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Electrical conductivity in the Hubbard model: Orbital effects of magnetic field
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Calculation of conductivity in the Hubbard model is a challenging task. Recent years have seen much progress
in this respect and numerically exact solutions are now possible in certain regimes. In this paper we discuss the
calculation of conductivity for the square-lattice Hubbard model in the presence of a perpendicular magnetic
field, focusing on orbital effects. We present the relevant formalism in all detail and in full generality, and then
discuss the simplifications that arise at the level of the dynamical mean field theory (DMFT). We prove that the
Kubo bubble preserves gauge and translational invariance, and that in the DMFT the vertex corrections cancel
regardless of the magnetic field. We present the DMFT results for the spectral function and both the longitudinal
and Hall conductivities in several regimes of parameters. We analyze thoroughly the quantum oscillations of the
longitudinal conductivity and identify a high-frequency oscillation component, arising as a combined effect of
scattering and temperature, in line with recent experimental observations in moiré systems.
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I. INTRODUCTION

Strong correlations in electronic systems have a profound
effect on conductivity, and lead to a range of unconventional
behaviors which are at the center of interest in condensed
matter theory. One such behavior is the linear temperature
dependence of resistivity, observed in the cuprate supercon-
ductors [1–3]. The linear resistivity has been reproduced by
numerical simulation of the Hubbard model [4–13], as well
as with ultra-cold-atom simulations [14]. It is viewed as an
effect of proximity to the Mott transition [8,15,16] or quantum
critical points [6,17–19], as well as a generic high-temperature
feature of correlated materials which are well approximated
by a single-band model [9].

External magnetic fields are also known to affect the
transport properties of electronic systems [20], sometimes
drastically: in the context of the two-dimensional electron gas,
magnetic field leads to the well-known quantum Hall effect
(QHE), where conductivity displays intricate dependence on
the magnetic field [21–24]. The effect of the Coulomb inter-
action is here essential for the understanding of the fractional
QHE [25,26]. In conventional metals, resistivity is an oscilla-
tory function of the magnetic field, which is the well-known
Shubnikov–de Haas effect (SdH) [27,28]. However, the SdH
effect is often observed even in states which are assumed to be
correlated and are not yet fully understood [29–31]. In such
cases, an effective Fermi-liquid description of the material is
often invoked to analyze the experimental data, and to map
out the geometry of the Fermi surface. It is, therefore, of great
importance to understand the interplay of strong coupling and
magnetic fields in lattice systems. The study of magnetore-
sistance in correlated lattice models has been so far limited

to perturbative approaches, either for weak fields [32–34] or
weak interactions [22,35,36]. To the best of our knowledge,
the only nonperturbative calculations of magnetotransport
were limited to the transversal conductivity [37–39]. Nonper-
turbative calculations were also performed for the effective
Fermi-liquid parameters (quasiparticle weight, scattering rate,
and density of states at the Fermi level) [38,40,41], which can
be considered relevant for longitudinal conductivity.

In this paper we study the effect of magnetic field on both
the longitudinal and transversal conductivity in the square-
lattice Hubbard model in several parameter regimes: from
weak to strong coupling, low to high temperature, and in the
full range of the magnetic field.

We first lay out the general formalism for the calculation
of conductivity in the presence of the magnetic field and
then describe the simplifications that arise at the level of the
dynamical mean field theory (DMFT), as previously imple-
mented in Refs. [38,41]. Most importantly, we show that the
Kubo bubble is gauge invariant and that the vertex corrections
to the current-current correlation function cancel, analogously
to the zero-field case. The latter is done by rederiving the
well-known zero-field proof from Ref. [42] in real space, and
then generalizing it to the case of external magnetic fields.
Cancellation of vertex corrections at the level of DMFT was
previously shown only for the transversal conductivity [38],
and here we give a different, fully general proof.

We perform extensive DMFT calculations to cover a large
part of the phase diagram. Our numerical results show that
the oscillatory behavior of conductivity is restricted to a fi-
nite range of temperature which is mainly determined by
the amount of dynamic correlations (which are promoted
by interactions, yet hindered by doping). The amplitude of
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oscillations decays exponentially with temperature, as ex-
pected from the Lifshitz-Kosewich theory [43]. Above a
certain characteristic temperature, no nonmonotonic behav-
ior can be induced no matter how strong the magnetic field
is. We also observe that in a big range of magnetic fields
and interaction strengths, the conductivity follows a scaling
law, with the temperature scale set by the coupling strength.
Most importantly, the T -linear dependence of resistivity in the
high-temperature regime is not qualitatively modified by the
magnetic field.

We investigate transverse conductivity in the noninter-
acting limit, and observe exponential decay of σ xy with
temperature, and a power-law divergence as Bz → 0. The
analytic behavior at Bz = 0 is restored by interactions, which
led to a smooth decay of σ xy as the magnetic field is gradually
turned off.

Finally, we investigate the oscillatory behavior of conduc-
tivity in weak-to-moderate magnetic fields. In all the cases
we studied, the longitudinal conductivity turns out to be
dominated by the current-vertex factors, rather than the local
density of states at the Fermi level or the effective scatter-
ing rate. This leads to an important simplification: one can
reliably calculate conductivity at an arbitrary field by us-
ing the zero-field DMFT calculation for the self-energy. We
further observe that at high temperature, moderate-to-high
interactions, and moderate fields, the oscillation occurs at two
separate frequencies: one that corresponds to the area of the
Fermi sea, as in the Shubnikov–de Haas effect, and the other
which corresponds to the full area of the two-dimensional
Brillouin zone (BZ), and is therefore of higher frequency and
independent of the doping level. This finding is in excellent
qualitative agreement with the recent experimental observa-
tions in graphene superlattices [44–47]. The full discussion
of the observed phenomenology of quantum oscillations of
conductivity in the Hubbard model is presented in a separate
publication, Ref. [48], while here we present the raw data
and describe the basic mechanism behind the onset of the
high-frequency oscillations.

The paper is organized as follows. We first describe the for-
malism: the Hamiltonian, the gauge choice, reciprocal-space
formulation, gauge-invariant Green’s function, current opera-
tors and the correlation function, DMFT approach, calculation
of the conductivity tensor, and vertex factors. We then present
and discuss the results. For the benefit of the reader and for
easy rederivation and validation of the results presented in
this work, we provide very detailed proofs of all steps in the
derivations in the Appendices. For reasons of clarity and to
facilitate dimensional analysis we maintain all constants (e, h̄,
kB, and lattice constants a in c) in the equations.

II. FORMALISM

A. Model

We study the Hubbard model on the square lattice with
lattice constant a, defined by the Hamiltonian

H = H0 + Hint, (1)

where the noninteracting part H0 is the tight-binding (TB)
model that we discuss in the following sections, while the
interacting part Hint is the local density-density coupling, i.e.,

the Hubbard interaction

Hint = U
∑

i

ni,↑ni,↓, (2)

where i indexes the lattice sites, ni,σ are the density operators,
and U is the coupling constant. The electron spin is denoted
σ =↑,↓.

1. Orbital space

The lattice sites are assumed to lie in the z = 0 plane;
where convenient, we will treat the system as a three-
dimensional stack of such planes separated by the lattice
constant c in the perpendicular direction.

The effect of the external magnetic field B in the TB model
is twofold: it couples to the electrons’ spin degree of freedom
(Zeeman term), as well as the momentum. The latter is ap-
proximated on the lattice by means of the Peierls substitution
[49,50]. The resulting Hamiltonian is

H0 = −μ
∑
i,σ

ni,σ + gμB

∑
i

B(ri ) · Si −
∑
i, j,σ

ti je
i fi j c†

i,σ c j,σ ,

(3)

where μ is the chemical potential, g is the gyromagnetic
factor, μB is the Bohr magneton, the position vector of site
i is ri, and the operator of the electron SU(2) spin is

Sη
i = 1

2
(c†

i,↑, c†
i,↓)σ̂ η

(
ci,↑
ci,↓

)
, (4)

where σ̂ η are the Pauli matrices, and η enumerates the spatial
directions x, y, z. The ti j is the hopping amplitude between the
sites i and j. The Peierls substitution introduces a phase shift
fi j that is picked up by an electron on the path from site i to
site j:

fi j = e

h̄

∫ r j

ri

A(r) · dr. (5)

Here A is the vector potential, e the elementary charge, and
h̄ the reduced Planck’s constant. In matrix notation in site
space, the effect of the gauge field corresponds to element-
wise multiplication of the bare Hamiltonian:

H0[A] = H0[A = 0] ◦ eif , (6)

where eif is simply a matrix constructed out of ei fi j elements.
We are interested in the effects of a uniform magnetic

field perpendicular to the two-dimensional (2D) lattice: B =
(0, 0, Bz ). The vector potential A is not uniquely determined
by B. There are two obvious choices: the Landau gauge

A(r) = (0, xBz, 0), (7)

and the symmetric gauge

A(r) =
(

− y

2
Bz,

x

2
Bz, 0

)
. (8)

Throughout this paper, we work in the Landau gauge.
In the rest of the paper, we define lattice site coordinates

xi and yi as integers, and define ri = (xi, yi, 0). The physical
position vector of the lattice site i is then ari and we give
spatial indices in terms of r as, e.g., Ar ≡ A(ar).
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Plugging the Landau gauge field A [Eq. (7)] in the expres-
sion for the Peierls phase [Eq. (5)] one obtains [41,48] (see
Appendix A for proof)

fi j ≡ fri,r j

= e

h̄
(Bza

2)
(y j − yi )(xi + x j )

2

= 2π
�

�0

(y j − yi )(xi + x j )

2
, (9)

where �0 = h/e is the unit flux, and � = Bza2 is the flux per
lattice plaquette.

To be able to define a finite-sized (commensurate) mag-
netic unit cell, the values of Bz must satisfy

e

h̄
(Bza

2) = 2π
p

q
, (10)

where p and q are coprime integers. q is then the size of the
unit cell in the x direction (for proof see Appendix B). In the
other direction the size of the unit cell is 1, as the translational
invariance is not broken along the y axis; this is obvious as fi j

depends only on the difference yi − y j .
The effect of Bz on the kinetic energy term is periodic.

As Bz enters the kinetic energy through e2π i p
q (y j−yi )(xi+x j )/2,

if (y j − yi )(xi + x j )/2 is an integer for all (i, j) connected
by hopping (as is the case with nearest-neighbor hopping),
increasing p/q by an integer makes no difference. Therefore,
the effect of p

q is the same as that of p+mq
q , with m integer.

The inversion symmetry of the lattice implies that the effect
of p

q is the same as that of q−p
q . When it comes to the kinetic

energy term, all physically discernible magnetic fields [that
satisfy Eq. (10)] can be mapped onto the range 0 � p/q � 1

2 .
The field p/q = 1 is then a characteristic value of the field, the
lowest one (other than zero) that does not couple with electron
motion.

In numerics, we will consider a finite L × L cyclic lattice,
which must fit an integer number of magnetic unit cells of size
q × 1. We can rewrite the condition (10) as

e

h̄
(Bza

2) = 2π
p

q
= 2π

n

L
(11)

with the size of magnetic unit cell being L or smaller, as given
by L/gcd(L, n), where “gcd” denotes the greatest common
divisor, and n is an arbitrary integer. In fact, the relation
between the finite and infinite lattice is simply

q = L/gcd(L, n), p = n/gcd(L, n).

The size of the lattice L determines the resolution of p/q that
one can achieve in scanning the strength of the field in the
model.

Under the assumption of only the nearest-neighbor hop-
ping, we now rewrite the full Hamiltonian as

H0 = −μ
∑
i,σ

ni,σ + 1

2
gμBBz

∑
i,σ=↑,↓

(−1)δσ,↓ni,σ

− t
∑

i,u∈{ex,ey},σ
ei ea2

h̄ xiBzu·ey c†
ri,σ

cri+u,σ + H.c. (12)

Numeric scales. The importance of the Zeeman splitting
depends on the ratio of the Zeeman energy over the band-
width. Both g and the bandwidth are material specific. A quick

estimate for cuprate compounds, under the assumption of g =
2 and half-bandwidth of around 105 K, gives that Bz of about
50 T corresponds to a Zeeman energy of about ≈3 × 10−3D,
where D = 4t is the half-bandwidth. While the effect of Zee-
man splitting is interesting to study on its own, throughout this
paper we restrict to only the gauge-field effects and set g = 0.

The effect of the gauge field is determined by the lattice
spacing. Assuming a ∼ 5 × 10−10 m which is relevant for
cuprates, we see that the characteristic p/q = 1

2 field corre-
sponds to Bz = π h̄

ea2 ≈ 8 × 103 T. At Bz = 50 T, we therefore
have p/q ≈ 1

300 , and we need at least the lattice size L = 300
to describe this regime. Clearly, the bigger the lattice spacing,
the bigger the phase picked up upon traveling between the
lattice sites, and the bigger the effect of the coupling to the
gauge field. The regime of large p/q is therefore relevant for
systems with a larger lattice spacing (as in moiré heterostruc-
tures [51]), or where high gauge fields can be introduced
artificially (as in optical lattices [52,53]).

2. Momentum space

Rewriting the kinetic energy in momentum space leads
to the Harper equation [54,55]. By applying to the kinetic
energy term the Fourier transformation of the creation and
annihilation operators,

c†
i = 1√

N

∑
k

e−ik·ri c†
k, ci = 1√

N

∑
k

eik·ri ck, (13)

where N = L2 is the number of sites in the lattice, one obtains

Hkin = −t
∑

i,u∈{ex,ey},σ
ei2π n

L xiu·ey c†
ri,σ

cri+u,σ + H.c.

= −2t
∑
k,σ

cos kxnk,σ − t
∑
k,σ

eiky c†
k,σ ck−2π n

L ex,σ + H.c.

(14)

For a detailed proof see Appendix C.
There is a coupling between the different k states which

results in a reduction of the Brillouin zone (BZ) by a factor
of q = L/gcd(L, n), where q is the size of the magnetic unit
cell. We define k̃ as k within the reduced BZ (RBZ). Now,
k̃x ∈ [0, 2π/q), while k̃y ∈ [0, 2π ). k̃ is a good quantum num-
ber, but there is now an additional degree of freedom that we
denote l such that l ∈ [0, q). A single-particle state is fully
determined by a triplet (k̃, l, σ ), with ck̃,l,σ ≡ ck=k̃+l 2π

q ex,σ
.

On a finite cyclic lattice, the momentum space is discrete,
with a step of the size 2π/L. If gcd(L, n) = 1 there is only
one k̃x value in the RBZ (equal to 0), and for each momentum
there are q = L different values of l .

The Hamiltonian has a block-diagonal structure. For a
given (k̃, σ ), the Hamiltonian in the space of l is given by
the Harper equation

[H0,k̃,σ ]l,l ′ =
(

−μσ − 2t cos

(
k̃x + l

2π

q

))
δl,l ′

− t (eik̃yδl,l ′⊕p + e−ik̃yδl ′,l⊕p), (15)

where ⊕ denotes the cyclic addition modulo q defined as

l ⊕ l ′ ≡ l + l ′ − q div(l + l ′, q), (16)
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and p = n/gcd(L, n). We also introduced μσ = μ −
(−1)δσ,↓gμBBz/2.

Each block of the Hamiltonian can be diagonalized to yield
the eigenenergies εk̃,σ,m, with m ∈ [0, q). The basis change
matrix elements are defined by

c†
k̃,l,σ

=
∑

m

[αk̃,σ ]l,mc†
k̃,m,σ

. (17)

Note that throughout this work, we distinguish between dif-
ferent operators (ci,σ ≡ cri,σ , ck,σ , ck̃,l,σ , ck̃,m,σ , etc.) only by
the choice of the symbols in the subscript (e.g., ck̃,l,σ is not
equal ck̃,m,σ even if l = m), and similarly for other functions.

The blocks of the Hamiltonian have several symmetries.
One can invert the x axis[

H0,(k̃x,k̃y ),σ

]
l,l ′ = [

H0,(−k̃x,k̃y ),σ

]∗
q−l,q−l ′ , (18)

which means that[
α(k̃x,k̃y ),σ

]
l,m = [

α(−k̃x,k̃y ),σ

]∗
q−l,m (19)

and that the eigenenergies remain the same upon inverting the
x axis.

One can also invert the y axis[
H0,(k̃x,k̃y ),σ

]
l,l ′ = [

H0,(k̃x,−k̃y ),σ

]∗
l,l ′ . (20)

Again, inverting ky does not affect the eigenenergies, but
merely flips the chirality of the eigenstates[

α(k̃x,k̃y ),σ

]
l,m = [

α(k̃x,−k̃y ),σ

]∗
l,m. (21)

Inverting both axes at the same time therefore means[
H0,(k̃x,k̃y ),σ

]
l,l ′ = [

H0,(−k̃x,−k̃y ),σ

]
q−l,q−l ′ (22)

and

[αk̃,σ ]l,m = [α−k̃,σ ]q−l,m. (23)

There is an additional periodicity along the y axis

εk̃,σ,m = εk̃+(2πC/q)ey,σ,m (24)

and

[αk̃,σ ]l p mod q, m = eiC 2π
q l [αk̃+(2πC/q)ey,σ

]l p mod q, m (25)

with C integer. This symmetry is important on a finite lattice,
where ky takes values of the form C2π/L. If L = q [i.e.,
gcd(n, L) = 1], this means that the density of states and other
relevant quantities can be obtained by considering only the
block k̃ = (0, 0). Otherwise, ky values up to 2π/q need to be
considered. For a proof see Appendix D.

B. Gauge-invariant Green’s function

A uniform magnetic field does not break physical transla-
tional invariance. However, at the formal level, the inclusion
of the appropriate vector potential means that all correlators
connecting two or more points in space depend not only on the
relative positions, but also on the absolute positions. The spa-
tial dependence of correlators can depend on the gauge choice.
Nevertheless, physical observables preserve both translational
and gauge invariance.

The quantity of primary interest is the Green’s function. It
is defined as a function of imaginary time

Gi j,σ (τ ) = −〈Tτ ci,σ (τ )c†
j,σ (0)〉. (26)

As a function of complex frequency z, and as a matrix in the
site space, one can always write

Gσ (z) = [h̄zI − H0 − �(z)]−1, (27)

where �(z) is the self-energy. The diagonal elements of the
Green’s function with z = ω + i0+ determine the local spec-
tral function which is a physical observable. As such, the
local Green’s function is uniform in space. Nevertheless, the
off-diagonal elements do not exhibit translational invariance
Gi j = Gri−r j , but rather this equality is satisfied only up to a
phase.

It can be shown that the quantity

Ḡi j,σ (z) ≡ e−i fi j Gi j,σ (z) (28)

is gauge invariant, and preserves the full symmetry of the
lattice. We reproduce here a proof from Ref. [56] which is
valid in the noninteracting case, but is completely analogous
in the case of a fully local and spatially uniform self-energy.
In orbital space we have

G = [Ih̄z − H0[A] − I�(z)]−1,

G−1 = [Ih̄z − H0 ◦ eif − I�(z)],

I = [Ih̄z − H0 ◦ eif − I�(z)]G. (29)

It is also easy to verify that I ◦ eif = I so we can further write

I ◦ eif = ([Ih̄z − H0 − I�(z)] ◦ eif )G,

I ◦ eif = ([Ih̄z − H0 − I�(z)] ◦ eif )(Ḡ ◦ eif ). (30)

We now write the scalar form

δi je
i fi j =

∑
k

[Ih̄z − H0 − I�(z)]ikei fik Ḡk je
i fk j ,

δi j =
∑

k

[Ih̄z − H0 − I�(z)]ikḠk je
i fik ei fk j e−i fi j ,

δi j =
∑

k

[Ih̄z − H0 − I�(z)]ikḠk je
i fik ei fk j ei f ji . (31)

The expression ei fik ei fk j ei f ji is simply the magnetic flux pass-
ing through the triangle defined by the lattice sites i, j, and k.
This quantity is gauge invariant. As Eq. (31) is a defining rela-
tion for Ḡi j , it means that Ḡi j is gauge invariant. Furthermore,
the quantity [Ih̄z − H0 − I�(z)]ik has full lattice symmetry,
thus Ḡi j does as well.

However, it is interesting to consider the case of a general
(possibly nonlocal and nonuniform) self-energy �. In that
case, the step performed between Eqs. (29) and (30) reads as

[Ih̄z − H0 ◦ eif − �(z)] = [Ih̄z − H0 − �(z) ◦ e−if ] ◦ eif .

(32)
The proof can proceed from there completely analogously, but
only if the quantity �̄(z) ≡ �(z) ◦ e−if is gauge invariant and
preserves the full lattice symmetry.

A proof for the gauge invariance and lattice symmetry
of �̄ can be given in terms of Feynman diagrams for a
special case of local density-density interactions, as follows.
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Each diagram’s contribution is a product of a certain number
of fermionic loops. In case of local density-density interac-
tions, a single Green’s function loop is just the density, and
this quantity is gauge invariant. Then, we have a loop of
arbitrary size N :

G0,i1i2 G0,i2i3 . . . G0,iN i1 = Ḡ0,i1i2 Ḡ0,i2i3 . . . Ḡ0,iN i1

× ei fi1 i2 ei fi2 i3 . . . ei fiN i1 , (33)

which is gauge invariant for the same reason as we had above
[note that for the bare propagator Ḡ0, gauge invariance and
symmetries have already been proven by Eq. (31)]. The closed
fermionic loops are multiplied with the fermionic line con-
necting the terminals of the self-energy. Say, in case of �i1,iN ,

G0,i1i2 G0,i2i3 . . . G0,iN−1iN = Ḡ0,i1i2 Ḡ0,i2i3 . . . Ḡ0,iN−1iN

× ei fi1 i2 ei fi2 i3 . . . ei fiN−1 iN . (34)

Clearly, if we multiply now both sides with e−i fi1 ,iN , we get on
one side �̄i1,iN , and on the other

Ḡ0,i1i2 Ḡ0,i2i3 . . . Ḡ0,iN−1iN ei fi1 i2 ei fi2 i3 . . . ei fiN−1 iN e−i fi1 ,iN

= Ḡ0,i1i2 Ḡ0,i2i3 . . . Ḡ0,iN−1iN ei fi1 i2 ei fi2 i3 . . . ei fiN−1 iN ei fiN ,i1

(35)

and again the right-hand side is gauge invariant. This proves
that the contribution to �̄i j of each Feynman diagram individ-
ually is gauge invariant. Moreover, �̄ is expressed solely in
terms of objects with full lattice symmetry, thus, it must itself
exhibit full lattice symmetry.

Efficient calculation of Ḡ

A straightforward calculation of Ḡ performed in site space
would involve an inverse of the N × N matrix

Ḡ(z) = e−if ◦ [h̄zI − H0[A] − �(z)]−1. (36)

[Note that here the Peierls phase needs to be taken as Eq. (A2),
see Appendix A]. This operation scales as O(N3) and the size
of the lattice one can treat this way is limited to N ∼ 1000. A
more efficient approach can be formulated, and especially so
in the noninteracting case, and the case when the self-energy
is fully local, i.e., whenever the Green’s function is fully diag-
onal in the eigenbasis of H0, i.e., G(k̃,m),(k̃′,m′ ) = δk̃,k̃′δmm′Gk̃,m.
This is precisely the case relevant for our DMFT calculations.
We will make use of the basis change matrix elements to go
from eigenbasis |k̃, m, σ 〉 to orbital basis |i, σ 〉:

|i, σ 〉 = 1√
N

∑
k

e−ik·ri |k, σ 〉

= 1√
N

∑
k̃,l

e−i(k̃+l 2π
q ex )·ri |k̃, l, σ 〉

= 1√
N

∑
k̃,l

e−i(k̃+l 2π
q ex )·ri

∑
m

[αk̃,σ ]l,m|k̃, m, σ 〉. (37)

Therefore,

Gr,r′,σ (z) = 1

N

∑
k̃,m

W ∗
k̃,m,r,σWk̃,m,r′,σ Gk̃,m,σ (z) (38)

with

Wk̃,m,r,σ =
∑

l

e−i(k̃+l 2π
q ex )·r[αk̃,σ ]l,m. (39)

Calculation of [αk̃,σ ] scales as O(q3). As there is N/q
different k̃ to consider, the first step scales as O(Nq2), with
q � L, i.e., at most O(N2). Then the calculation of Wk̃,m,r,σ

scales as O(q) but there is N different k̃, m to consider, and
we need N different r, which is in total O(N2q), i.e., at
most O(N2L), which is the bottleneck in the calculation. The
calculation of each Gr,r′,σ (z) then scales as O(N ), but only if
G is diagonal in k̃, m; if it is only diagonal in k̃ but not in
m, this scales as O(Nq). As Ḡr,r′ = Ḡr−r′ , we only need to
calculate N different elements of the G matrix rather than all
N2 of them:

Ḡr = e−i fr,r′=0 Gr,r′=0. (40)

In total, this scales as O(N2). Again, if G is diagonal in k̃ (as
we expect it to be in the absence of translational symmetry
breaking), but not in m, then the scaling is O(N2q), which is
still better than the direct matrix inverse. When there is no
translational symmetry (e.g., there is disorder), then the scal-
ing is O(N4), which is worse than the direct matrix inverse.
In that case Ḡ is still gauge invariant, but is not translationally
invariant, and all N2 r, r′ components need to be calculated.

Finally, we are interested in the spatial Fourier transform

Ḡk =
∑

r

eik·rḠr, (41)

which will be discussed in Sec. III A 2.
We note that other approaches might be possible for the

efficient calculation of Ḡ, e.g., the recursive scheme from
Ref. [57].

C. Current density operator and the current-current
correlation function

1. Orbital space

We will be interested in the direct current conductivity
with respect to an infinitesimal uniform electric field. Such
electric field E = ∂t Aext can be introduced with an additional
vector potential Aext pointing uniformly in a given direc-
tion, and growing linearly with time. For the purposes of a
linear-response calculation, the current couples to such vec-
tor potential instantaneously through − ∫

j(r) · Aext (r)d3r =
−vcell

∑
i jri · Aext

ri
, where vcell = a2c is the volume of the unit

cell. The additional Peierls phase coming from a Aext can
therefore be safely rewritten within the slowly varying field
approximation

e

h̄

∫ ar j

ari

Aext (r) · dr ≈ ea

h̄
Aext · (r j − ri ). (42)

In the case when we have just the nearest-neighbor hoppings
[as in Eq. (12)], the kinetic term in the Hamiltonian can be
rewritten as

Hkin = −t
∑

i,u∈{ex,ey},σ
ei( fri ,ri+u+ ea

h̄ Aext
ri

·u)c†
ri,σ

cri+u,σ + H.c.

(43)
without any additional approximation.
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We can now derive the expression for the current density operator (with units of A/m2) in the absence of electric field, by
employing

jr = − 1

vcell

∂H

∂Aext
r

∣∣∣∣
Aext→0

(44)

= it
1

ac

e

h̄

∑
u∈{ex,ey},σ

uei fri ,ri+u c†
ri,σ

cri+u,σ + H.c. (45)

The vector component η can be written as

jηr = it
1

ac

e

h̄

∑
σ

γ η(r) c†
ri,σ

cri+eη,σ + H.c. (46)

with γ (r) = (1, ei ea2

h̄ Bzx ).
The current is an observable and it should be zero even in the presence of a magnetic field. Commonly, one separates the

current into the paramagnetic and diamagnetic parts. In magnetic field they may be nonzero even in thermal equilibrium, but
they must cancel. See Appendix E for details.

For the sake of generality, we define the current-current correlation function without assuming zero persistent currents:

�
ηη′
r,r′ (τ ) = 〈

jηr (τ ) jη
′

r′ (0)
〉 − 〈

jηr
〉〈

jη
′

r′
〉

= −t2 1

a2c2

e2

h̄2

∑
σ,σ ′

∑
b,b′∈{0,1}

(−1)b+b′
Cb[γη(r)]Cb′

[γη′ (r′)]

× 〈
c†

r+beη,σ
(τ+)cr+(1−b)eη,σ (τ )c†

r′+b′eη′ ,σ ′ (0+)cr′+(1−b′ )eη′ ,σ ′ (0)
〉 − 〈

jηr
〉〈

jη
′

r′
〉
, (47)

where C[. . .] is the operator of complex conjugation, and
C0 = 1.

We are interested in calculating the Kubo bubble, i.e., the
disconnected part. The disconnected part will have a static and
a dynamic term. The static one cancels the persistent current
part, and the dynamic term can be expressed in terms of the
Green’s function as

�
ηη′,disc
r,r′ (τ )

= t2 1

a2c2

e2

h̄2

∑
σ

∑
b,b′∈{0,1}

(−1)b+b′
Cb[γη(r)]Cb′

[γη′ (r′)]

× Gr′+(1−b′ )eη′ ,r+beη,σ (−τ )Gr+(1−b)eη,r′+b′eη′ ,σ (τ ). (48)

We can now rewrite this expression in terms of Ḡ. In the case
of the longitudinal component

�xx,disc
r,r′ (τ )

= t2 1

a2c2

e2

h̄2

∑
σ

[
Ḡr′−r+ex,σ (−τ )Ḡr−r′+ex,σ (τ )

+ Ḡr′−r−ex,σ (−τ )Ḡr−r′−ex,σ (τ )

−2 cos

(
ea2Bz

h̄
(y − y′)

)
Ḡr′−r,σ (−τ )Ḡr−r′,σ (τ )

]
.

(49)

We see that the expression only depends on the distance which
means that it preserves translational symmetry, and is only
expressed in terms of gauge-invariant quantities. We have
checked explicitly that exactly the same expression is also
obtained in the symmetric gauge. Furthermore, this expres-
sion has all the expected spatial symmetries. A completely

analogous calculation for �
yy,disc
r,r′ (τ ) yields the expression

with x, y → y, x. A general proof of the gauge invariance of
�

η,η′,disc
r,r′ (τ ) is given in Appendix F.

2. Momentum space

As we have shown that the current-current correlation
function satisfies all the desired spatial symmetries, we can
proceed to discuss the uniform current-current correlation
function in a straightforward manner by performing the spatial
Fourier transform. We have

�
ηη′
q=0(τ ) = vcell

∑
r

�r,r′=0(τ ). (50)

This is followed by the Fourier transform in imaginary time to
finally obtain

�
ηη′
q=0(iν) = vcell

∑
r

1

2h̄

∫ β h̄

−β h̄
dτ eiντ�r,r′=0(τ ). (51)

We can rewrite this expression more conveniently using the
uniform current operator as

�
ηη′
q=0(iν) = V

2h̄

∫ β h̄

−β h̄
dτ

〈
jηq=0(τ ) jη

′
q=0(0)

〉
, (52)

where V is the total volume V = Nvcell and

jηq=0 = 1

N

∑
r

jηr . (53)

Note that we have here defined the uniform current operator as
the average current (density) operator, rather than the spatial
Fourier transform of the current operator. Using the creation
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and annihilation operators in the eigenbasis of the noninter-
acting Hamiltonian, we can write

jηq=0 = it

N

1

ac

e

h̄

∑
σ

∑
k̃,m,m′

v
η

k̃,m,m′,σ
c†

k̃,m,σ
ck̃,m′,σ (54)

with

vx
k̃,m,m′,σ =

∑
l

[αk̃,σ ]l,m[αk̃,σ ]∗l,m′
[
eik̃x eil 2π

q − e−ik̃x e−il 2π
q
]
(55)

and

v
y
k̃,m,m′,σ

=
∑

l

[αk̃,σ ]l,m
[
eik̃y [αk̃,σ ]∗l�p,m′ − e−ik̃y [αk̃,σ ]∗l⊕p,m′

]
.

(56)

The proof for the above expressions is given in Appendix G.
Assuming no persistent currents, the uniform current-current
correlation function is therefore

�
ηη′
q=0(iν)

= − t2e2

ch̄2

1

N

∑
σ1,σ2

1

2h̄

∫ β h̄

−β h̄
dτ eiντ

×
∑

k̃1,m1,m′
1

∑
k̃2,m2,m′

2

v
η

k̃1,m1,m′
1,σ1

v
η′

k̃2,m2,m′
2,σ2

× 〈
c†

k̃1,m1,σ1
(τ+)ck̃1,m′

1,σ1
(τ )c†

k̃2,m2,σ2
(0+)ck̃2,m′

2,σ2
(0)

〉
.

(57)

The disconnected part written as a function of bosonic
Matsubara frequency reads as (see Appendix H for proof)

�
ηη′,disc
q=0 (iν) = t2e2

ch̄2

1

N

∑
σ

∑
k̃,m1,m′

1,m2,m′
2

× v
η

k̃,m1,m′
1,σ

v
η′

k̃,m2,m′
2,σ

× 1

β

∑
iω

Gk̃,m′
2,m1σ

(iω)Gk̃,m′
1,m2,σ

(iω + iν).

(58)

D. Method

1. DMFT

In dynamical mean field theory (DMFT), the lattice prob-
lem is mapped onto a set of self-consistent local impurity
problems on each lattice site i, defined by the action [58–61]

Simp
i =

∑
σ

∫
dτ dτ ′c+

i,σ (τ )
[ − G−1

0,i

]
(τ − τ ′)ci,σ (τ ′)

+U
∫

dτ c+
i,↑(τ )ci,↑(τ )c+

i,↓(τ )ci,↓(τ ). (59)

The bare propagator G0,i in the impurity problem i is deter-
mined self-consistently, so that the Green’s function in each
impurity problem is equal to the local Green’s function on the
site of the impurity problem, assuming that the self-energy on
the lattice is local and on each site equal to the self-energy

of the corresponding impurity problem. This self-consistency
condition can be written as

G0,i(z) = 1/
(
[G−1]ii(z) + �

imp
i (z)

)
, (60)

where �
imp
i (z) is the self-energy calculated in the impurity

problem at site i, and the lattice Green’s function is calculated
as a matrix in the site space as

G(z) = [Ih̄z − H0[A] − diag(�imp(z))]−1, (61)

where diag(�imp) is a diagonal matrix, with �
imp
i (z) entries

on the diagonal. This construction is general and can be used
in the presence of translational symmetry breaking fields,
disorder, and even used to probe spatially ordered phases. The
DMFT approximation notably becomes exact in the limit of
infinite coordination number, where the self-energy can be
shown to be fully local [58], at least in the absence of magnetic
fields.

We see that in the calculation of the bare propagator for
the impurity problems, only the local Green’s function plays
a role, and this quantity is gauge invariant and spatially uni-
form. Therefore, even in the presence of the uniform magnetic
field, all impurity problems are equivalent, and we may solve
only one impurity problem and calculate the lattice Green’s
function as

G(z) = [Ih̄z − H0[A] − I�imp(z)]−1. (62)

This leads to further simplifications. First, a local and spatially
uniform self-energy is diagonal in the noninteracting eigenba-
sis (�σ,i j = δi j�σ �⇒ 〈k̃, σ, m|�|k̃′, σ, m′〉 = δk̃,k̃′δm,m′�σ ,
see Appendix I for proof) which means that the lattice Green’s
function is diagonal as well:

Gk̃,m,m′,σ (z) = δmm′Gk̃,mm,σ (z), (63)

thus, we can drop the second eigenstate index and simply
calculate the lattice Green’s function as

Gk̃,m,σ (z) = 1

h̄z − εk̃,m,σ − �σ (z)
. (64)

The local Green’s function can then be obtained at low nu-
merical cost from the knowledge of the local density of states
ρ0(ε) as (see Appendix J for proof)

Gii,σ (z) =
∫

dε
ρ0(ε)

h̄z − ε − �σ (z)
. (65)

Therefore, the DMFT calculation for the Hubbard model in
the magnetic field proceeds as the standard DMFT, and all
the effects of the gauge field are contained in the noninteract-
ing density of states [41]. In all our calculations we employ
the numerical renormalization group (NRG) impurity solver
[62–65] which works directly in real-frequency space, so no
analytical continuation is needed to perform calculations of
conductivity. The NRG solver has been previously thoroughly
cross checked in Refs. [7,11,13].

2. Calculation of conductivity in DMFT

The fact that the Green’s function is diagonal in the non-
interacting eigenbasis leads to a simplification in the Kubo
bubble [Eq. (57)]. One is left with only two summations over
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eigenstates m:

�
ηη′,disc
q=0 (iν) = t2e2

ch̄2

1

N

∑
σ

∑
k̃,m,m′

1

β

∑
iω

× v
η

k̃,m,m′,σ
v

η′

k̃,m′,m,σ
Gk̃,m,σ (iω + iν)Gk̃,m′,σ (iω).

(66)

Furthermore, because the self-energy is local, the Green’s
function only depends on the energy of the eigenstate, so we
can define G(εk̃,m,σ , iω) ≡ Gk̃,m,σ (iω) and rewrite

�
ηη′,disc
q=0 (iν) = t2e2

ch̄2

∑
σ

1

β

∑
iω

∫
dε

∫
dε′

× vη,η′
σ (ε, ε′)G(ε, iω + iν)G(ε′, iω) (67)

with

vη,η′
σ (ε, ε′) ≡ 1

N

∑
k̃,m,m′

δ(ε − εk̃,m,σ )

× δ(ε′ − εk̃,m′,σ )vη

k̃,m,m′,σ
v

η′

k̃,m′,m,σ
. (68)

In Landau gauge, one has the symmetry vx
k̃,m,m′,σ =

−(vx
k̃,m′,m,σ

)∗ (see Appendix G), and therefore

vx
k̃,m,m′,σvx

k̃,m′,m,σ
= −|vx

k̃,m′,m,σ
|2, which means vxx

σ (ε, ε′)
is purely real. On the contrary, as already noted in Ref. [38],
v

xy
σ (ε, ε′) is purely imaginary.

The sheet conductance is related to the current-current
correlation function through

σηη′
(ν) = c

�ηη′
(ν) − �ηη′

(ν = 0)

i ν
. (69)

The z-axis lattice constant c cancels out c from vcell = a2c and
its value is irrelevant. In the following we will discard the dif-
ference between the sheet conductance and the conductivity,
and refer to σ as conductivity, even though it is actually sheet
conductance and the units of the two quantities are different
[(�m)−1 vs �−1, respectively]; this is common practice in the
field.

After several lines of algebra aimed at the analytical contin-
uation to the real-axis frequency (see Appendix K), we obtain

Reσ xx,disc
q=0 (ν = 0) = t2 e2

h̄

1

π

∑
σ

∫
dε

∫
dε′vxx

σ (ε, ε′)
∫

dω

× ImG(ε, ω)ImG(ε′, ω)n′
F(ω), (70)

where n′
F(ω) = −β h̄eβ h̄ω/(1 + eβ h̄ω )2 is the derivative of the

Fermi function.
For Hall conductivity one obtains [38]

Reσ xy,disc
q=0 (ν = 0)

= −t2 e2

h̄

1

π2

∑
σ

∫
dε

∫
dε′Imvxy

σ (ε, ε′)
∫

dω

∫
dω′

× ImG(ε, ω)ImG(ε′, ω′)
nF(ω) − nF(ω′)

(ω − ω′)2
. (71)

An additional simplification is possible in the case of Hall
conductivity when U = 0. In that case we have [22]

Reσ xy,disc
q=0 (ν = 0;U = 0)

= −t2 e2

h̄

∑
σ

∫
dε

∫
dε′Imvxy

σ (ε, ε′)
nF(ε) − nF(ε′)

(ε − ε′)2
.

(72)

Finally, the resistivity is obtained as a matrix inverse(
ρxx ρxy

ρyx ρyy

)
=

(
σ xx σ xy

σ yx σ yy

)−1

. (73)

3. Vertex corrections in DMFT

Finally, to calculate the full current-current correlation
function, one should in principle also compute the vertex
corrections. At the level of the DMFT, in the absence of an
external magnetic field, the vertex corrections cancel due to
the well-known argument due to Khurana [42]. As we show
in the following, a generalized Khurana argument holds even
in the presence of the magnetic field. In the following we
first derive the Khurana argument in real space, and then
generalize it to the case of nonzero magnetic fields.

We start first by writing the vertex corrections in orbital
space, in the most general way:

�
ηη′,conn
q=0 (τ − τ ′)

= t2 e2

a2c2 h̄2

∑
σ,σ ′

∑
b,b′∈{0,1}

(−1)b+b′

× 1

N2

∑
r,r′

Cb[γη(r)]Cb′
[γη′ (r′)]

×
∑

r1,r2,r3,r4

∫
dτ1dτ2dτ3dτ4

× Gr1,r+beη,σ (τ1 − τ )Gr+(1−b)eη,r2,σ (τ − τ2)

× F ((r1, τ1), (r2, τ2), (r3, τ3), (r4, τ4))

× Gr′+(1−b′ )eη′ ,r3,σ ′ (τ ′ − τ3)Gr4,r′+b′eη′ ,σ ′ (τ4 − τ ′),
(74)

as illustrated in Fig. 1(a). In the absence of external magnetic
field or spontaneous symmetry breaking, Gr,r′ has full lattice
symmetry and depends only on the difference Gr−r′ . However,
there is no symmetry operation which guarantees cancellation
of all terms. There is only one symmetry operation that leaves
the Green’s functions intact and flips the overall sign, but it
does change the full vertex. It can be formulated either for
internal variables r1, r2, b or for r3, r4, b′, and we illustrate the
latter case in Fig. 1(b). The transformation can be formulated
as follows:

r′ → −r′ + r3 + r4 − eη′ , b′ → 1 − b′,

(r3, τ3) ↔ (r4, τ4). (75)

The flip of b′ changes the overall sign, but the exchange of
terminals of the full vertex function changes its value in no
obvious way, and there is no cancellation in the general case.
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FIG. 1. Real-space diagrammatic representation of a contribu-
tion to the connected part of the current-current correlation function.
F is the full vertex, red segments indicate a term in the current
operator connecting two nearest-neighbor sites in the x direction;
swapping the direction of the red arrow changes its sign. Top panels:
for generic case [left, Eq. (74)] and DMFT [right, Eq. (76)]. Bottom
panels: after the transformation in Eqs. (75) (left) and (77) (right).

However, in DMFT there is an additional simplification
that the full vertex F depends on only two spatial indices:

�
ηη′,conn
q=0 (τ − τ ′)

= t2 e2

a2c2h̄2

∑
σ,σ ′

∑
b,b′∈{0,1}

(−1)b+b′

× 1

N2

∑
r,r′

Cb[γη(r)]Cb′
[γη′ (r′)]

∑
r1,r2,

∫
dτ1dτ2dτ3dτ4

× Gr1,r+beη,σ (τ1 − τ )Gr+(1−b)eη,r1,σ (τ − τ2)

× F ((r1, τ1), (r1, τ2), (r2, τ3), (r2, τ4))

× Gr′+(1−b′ )eη′ ,r2,σ ′ (τ ′ − τ3)Gr2,r′+b′eη′ ,σ ′ (τ4 − τ ′).

(76)

In that case, a transformation

r′ → −r′ − eη′ + 2r2, b′ → 1 − b′ (77)

keeps both the Green’s functions and the full vertex intact,
while changing the overall sign. Then the two symmetry-
connected terms together read as (up to a prefactor)

Gr′+(1−b′ )eη′ ,r2,σ ′ (τ ′ − τ3)Gr2,r′+b′eη′ ,σ ′ (τ4 − τ ′)

− G−r′+2r2−(1−b′ )eη′ ,r2,σ ′ (τ ′ − τ3)

× Gr2,−r′+2r2−b′eη′ ,σ ′ (τ4 − τ ′). (78)

When the lattice preserves inversion symmetry, one has
Gr,r′ = Gr−r′ = Gr′−r, and the above two terms always
cancel. This is the real-space version of the Khurana
argument.

However, when there is magnetic field, there are additional
complications. Nevertheless, the full vertex is a gauge-
invariant quantity, as the irreducible vertex in the particle-hole
channel �ph is fully local and therefore gauge invariant and
spatially uniform �

ph
i jkl = δi jδ jkδkl�

ph. This comes as DMFT
is the local approximation of the Luttinger-Ward functional
[58,66], and �

ph
i jkl = ∂2�[G]

∂Gi j∂Gkl
|G=Gexact ≈ ∂2�DMFT[{Gii}i]

∂Gi j∂Gkl
|G=GDMFT .

Therefore, we have

Fii, j j = δi j�
ph + �phGi jGji�

ph

+
∑

l

�phGil Gli�
phGl jGjl�

ph + · · ·

= δi j�
ph + �phḠi jḠ ji�

ph

+
∑

l

�phḠil Ḡli�
phḠl jḠ jl�

ph + · · · (79)

and F is clearly expressed entirely with gauge-invariant quan-
tities. Here we have omitted spin and temporal arguments and
the corresponding sums and integrals for the sake of brevity,
as they do not play a role in the proof.

In the presence of the magnetic field, the Green’s function
does not satisfy Gr,r′ = Gr−r′ = Gr′−r and it is not a priori
clear that the terms in Eq. (78) cancel. We can, however,
rewrite them in terms of Ḡ:

e
i fr′+(1−b′ )e

η′ ,r2 Ḡr′+(1−b′ )eη′ ,r2,σ ′ (τ ′ − τ3)

× e
i fr2 ,r′+b′e

η′ Ḡr2,r′+b′eη′ ,σ ′ (τ4 − τ ′)

− e
i f−r′+2r2−(1−b′ )e

η′ ,r2 Ḡ−r′+2r2−(1−b′ )eη′ ,r2,σ ′ (τ ′ − τ3)

× e
i fr2 ,−r′+2r2−b′e

η′ Ḡr2,−r′+2r2−b′eη′ ,σ ′ (τ4 − τ ′). (80)

As Ḡ satisfies Ḡr,r′ = Ḡr−r′ = Ḡr′−r, the products of Ḡ are
the same in both terms, thus, what determines whether there
is cancellation or not is

e
i fr′+(1−b′ )e

η′ ,r2 e
i fr2 ,r′+b′e

η′ − e
i f−r′+2r2−(1−b′ )e

η′ ,r2 e
i fr2 ,−r′+2r2−b′e

η′ .

(81)

In Landau gauge and for, say, η′ = x, we get

ei ea2Bz
2h̄ (y2−y′ )[x′+x2+(1−b′ )]ei ea2Bz

2h̄ (y′−y2 )(x′+x2+b′ )

− ei ea2Bz
2h̄ (−y2+y′ )[3x2−x′−(1−b′ )]ei ea2Bz

2h̄ (−y′+y2 )(−x′−b′+3x2 )

= ei ea2Bz
2h̄ (y2−y′ )(1−2b′ ) − ei ea2Bz

2h̄ Bz (−y2+y′ )(−1+2b′ )

= 0. (82)

This means that the vertex corrections cancel. This proof is
immediately valid for both �xx and �yx. Having in mind a
completely analogous transformation of r and b, this proof
holds also for �xy (a different proof was given for �xy in
Ref. [38]). However, we also want to check what happens
with η′ = y, which is relevant for �yy. In that case, the
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transformation affects also Cb′
[γy(r′)] so we need to take that into account:

ei(1−2b′ ) ea2

h̄ Bzx′
e

i fr′+(1−b′ )e
η′ ,r2 e

i fr2 ,r′+b′e
η′ − e−i(1−2b′ ) ea2

h̄ Bz (−x′+2x2 )e
i f−r′+2r2−(1−b′ )e

η′ ,r2 e
i fr2 ,−r′+2r2−b′e

η′

= ei(1−2b′ ) ea2

h̄ Bzx′
ei ea2Bz

2h̄ [y2−y′−(1−b′ )](x2+x′ )ei ea2Bz
2h̄ (y′+b′−y2 )(x2+x′ ) − e−i(1−2b′ ) ea2

h̄ Bz (−x′+2x2 )

× ei ea2Bz
2h̄ [y′−y2+(1−b′ )](3x2−x′ )ei ea2Bz

2h̄ (−y′+y2−b′ )(−x′+3x2 )

= ei(1−2b′ ) ea2

h̄ Bzx′
ei ea2Bz

2h̄ (−1+2b′ )(x2+x′ ) − e−i(1−2b′ ) ea2

h̄ Bz (−x′+2x2 )ei ea2Bz
2h̄ [(1−2b′ )(3x2−x′ )]

= ei ea2Bz
2h̄ [2(1−2b′ )x′−(1−2b′ )(x2+x′ )] − ei ea2Bz

2h̄ [2(1−2b′ )x′−4(1−2b′ )x2+(1−2b′ )(3x2−x′ )]

= ei ea2Bz
2h̄ (x′−2b′x′−x2+2b′x2 ) − ei ea2Bz

2h̄ (x′−2b′x′−x2+2b′x2 )

= 0. (83)

Indeed, the vertex corrections for �yy cancel as well. As we
have shown that the Kubo bubble is gauge invariant (see
Appendix F), and having that the full correlation function
needs to be gauge invariant as it relates to observables, the
proof given here is fully general, even though it is formulated
in Landau gauge. The proof also does not depend on whether
there is Zeeman term in the Hamiltonian or not.

III. RESULTS

A. Density of states and spectral function

1. Noninteracting density of states

In the DMFT, the magnetic field enters through the
noninteracting density of states ρ0(ω). The magnetic field
dependence of ρ0(ω) (the famous Hofstadter butterfly [55])
is shown in Fig. 2. This result was obtained with lattice size
L = 1999, and about 4000 energy bins, which sets the res-
olution and the minimal size of an energy gap that one can
observe.

2. Translation-invariant spectral function

As we have already proven, on a finite lattice L × L
and L = q, there is no dependence of the Hamiltonian on

FIG. 2. Noninteracting density of states, as a function of fre-
quency and magnetic field (the Hofstadter butterfly [55]).

ky. A straightforward basis change of the Green’s function
to the original k states in the full BZ yields a meaning-
less result for the spectral function with no ky dependence
whatsoever. Moreover, this result is gauge dependent, as
the choice of a slightly different gauge A ∼ (−y, 0) would
yield a spectral function result with no kx dependence
instead.

One is therefore interested in the translationally invariant
Ḡ, as it has all the lattice symmetries, and can ultimately
be Fourier transformed into momentum space. We show this
result in the noninteracting case in Fig. 3. We have used a
small broadening �(z) = −i sgn(Imz)η, η = 0.02, to regular-
ize the results. We observe that the result for the imaginary
part of Ḡ is not necessarily negative, which is a signature of
a breaking of causality, and thus the result is not a proper
physical spectral function. As expected, the nonphysical fea-
tures subside as the magnetic field is taken to zero. Note
also that Ḡloc = Gloc, so the causality of the resulting lo-
cal Green’s function is restored upon the summation over
momenta.

3. Local spectra from DMFT

In Fig. 4 we present the DMFT(NRG) results for
ImGloc(ω), at different values of magnetic field, and fixed
U = 2.5D, n = 0.85, and T = 0.025D, which corresponds to
the regime of the doped Mott insulator. On the left panel we
show the full frequency range, while on the right panel we
focus on the quasiparticle part of the spectrum. Increasing
the magnetic field appears to affect an ever growing range
of frequencies around ω = 0, but up to the highest fields the
effect is restricted to the quasiparticle peak and no significant
change is observed in the Hubbard bands, apart from the
lower Hubbard band getting flatter. No apparent change at
all is observed below p/q = 0.1 for these values of model
parameters.

B. Conductivity

1. Longitudinal dc conductivity σxx(ν = 0)

We start by inspecting the effect of the magnetic-field de-
pendence of the self-energy on the conductivity. In the upper
panel of Fig. 5 we show 1/σ xx(ν = 0) calculated with the
self-energy obtained from the DMFT(NRG) calculation for
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FIG. 3. Spectrum of the translation-invariant Green’s function
ImḠk(ω). The examples are given for U = 0 with a broadening
η = 0.02D, and at three different values of p/q, as indicated in panel
titles. The spectrum is not negative definite, and is therefore not
indicative of the physical spectral function.

the given Bz (black curve), and compare it to the one obtained
with the self-energy obtained in the Bz = 0 calculation; in that
case the magnetic-field enters the calculation only through
the current vertex vxx

k̃,m,m′,σ . Here, we can choose to fix the
chemical potential to the one corresponding to the Bz = 0
calculation, which will lead to some density variation as the
magnetic field is increased (red curve); otherwise, we can
correct the chemical potential for each given Bz so that the
overall occupancy is fixed (lime curve).

We see that there is excellent agreement between all three
curves. The parts of the black curve that are missing are
due to our inability to properly converge the DMFT(NRG)
calculation at those values of Bz. As finite-Bz DMFT(NRG)
calculations are difficult and require significant computational
time, it is a very important observation that we can obtain
solid finite Bz results by using the self-energy from the Bz = 0
calculation. This way, the bottleneck of our calculation be-
comes the calculation of the conductivity, rather than the
DMFT solver. In the regime of the main interest, this does not
present a significant additional approximation. Therefore, in
the remainder of the paper we fix � = �(Bz = 0) and correct
μ at each Bz so that the overall density is fixed, unless stated
otherwise.

In the bottom panel of Fig. 5 we present the density of
states at the Fermi level [∼ImG(ω = 0], as well as the effec-
tive scattering rate [∼Im�(ω = 0)]. The oscillations in these
two quantities as functions of the magnetic field appear syn-
chronous. However, the oscillations in the conductivity follow
a completely different pattern. The oscillations in the density
of states and the scattering rate can be readily connected
with the Shubnikov–de Haas effect, where the period of os-
cillations in the space of inverse magnetic field is inversely
proportional to the surface area of the Fermi sea (roughly the
density 〈nσ 〉), while the oscillations of the conductivity appear
to correspond to the full area of the BZ. This mismatch in the
oscillation frequencies of the spectral and transport properties
is, however, restricted to only certain parameter regimes. The
high-frequency oscillations have been previously identified
in the experiment [44–47] and dubbed the Brown-Zak (B-Z)
oscillations. We discuss this phenomenon in more detail in
Sec. III B 3, and in Ref. [48] which is devoted to this very
topic. In Appendix L we check that no p/q = 1 oscillations
are present in thermodynamic potentials.

We also cross-check the results of our finite Bz calcu-
lation against the reference Bz = 0 results, in the limit of
low field. As the results are obtained numerically in rather
different ways, this is a stringent test of our formalism and
implementations. In Fig. 6 we show the DMFT results at U =
2.5D, at four different levels of doping (n = 1 is half-filling),
at Bz = 0 and at three smallest possible fields in a finite Bz

calculation with L = q = 1999. At high temperatures, small
field does not significantly affect the result, and finite-field
results are on top of the zero-field result, thus validating our
numerics. At low temperature, the effect of the field becomes
observable, but the results do tend towards the Bz = 0 result
as the field is decreased.

Next, we inspect the effect of the magnetic field on the
temperature dependence of σ−1

xx (ν = 0) on Fig. 7. At low
temperature, the behavior drastically depends on the precise
choice of the magnetic field. At high temperature the behav-
ior is weakly modified, and one still observes roughly linear
dependence. At very high fields, the values appear increased
by a constant prefactor, which means that the slope of the
linear dependence is also increased. This can be more easily
confirmed by looking at the linear scale plots in Fig. 8. The
effect of the magnetic field appears somewhat insensitive to
the strength of the interaction, and the overall trend appears
similar in all three panels on the left side of Fig. 7. We are able
to roughly collapse the curves at three different values of U by
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FIG. 4. Local density of states as a function of magnetic field. Left: full frequency range. Right: quasiparticle part of the spectrum. The
result is obtained with the DMFT(NRG). The parameters are U = 2.5D, 〈nσ 〉 = 0.425, T = 0.025D/kB. The calculation was performed with
L = q = 997.

simply rescaling the temperature T → T/T ∗(U ), with T ∗(U )
roughly a linear function of U . The scaling appears partic-
ularly valid between U = 2.5 and U = 4, while the U = 1
curves somewhat deviate.

Finally, in Fig. 9 we present the magnetic-field dependence
of the conductivity, at a fixed temperature and doping. At low
temperature one observes increasingly strong oscillations as
magnetic field is increased. At low fields, the oscillations are
relatively small and regular, which corresponds to the SdH
regime, while at strong fields the oscillations cover multi-
ple orders of magnitude, and exhibit no simple pattern as
a function of the magnetic field. (This is the quantum limit
dominated by the lowest Landau levels).

2. Hall conductivity and resistivity

In Fig. 10 we show results for direct current σ xy, 1/σ xx as
well as ρxy and ρxx. We see that σ xy exhibits a nonmonotonic
dependence on the magnetic field, and also some oscillation,
similar to σ xx. The difference appears to be that when σ xx has

a local maximum, σ xy has a local extremum in the value of its
first derivative. The results presented in this plot correspond
to the high-frequency oscillation regime, where the maxima
in σ xx coincide with p/q = 1/q. This behavior is in line with
the experimental observations in Ref. [45]. We also see that, as
expected, σ xy tends to zero as magnetic field is decreased. The
effect of σ xy on ρxx is not negligible, and one clearly has ρxx �=
1/σ xx. Nevertheless, the oscillatory behavior of ρxx appears
very similar to that of 1/σ xx and in phase with it.

We further study the behavior of σ xy in the limit of U = 0
where the calculation can be performed at low numerical cost.
The results are presented in Fig. 11. First we look at the
temperature dependence (upper panel). We see that σ xy falls
off exponentially with increasing temperature. At T = 0 the
result corresponds to the Chern number of the topological
insulator, whenever the chemical potential falls in an energy
gap. We see that decreasing field produces gaps with ever
larger Chern numbers. On the middle panel we look at this
dependence more closely, and see that at a given chemical
potential, the Chern number grows in a power-law fashion
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FIG. 5. Upper panel: conductivity obtained with the full
DMFT(NRG) calculation (black line), and the simplified calculation
where the self-energy is taken from the zero-field DMFT(NRG)
calculation, and the chemical potential is either corrected to fix the
overall density (lime line) or not (red line). Vertical lines indicate
p/q = 1/i with i integer, which coincides with the dips in the inverse
conductivity. Lower panel: dependence on the magnetic field of the
density of states at the Fermi level (lime line) and the scattering
rate (black line). Vertical lines indicate p/q = 〈nσ 〉/i, which roughly
coincides with the dips in both the scattering rate and the density of
states at the Fermi level.

FIG. 6. Cross-check between the zero-field formalism and the
finite-field formalism at weak fields. Solid lines are the Bz = 0
DMFT(NRG) result, obtained within the zero-field formalism, at
different values of density. We keep U = 2.5D fixed. Dashed lines
with symbols are obtained within finite Bz formalism, at three lowest
values of the field, at L = q = 1999.

FIG. 7. Left panels: the T dependence of the inverse conductivity
at different values of the field and fixed coupling and density. Right
panel: the same results with rescaled temperature T → T/T ∗(U ).
T ∗(U ) is given in the inset.

with 1/Bz. It is clear that this law does not have a well-defined
limiting behavior at Bz = 0, as in the absence of magnetic field
there are no gaps and strictly σ xy = 0. This is an indication
of the fractal structure of the density of states at low fields:
the gaps become smaller and smaller, but more and more nu-
merous, and fully disappear only strictly at Bz = 0. However,
this ill-defined behavior is corrected at finite values of the
interaction (Fig. 10), and one observes a downturn of σ xy at
a finite value of the field, and σ xy tends to zero smoothly as
Bz → 0.

Finally, we study the dependence of σ xy on the chemical
potential, at several different values of the field and T = 0,
in the bottom panel of Fig. 11. One has σ xy(μ) = −σ xy(−μ).
The plateaus in the value of Hall conductivity are indications
of gaps in the density of states and are always found at integer
values. We benchmark our implementation with the data in
Ref. [38] in Appendix M.

3. Quantum oscillations of 1/σxx

As already noted in Sec. III B 1, the conductivity dis-
plays oscillatory behavior as a function of magnetic field. We
start by inspecting the region of the phase diagram where
notable oscillatory behavior is present. We define a charac-
teristic (p/q)∗(T ; n,U ) (denoted by shaded circles in Fig. 9)
as the value of magnetic field at which the first extremum in
1/σ xx(Bz ∼ p/q) occurs (1/σ xx initially grows, so the first
extremum is always a maximum). Oscillations in the slope
of 1/σ xx(Bz ∼ p/q) might survive even below this character-
istic value of the field [or inversely at temperatures higher
than T ((p/q)∗)]; the amplitude of oscillations dies out with
temperature exponentially, as in Lifshitz-Kosewich law [43]
(see Fig. 12; the oscillatory part of 1/σ xx(p/q) is extracted
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FIG. 8. Inverse conductivity on the linear scale. Columns are different dopings, rows are different values of interaction. Different curves
are different values of the field.

FIG. 9. Magnetic-field dependence of the inverse conductivity at
two values of coupling constant, and various temperatures. Shaded
circles correspond to the first extremum (p/q)∗ (see text).

by subtracting from the full result the average value in the
range [p/q − f (p/q), p/q + f (p/q)], where f ∼ p0.7). The
quantity T ((p/q)∗) is presented in Fig. 13. We denote the
doping with δ = 1 − n.

We see that there is always roughly a plateau in T ((p/q)∗),
followed by a kink and a near saturation of (p/q)∗(T ) at
high temperature. This is because above a certain temperature,
no oscillations are present at any value of magnetic field,

FIG. 10. Different components of the conductivity and resistivity
tensors, showing the effect of the Hall component on the relation
between the longitudinal resistivity ρxx and the inverse longitudinal
conductivity 1/σ xx .
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FIG. 11. Hall conductivity at U = 0. Top: temperature depen-
dence of the Hall conductivity for a selection of magnetic fields. Gray
lines indicate the value at T = 0, which is the Chern number for the
corresponding topological insulator. Center: field dependence of the
Hall conductivity at zero temperature. Bottom: chemical potential
dependence of the Hall conductivity for a selection of magnetic
fields.

and there remains at most a single maximum below p/q =
0.5. The maximum can persist at a roughly fixed p/q up to
some temperature, and then ultimately moves to p/q = 1

2 . The
shape of (p/q)∗(T ) appears nearly universal for all δ,U . We

FIG. 12. Zoom-in on the oscillatory part of the magnetic-field
dependence of inverse conductivity, in a range of weak fields. Differ-
ent curves are different temperatures. Lime and black points denote
the apparent antinodes of the wave, i.e., the amplitude of oscillation,
up to a sign. Inset: dependence of the amplitude of oscillation vs
temperature, on the logarithm scale, revealing exponential decay
with T .

are able to roughly collapse all the curves on the left panel in
Fig. 13 by rescaling the temperature as T → T × U c(δ) (right
panel), with c(δ) given in the inset. It is clear that the bigger
the doping and the lower the interaction, the oscillations will
persist up to a higher temperature, and start at a lower value
of the field. It is interesting that roughly (p/q)∗ ∼ T 2/3 in the
regime where multiple oscillation periods are observed.

The oscillations have a fixed period when σ xx is plotted
as a function of inverse magnetic field. When this period is
inversely proportional to the surface area of the Fermi sea,
this corresponds to the well-known Shubnikov–de Haas ef-
fect. However, in our results, we observe in some regimes of
parameters an additional oscillation frequency. This is docu-
mented in Fig. 14 where we present the Fourier transform of
(σ xx )−1(B−1

z = q/p). The presented part of each oscillation
spectrum is normalized to 1. In the left panel we show the tem-
perature dependence of the oscillation spectrum as a function
of temperature, at fixed doping and coupling constant. At low
temperature one observes peaks at roughly integer multiples
of the density 〈nσ 〉 which corresponds to the SdH effect.
However, at intermediate temperature, there is an additional
frequency corresponding to the full area of the BZ, and its
higher harmonics [48]. At even higher temperature, before the
oscillatory behavior is erased by thermal effects, the p/q = 1
peak in the spectrum becomes dominant. In the right panel we
inspect the effect of doping on the oscillation spectrum, at a
fixed temperature. The SdH peak is present at all dopings, and
is always found at p/q ≈ 〈nσ 〉. The doping appears to reduce
the p/q = 1 peak, which is no longer the dominant peak at
δ > 0.2. At very low doping, it is not possible to distinguish
between the p/q = 1 peak and the second harmonic of the
SdH peak, as 〈nσ 〉 approaches 0.5. However, it is unexpected
in the SdH effect that the second harmonic is stronger than the
first harmonic (fundamental), which indicates a presence of a
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FIG. 13. The (Bz, T ) phase diagram for the quantum oscillations. The diagram indicates the minimal magnetic field for observing
significant quantum oscillations (nonmonotonic behavior) at a given temperature. Left: results for a set of model parameters. Right: rescaled
results showing reasonable overlap.

separate mechanism which contributes to the amplitude of the
peak at p/q = 1. In the next section, we are able to trace the
origin of these high-frequency oscillations; the full descrip-
tion of the observed phenomenology and its relationship to
experiments is presented in a separate publication (Ref. [48]).

4. Oscillations of the current vertex

At the level of the DMFT, the magnetic field enters the
calculation of conductivity through the self-energy and the
current vertex v. As we have concluded in Sec. III B 1, the
dependence of conductivity on the self-energy is of secondary
importance, and cannot possibly account for the observed
p/q = 1 frequency oscillations, as the self-energy oscillates
with the frequency p/q = 〈nσ 〉. The p/q = 1 oscillations then
must come from the current vertex. This was already sug-
gested in previous experimental works [45,46], where the

p/q = 1 frequency oscillations have been linked to periodic
changes in the velocity of magnetic minibands, featuring
spikes at p/q = 1/q.

We first discuss which part of vxx(ε, ε′) plays a role at
a given choice of parameters. First, by inspecting Eq. (70)
we see that the ω integrand will generally have two
peaks, centered around ω∗/ω∗′ such that ω∗(′) + μ − ε(′) −
Re�(ω∗(′) ) = 0. The width of those peaks is roughly propor-
tional to Im�(ω∗(′) ). When the two peaks are further apart
than is their width, the contribution of the integral will be
very small. Additionally, if they fall outside of the thermal
window, they will not contribute. Assuming in a most simple
way ω∗(′) = μ − ε(′), and that the contribution is negligible if
|ε − ε′| > �, with � playing the role of the width of the peaks
[say roughly � ≈ −Im�(ω = 0)], and taking that the thermal
window is a hard cutoff |ω∗(′)| < T , we can isolate the relevant
values of vxx(ε, ε′), which determine the value of the overall

FIG. 14. Fourier spectra of the oscillatory component of the inverse dc conductivity. All spectra are normalized to 1. Left: temperature
dependence at fixed electron density. Right: density dependence at fixed temperature. Both panels: vertical red dashed lines correspond to
SdH frequency p/q = 〈nσ 〉 and its higher harmonics; vertical blue dashed lines correspond to p/q = 1 oscillation frequency and its higher
harmonics.
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FIG. 15. Oscillation spectra of the current vertex (as quantified by Y ) at various �, T . Spectra are colored gray where no pronounced peaks
are observed, red where the standard SdH p/q = 〈nσ 〉 peaks and its higher harmonics are observed, purple where we also observe the p/q = 1
peaks, but the SdH peaks are dominant, and blue where p/q = 1 peak is stronger than p/q = 〈nσ 〉 peak.

integral. We define a quantity

Y (μ, T, �; Bz ) =
∫

dε

∫
dε′vxx(ε, ε′; Bz )θ (� − |ε − ε′|)

× [θ (T − |ε − μ|) + θ (T − |ε′ − μ|)]
(84)

and inspect its oscillation spectrum as a function of B−1
z . The

results are presented in Fig. 15. We see that at low T and
low �, the oscillations resemble the SdH effect. However,
increasing � leads to an onset of p/q = 1 oscillations, which,
with an increase of T , eventually become dominant. To better
understand this behavior, in Fig. 16 we show the spectrum
as a function of μ, at a fixed low temperature. We see how
p/q = 〈nσ 〉 peak and its harmonics move with changing μ, as
expected. On the contrary, the p/q = 1, 2, 3 . . . peaks (when
present in the spectrum), do not move with changing μ. The
main insight is that roughly Y (μ, T + δT ) ≈ Y (μ, T, . . .) +
Y (μ + δμ, T, . . .) + Y (μ − δμ, T, . . .). At high temperature,

the contributions from different μ will interfere destructively,
and the p/q = 〈nσ 〉 peak will wash out. On the other hand,
the p/q = 1 will accumulate, and become the dominant peak,
which is precisely what we find.

5. Conductivity in the finite-lifetime approximation (FLA)

In the previous sections we have concluded that the
high-frequency (Brown-Zak, B-Z) oscillations of conductivity
originate from the current vertex. Therefore, it is expected that
B-Z oscillations are observed even in the most simple models
that feature no variability in the self-energy whatsoever. In
this section we calculate conductivity in the finite-lifetime ap-
proximation (FLA), where the self-energy is assumed to be a
local, frequency-independent, and purely imaginary quantity,
i.e.,

�FLA
i j (ω + i0+) = −i�δi j, (85)

where � is the scattering rate. At a fixed μ = −0.1D,
we construct the Green’s function, and evaluate the Kubo

FIG. 16. Evolution of the oscillation spectrum of the current vertex (as quantified by Y ) with chemical potential, for two values of �.
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FIG. 17. Longitudinal dc conductivity within FLA: the total result and the contributions from interband and intraband processes. Left:
different plots correspond to different temperatures at a fixed scattering rate. Right: different plots correspond to different �′s at a fixed
temperature.

bubble (70). We are in particular interested in the trends
with respect to temperature and scattering rate, and we wish
to inspect the relative contributions of ε ≈ ε′ and ε �= ε′
terms in the double integral. We split the contributions by
d = |ε − ε′|: the contributions with d > 0.0003 we consider
“interband” contributions, where the particle and the hole of
the particle-hole pair reside in different bands; the contribu-
tions with d < 0.0003 we consider “intraband” contributions,
where the particle and the hole reside either in the same
band, or two different bands which are very close in energy.
The choice for the threshold value 0.0003 is made based
on the finite-energy resolution that we can achieve and the
systematic error made in energy levels due to finite lattice
size.

The results are shown in Fig. 17 as a function of inverse
magnetic field, i.e., q/p. On the plots on the left, we take a
small value for the scattering rate � ≈ 3 × 10−5, and show
the two contributions to conductivity as well as the total result
at several different temperatures. At low temperature, the dips
in conductivity roughly coincide with q/p = 0.407/i, with i
integer (denoted with vertical gray dashed lines). This clearly
corresponds to SdH oscillations, and signals that the occu-
pancy at μ = −0.1D is about 〈nσ 〉 = 0.407. It is immediately
clear that with increasing temperature, the SdH oscillations
subside, and what is left is apparently a fractal-like behavior
which cannot be fully resolved with our current resolution.

At low temperature, both intraband and interband processes
contribute, while at high temperature, the intraband processes
are dominant.

On the plots on the right in Fig. 17, we take a high
temperature T ≈ 0.215 and show results for different values
of �. As � is increased, the interband processes contribute
increasingly, and ultimately become fully dominant; the frac-
tal behavior is replaced by regular oscillations, with maxima
coinciding with q/p = q/1. These are the high-frequency (or
B-Z) oscillations, which appear only when the scattering rate
is sufficiently high.

We illustrate the trends with respect to temperature and
the scattering rate on Fig. 18(a) where we plot the oscillation
spectra obtained by the Fourier transform of the data in the
range of the field p/q ∈ [0.03, 0.15]. The results show clearly
that at low �, high-frequency oscillations are never observed,
but that at sufficiently high �, they are observed above some
threshold temperature, but up to indefinite temperature: note
that the highest temperature that we show is 10 in units of half-
bandwidth, with no sign of weakening of the high-frequency
oscillations. In contrast, the SdH oscillations subside sim-
ply due to increasing temperature. All oscillations disappear
at very high scattering rate, and there seems to be a well-
defined upper cutoff � for the observation of any oscillations.
These findings are summarized in the rough phase diagram of
the FLA model in Fig. 18(b).
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FIG. 18. (a) Oscillation spectra of longitudinal dc conductivity obtained within the FLA, at different � and T . Coloring is analogous to
Fig. 15. (b) The phase diagram of the FLA toy model. Grayscale color coding in the background and the black contours correspond to the
onset field for the nonmonotonous behavior (p/q)∗.

It is also interesting to compare the doping dependence of
the quantum oscillation phenomenology in FLA and DMFT.
On Fig. 19 we show the color plot of log10 σ xx(ν = 0) in the
doping-field plane, at a high temperature where SdH oscilla-
tions are already thermally washed out. We see opposite trends
in the two plots: in FLA, the oscillations are the strongest
close to half-filling (μ = 0), while in DMFT, the oscillatory
features become stronger in the empty-band limit (〈nσ 〉 → 0).
The difference must be due to the fact that in the Hubbard
model, the scattering rate is maximal at half-filling and van-
ishes as the number of electrons goes to zero. In FLA, the
scattering rate is simply held fixed at all dopings. The FLA
result on Fig. 19 is in solid agreement with the experimental
results in Ref. [45]. This indicates that the scattering rate
in experiment is not vanishing with doping, as one would
have in the pure Hubbard model. The additional scattering in
experiment probably comes from phonons, or even impurities.

IV. CONCLUSIONS AND PROSPECTS

In this paper we have identified several important features
of the DMFT results for conductivity in the square-lattice
Hubbard model in a perpendicular magnetic field. First, the
T -linear resistivity at high temperature is not strongly affected
by magnetic field. At high temperature, varying the interaction

also does not strongly affect the resistivity, but rather sets
the temperature scale in a linear fashion. Next, we observe
that the effect of the magnetic field comes mainly through
the current-vertex factor (which only contains kinetic effects),
and not the self-energy (which involves dynamic effects and
defines the energy and momentum windows with significant
contribution in the integration). We are able to reproduce the
SdH effect and observe quantum oscillations in 1/σ xx(B−1)
with the expected frequency Bz ∼ p/q = 〈nσ 〉. However, we
also observe oscillations on a different, higher frequency
Bz ∼ p/q = 1, independently of doping. For this behavior, the
prerequisites appear to be moderate scattering rate, moderate
temperature and relatively high magnetic field flux per unit
cell. Our observations are in line with the experimental results
of recent experiments on moiré (graphene superlattice) sys-
tems [44–46].

For the future work it will be necessary to investigate
how much of the observed phenomenology is representative
of the exact solution, and how much is an artifact of the
DMFT approximation. At the level of DMFT the two im-
portant simplifications are (1) the self-energy is fully local
(which means that the Green’s function is diagonal in the
eigenbasis of the noninteracting Hamiltonian), and (2) the
vertex corrections cancel. This question can in principle be
addressed with cluster DMFT calculations [67], but these may
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FIG. 19. The doping-field dependence of longitudinal dc con-
ductivity within FLA and DMFT. Color code is logarithmic: white is
−2.40 and −3.12, respectively; black is 0.98 and 1.03, respectively.

not be trivial to formulate or execute. Additionally, analytical
continuation of self-energy data might be difficult [or an exact
diagonalization (ED) solver might be used, which introduces
additional systematic error]. Finally, calculation of vertex
corrections in cluster DMFT schemes is notoriously difficult
[68–72]. Another possibility is to use recently developed Di-
agMC technique which requires no analytical continuation
[73–77], and can access the thermodynamic limit directly. As
the observed phenomena are not restricted to very high values
of the coupling and can already be observed at U = 0.5 − 1D,
a DiagMC calculation with only several orders could be suffi-
cient to work out the generic effect of self-energy nonlocality
and vertex corrections.
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APPENDIX A: PEIERLS PHASE IN LANDAU GAUGE
[PROOF OF EQ. (9)]

For the following derivation, we introduce r(α) =
a(x(α), y(α)) = a[ri + α(r j − ri )] and dr = ad dα, with d =
r j − ri, while keeping ri = (xi, yi ) dimensionless and xi, yi

integers. The Peierls phase for the uniform magnetic field per-

pendicular to the lattice B = (0, 0, Bz ), in the Landau gauge
(7) can be expressed as

fi j = e

h̄

∫ r j

ri

A(r) · dr

= ea

h̄

∫ 1

0
dα A(r(α)) · d

= ea2

h̄
Bz

∫ 1

0
dα x(α)ey · d

= ea2

h̄
Bz(y j − yi )

∫ 1

0
dα(xi + αdx )

= ea2

h̄
Bz(y j − yi )

[
xi + dx

∫ 1

0
dα α

]

= ea2

h̄
Bz(y j − yi )

[
xi + dx

α2

2

∣∣∣∣∣
1

0

]
.

We finally have

fi j = ea2

h̄
Bz(y j − yi )

[
xi + x j − xi

2

]

= ea2

h̄

Bz

2
(y j − yi )(xi + x j ). (A1)

When doing real-space calculations on a finite cyclic lattice,
it is necessary to always consider the shortest distance be-
tween the sites and take instead the following periodicized
expression:

fi j
fin. latt.= ea2

h̄
Bz(y j � yi )

[
xi + x j � xi

2

]
, (A2)

where � denotes the shortest distance on a finite cyclic lattice.

APPENDIX B: PROOF OF UNIT-CELL SIZE

We prove now that in the Landau gauge, the size of the
unit cell in the x direction is q. Consider that we shift both
ri and r j by qex = (q, 0) [we remind the reader that we use
dimensionless ri = (xi, yi ) as arguments of f ]. We must show
that the additional phase shift must be an integer number times
2π :

fri+qex,r j+qex = ea2

h̄

Bz

2
(y j − yi )(xi + q + x j + q)

= fri,r j + ea2

h̄

Bz

2
(y j − yi )2q. (B1)

We now apply Bz = 2π
p
q ( ea2

h̄ )−1:

fri+qex,r j+qex = fri,r j +
2π

p
q

2
(y j − yi )2q

= fri,r j + 2π p(y j − yi ). (B2)

As p(y j − yi ) is an integer, the condition (10) indeed satisfies
periodicity along the x direction.
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APPENDIX C: PROOF OF EQ. (14)

Here we rewrite in momentum space the kinetic term in the Hamiltonian (12) to reach Eq. (14):

Hkin,σ = −t
1

N

∑
k,k′

∑
i,u∈{ex,ey}

ei2π n
L xiu·ey e−ik·ri c†

k,σ eik′ ·(ri+u)ck′,σ + H.c.

= −2t
∑
k,σ

cos kxnk,σ − t
1

N

∑
k,k′

∑
i

ei2π n
L xi e−ik·ri c†

k,σ eik′ ·(ri+ey )ck′,σ + H.c.

= −2t
∑
k,σ

cos kxnk,σ − t
1

N

∑
k,k′

∑
i

ei2π n
L ri ·ex e−ik·ri c†

k,σ eik′ ·(ri+ey )ck′,σ + H.c.

= −2t
∑
k,σ

cos kxnk,σ − t
1

N

∑
k,k′

eik′ ·ey c†
k,σ ck′,σ

∑
i,σ

eiri ·(k′−k+2π n
L ex ) + H.c.

= −2t
∑
k,σ

cos kxnk,σ − t
∑
k,k′

eik′
y c†

k,σ ck′,σ δk′,k−2π n
L ex + H.c.

= −2t
∑
k,σ

cos kxnk,σ − t
∑
k,σ

eiky c†
k,σ ck−2π n

L ex,σ + H.c. (C1)

APPENDIX D: PERIODICITY WITH ky

We prove here the periodicity of the noninteracting eigen-
problem along the ky axis, as stated in Eqs. (24) and (25).
We start by reordering rows and columns of the Hamilto-
nian (15): one can achieve that by redefining |k̃, l, σ 〉 ≡ |k +
2π l p

q , σ 〉, or simply |k̃, l p mod q, σ 〉 → |k̃, l, σ 〉. In that
case, the Hamiltonian reads as

[H̃0,k̃,σ ]l,l ′ =
(

−μσ − 2t cos

(
k̃x + 2π l

p

q

))
δl,l ′

− t (eikyδl,l ′⊕1 + e−ikyδl⊕1,l ′ ). (D1)

This transformation does not affect the eigenvectors and
eigenvalues.

Now, we apply a unitary transformation defined by
[Uk̃]ll ′ = δll ′e−ilky and apply it to the Hamiltonian as

H̆0,k̃,σ ≡ Uk̃H̃0,k̃,σ U†
k̃
. (D2)

The transformed Hamiltonian H̆0,k̃,σ has the same eigenvalues
as H0,k̃,σ , and the original eigenvectors can be obtained from
the eigenvectors of H̆0,k̃,σ as |m, k̃, σ 〉 = U†

k̃
|m̆, k̃, σ 〉. As Uk̃

is diagonal, the element-wise equation for H̆k̃,σ reads as

[H̆0,k̃,σ ]ll ′ = [Uk̃]ll [H̃0,k̃,σ ]ll ′ [Uk̃]∗l ′l ′ . (D3)

The diagonal elements remain unchanged, and we must con-
sider two special cases for the off-diagonal elements: (a) |l −
l ′| = q − 1, and (b) |l − l ′| = 1. The two cases correspond to
whether the hopping between momenta winds around the BZ
or not. In the latter case, we have for

[H̆0,k̃,σ ]l>1,l ′=l−1 = e−ilky eiky ei(l−1)ky

= ei(1−l )ky ei(l−1)ky

= 1

= [H̆0,k̃,σ ]l<q−1,l ′=l+1. (D4)

But in the case when there is winding around the BZ, we get

[H̆0,k̃,σ ]l=q−1,l ′=0 = e−i(q−1)ky e−iky

= e−iqky

= [H̆0,k̃,σ ]∗l=0,l ′=q−1. (D5)

These are the only elements of the matrix that depend on k̃y,
which means that the blocks of the Hamiltonian are invariant
under a transformation

k̃ → (k̃x, k̃y + 2πC/q), (D6)

where C ∈ Z.
For the basis-change matrix elements, this periodicity

means

H0,k̃,σ , [αk,σ ]l p mod q,m

permute−−−−→ H̃0,k̃,σ , [αk,σ ]l,m

unitary tr.−−−−−→ H̆0,k̃,σ , e−ikyl [αk,σ ]lm

translate−−−−→ H̆0,k̃+(2πC/q)ey,σ
, e−ikyl [αk,σ ]lm

inv. unit. tr.−−−−−−→ H̃0,k̃+(2πC/q)ey,σ
, e−ikyl [αk,σ ]lmei(ky+2πC/q)l

= ei(2πC/q)l [αk,σ ]lm

permute back−−−−−−→ H0, ˜k+(2πC/q)ey,σ
, ei(2πC/q)l [αk,σ ]l p mod q, m.

(D7)

APPENDIX E: DECOMPOSITION INTO DIAMAGNETIC
AND PARAMAGNETIC CURRENTS

The current operator can be divided into the paramagnetic
and diamagnetic parts

jr = jr,P + jr,D, (E1)
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where we use Eq. (46) with

γr,P = (1, 1), (E2)

γr,D = γr − γr,P. (E3)

Because the inversion symmetry is preserved along the x axis,
the diamagnetic part of jx is going to be zero. This does not
hold along the y axis, so there will be nonzero paramagnetic
and diamagnetic parts in jy, but 〈jr,P〉 = −〈jr,D〉 so that the
total current is zero. This must hold as the total current is
a physical observable, and thus a gauge-invariant quantity.
Using the gauge-invariant Green’s function, this can be easily
proven: up to the constant prefactor, the thermal average of
the paramagnetic part is simply

〈jr,P〉 = iGr+ey,r(τ = 0−) − iGr,r+ey (τ = 0−)

= i(ei fr+ey ,r − e−i fr+ey ,r )Ḡr,r+ey (τ = 0−)

= i
(
e−i ea2

h̄ Bzx − ei ea2

h̄ Bzx
)
Ḡr,r+ey (τ = 0−), (E4)

and similarly

〈jr,D〉 = i
(
ei ea2

h̄ Bzx − e−i ea2

h̄ Bzx
)
Ḡr,r+ey (τ = 0−) = −〈jr,P〉.

(E5)

APPENDIX F: PROOF OF GAUGE INVARIANCE OF THE
KUBO BUBBLE

We start with the expression for the site-space matrix (op-
erator) for the current coupled to a vanishing external gauge
field Aext, and in the presence of a rotary gauge field A de-
scribing a perpendicular magnetic field. The total gauge field
is Atot = Aext + A. The corresponding contributions to the
Peierls phase (which is additive as well) yield f tot = fext + f :

jηr = − ∂Hkin

∂Aext,η
r

∣∣∣∣
Aext→0

= −∂ (eif tot ◦ Hkin[Atot = 0])

∂Aext,η
r

∣∣∣∣
Aext

r →0

= − ∂eif tot

∂Aext,η
r

∣∣∣∣
Aext→0

◦ Hkin[Atot = 0]

= −i
∂fext

∂Aext,η
r

∣∣∣∣
Aext→0

◦ eif ◦ Hkin[Atot = 0]. (F1)

Expressed in terms of second-quantized operators, for the
general TB Hamiltonian

jηr = −
∑

u

tr,r+u
∂ f ext

r,r+u

∂Aext,η
r

∣∣∣∣
Aext→0

× (iei fr,r+u c†
rcr+u − ie−i fr,r+u c†

r+ucr ), (F2)

where the sum over u goes over all sites, and we have omitted
the spin indices and the sum over spin for the sake of brevity.

The current-current correlation function is then

�
η,η′
r,r′ (τ )

=
∑
u,u′

tr,r+utr′,r′+u′
∂ f ext

r,r+u

∂Aext,η
r

∣∣∣∣
Aext→0

∂ f ext
r′,r′+u′

∂Aext,η′
r′

∣∣∣∣∣
Aext→0

×
∑

b,b′∈{0,1}
(−1)b+b′+1ei(−1)b fr,r+u ei(−1)b′

fr,r+u
∑
σ,σ ′

× 〈c†
r+bu,σ

(τ )cr+(1−b)u,σ (τ )c†
r′+b′u′,σ ′ (0)cr′+(1−b′ )u′,σ ′ (0)〉.

(F3)

The dynamic and disconnected part is

�
η,η′
r,r′ (τ )

=
∑
u,u′

tr,r+utr′,r′+u′
∂ f ext

r,r+u

∂Aext,η
r

∣∣∣∣
Aext→0

∂ f ext
r′,r′+u′

∂Aext,η′
r′

∣∣∣∣∣
Aext→0

×
∑

b,b′∈{0,1}
(−1)b+b′+1ei(−1)b fr,r+u ei(−1)b′

fr′ ,r′+u′

×
∑

σ

[−Gr+(1−b)u,r′+b′u′,σ (τ )]Gr′+(1−b′ )u′,r+bu,σ (−τ ),

(F4)

where the Green’s functions are obtained with Aext = 0. We
now rewrite in terms of the gauge-invariant Green’s function

�
η,η′
r,r′ (τ ) =

∑
u,u′

tr,r+utr′,r′+u′
∂ f ext

r,r+u

∂Aext,η
r

∣∣∣∣
Aext→0

∂ f ext
r′,r′+u′

∂Aext,η′
r′

∣∣∣∣∣
Aext→0

×
∑

b,b′∈{0,1}
(−1)b+b′

ei(−1)b fr,r+u ei(−1)b′
fr′ ,r′+u′

× ei fr+(1−b)u,r′+b′u′ ei fr+bu,r′+(1−b′ )u′

×
∑

σ

Ḡr+(1−b)u,r′+b′u′,σ (τ )Ḡr′+(1−b′ )u′,r+bu,σ (−τ ).

(F5)

The sum over b, b′ yields four terms with exponential prefac-
tors,

b = 0, b′ = 0 : ei fr,r+u ei fr′ ,r′+u′ ei fr+u,r′ ei fr′+u′,r ,

b = 0, b′ = 1 : ei fr,r+u ei fr′+u′,r′ ei fr+u,r′+u′ ei fr′ ,r ,

b = 1, b′ = 0 : ei fr+u,r ei fr′ ,r′+u′ ei fr,r′ ei fr′+u′,r+u ,

b = 1, b′ = 1 : ei fr+u,r ei fr′+u′,r′ ei fr,r′+u′ ei fr′ ,r+u (F6)

and each factor above is gauge invariant. Therefore, what
determines whether the Kubo bubble is gauge invariant are the

factors of the type
∂ f ext

r,r+u

∂Aext,η
r

|Aext→0 which clearly do not depend
on the choice of the gauge for A. A vanishing uniform electric
field E = ∂t Aext, can be achieved by letting Aext (r, t ) → Aext,
i.e., by having a constant and uniform vector potential. The
only gauge freedom for the external electric field then cor-
responds to choosing the inertial reference frame, which is a
trivial transformation that our calculation is certainly invariant
to; the slowly varying field approximation holds, and we have

∂

∂Aext,η
r

∫ r+u

r
Aext (r̃) · d r̃ = ∂

∂Aext,η
r

(Aext · u) = uη (F7)

which clearly does not depend on the precise choice of the
uniform Aext. We therefore conclude that for the calculation
of the linear response to a spatially uniform q = 0 electric
field, the Kubo bubble (47) is gauge invariant.

We also emphasize that the bubble for the charge-charge
correlation function is trivially gauge invariant because
Gi jGji = Ḡi jḠ ji.
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APPENDIX G: CURRENT OPERATOR IN MOMENTUM SPACE

Here we derive the current operator in momentum space. The general form is

jηq=0 = it

N

e

ach̄

∑
σ

∑
k̃,m,m′

v
η

k̃,m,m′,σ
c†

k̃,m,σ
ck̃,m′,σ . (G1)

The goal of this section is to get expressions for the vertex factors v
η

k̃,m,m′,σ
. We start with the current along the x direction. The

local contribution is given in Eq. (46). After plugging this in Eq. (53) and applying the basis transformation from Eq. (37), we
obtain

jx
q=0 = it

N

e

ach̄

∑
σ

∑
k̃,m,k̃′,m′

c†
k̃,m,σ

ck̃′,m′,σ

∑
l,l ′

[αk̃,σ ]l,m[αk̃′,σ ]∗l ′,m′
1

N

∑
r

e−i(k̃+l 2π
q ex )·rei(k̃′+l ′ 2π

q ex )·(r+ex ) + H.c.

= it

N

e

ach̄

∑
σ

∑
k̃,m,k̃′,m′

c†
k̃,m,σ

ck̃′,m′,σ

∑
l,l ′

[αk̃,σ ]l,m[αk̃′,σ ]∗l ′,m′ei(k̃′+l ′ 2π
q ex )·ex δk,k′δl,l ′ + H.c.

= it

N

e

ach̄

∑
σ

∑
k̃,m,m′

c†
k̃,m,σ

ck̃,m′,σ

∑
l

[αk̃,σ ]l,m[αk̃,σ ]∗l,m′ei(k̃+l 2π
q ex )·ex + H.c.

= it

N

e

ach̄

∑
σ

∑
k̃,m,m′

c†
k̃,m,σ

ck̃,m′,σ eik̃x
∑

l

[αk̃,σ ]l,m[αk̃,σ ]∗l,m′eil 2π
q + H.c.

= it

N

e

ach̄

∑
σ

∑
k̃,m,m′

[
c†

k̃,m,σ
ck̃,m′,σ eik̃x

∑
l

[αk̃,σ ]l,m[αk̃,σ ]∗l,m′eil 2π
q − c†

k̃,m′,σ
ck̃,m,σ e−ik̃x

∑
l

[αk̃,σ ]∗l,m[αk̃,σ ]l,m′e−il 2π
q

]
. (G2)

We are free to swap m and m′ in the last term:

jx
q=0 = it

N

e

ach̄

∑
σ

∑
k̃,m,m′

[
c†

k̃,m,σ
ck̃,m′,σ eik̃x

∑
l

[αk̃,σ ]l,m[αk̃,σ ]∗l,m′eil 2π
q − c†

k̃,m,σ
ck̃,m′,σ e−ik̃x

∑
l

[αk̃,σ ]l,m[αk̃,σ ]∗l,m′e−il 2π
q

]

= it

N

e

ach̄

∑
σ

∑
k̃,m,m′

c†
k̃,m,σ

ck̃,m′,σ

∑
l

[αk̃,σ ]l,m[αk̃,σ ]∗l,m′
[
eik̃x eil 2π

q − e−ik̃x e−il 2π
q
]
, (G3)

and we can simply read off Eq. (55).
Along the y direction, similarly we have

N
ach̄

e
jy
q=0 = it

∑
σ

∑
k̃,m,k̃′,m′

c†
k̃,m,σ

ck̃′,m′,σ

∑
l,l ′

[αk̃,σ ]l,m[αk̃′,σ ]∗l ′,m
1

N

∑
r

e2iπ p
q r·ex e−i(k̃+l 2π

q ex )·rei(k̃′+l ′ 2π
q ex )·(r+ey ) + H.c.

= it
∑

σ

∑
k̃,m,k̃′,m′

c†
k̃,m,σ

ck̃′,m′,σ

∑
l,l ′

[αk̃,σ ]l,m[αk̃′,σ ]∗l ′,m
1

N

∑
r

ei(k̃′+l ′ 2π
q ex−k̃−l 2π

q ex+p 2π
q ex )·rei(k̃′+l ′ 2π

q ex )·ey + H.c.

= it
∑

σ

∑
k̃,m,k̃′,m′

eik̃′
y c†

k̃,m,σ
ck̃′,m′,σ

∑
l,l ′

[αk̃,σ ]l,m[αk̃′,σ ]∗l ′,mδk̃,k̃′δl ′,l�p + H.c.

= it
∑

σ

∑
k̃,m,m′

eik̃y c†
k̃,m,σ

ck̃,m′,σ

∑
l

[αk̃,σ ]l,m[αk̃,σ ]∗l�p,m′ + H.c.

= it
∑

σ

∑
k̃,m,m′

[
eik̃y c†

k̃,m,σ
ck̃,m′,σ

∑
l

[αk̃,σ ]l,m[αk̃,σ ]∗l�p,m′ − e−ik̃y c†
k̃,m′,σ

ck̃,m,σ

∑
l

[αk̃,σ ]∗l,m[αk̃,σ ]l�p,m′

]

= it
∑

σ

∑
k̃,m,m′

c†
k̃,m,σ

ck̃,m′,σ

[
eik̃y

∑
l

[αk̃,σ ]l,m[αk̃,σ ]∗l�p,m′ − e−ik̃y
∑

l

[αk̃,σ ]l,m[αk̃,σ ]∗l⊕p,m′

]
(G4)

and we can immediately recognize Eq. (56).
We can use the property of the basis change matrix elements (23) to work out a symmetry of vx with respect to momentum

inversion:

vx
−k̃,m,m′,σ =

∑
l

[α−k̃,σ ]l,m[α−k̃,σ ]∗l,m′
[
e−ik̃x eil 2π

q − eik̃x e−il 2π
q
]

(G5)

=
∑

l

[αk̃,σ ]q−l,m[αk̃,σ ]∗q−l,m′
[
e−ik̃x eil 2π

q − eik̃x e−il 2π
q
]
. (G6)
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We now make a change of variables, l ′ = q − l , l = q − l ′:

vx
−k̃,m,m′,σ =

∑
l ′

[αk̃,σ ]l ′,m[αk̃,σ ]∗l ′,m′
[
e−ik̃x ei(q−l ′ ) 2π

q − eik̃x e−i(q−l ′ ) 2π
q
] =

∑
l ′

[αk̃,σ ]l ′,m[αk̃,σ ]∗l ′,m′
[
e−ik̃x e−il ′ 2π

q − eik̃x eil ′ 2π
q
]
. (G7)

Therefore,

vx
−k̃,m,m′,σ = −vx

k̃,m,m′,σ . (G8)

Furthermore, by noting that v can be more simply written as

vx
k̃,m,m′,σ = −2i

∑
l

[αk̃,σ ]l ′,m[αk̃,σ ]∗l ′,m′ sin

(
k̃x + l

2π

q

)
, (G9)

we can easily prove

vx
k̃,m,m′,σ = −(

vx
k̃,m′,m,σ

)∗
. (G10)

The matrix [vx
k,σ ]mm′ is hence anti-Hermitian, which also implies Revx

k̃,m,m
= 0. Also, by using Eq. (21), it is easily proven that

vx
(k̃x,−k̃y ),m,m′,σ = vx

(k̃x,k̃y ),m′,m,σ
. (G11)

APPENDIX H: DERIVATION FOR �
η,η′,disc
q=0 (iν)

The disconnected part of Eq. (57) reads as

�
ηη′,disc
q=0 (iν) = 1

2h̄

∫ β h̄

−β h̄
dτ eiντ t2e2

ch̄2

1

N

∑
σ

∑
k̃,m1,m′

1,m2,m′
2

v
η

k̃,m1,m′
1,σ

v
η′

k̃,m2,m′
2,σ

Gk̃,m′
2,m1σ

(−τ )Gk̃,m′
1,m2,σ

(τ ). (H1)

We now apply inverse Fourier transform to the Green’s functions

G(τ ) = 1

β

∑
iω

e−iωτ G(iω), (H2)

to obtain

�
ηη′,disc
q=0 (iν) = t2e2

ch̄2

1

N

∑
σ

∑
k̃,m1,m′

1,m2,m′
2

v
η

k̃,m1,m′
1,σ

v
η′

k̃,m2,m′
2,σ

1

β2

∑
iω,iω′

Gk̃,m′
2,m1σ

(iω)Gk̃,m′
1,m2,σ

(iω′)
1

2h̄

∫ β h̄

−β h̄
dτ ei(ν+ω−ω′ )τ , (H3)

where
∫ β h̄
−β h̄ dτ ei(ν+ω−ω′ )τ = 2β h̄δν+ω−ω′ , which immediately yields Eq. (58).

APPENDIX I: PROOF THAT DMFT SELF-ENERGY IS DIAGONAL IN THE NONINTERACTING EIGENBASIS

The following shows that a local self-energy is also diagonal in the basis of |k̃, m, σ 〉 states. We have

[�k̃,σ (z)]ll ′ = 〈k̃, l, σ |�σ |k̃, l ′, σ 〉 =
∑

i

[wσ ]∗(k̃,l ),i[wσ ](k̃,l ′ ),i�ii,σ (z) = �σ (z)
∑

i

[wσ ]∗(k̃,l ),i[wσ ](k̃,l ′ ),i = �σ (z)δll ′ , (I1)

where wσ is the basis change matrix, for the transformation from site space to k̃, l space. We can, therefore, write

[�k̃,σ (z)]mm′ = 〈k̃, m, σ |�σ |k̃, m′, σ 〉 =
∑

l

[
α−1

k̃,σ

]∗
m,l

[
α−1

k̃,σ

]
m′,l�ll,σ (z) = �σ (z)δmm′ , (I2)

which immediately yields Eq. (63).

APPENDIX J: CALCULATION OF LOCAL GREEN’S FUNCTION IN DMFT USING THE NONINTERACTING
DENSITY OF STATES

Here we prove Eq. (65):

Gii,σ (z) = 〈i, σ |Gσ (z)|i, σ 〉

= 1

N

∑
k̃,m

∑
l,l ′

e−i(k̃+l 2π
q ex )·ri ei(k̃+l ′ 2π

q ex )·ri [αk̃,σ ]l,m[αk̃,σ ]∗l ′,m〈k̃, m, σ |Gσ (z)|k̃, m, σ 〉

= 1

N

∑
k̃,m

∑
l,l ′

e−i((l−l ′ ) 2π
q ex )·ri [αk̃,σ ]l,m[αk̃,σ ]∗l ′,m〈k̃, m, σ |Gσ (z)|k̃, m, σ 〉. (J1)
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Because we know that Gii(z) must be uniform, we can define

Gloc,σ (z) = 1

N

∑
i

Gii,σ (z)

= 1

N2

∑
k̃,m

∑
l,l ′

[αk̃,σ ]l,m[αk̃,σ ]∗l ′,m
∑

i

e−i((l−l ′ ) 2π
q ex )·ri〈k̃, m, σ |Gσ (z)|k̃, m, σ 〉

= 1

N2

∑
k̃,m

∑
l,l ′

[αk̃,σ ]l,m[αk̃,σ ]∗l ′,mNδll ′ 〈k̃, m, σ |Gσ (z)|k̃, m, σ 〉

= 1

N

∑
k̃,m

〈k̃, m, σ |Gσ (z)|k̃, m, σ 〉
∑

l

|[αk̃,σ ]l,m|2

= 1

N

∑
k̃,m

〈k̃, m, σ |Gσ (z)|k̃, m, σ 〉. (J2)

Therefore, we can identify

Gii,σ (z) = 1

N

∑
k̃,m

1

h̄z − εk̃,m,σ − �σ (z)
=

∫
dε

ρ0(ε)

h̄z − ε − �σ (z)
. (J3)

APPENDIX K: CONDUCTIVITY EXPRESSION IN DMFT: PROOF OF EQS. (70) AND (71)

Starting from Eq. (67), we first perform the Hilbert transform of the Green’s function

G(iω) = − 1

π

∫
dε

ImG(ε + i0+)

iω − ε
, (K1)

where ε and iω have the units of frequency. We obtain

�
ηη′,disc
q=0 (iν) = t2e2

ch̄2π2

∑
σ

1

β

∑
iω

∫
dε

∫
dε′vηη′

σ (ε, ε′)
∫

dω

∫
dω′ ImG(ε, ω)

iω + iν − ω

ImG(ε′, ω′)
iω − ω′ . (K2)

Now we apply the partial fraction expansion 1
z−a

1
z−b = 1

a−b ( 1
z−a − 1

z−b ):

�
ηη′,disc
q=0 (iν) = t2e2

ch̄2π2

∑
σ

1

β

∑
iω

∫
dε

∫
dε′vηη′

σ (ε, ε′)
∫

dω

∫
dω′ImG(ε, ω)ImG(ε′, ω′)

× 1

−iν + ω − ω′

[
1

iω + iν − ω
− 1

iω − ω′

]
. (K3)

We apply 1
β

∑
iω

1
h̄(iω−z) = nF(z):

�
ηη′,disc
q=0 (iν) = t2e2

ch̄π2

∑
σ

∫
dε

∫
dε′vηη′

σ (ε, ε′)
∫

dω

∫
dω′ImG(ε, ω)ImG(ε′, ω′)

1

−iν + ω − ω′ [nF(−iν + ω) − nF(ω′)].

(K4)

The bosonic frequency does nothing in the argument of nF so we can rewrite

�
ηη′,disc
q=0 (iν) = t2e2

ch̄π2

∑
σ

∫
dε

∫
dε′vηη′

σ (ε, ε′)
∫

dω

∫
dω′ImG(ε, ω)ImG(ε′, ω′)

1

−iν + ω − ω′ [nF(ω) − nF(ω′)]. (K5)

Formal continuation to the real axis is performed by replacing iν → ν:

�
ηη′,disc
q=0 (ν) = t2e2

ch̄π2

∑
σ

∫
dε

∫
dε′vηη′

σ (ε, ε′)
∫

dω

∫
dω′ImG(ε, ω)ImG(ε′, ω′)

1

−ν + ω − ω′ [nF(ω) − nF(ω′)]. (K6)
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As we are interested in the real part of the conductivity, and having in mind Im�η,η′
(ν = 0) = 0, we get

Reσηη′,disc
q=0 (ν) = c

Im�
ηη′,disc
q=0 (ν)

ν

= t2e2

h̄π2

∑
σ

Im
∫

dε

∫
dε′vηη′

σ (ε, ε′)
∫

dω

∫
dω′ImG(ε, ω)ImG(ε′, ω′)

1

−ν + ω − ω′
[nF(ω) − nF(ω′)]

ν
.

(K7)

For the longitudinal conductivity specifically, vηη is purely real, so the imaginary part comes from the delta-peak part of the
ω,ω′ integrals through

∫
dx 1

x−y+i0− = P
∫

dx 1
x−y + iπδ(x − y). In the limit ν → 0 we get Eq. (70).

For Hall conductivity the imaginary part comes from the principal part of the integral, and one can estimate it through [38]
P

∫
dω

∫
dω′ 1

ν
1

−ν+ω−ω′ = P
∫

dω
∫

dω′ 1
ν

−ν+ω−ω′
(−ν+ω−ω′ )2 = − ∫

dω
∫

dω′ 1
(−ν+ω−ω′ )2 + ∫

dω
∫

dω′ 1
ν

ω−ω′
(−ν+ω−ω′ )2 . In the limit ν → 0

the second term cancels exactly due to the antisymmetry of the integrand with respect to the exchange ω ↔ ω′, and we get
Eq. (71).

APPENDIX L: OSCILLATIONS IN THERMODYNAMIC
PROPERTIES

With the NRG impurity solver, it is possible to directly
calculate the thermodynamic properties of the lattice problem
(i.e., without any integrations over parameters such as T or
μ, which is error prone). This is based on Eq. (46) from
Ref. [58], which relates the lattice grand potential (Landau
free energy) � = F − μNtot = E − T S − μNtot (Ntot is total
number of particles) and the impurity grand potential �imp =
Fimp − μnimp:

�

N
= �imp − kBT

∑
iω,σ

(∫ +∞

−∞
dε ρ0(ε)

× ln{[iωh̄ + μ − �σ (iω) − ε]Gσ (iω)}
)

, (L1)

FIG. 20. Dependence of total free energy and its components on
the magnetic field.

where Gσ is the local Green’s function. This may be analyti-
cally continued to the real axis to give [78,79]

�

N
= �imp + 1

π

∑
σ

∫ +∞

−∞
dε ρ0(ε)

∫ +∞

−∞
dω

× Im ln {[h̄ω + μ − �σ (ω) − ε]Gσ (ω)}nF(ω), (L2)

with the Fermi-Dirac distribution nF(ω) = 1/(1 +
exp[h̄ω/T kB]). The impurity free energy can be directly
calculated in the NRG using the full-density-matrix approach.

We consider the case shown in Fig. 5 which exhibited
significant transport oscillations at the high frequency, while
the self-energy and the Green’s function showed instead os-
cillations at the SdH frequency. In fact, at this temperature,
the Fourier transform of the oscillatory part of the inverse
conductivity shows no component at the SdH frequency, it is
already thermally washed out. Indeed, we find no remnants
of the SdH/dHvA oscillations in the thermodynamic proper-
ties either. In Fig. 20 we plot three elements that enter the
full thermodynamic potental: impurity free energy Fimp, the
chemical potential μ (which enters as −μnimp with constant
nimp = n = 0.85), and the lattice contribution from the double
integration �lattice. None of these show any clear oscillations;

FIG. 21. Benchmark with the data from Markov et al. [38]. Our
data: DMFT(NRG solver). Reference data: DMFT(exact diagonal-
ization solver with five bath sites)+Padé analytical continuation used
to obtain continuous spectra.
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if they exist, they are below the numerical uncertainty. We
only observe a weak quadratic dependence on the magnetic
field in all three contributions. This confirms yet again that
the high-frequency quantum oscillations show up exclusively
in the transport properties through the vertex factors, thus they
are, in this sense, a purely kinetic effect.

APPENDIX M: BENCHMARK

To benchmark our formalism and implementation, we
cross-check our σ xy(ν = 0) results with the data from
Ref. [38]. We perform a chemical potential scan at a fixed U =

3D and T = 0.025D/kB, which corresponds to the (doped)
Mott insulator regime. The results are shown in Fig. 21.
The agreement is solid. Neither of the curves fully satisfy
σ xy(ν = 0; μ) = −σ xy(ν = 0; −μ), which reveals the extent
of the systematic error bars. The biggest difference is the
position of the two peaks in the curves, which can be attributed
to the difference in the impurity solvers used (we have used
NRG [62–65], directly on the real axis; in Ref. [38] they used
exact diagonalization with five bath sites, and Padé analytical
continuation to obtain continuous spectra). We reproduce the
change of sign of σ xy(ν = 0) as chemical potential crosses the
edge of the Hubbard band into the Mott gap (at around μ = 1
and 2), which appears to be a robust feature of the solution.
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Phys. 83, 1523 (2011).

[54] P. G. Harper, Proc. Phys. Soc. London A 68, 874 (1955).
[55] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[56] K.-T. Chen and P. A. Lee, Phys. Rev. B 84, 205137 (2011).
[57] M. Berciu and A. M. Cook, Europhys. Lett. 92, 40003 (2010).
[58] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[59] M. Potthoff and W. Nolting, Eur. Phys. J. B 8, 555 (1999).

[60] M. Potthoff and W. Nolting, Phys. Rev. B 59, 2549 (1999).
[61] M. Potthoff and W. Nolting, Phys. Rev. B 60, 7834 (1999).
[62] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
[63] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys.

Rev. B 21, 1003 (1980).
[64] R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395

(2008).
[65] R. Žitko and T. Pruschke, Phys. Rev. B 79, 085106 (2009).
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