled objects, the percolation threshold monotonically decreases with 
the size of the objects. However, in the case of more regular and compact shapes (tri-
angles), the percolation threshold monotonically increases with the object size. In both 
cases, the percolation threshold is found to be practically insensitive to the point-like 
defect concentration. We have pointed out that percolation can be reached at highest 
concentrations of impurities with angled objects. Triangles have the lowest values of 
critical concentrations and the worst performance regarding percolation.

It should be emphasized that the degree of disorder of the surface is tunable in our 
model not only by selecting the value of the impurity concentration, but also with the 
choice of the shape or size of impurities. The growing interest in such surface prop-
erties stems from their practical significance as thin films filled with the hybrid and 
functionalized single- and multi-walled carbon nanotubes [34]. Modifications of tubu-
lar structures usually include the presence of inorganic or organic functional groups, 
direct incorporation of specific elements, and generation of insulating defects [35]. 
Consequently, influence both of the point-like insulating defects and the finite-size 
impurities on the electrical connectivity of monolayer needs an additional attention. In 
this work we want to analyze how the length of needle-like impurity particles interferes 
the percolation process of extended primary particles (k-mers, angled objects and trian-
gles). For each given impurity, we determine a critical concentration of defects p∗c above 
which it is not possible to achieve the percolation. We provide a detailed description 
of two dierent methods for calculation of the critical concentrations p∗c for arbitrary 
impurity. Critical concentrations are obtained using the finite-size scaling analysis of 
the probability P ( p;L) that the percolation cluster of deposited objects is not formed 
during the simulation run on a lattice of size L, initially covered with impurities at 
various concentrations p. In addition, the values of critical concentration p∗c can be 
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obtained in the intersection point of the dependences of the jamming density θJ( p) and 

the percolation threshold θ∗p( p) on the concentration of impurities p.
The paper is organized as follows. Section 2 describes the details of the model and 

the simulations. We give the simulation results and discussions in section 3. Finally, 
section 4 contains some additional comments and final remarks.

2. Definition of the model and the simulation method

In our model the substrate is a triangular lattice initially occupied by defects (impu-
rities) of various sizes at eective concentration p. This concentration is defined as a 
fraction of sites of the lattice that are occupied by defects. Impurities (I) are k-mers of 
length � = 0–5, 7, shown in table 1 as objects (A0)—(A5), and (A7). Particles of impu-
rity cannot overlap and their spatial distribution at density p is generated using the 
RSA method. In this way we are able to prepare the substrate in disordered initial state 
with a statistically reproducible density p of impurities.

Depositing objects (O) are made by directed self-avoiding steps of length �. Special 
attention has been paid to deposition of shapes shown in table 2: k-mers, angled objects 
and triangles of two dierent sizes. Objects of a larger size are made by repeating each 
step of a basic shape the same number of times. Exception is made for triangles, where 
larger objects also occupy all comprised sites.

After placing impurities (I) up to a chosen concentration p, we switch the impurity 
deposition events o and initiate the second step of the experiment—adsorption of the 
objects (O) (‘conductors’). At each Monte Carlo step a lattice site is selected at random. 
If the selected site is unoccupied, deposition of the object is tried in one of the six orienta-
tions. We fix the beginning of the walk that makes the shape at the selected site and search 
whether all successive � sites are unoccupied. If so, we occupy these �+ 1 sites and place 
the object. If the attempt fails, a new site and a new direction are selected at random.

The Monte Carlo simulations are performed on a triangular lattice of a size up to 
L = 3200. Periodic boundary conditions are used in all directions. The time is counted 
by the number of attempts to select a lattice site and scaled by the total number of 

Table 1. The jamming coverages θJ and the percolation thresholds θ∗p for line 
segments (A1), (A2), (A3), (A4), (A5), and (A7) of dierent lengths �(x). The numbers 

in parentheses are the numerical values of the standard uncertainty of θ
(x)
J  and θ∗p 

referred to the last digits of the quoted value.

Impurities (x) �(x) θJ θ∗p

• (A0) 0 1 0.5000(1)

•−−• (A1) 1 0.914 033(3) 0.4867(1)

•−−•−−• (A2) 2 0.836211(4) 0.4628(3)
•−−•−−•−−• (A3) 3 0.789 090(6) 0.4432(2)
•−−•−−•−−•−−• (A4) 4 0.758 458(7) 0.4299(4)

•−−•−−•−−•−−•−−• (A5) 5 0.737 031(9) 0.4206(5)

•−−•−−•−−•−−•−−•−−•−−• (A7) 7 0.708 962(12) 0.4124(6)

https://doi.org/10.1088/1742-5468/aa82c0


The study of percolation with the presence of extended impurities

6https://doi.org/10.1088/1742-5468/aa82c0

J. S
tat. M

ech. (2017) 093202

lattice sites. The data are averaged over 500 or 5000 independent runs for each of the 
investigated ((O), (I)) pairs, and for each density p of impurities (I).

The jamming limit θJ is reached when no more objects can be placed in any position 
on the lattice. In practice, during the simulation we record the number of all inacces-
sible sites in the lattice. These include the occupied sites and the sites that are unoc-
cupied but cannot be the beginning of the walk deposited in any of the six orientations. 
The jamming limit is reached when the number of inaccessible sites is equal to the 
total number of sites in the lattice. Checking this condition is performed after every L2 
attempts (unit time) to absorb the object. If the condition is false, we stop the current 
run and continue with the next simulation run.

Impact of the impurity length � on percolation is studied. The coverage of the 
surface is increased in the RSA process up to the percolation threshold θp, when there 
appears a cluster that extends through the whole system along one of the three direc-
tions of the lattice. The tree-based union/find algorithm was used to determine the 
percolation threshold [36, 37]. Each cluster of connected sites is stored as a separate 
tree, having a single ‘root’ site. All sites of the cluster possess pointers to the root site, 
so it is simple to ascertain whether two sites are members of the same cluster. When 
a deposited object connects two separate clusters, they are amalgamated by adding a 
pointer from the root of the smaller cluster to the root of the larger one. This procedure 
is repeated until the percolation threshold is reached, i.e. until the opposite sides of the 
lattice are connected by a simple cluster.

3. Results and discussion

Values of the percolation thresholds for the infinitely large lattice θ∗p are obtained using 
the usual finite-size scaling analysis of the percolation behavior on two-dimensional lat-
tices [6]. In such systems one assumes that the eective percolation threshold θp (the 
mean value of threshold measured for a finite lattice) approaches the asymptotic value 
θp → θ∗p (L → ∞) via the power law:

Table 2. The jamming coverages θJ and the percolation thresholds θ∗p for line 
segments (A1), (A2), angled objects (B2), (B4), and triangles (C2), (C5) of dierent 
lengths �(x). The numbers in parentheses are the numerical values of the standard 

uncertainty of θ
(x)
J  and θ∗p referred to the last digits of the quoted value.

Objects (x) �(x) n
(x)
s θJ θ∗p

•−−• (A1) 1 2 0.914 033(3) 0.4867(1)
•−−•−−• (A2) 2 2 0.836 211(4) 0.4628(3)

(B2) 2 1 0.834 440(4) 0.4606(6)
(B4) 4 1 0.717 995(7) 0.4147(4)

(C2) 2 3 0.796 940(5) 0.5246(1)
(C5) 5 3 0.721 062(7) 0.5529(6)

https://doi.org/10.1088/1742-5468/aa82c0
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(a) (b)

(c) (d)

Figure 1. Typical configurations of deposited object (C5) (see table 2) at the 
percolation threshold obtained for impurities: (a) (A0), (b) (A1), (c) (A2), and (d) 
(A4) from table 1. The snapshots are given for impurity concentration p = 0.12. 
The corresponding values of the percolation threshold θp, measured for a finite 
lattice of size L = 60, are indicated below the figures. Deposited objects that 
belong to the percolation cluster are colored in red. Deposited objects outside of 
the percolation cluster are colored in blue. Impurities and empty nodes are black 
and white, respectively. Opened circles represent the head of the objects (the 
beginning of the walk). (a) (C5) + (A0), θp = 0.5483. (b) (C5) + (A1), θp = 0.5433.  
(c) (C5) + (A2), θp = 0.5517. (d) (C5) + (A4), θp = 0.5617.

https://doi.org/10.1088/1742-5468/aa82c0
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θp − θ∗p ∝ L−1/ν . (1)

Here the constant ν is the critical exponent that governs the divergence of the correla-

tion length as ξ ∝ |θp − θ∗p|−ν. It should be noticed that the universality class of random 
percolation in two dimensions is very well identified and the critical exponents are 
known exactly, namely, ν = 4/3 [6]. In our study, the typical values of lattice size are 
L = 40, 60, 80, 100, 200, 400, 800, 1600, 3200.

In figure 1 we show the typical snapshot configurations at the percolation threshold 
obtained for object (C5) (see table 2) and impurities (a) (A0), (b) (A1), (c) (A2), and (d) 
(A4) from table 1. The snapshots are taken at the impurity concentration p = 0.12. 
Dierent colors correspond to clusters of connected sites and the percolating clusters are 
clearly observed. The mesh structure of the open spaces look very dierent for adsorb-
ing point-like impurities (A0) in comparison with the extended impurities. Deposition 
of elongated impurities is characterized by domains of large islands of unoccupied sites 
(see, e.g. figure 1(d)). On the other hand, small impurities such as monomers (A0) cover 
the surface more uniformly (see figure 1(a)), so that empty space on the lattice is broken 
into small areas.

Dependence of the percolation threshold θ∗p on the impurity concentration p is shown 
in figures 2–4 for various lengths � of impurities and for depositing objects shown in 
table 2. The last given point in all these graphs corresponds to the critical defect con-
centration p∗c at which the percolation can be obtained. More precisely, concentration 
of the impurities p is below/above the critical density p∗c, if the probability of the for-
mation of percolation cluster tends to unity/zero as the lattice size increases, L → ∞. 

The ordinate of the last point is equal to the limiting threshold θcp = limp→p∗c θ
∗
p( p), 

which we call the ‘critical percolation threshold’. Detailed description of the methods 
for calculation of critical densities p∗c and thresholds θcp are provided later in the text. 
Results in figure 2(a), obtained for deposition of dimers (A1), suggest that the perco-
lation threshold θ∗p is practically not aected by the presence of point-like impurities 
(A0). However, when increasing the length � of impurities, percolation threshold θ∗p 
increases with p. The critical defect concentration p∗c decreases with the length � of 

Figure 2. Percolation thresholds θ∗p versus the impurity concentration p for line 
segments (a) (A1), and (b) (A2) from table 2. The results are given for various 
impurities, as indicated in the legend (see table 1).

https://doi.org/10.1088/1742-5468/aa82c0
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figure 2(b)), the critical defect concentrations p∗c are lower, and we can see a slight 
dierence concerning the p∗c in the case of point-like impurities (A0) and dimer impuri-
ties (A1); critical concentration p∗c for the point-like impurities (A0) is now a little bit 
lower than for the dimer impurities (A1).

In figure 3(a) results for the percolation thresholds θ∗p versus the concentration p of 
impurities of dierent lengths � are shown for the depositing object (B2)—the angled 
object made of two steps. These results are qualitatively similar to those for the deposi-
tion of dimers (A1), but the percolation thresholds θ∗p, and also the critical concentra-
tions p∗c, are lower. Results for the angled object (B4), made of four steps, are shown 
in figure 3(b). As in figure 2(b), here the critical concentration p∗c is slightly lower for 
the point-like impurities (A0) than for the dimer impurities (A1). Also, the percolation 
thresholds θ∗p are noticeably lower for the dimer (A1) than for the point-like impurities 
(A0) in the whole range of impurity concentrations.

Figure 3. Percolation thresholds θ∗p versus the impurity concentration p for angled 
objects: (a) (B2), and (b) (B4) from table 2. The results are given for various 
impurities, as indicated in the legend (see table 1).

Figure 4. Percolation thresholds θ∗p versus the impurity concentration p for 
triangles: (a) (C2), and (b) (C5) from table 2. The results are given for various 
impurities, as indicated in the legend (see table 1).

https://doi.org/10.1088/1742-5468/aa82c0
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Table 3. Shown here is the number of independent simulation runs (out of 500) during 
which the percolation cluster is not formed, for densities p = (a) 0.1, (b) 0.2, (c) 0.3,  
(d) 0.4 of impurity (A4) and for lattices of size L = 40− 3200. The cases without percolation 
clusters in 500 simulation runs are in bold, while the cases where percolation cluster is 
formed in each run are in italic. The results are shown for all objects from table 2.

(a) p = 0.1

L (A1) (A2) (B2) (B4) (C2) (C5)

40 0 0 0 0 0 14
60 0 0 0 0 0 6
80 0 0 0 0 0 1
100 0 0 0 0 0 2
200 0 0 0 0 0 0
400 0 0 0 0 0 0
800 0 0 0 0 0 0
1600 0 0 0 0 0 0
3200 0 0 0 0 0 0

(b) p = 0.2

L (A1) (A2) (B2) (B4) (C2) (C5)

40 0 0 0 16 17 456
60 0 0 0 1 5 491
80 0 0 0 1 5 490
100 0 0 0 0 1 499
200 0 0 0 0 0 500
400 0 0 0 0 0 500
800 0 0 0 0 0 500
1600 0 0 0 0 0 500
3200 0 0 0 0 0 500

(c) p = 0.3

L (A1) (A2) (B2) (B4) (C2) (C5)

40 5 127 93 414 449 500
60 3 102 86 449 483 500
80 0 84 57 478 497 500
100 0 82 64 489 498 500
200 0 52 33 500 500 500
400 0 27 6 500 500 500
800 0 3 1 500 500 500
1600 0 0 0 500 500 500
3200 0 0 0 500 500 500

(d) p = 0.4

L (A1) (A2) (B2) (B4) (C2) (C5)

40 369 488 496 500 500 500
60 411 498 498 500 500 500
80 461 500 500 500 500 500
100 478 500 500 500 500 500
200 497 500 500 500 500 500
400 500 500 500 500 500 500
800 500 500 500 500 500 500
1600 500 500 500 500 500 500
3200 500 500 500 500 500 500

https://doi.org/10.1088/1742-5468/aa82c0


The study of percolation with the presence of extended impurities

11https://doi.org/10.1088/1742-5468/aa82c0

J. S
tat. M

ech. (2017) 093202

Percolation thresholds θ∗p for deposition of triangles (C2) and (C5) are shown in 
figures 4(a) and (b), respectively. In figure 4(a) the percolation threshold θ∗p in the case 
of dimer impurities (A1) is lower than in the case of point-like impurities (A0), and this 
eect is more pronounced for larger triangles (see figure 4(b)). The critical impurity 
concentration p∗c for the point-like impurities (A0) is lower than for the dimer (A1) and 
trimer (A2) impurities, suggesting that impurities of small dimensions comparing to the 
depositing objects, suppress the percolation more successfully comparing to the some-
what longer ones.

In the following, two dierent methods for determining the critical concentration 
p∗c for arbitrary impurity (I) will be described in detail. Let us first focus our attention 
on the representative results given in table 3 for all examined objects. Table 3 shows 
the number of independent simulation runs (out of 500) during which the percolation 
cluster is not formed, for densities p = 0.1, 0.2, 0.3, 0.4 of impurity (A4) and for lattices 
of size L = 40–3200. Note that for the case of low concentrations of impurity p � 0.05, 
percolation cluster is formed in each independent simulation run, for all examined 
objects and lattices. However, the number of simulations that show no percolation rises 
with increasing the concentration p of impurity (A4). The absence of percolation is ini-
tially visible only in the cases of small latices. Further increasing of the concentration 
p leads to the lack of percolation even for the largest lattice, L = 3200. In other words, 
for given object (O) and impurity (I) there is an interval [ p−(L), p+(L)], where the num-
ber of simulations that show no percolation rises from 0% to 100%. Above p+(L) there 
is no percolation at all. Conversely, percolation cluster will be formed if the impurity 
concentration is suciently small, i.e. if p � p−(L). It is obvious that these upper and 
lower bounds of impurity concentrations depend explicitly on the lattice size L. In the 
following, we shall demonstrate that the interval [ p−(L), p+(L)] shrinks to a single point 

Figure 5. Two methods for determining the critical density pc: (a) Shown here 
are the values of the probability P ( p;L) that the percolation cluster of deposited 
objects (A2) (table 2) is not formed during the simulation run on the lattice of size 
L (see legend), initially covered with impurities (A7) (table 1) at various densities 
p. The dashed superimposed lines are the fits according to equation (2). The 
thin vertical line indicates the value of fitting parameter µ = 0.2821± 0.0010. (b) 
Dependences of the jamming density θJ and the percolation threshold θ∗p for object 
(A2) on the density p of impurity (A7). The thin vertical arrow indicates the value 
of critical density p∗c = 0.2815.
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p∗c as the lattice size rises, L → ∞. Also, it will be shown that this limiting value p∗c 
corresponds to the critical concentration of impurities.

Figure 5(a) shows the values of the probability P ( p;L) that the percolation cluster 
of deposited objects (A2) is not formed during the simulation run on a lattice of size 
L, initially covered with impurities (A7) at various concentrations p. The probabilities 
P ( p;L) are determined from N = 5000 independent runs for each of the investigated 
concentrations p = 0.15–0.40 of impurity (A7). Comparing the probabilities P ( p;L) 
for various lattice sizes L = 40–1600, one can see that the growth of the probability 
P ( p;L) from 0 to 1 occurs in a narrow density range [ p−(L), p+(L)] for the larger lati-
ces, i.e. | p+(L)− p−(L)| → 0, L → ∞. For other objects and impurities from tables 2 
and 1, we get qualitatively the same results for the behavior of probability P ( p;L). As 
an example, the dependence of the probabilities P ( p;L) for deposited object (B2) on 
concentration p of impurity (A4) are shown in figure 6(a) for various lattices of size in 
the range between L = 40 and L = 1600. It can be seen that the probabilities P ( p;L) 
obtained for object (B2) and impurity (A4) (figure 6(a)) are narrower and shifted to 
higher values of concentration p compared to the probabilities P ( p;L) corresponding 
to object(A2) + impurity(A7) case (figure 5(a)).

We have performed a three-parameter fitting of our simulation data for probabili-
ties P ( p;L) in order to analyze its behavior for an infinite system L → ∞. The fitting 
function we have used is of the form:

P ( p;L) =
1

2

(
1 + erf

(
p− µ

σ
√
2

− δ

))
, (2)

where μ, σ, and δ are the fitting parameters, and erf(x) is the error function. If δ = 0, 
the fitting function (2) is identical to the cumulative distribution function (CDF) for 
the normal (Gaussian) distribution with mean μ and deviation σ:

Figure 6. Two methods for determining the critical density pc: (a) Shown here 
are the values of the probability P ( p;L) that the percolation cluster of deposited 
objects (B2) (table 2) is not formed during the simulation run on the lattice of size 
L (see legend), initially covered with impurities (A4) (table 1) at various densities p.  
The dashed superimposed lines are the fits according to equation (2). The thin 
vertical line indicates the value of fitting parameter µ = 0.3081± 0.0008. (b) 
Dependences of the jamming density θJ and the percolation threshold θ∗p for object 
(B2) on the density p of impurity (A4). The thin vertical arrow indicates the value 
of critical density p∗c = 0.3093.
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P ( p;L) =
1√
2πσ

∫ p

−∞
exp

[
−1

2

(
p′ − µ

σ

)2
]
dp′. (3)

This functional form is commonly used to describe the probability Pperc to find a per-
colating cluster on a finite lattice of size L [38–40]. Furthermore, it has been suggested 
that the probability Pjam to find a jamming phase and the fluctuations of the jamming 
coverage may obey relationship similar to equation (3) [40–42]. Note that the param-
eter δ in equation (2) determines the probability P (µ;L) when a critical concentration 
of impurities μ is reached on a finite lattice of size L. The analysis of the behavior of 
probabilities P ( p;L) is carried out by using the nonlinear fitting routine fminsearch in 
MATLAB� (MathWorks, Natick, MA).

Now, it is necessary to establish a connection between the proposed fitting function 
(2) and the critical concentrations of impurities. The results obtained for all analyzed 
objects (O) and impurities (I) have shown that the parameter μ does not depend on 
the size L of the lattice, but depends on the selected pair (O) + (I). The corre sponding 
values of parameter μ for pairs (A2) + (A7) and (B2) + (A4) are µ = 0.2821± 0.0010 
and µ = 0.3081± 0.0008, respectively. These values are denoted by thin vertical lines 
in figures 5(a) and 6(a). The parameter δ does not depend on the lattice size L and has 
a value of δ ≈ 0.3, for all objects and impurities. However, the parameter σ depends 
explicitly on the lattice size L. In figure 7 the values of the fitting parameter σ ver-
sus the lattice size L are reported for the simulation results shown in figures 5(a) and 
6(a). Here, dependence of the parameter σ on the lattice size L is shown on a double 
logarithmic scale. For all examined objects and impurities these plots are straight lines 

Figure 7. Parameter σ of the fitting function (2), as function of lattice size L, for 
two pairs (A2) + (A7) (squares) and (B2) + (A4) (circles), as indicated in the legend. 
The straight lines are the fits using equation (4). Parameter σ(L) seems to be well 
described by a simple power law. The corresponding values of the exponent γ and 
the parameter A are: (a) γ = 0.732 and A = 60.35, for (A2) + (A7); (b) γ = 0.705 and 
A = 42.21, for (B2) + (A4).
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approximately parallel to each other, indicating that the fitting parameter σ is a simple 
power-law of the lattice size L:

σ = A L−γ . (4)
The corresponding values of the exponent γ for pairs (A2) + (A7) and (B2) + (A4) are 
γ = 0.732 and γ = 0.705, respectively. For all examined objects and impurities we have 
obtained the confirmation of the power law of equation (4) with the value of the expo-
nent γ ranging from 0.70 to 0.77. The parameter A depends both on the chosen object 
(O) and impurity (I).

According to equation (4), in the limit L → ∞, we have

p− µ

σ
→

{
−∞, p < µ (L → ∞)

+∞, p > µ (L → ∞). (5)

Since erf(−∞) = −1 and erf(+∞) = +1, from equation (2) we obtain that

P ( p;L → ∞) =

{
0, p < µ

1, p > µ. (6)

Hence, in the limit L → ∞ the probability P ( p;L) (equation (2)) converges to the dis-
continuous Heaviside step function (6), indicating that the parameter μ represents the 
critical impurity concentration p∗c.

Figure 8. The jamming coverage θJ and the percolation threshold θ∗p for objects (a) 
(A1), (A2), (b) (B2), (B4), and (c) (C2), (C5) from table 2, and impurity (A1) (table 1).
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An alternative method for determining the critical concentrations p∗c is demonstrated 
in figures 5(b) and 6(b). In these figures, the dependences of jamming density θJ and 
percolation threshold θ∗p on the concentration of impurities p are shown for the follow-
ing pairs: object(A2)  +  impurity(A7) (figure 5(b)), and object(B2)  +  impurity(A4) (figure 

6(b)). As can be seen, for suciently large impurity concentrations, the curves θJ( p) and 

θ∗p( p) intersect each other at some point. Abscissa of the intersection point θ∗p( p) ∩ θJ( p) 

is equal to the critical concentration p∗c of impurity, and its ordinate corresponds to the 

‘critical percolation threshold’, denoted by θcp. The critical threshold θcp coincides with the 
value of the jamming density θJ when p = p∗c. Our simulations confirm that the percola-
tion threshold θ∗p can be arbitrarily close to the critical value θcp, if the concentration p of 

impurities is suciently close to the critical value p∗c. Values of the critical concentration 

p∗c obtained in the intersection point θ∗p( p) ∩ θJ( p) for pairs (A2) + (A7) and (B2) + (A4) 
are p∗c = 0.2815 and p∗c = 0.3093, respectively. These values are denoted by thin vertical 
arrows in figures 5(b) and 6(b). It is important to notice that the critical concentrations 

p∗c obtained from the analysis of the probability P ( p;L) (equation (2)) and determined 

from the intersection point θ∗p( p) ∩ θJ( p) have practically the same value.
Numerical simulations for all objects and impurities produce qualitatively similar 

results for the dependence of the jamming density θJ( p) and percolation threshold θ∗p( p) 
on the concentration p of impurities. Some examples are given in figures 8 and 9 where 

Figure 9. The jamming coverage θJ and the percolation threshold θ∗p for objects  
(a) (A1), (A2), (b) (B2), (B4), and (c) (C2), (C5) from table 2, and impurity (A5)  
(table 1).
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Figure 10. Dependence of the ratio of the percolation threshold and the jamming 

coverage, θ∗p/θJ, on the density p of impurities (a) (A0), (b) (A1), (c) (A2), (d) (A3),  
(e) (A4), (f) (A5), (g) (A7), for all objects in table 2 (see legend).
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we have plotted both the jamming density θJ( p) and the percolation threshold θ∗p( p) 
for all examined objects (see table 2) as functions of concentration p of the impurities 

(A1) and (A5). As can be seen, from extrapolation of the curve θ∗p( p) to the intersection 
with the curve θJ( p), it is always possible to obtain a critical concentration p∗c for each 
object and impurity.

We have also considered the ratio of the percolation threshold and the jamming 

coverage, θ∗p/θJ, for all examined pairs of objects and impurities. In figures 10(a)–(g), we 
show the dependence of the ratio θ∗p/θJ on the concentration p of impurities (A0)—(A7), 

for all objects from table 2. As expected, the ratio θ∗p/θJ increases with density p for all 

examined objects, regardless of the length of impurities. The ratio θ∗p/θJ increases more 
sharply for higher impurity concentrations p, and tends to definite value θ∗p/θJ = 1 at 

the point which corresponds to the critical concentration p∗c of the impurity.
Figure 11 presents the critical concentrations p∗c of impurities (figure 11(a)) and the 

critical percolation thresholds θcp (figure 11(b)) versus the length � of impurities, for 
various objects from table 2. The critical concentration p∗c of impurities for reaching 
percolation generally decreases with the length of impurities because it is more dicult 
to ‘avoid’ the extended defects. However, in the case of adsorption of larger objects, 
exception occurs for the point-like impurities (A0). Indeed, the critical concentration p∗c 
of monomers (A0) is lower than p∗c for dimer impurities (A1) in the case of deposition of 
objects (A2), (B4), (C2), and (C5). The critical percolation threshold θcp increases with 
the length � of impurities since a larger coverage of the lattice is needed to form a per-
colating cluster despite of the presence of impurities. The results for larger objects (B4) 
and (C5) suggest that in the presence of point-like impurities (A0), critical percolation 
threshold θcp can have even larger values than in the case of dimer impurities (A1). The 
reasons for these results are intuitively clear. The point-like impurities (see figure 1(a)) 
randomly distributed on the lattice leave enough space for deposition of small objects 
and forming percolation clusters. Deposition of larger objects is more aected by the 
presence of these relatively homogeneously distributed impurities. On the other hand, 
the dimer impurities (see figure 1(b)) are more compact and it is easier to form a 

Figure 11. (a) Critical concentrations p∗c of impurities, and (b) critical percolation 
thresholds θcp versus the length � of impurities (see table 1) for various objects from 
table 2.
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percolating cluster made of large objects at the same eective concentration of impu-
rities. Dimer impurities are also short enough to be easily avoided by the depositing 
objects. With the growth of impurity length (see figures 1(c) and (d)) it becomes more 
dicult to avoid them and the critical impurity concentration decreases.

4. Summary

We have investigated percolation phenomena for RSA process with two kinds of depos-
ited particles. One type of particles we considered as finite-size impurities (table 1) that 
are deposited up to some level in the first stage of the process. Another type of particles 
were conducting particles that are adsorbed on the substrate contaminated by impuri-
ties. These shapes are placed by self-avoiding lattice steps (table 2). We have analyzed 
how the length � and the concentration p of the needle-like impurity particles changes 
the percolation threshold θ∗p of extended conducting particles (k-mers, angled objects 
and triangles).

For the line segments ((A1), (A2)) and the angled objects ((B2), (B4)) it was 
shown that the percolation threshold θ∗p is practically not aected by the presence 
of point-like impurities (A0). However, for suciently large impurities, percolation 
threshold θ∗p of all examined objects increases with the concentration p. In the case 
of larger objects, e.g. (C5) (see figure 4(b)), there is a dierence in the behavior of 
the percolation thresholds θ∗p for small and large impurities when the concentration 
of impurities p increases. For small impurities of length l � 3, percolation threshold 
θ∗p of object (C5) decreases with p for low impurity concentrations; for suciently 
large impurities (� > 3) percolation threshold θ∗p of object (C5) increases in the whole 
range of impurity concentrations p. It seems that, at relatively low concentrations 
p, the presence of small impurities (but not point-like) stimulates the percolation for 
larger depositing objects.

Special attention has been paid to determining the critical concentration p∗c of 
defects above which it is not possible to achieve percolation. It was found that the 
concentration p∗c of finite-size impurities for reaching percolation decreases with 
the length � of impurities. However, exception occurs for larger objects, in which 
case the critical concentration p∗c of monomers (A0) is lower than p∗c for the dimer 

impurities (A1). We have also shown that the ratio of percolation and jamming 

thresholds θ∗p/θJ increases with impurity concentration p for all examined objects 
and impurities.
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