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Diagrammatic expansions are a central tool for treating correlated electron systems. At thermal equilibrium,
they are most naturally defined within the Matsubara formalism. However, extracting any dynamic response
function from a Matsubara calculation ultimately requires the ill-defined analytical continuation from the
imaginary- to the real-frequency domain. It was recently proposed [A. Taheridehkordi et al., Phys. Rev. B
99, 035120 (2019)] that the internal Matsubara summations of any interaction-expansion diagram can be
performed analytically by using symbolic algebra algorithms. The result of the summations is then an analytical
function of the complex frequency rather than Matsubara frequency. Here we apply this principle and develop
a diagrammatic Monte Carlo technique which yields results directly on the real-frequency axis. We present
results for the self-energy �(ω) of the doped 32 × 32 cyclic square-lattice Hubbard model in a nontrivial
parameter regime, where signatures of the pseudogap appear close to the antinode. We discuss the behavior
of the perturbation series on the real-frequency axis and in particular show that one must be very careful when
using the maximum entropy method on truncated perturbation series. Our approach holds great promise for
future application in cases when analytical continuation is difficult and moderate-order perturbation theory may
be sufficient to converge the result.
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I. INTRODUCTION

Interacting lattice fermions are one of the central subjects
in condensed matter theory. Especially in two dimensions, a
full many-body solution for even the simplest models (e.g., the
Hubbard model) is a formidable task. In recent decades, great
progress has been achieved using Monte Carlo algorithms for
the summation of various diagrammatic expansions. The main
advantage of this approach is that the approximations can be
controlled; i.e., convergence of the results with respect to the
control parameters can be systematically verified. The control
parameters of the calculations are most commonly the lattice
size and the maximal perturbation order. Some algorithms
[1–16] are very efficient for small systems but have not yet
reached very large lattice sizes, while others [17–24] can
address the thermodynamic limit directly but are limited in
the number of perturbation orders that can be computed.

In thermal equilibrium, expansions are naturally formu-
lated within the Matsubara formalism, with all the propagators
defined in imaginary time/frequency. Therefore, to obtain
dynamic response functions, one needs to perform the ana-
lytical continuation from the imaginary- to the real-frequency
domain. This procedure is notoriously ill defined and becomes
especially difficult when the Matsubara axis data contain sta-
tistical noise, as is the case with all Monte Carlo results. The
problem is further exacerbated with increasing temperature.
As the discrete imaginary Matsubara frequencies spread out
and move away from the real axis, the statistical noise chips
away more and more information from the Matsubara data.
The most common way of analytically continuing a noisy

result is the maximum entropy method (MEM) [25,26], but
it requires “the default model,” an a priori qualitative knowl-
edge of the real-frequency spectrum that may not always be
available; it is difficult to control and estimate the error bars
of any such procedure.

Analytical continuation is a common hurdle in finite-
temperature calculations, and it came up recently in the study
of transport in the optical lattice realizations of the Hubbard
model [16,27]. It turns out that the direct-current resistivity
is particularly difficult to extract from the imaginary-axis
current-current correlation function. But even the self-energy
is often interpreted only on the imaginary axis [24], as an-
alytical continuation is considered ultimately unreliable. This
particularly hinders the progress in the study of the pseudogap
phase and superconductivity in the cuprates, where one would
like to compare the momentum-resolved spectral function
to experiments [28,29]. The ability to reliably calculate the
spectral function becomes even more important in view of
the recent photoemission measurements (ARPES) in the cold-
atom realizations of the Hubbard model [30].

There are alternative routes that avoid analytical continu-
ation altogether (Keldysh formalism [7–14,31], exact diago-
nalization techniques [16,32–34]), but those have so far been
limited to impurity models or small lattice sizes. It is therefore
of primary importance to try to develop methods that avoid the
analytical continuation, but are not limited by lattice size.

As was recently proposed [35], an opportunity lies in
symbolic algebra algorithms. One can implement a recursive
transformation to perform analytically all the internal Mat-
subara frequency summations for any interaction-expansion
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diagram, for any quantity. The result of the Matsubara fre-
quency summations is an analytical expression for the contri-
bution of a given diagram to the given dynamic quantity, in
the whole of the complex-frequency plane, rather than just in
the discrete set of points along the imaginary axis. The general
idea is, however, not entirely new; at perturbation order 2, the
Matsubara summations for the self-energy diagrams can be
carried out by hand, which leads to the well-known real-axis
iterative perturbation theory (RAIPT) [36–38]. Similarly, the
bubble diagrams can be easily rewritten in terms of real fre-
quencies, which has applications in the GW method [39–41]
and the calculation of optical conductivity within the Kubo
formalism [42–44]. In the context of diagrammatic Monte
Carlo, however, obtaining the analytical expression for each
diagram of interest is only a part of the problem. In fact,
there are several immediate obstacles in applying the algo-
rithmic Matsubara summations in a calculation of quantities at
perturbation order � 3.

Here we address these problems and successfully develop
and test a diagrammatic Monte Carlo technique that yields
results directly on the real-frequency axis, yet can treat
very large systems. We present solutions for the momentum-
resolved self-energy for a doped 32 × 32 Hubbard lattice,
in a nontrivial parameter regime where results are almost
converged at order 5. Our results show that in this regime
precursor signatures of the pseudogap are visible in the real-
frequency antinodal self-energy. We also show that the trunca-
tion of the perturbation series leads to noncausal features that
challenge the use of MEM to obtain real-frequency data from
Matsubara axis results.

II. MODEL

We solve the Hubbard model on the square lattice

H = −t
∑

σ,〈i, j〉
c†
σ icσ j + U

∑
i

n↑in↓i − μ
∑
σ,i

nσ i, (1)

where c†
σ i/cσ i create/annihilate an electron of spin σ at the

lattice site i. The hopping amplitude between the nearest
neighbors is denoted t , and we set D = 4t as the unit of
energy. The density operator is nσ i = c†

σ icσ i, the chemical
potential μ, and the on-site Hubbard interaction U . We re-
strict ourselves to paramagnetic solutions with full lattice
symmetry.

III. METHOD

A. Symbolic algorithm

Following similar steps to those in Ref. [35], we first
define the Hartree-shifted bare Green’s function of the model
GHF

0,k(iω) = [iω − ε(k)]−1, where we absorbed the chemical
potential and the Hartree shift in the dispersion ε(k), i.e.,

ε(k) = −μ + Unσ − 2t (cos kx + cos ky), (2)

where k = (kx, ky) is the momentum. For the sake of clarity
we omit the integer index n in the fermionic Matsubara
frequency, iω ≡ iωn = i(2n + 1)πT , where T is temperature.
We reserve the subscript in iω for denoting different Matsub-
ara variables. We denote nσ the density per spin evaluated in
the interacting problem.

The self-energy � can be written as a series in the interac-
tion amplitude U ,

�k(iω) =
∞∑

N=1

(−U )N
NN∑
α=1

DN,α
k (iω), (3)

where N is the perturbation order, NN is the number of distinct
diagrams in the given expansion, α enumerates the diagrams,
and DN,α

k is the contribution of αth diagram in the N th order.
If the diagrams are written in terms of the Hartree-shifted
bare propagator there is no need for tadpole insertions in the
topology of the diagrams (see Appendix A 8).

The contribution of a general diagram to the bare series for
self-energy written in terms of GHF

0,k(iωn) is given by

DN,α
k (iω) =

(−1)Nb
∑

k1 . . . kM

i�1 . . . i�M

∏
γ

1∑
(s, j)∈Kγ

s i� j − ε
(∑

(s, j)∈Kγ
s k j

) .

(4)

Nb ≡ NN,α
b is the number of fermionic loops (bubbles) in the

given diagram: each bubble carries one independent fermionic
frequency and momentum. Each interaction carries a bosonic
frequency iν ≡ iνn = 2nπT and momentum, but some are not
independent due to conservation laws. We denote M the total
number of independent degrees of freedom, each consisting of
a frequency and momentum (i� j, k j ), where i� can be either
fermionic or bosonic. There are 2N − 1 Green’s functions in
each diagram, indexed by γ . Each Green’s function depends
on a certain subset of the internal degrees of freedom and
possibly the external variables, indexed j ∈ [0, M] (we take
k0 ≡ k, i�0 ≡ iω), and each entering with a sign s = ±1
in the corresponding sums. The Green’s function γ is fully
defined by a set of sign/index pairs Kγ ≡ KN,α

γ . The Green’s
functions may not be unique; i.e., it is possible that Kγ = Kγ ′ .
For the discussion of the Feynman rules leading to the general
expression Eq. (4), we refer the reader to the classic textbook
Ref. [45]. For a worked-out example of Eq. (4) in the 4th order
of perturbation, see Appendix A 3.

As a function of any given internal Matsubara frequency
i�c, and for a fixed choice of the remaining internal and
external degrees of freedom, the contribution to self-energy
from any given diagram (N, α) has the form of a product of
poles,

Dk(iω) = (−1)Nb
∑

k1 . . . kM

{i� j} j 
=c

P
∑
i�c

∏
γ

1

(i�c − zγ )mγ
, (5)

where P and zγ implicitly depend on the rest of the internal
and external variables, and here we assume that γ goes only
over the unique Green’s functions that depend on the given
i�c, and mγ ∈ N is the number of appearances of the γ th
Green’s function in the diagram. Using the partial fraction
expansion, and an analytic expression for the derivative of a
product of an arbitrary number of poles (see Appendix A 1),
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we can perform the transformation

∏
γ

1

(z − zγ )mγ
=

∑
γ

mγ∑
r=1

1

(z − zγ )r

×(−1)mγ −r
∑

C{pγ ′ 
=γ ∈N0}:
∑

γ ′ 
=γ pγ ′=mγ −r∏
γ ′ 
=γ

(mγ ′ + pγ ′ − 1)!

pγ ′ !(mγ ′ − 1)!

1

(zγ − z′
γ )mγ ′+pγ ′ . (6)

Here C . . . denotes all combinations of a non-negative-integer
p per pole γ ′ 
= γ , such that the total sum of p’s is equal
to mγ − r. Therefore, after selecting one internal Matsubara
variable, the full expression can be rewritten as a sum of poles
in that Matsubara variable. Then, one may proceed to perform
the Matsubara summation of each term using∑

i�

1

(i� − z)r
= − η

(r − 1)!
∂r−1nη(z) (7)

with η = ±1 for bosonic/fermionic Matsubara frequency. nη

is the Bose/Fermi distribution function. Here we can immedi-
ately get rid of the complex part of z because

∂r
ωnη(ω + i�η′ ) = η′∂r

ωnη′ ·η(ω), (8)

where η′ = −1 or +1 denotes whether i�η′ is fermionic
or bosonic Matsubara frequency, respectively. Note that the
derivatives ∂rn can be expressed analytically for the purpose
of precise numerical evaluation (details in Appendix A 4).

Now the remaining Matsubara variables appear only in
the denominators of fractions which can again be interpreted
as poles with respect to these variables, and the procedure
can be applied recursively until we have gotten rid of all the
Matsubara variables. For a detailed example of the symbolic
algorithm and an illustration of Eq. (5), see Appendix A 3.

The final result has the form of a sum of poles on the real
axis

Dk(z) = (−1)Nb
∑

k1...kM

∑
κ

Aκ

(z − ωκ )mκ
(9)

with ωκ = ∑
γ sκ

γ ε(
∑

(s, j)∈Kκ
γ

s k j ), which is a series of terms
equal up to the sign sκ

γ = ±1 to the dispersion ε, evaluated at
various possible linear combinations of the internal/external
momenta, as they appear in the Green’s functions (indexed
γ ). The series can be of any length � 2N − 1 and include an
arbitrary subset of γ ’s. The amplitude for each (unique) pole
(ωκ, mκ ) is given by a large sum of terms of the general form

Aκ =
∑

ς

aς

bς

∏
ζ

1

ω
mζς

ζς

∏
�

∂r�ς nη�
(ω�ς ). (10)

a, b are integers, m positive integers. ωζς and ω�ς have the
same general form as ωκ , but do not necessarily coincide with
any of the ωκ ’s, and may differ from one another. The products
over ζ and � may be of various lengths including 0. ω’s (and
thus Aκ ’s) are implicitly dependent on the internal and external
momenta.

The symbolic forms for Aκ and ωκ need be obtained only
once for any given diagram, independently of the choice
of the lattice geometry, parameters of the Hamiltonian, or

temperature. See Appendix A 2 for numbers of poles ωκ and
terms in Aκ at various perturbation orders.

B. Application in diagrammatic Monte Carlo

Evaluating the prefactor Aκ numerically is not straightfor-
ward for several reasons.

First, the terms in Aκ containing at least one ratio 1/ωm or
a bosonic ∂rnη(ω) will diverge if the corresponding ω goes
to zero. For any finite lattice this will occur regularly during
the Monte Carlo sampling, but even in the thermodynamic
limit, ω can approach arbitrarily close to zero. Our solution
for this problem is to add small shifts to a certain choice of ε’s
appearing in ω. This is done at the symbolic level, in a way
that |ω| can never be smaller than a given value that we set to
be ∼10−10 to 10−6 depending on the perturbation order. Note
that even this will cause the terms in Aκ to be very large by
absolute value (order as large as 1030), yet they will cancel
to produce contributions to Aκ of order � 1. This greatly
exceeds the capability of standard precision arithmetic which
handles only around ∼16 digits. We have found the solution in
using multiple precision floating point types which can store
more digits and allow for subtraction of large numbers, as
required in our algorithm. The additional approximation made
by numerical shifts can be controlled, and we have checked
on several examples that the result is insensitive to the precise
choice of the numerical parameters (size of the shifts and the
choice of the floating point precision). Surely, the shifts can
be always made smaller if the precision is made greater, but
this has an adverse effect on performance. For more details
see Appendix A6.

Next, one needs to perform the remaining sums over mo-
menta, numerically. For smaller lattices it is possible to do the
full summation, but otherwise we employ a flat-weight Monte
Carlo (see Appendix B; for an alternative algorithm useful in
the case of local self-energy, see Appendix A 7). In each step,
we select randomly the internal momenta k1 . . . kM , evaluate
all Aκ , and permanently store the triplets (ωκ, mκ , Aκ ). We
perform “on the fly” integration for any reappearing values
of ωκ . Even for modest lattice sizes, the number of possible
values of ωκ will be very large. To avoid immense outputs,
we project ε(k) on a uniform energy grid, so that linear
combinations of ε’s and thus ωκ ’s always fall on the same
uniform grid. The small shifts discussed in the previous
paragraph also fall on a uniform grid of a much smaller step,
so there will generally be several values of ωκ concentrated
around each point in the “big” ε grid. This way, the number
of different values of ωκ one can obtain is determined by the
resolution of the energy grid, i.e., the step �ε. Again, this is
a well-controlled approximation, and one can easily push the
resolution so that the approximation is negligible compared to
statistical noise. See Appendix A 5 for details.

Note also that it is essential for performance to store
the different values of ωκ, ωζς , ω�ς and the corresponding
∂rnη(ω), and reuse them whenever possible during the Monte
Carlo sampling.

The Monte Carlo run is then performed for a given choice
of the external momentum, temperature, lattice geometry, and
the Hartree-shifted chemical potential μ − Unσ (the doping
can be determined a posteriori). Once enough measurements

075113-3
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FIG. 1. Calculation for the 32 × 32 Hubbard lattice at two values of U , T = 0.1D, and μ − Unσ = 0.1D. These parameters correspond to
densities per spin indicated in the rightmost panels, i.e., dopings δ(U = 1) ≈ 9% and δ(U = 1.5) ≈ 5%. Left: Imaginary part of the self-energy
Im �(ω + iη), at a distance η = 0.3D from the real axis, for various k vectors. Different lines correspond to different maximal perturbation
orders in the calculation, Nmax. Gray-shaded curve is the piecewise-trapezoid fit at η = i0+, obtained with resolution �ω = 1.6η. Right: The
corresponding filled part of the spectral function, broadened with η, and interpolated in k space. The result is obtained with 5.12 × 107 Monte
Carlo steps per diagram.

of (ωκ, mκ , Aκ ) have been collected, the result for �k(z) for
any z and any U can be obtained using Eq. (9) and then
Eq. (3) (with iω → z). However, the result is a discrete set
of poles on the real axis, and requires regularization, simi-
larly to exact diagonalization techniques. If it were just the
simple poles on a dense uniform energy grid with a step �ε,
one could easily interpret Im �k(ω + i0+) as continuous, but
known with a finite resolution, simply through Im �k(ωκ +
i0+) = −πAκ/�ε. An analogous scheme could be performed
even for higher-order poles on a uniform grid, order by
order [46].

The problem is that the poles are not only on a uniform
grid, but rather cluster around the grid points, due to the small
numerical shifts discussed previously. It is also impossible to
separate poles according to their order because multiple poles
can combine to effectively form a single higher-order pole.
This makes it very difficult to construct a binning scheme
that would reinterpret the result directly on the real axis. A
better strategy is to use broadening, i.e., evaluate the self-
energy slightly away from the real axis, �(ω + iη). In our
calculation, statistical noise dominates close to the real axis;
thus we take η just large enough so that �(ω + iη) is a smooth
function of ω.

To recover the desired ω + i0+ result, one can perform a fit
based on the obtained �(ω + iη) and the Hilbert transform

�(ω + iη) = − 1

π

∫
dε

Im �fit (ε)

(ω + iη) − ε
. (11)

This procedure becomes trivial with η → 0; it treats all fre-
quencies on equal footing and is much better defined than
�(iωn) → �(ω + i0+) whenever η is small. Let us emphasize
that the only limitation in taking a small η is the numerical
noise: when the statistical error bars are small, the procedure
is very reliable, numerically stable, and does not require

additional input (such as the default model for MEM). This is
illustrated in the Appendix B, where the algorithm is bench-
marked against the numerical renormalization group (NRG)
[47] for the solution of an Anderson impurity model [48].

IV. RESULTS

We have benchmarked our method carefully on several
simple examples (see Appendix B). We now consider a
32 × 32 cyclic Hubbard lattice at temperature T = 0.1D and
μ − Unσ = −0.1D (hole doping). In this case we benchmark
our method against 8th-order � Det [22,23] in imaginary
frequency and find excellent agreement (see Appendix B 5).

In Fig. 1 we show the results for Im �(ω + iη) close to
the real axis (finite η < πT , lower than the first fermionic
Matsubara frequency). Closer than this, stronger noisy fea-
tures start to appear. Let us emphasize that the statistical noise
is far more pronounced on the real axis; i.e., convergence on
the imaginary axis does not necessarily imply convergence
on the real axis. Different lines represent calculations with
different maximal perturbation orders Nmax, at 6 characteristic
k points and 2 values of U . The shaded region is a piecewise
trapezoid Im �fit (ω + i0+) obtained with resolution �ω =
1.6η.

At U = 1D fifth-order diagrams contribute very little and
the result is practically converged with respect to Nmax. At
U = 1.5D, the result is not fully converged by order 5, but
is apparently close to convergence. We observe several non-
causal features Im �k(ω) > 0. At large negative ω, this hap-
pens at k = (0, 0) at order 4, but is then fixed by order 5. At
large positive ω, the problem appears at order 5, and is likely
to be fixed by higher orders in perturbation. These noncasual
features do not appear to be artifacts of the statistical noise
but rather a result of the truncation of the perturbation series.
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This calls for great caution in the use of MEM. Indeed, MEM
performed with built-in causality is bound to miss any such
features and may compensate for them in an uncontrolled
way.

It is interesting that in most cases Im �(ω) features two
broad peaks with a dip around ω = 0. However, at U = 1.5D
around k = (0, π ), a third peak appears close to ω = 0. We
interpret this peak as a precursor for the pseudogap behavior:
as temperature further decreases at this doping (around 5%),
the peak may approach ω = 0 and induce a larger, insulating-
like self-energy as observed in imaginary-time calculations,
e.g., Ref. [24].

Finally, the panels on the right present the filled part of
the corresponding k-resolved spectral functions. These plots
are relevant for recent spectral function measurements in
optical lattice realizations of the Hubbard model [30]. One can
observe that the spectral function preserves the general form
of the noninteracting limit, but spans a bigger energy range
and becomes more incoherent (wider lines of lesser intensity)
as interaction is increased.

V. CONCLUSIONS AND PROSPECTS

We have resolved the main conceptual issues regarding
the application of algorithmic Matsubara summations in the
context of diagrammatic Monte Carlo. This includes the pre-
cision and efficiency concerns in the evaluation of the pole
amplitudes, as well as the extraction of the real-axis results.
There is a possibility for further optimization which will likely
allow us to push the method to higher perturbation orders in
the future.

We demonstrate that our method is readily useful in
the study of the single-particle spectra in the intermediate-
coupling regime of the Hubbard model, which has been the
subject of recent publications [30,49,50]. Finally, our method
holds great promise for future work in the cases where an-
alytical continuation is particularly difficult. These include,
for example, high temperature and calculations of the current-
current correlation function �(ω) [16]. Our approach even
allows for a straightforward restriction to a selected window
of energies; if one is interested in dc resistivity, one may
calculate �(ω) only at very low frequency and that way gain
an important speedup.
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APPENDIX A: FORMALISM DETAILS

1. Derivation of Eq. (6)

The partial fraction expansion employs the residue theo-
rem, and the textbook expression reads∏

γ

1

(z − zγ )mγ

=
∑

γ

mγ∑
r=1

1

(z − zγ )r

1

(mγ − r)!
lim
z→zγ

∂
mγ −r
z

∏
γ ′ 
=γ

1

(z − zγ ′ )mγ ′ .

(A1)

The derivative of a product of poles can be expressed in the
following way:

∂n
z

∏
γ

1

(z − zγ )mγ
= (−1)nn!

∑
C{pγ ∈N0}:

∑
γ pγ =n∏

γ

(mγ + pγ − 1)!

pγ !(mγ − 1)!

1

(z − zγ )mγ +pγ
. (A2)

Here the sum goes over all combinations C of a choice of a
non-negative-integer p per pole γ , such that their sum is n.

Putting together the equations Eq. (A1) and Eq. (A2), one
obtains Eq. (6).

The derivation of Eq. (A2) relies on performing
∂z[ f (z)g(z)] = [∂z f (z)]g(z) + f (z)[∂zg(z)] and ∂z

1
(z−zγ )mγ =

−mγ
1

(z−zγ )mγ +1 , recursively. Having these in mind, it is clear
that the final result will consist of a number of terms, each
term being a product of the original poles, some with in-
creased orders. In each term, we will have acted with the
derivative upon each pole γ a certain number of times pγ � 0,
so as to use up all the derivatives, i.e.,

∑
γ pγ = n. For each

pole that is acted upon at least once, this leads to ∂
pγ

z
1

(z−zγ )mγ =
(−1)pγ mγ (mγ + 1) . . . (mγ + pγ − 1) 1

(z−zγ )mγ +pγ . Hence the

overall sign
∏

γ (−1)pγ = (−1)n. However, we can apply
derivatives in any order, so there is also a combinatorial
factor corresponding to permutation of multisets n!/(

∏
γ pγ !)

(number of distinct anagrams of an n-long word consisting of
unique letters indexed by γ , each appearing pγ times in the
word).

Let us check and illustrate Eq. (A2) on a simple example,
where one can carry out the derivatives by hand. Say

∂3
z

1

z − z1

1

(z − z2)2

= −6

(
4

1

z − z1

1

(z − z2)5
+ 3

1

(z − z1)2

1

(z − z2)4

+2
1

(z − z1)3

1

(z − z2)3
+ 1

(z − z1)4

1

(z − z2)2

)
. (A3)

We can immediately identify the prefactor (−1)nn! =
(−1)33! = −6. Also, we see there are 4 terms corresponding
to 4 possible choices of (p1, p2) such that p1 + p2 = n = 3,
respectively,

C = {(0, 3), (1, 2), (2, 1), (3, 0)}. (A4)
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J. VUČIČEVIĆ AND M. FERRERO PHYSICAL REVIEW B 101, 075113 (2020)

TABLE I. Numbers of poles and terms in the symbolic expres-
sion obtained by analytical Matsubara summations.

N Npoles N typ
poles Nterms N typ

terms

2 1 1 4 4
3 2 2 12–14 13
4 3–4 3.5 16–70 29.7
5 4–8 5.6 32–482 97.9
6 5–14 8.9 32–5092 296.2

Now the prefactors
∏

γ (mγ + pγ − 1)!/[pγ !(mγ − 1)!] can
be evaluated for each combination

(0, 3) :
(1 + 0 − 1)!

0!0!

(2 + 3 − 1)!

3!1!
= 1

1

4!

3!
= 4,

(1, 2) :
(1 + 1 − 1)!

1!0!

(2 + 2 − 1)!

2!1!
= 1

1

3!

2!
= 3,

(A5)

(2, 1) :
(1 + 2 − 1)!

2!0!

(2 + 1 − 1)!

1!1!
= 2!

2!

2!

1
= 2,

(3, 0) :
(1 + 3 − 1)!

3!0!

(2 + 0 − 1)!

0!1!
= 3!

3!

1

1
= 1,

all of which we can readily identify on the right-hand side of
Eq. (A3).

FIG. 2. An example of a momentum-labeled 4th-order diagram
on the lattice.

2. Numbers of poles and terms per diagram

Equation (9) in the main text is the final result of Matsubara
summations for a given diagram. It is a sum of a a certain
number Npoles of distinct poles (ωκ, mκ ), each with Nterms

distinct terms in the amplitude Aκ . We tabulate in Table I
the range and the geometrical average (typical value) of these
numbers for each perturbation order N .

3. Results of symbolic algebra

We present here an example of the analytic expression for the contribution of a self-energy diagram. We choose the 4th-order
diagram presented in Fig. 2. We start from the expression of the form Eq. (4):

Dk(iω) = (−1)2
∑
k1,k2

∑
q0,q1

∑
iω1,iω2

∑
iν0,iν1

× GHF
k+q0

(iω + iν0)GHF
k+q0+q1

(iω + iν0 + iν1)GHF
k+q0

(iω + iν0)GHF
k1

(iω1)GHF
k1−q0

(iω1 − iν0)GHF
k2

(iω2)GHF
k2−q1

(iω2 − iν1)

= (−1)2
∑
k1,k2

∑
q0,q1

∑
iω1,iω2

∑
iν0,iν1

×
(

1

iω + iν0 − εk+q0

)2 1

iω + iν0 + iν1 − εk+q0+q1

1

iω1 − εk1

1

iω1 − iν0 − εk1−q0

1

iω2 − εk2

1

iω2 − iν1 − εk2−q1

. (A6)

Here we have already imposed momentum conservation, which leaves only two internal bosonic frequencies/momenta to be
summed over (independent momenta carried by fermions and vertices are denoted in Fig. 2). For the sake of notational brevity,
here, as well as in the rest of this Appendix, we take εk ≡ ε(k).

The first step in performing the analytical Matsubara frequency summations is to choose one internal Matsubara frequency,
and then isolate the factors (poles) which depend on it. Say we choose iν0. We can regroup the factors conveniently:

Dk(iω)

= (−1)2
∑
k1,k2

∑
q0,q1

∑
iω1,iω2

∑
iν1

× 1

iω1 − εk1

1

iω2 − εk2

1

iω2 − iν1 − εk2−q1

∑
iν0

1[
iν0 − (−iω + εk+q0 )

]2

1

iν0 − (−iω − iν1 + εk+q0+q1 )

−1

iν0 − (iω1 − εk1−q0 )
.

(A7)
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Now the expression has the form of a product of poles with respect to iν0 [Eq. (5)], where the rest can be considered a prefactor
(denoted P). The product of poles can be then transformed using the main transformation Eq. (6):

Dk(iω)

= (−1)2
∑
k1,k2

∑
q0,q1

∑
iω1,iω2

∑
iν1

1

iω1 − εk1

1

iω2 − εk2

1

iω2 − iν1 − εk2−q1

×
{

1[
iω1 − εk1−q0 − (−iω + εk+q0 )

]2

1

iω1 − εk1−q0 − (−iω − iν1 + εk+q0+q1 )

∑
iν0

−1

iν0 − (iω1 − εk1−q0 )

+ 1[−iω − iν1 + εk+q0+q1 − (−iω + εk+q0 )
]2

−1

−iω − iν1 + εk+q0+q1 − (iω1 − εk1−q0 )

∑
iν0

1

iν0 − (−iω − iν1 + εk+q0+q1 )

−
[(

1

−iω + εk+q0 − (−iω − iν1 + εk+q0+q1 )

)2 −1

−iω + εk+q0 − (iω1 − εk1−q0 )

+ 1

−iω + εk+q0 − (−iω − iν1 + εk+q0+q1 )

( −1

−iω + εk+q0 − (iω1 − εk1−q0 )

)2] ∑
iν0

1

iν0 − (−iω + εk+q0 )

+ 1

−iω + εk+q0 − (−iω − iν1 + εk+q0+q1 )

−1

−iω + εk+q0 − (iω1 − εk1−q0 )

∑
iν0

1[
iν0 − (−iω + εk+q0 )

]2

}
. (A8)

We can now evaluate the Matsubara frequency summations per iν0, using Eq. (7) and then Eq. (8). Then, the denominators can
be simplified at the symbolic level:

Dk(iω) = (−1)2
∑
k1,k2

∑
q0,q1

∑
iω1,iω2

∑
iν1

1

iω1 − εk1

1

iω2 − εk2

1

iω2 − iν1 − εk2−q1

×
{

1(
iω + iω1 − εk1−q0 − εk+q0

)2

1

iω + iν1 + iω1 − εk1−q0 − εk+q0+q1

(−)3nF (−εk1−q0 )

+ 1(−iν1 + εk+q0+q1 − εk+q0

)2

−1

−iω − iω1 − iν1 + εk+q0+q1 + εk1−q0

(−)2nF (εk+q0+q1 )

−
[(

1

iν1 + εk+q0 − εk+q0+q1

)2 −1

−iω − iω1 + εk+q0 + εk1−q0

+ 1

iν1 + εk+q0 − εk+q0+q1

( −1

−iω − iω1 + εk+q0 + εk1−q0

)2]
(−)2nF (εk+q0 )

+ 1

iν1 + εk+q0 − εk+q0+q1

−1

−iω − iω1 + εk+q0 + εk1−q0

(−)2∂nF (εk+q0 )

}
. (A9)

The procedure can now be repeated for the next choice of the Matsubara variable.
We now present the final result of the symbolic algorithm for the diagram presented in Fig. 2. The diagram contributes one

second-order pole and two simple poles. The number of terms in the amplitudes for each pole is 16, 24, and 16, respectively. To
display the expression easily, we only show several representative terms in the amplitude of each pole:

Dk(z) = (−1)2
∑
k1,k2

∑
q0,q1

{
1

(z + εk1 − εk1−q0 − εk+q0 )2

×
[

nF
(
εk2−q1

)
nF

(
εk1−q0

)
nF

(
εk+q0+q1

) 1

εk2 − εk+q0+q1 − εk2−q1 + εk+q0

nF
(
εk+q0

)
+ nF

(
εk2−q1

)
nF

(
εk1−q0

)
nB

(
εk2 − εk2−q1

) 1

εk2 − εk+q0+q1 − εk2−q1 + εk+q0

nF
(
εk+q0

)
− nF

(
εk2−q1

)
nF

(
εk1

)
nF

(
εk+q0+q1

) 1

εk2 − εk+q0+q1 − εk2−q1 + εk+q0

nF
(
εk+q0

)

−nF
(
εk2

)
nF

(
εk1−q0

)
nB

(
εk2 − εk2−q1

) 1

εk2 − εk+q0+q1 − εk2−q1 + εk+q0

nF
(
εk+q0

) + · · ·
]
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+ 1

z + εk1 − εk1−q0 − εk+q0

×
[

nF
(
εk2−q1

)
nF

(
εk1−q0

)
nF

(
εk+q0+q1

) 1

εk2 − εk+q0+q1 − εk2−q1 + εk+q0

∂nF
(
εk+q0

)

+ nF
(
εk2−q1

)
nF

(
εk1

)
nF

(
εk+q0+q1

)
nB

(
εk1 − εk1−q0

) 1

(εk2 + εk+q0 − εk+q0+q1 − εk2−q1 )2

− nF
(
εk2

)
nF

(
εk1−q0

)
nF

(
εk+q0+q1

) 1

εk2 − εk+q0+q1 − εk2−q1 + εk+q0

∂nF
(
εk+q0

)

− nF
(
εk2

)
nF

(
εk1

)
nB

(
εk2 − εk2−q1

) 1

(εk2 − εk+q0+q1 − εk2−q1 + εk+q0 )2
nF

(
εk+q0

) + · · ·
]

+ 1

z + εk2 + εk1 − εk+q0+q1 − εk2−q1 − εk1−q0

×
[

nF
(
εk2−q1

)
nF

(
εk1−q0

)
nF

(
εk+q0+q1

) 1

(−εk2 + εk+q0+q1 + εk2−q1 − εk+q0 )2

× nF
(−εk2 + εk+q0+q1 + εk2−q1

)
+ nF

(
εk2−q1

)
nF

(
εk1−q0

)
nF

(
εk+q0+q1

)
nB

(
εk1 − εk1−q0

) 1

(−εk2 − εk+q0 + εk+q0+q1 + εk2−q1 )2

− nF
(
εk2

)
nF

(
εk1−q0

)
nF

(
εk+q0+q1

) 1

(−εk2 + εk+q0+q1 + εk2−q1 − εk+q0 )2

× nF
(−εk2 + εk+q0+q1 + εk2−q1

) + · · ·
]}

. (A10)

4. Calculation of Fermi/Bose function derivatives

In the numerical evaluation of the amplitudes of the poles
[Aκ ; Eq. (9) and Eq. (10)], we use the general expression for
the derivatives of the Fermi/Bose distribution function,

∂r
ωnη(ω) = −βr

r∑
k=0

(−)k+1 fr,kekβω

(eβω − η)k+1
(A11)

with fr,k ∈ N0 tabulated here:

r\k 0 1 2 3 4 5 6

0 1
1 0 1
2 0 1 2
3 0 1 6 6
4 0 1 14 36 24
5 0 1 30 150 240 120
6 0 1 62 540 1560 1800 720

5. Dispersion on an equidistant grid

We present here in detail the numerical trick that we
use to avoid unmanageable outputs from the Monte Carlo
summation. For a given lattice size (in our case 32 × 32), we
approximate εk so that it takes on values only from a given

set � of equidistant numbers spanning the bandwidth (in our
case the number of points is N� = 151). The new approximate
dispersion therefore has the property

ε̃k ∈ �,∀k (A12)

with

� = {minkεk + j�ε}N�−1
j=0 (A13)

and

�ε = maxkεk − minkεk

N� − 1
, (A14)

FIG. 3. Approximation of the dispersion used to avoid unman-
ageable outputs.
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and is determined simply by choosing the closest value to the
original dispersion:

ε̃k ≡ closest(�, εk ). (A15)

With a sufficiently dense grid �, the approximation be-
comes negligible. We present the approximate ε̃k we used
in our calculations in comparison to the exact dispersion
in Fig. 3.

6. Multiple precision algebra and regulators

To illustrate the need for multiple precision algebra, we focus here on the simplest example, which is the second-order
diagram. The Matsubara summations here can be easily carried out by hand:

Dk(iω)

= (−1)
∑
iω′,iν

∑
k′,q

GHF
0,k′ (iω′)GHF

0,k′+q(iω′ + iν)GHF
0,k−q(iω − iν)

= (−1)
∑
iω′,iν

∑
k′,q

1

iω′ − εk′

1

iω′ + iν − εk′+q

1

iω − iν − εk−q

=
∑
k′,q

nF (εk′ )nB(εk′+q − εk′ ) + nF (εk′ )nF (−εk−q) − nF (εk′+q)nB(εk′+q − εk′ ) − nF (εk′+q)nF (−εk−q)

iω − εk′+q − εk−q + εk′
. (A16)

We see that the final result has four terms in total, and that the two terms featuring nB diverge as q → 0, or equivalently as t → 0,
i.e., εk → 0,∀k. Nevertheless, the contribution of the diagram is finite as the following limit is well defined:

lim
ε→0

[nF (0)nB(ε) − nF (ε)nB(ε)] = 1
4 . (A17)

However, in numerical implementation one cannot simply let ε → 0 in the above expression as nB becomes ill defined. We find
the solution in adding small shifts in the symbolic expression. At second order, it suffices to associate a small shift ε to εk′ :

Dk(iω) ≈
∑
k′,q

1

iω − εk′+q − εk−q + εk′ + ε

×[
nF (εk′ + ε)nB(εk′+q − εk′ − ε) + nF (εk′ + ε)nF (−εk−q) − nF (εk′+q)nB(εk′+q − εk′ − ε) − nF (εk′+q)nF (−εk−q)

]
. (A18)

That solves the problem as nB will no longer be ill defined even when q = 0. However, depending on the size of ε and β, the two
problematic terms may become large. Consider ε = 10−20 and β = 1. In that case the terms featuring nB can become as big as
1020. The subtraction of two numbers of size 1020 that are different only by 1

4 will fail if performed in standard (double) precision,
as it handles only up to ∼16 digits. While in the case of the second-order diagram one can clearly use a larger ε and avoid any
problems, at higher perturbation orders there will be products of several diverging nB, multiplied also with expressions of the
type 1/0, and ever larger shifts would be needed; increasing the numerical shifts would eventually start introducing noticeable
systematic error. The solution is then to use larger floating point data types that can store more digits. In our implementation we
use the GNU Multiple Precision Arithmetic (GMP) C++ library and its Python wrapper GMPY2 and use floating point type of
350 bits, and we keep the shifts perturbation-order dependent, ∼10−12+N .

7. Monte Carlo application to local self-energy

We also devise an algorithm to treat directly the local self-
energy. This algorithm relies on rewriting the diagrams in real
space. In notation analogous to Eq. (4), the contribution of a
general real-space diagram has the following form:

Di0iN (iω) = (−1)Nb
∑

i1...iN−1

∑
i�1..i�M∫

dε1 . . . dε2N−1

∏
γ

ρr(γ ;i0...iN )(εγ )∑
(s, j)∈Kγ

si� j − εγ

, (A19)

where ii denote the lattice sites where the interaction vertices
are positioned (the first and last are the external site indices).
The energy integrals come from the Hilbert transform

Gr(iω) = − 1

π

∫
dε

ImGr(ε + i0+)

iω − ε
(A20)

and

ρr(ε) = − 1

π
ImGr(ε + i0+)

= − 1

π
Im

∑
k

eik·rGk(ε + i0+)

=
∑

k

eik·rδε,εk

= 2
∑

0<kx,ky<π

[
cos(k · r) + cos(kσ zr)

]
δε,εk , (A21)

where kσ zr = kxrx − kyry. The above can be evaluated nu-
merically to high precision. It is important to note that∫

dερr=(0,0)(ε) = 1, (A22)∫
dερr 
=(0,0)(ε) = 0. (A23)
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Now note that only ρ actually depends on the choice of
lattice sites. We rewrite the expression in a way that is more
revealing:

Di0iN (iω) = (−1)Nb
∑

i�1..i�M

∫
dε1 . . . dε2N−1

∏
γ

× 1∑
(s, j)∈Kγ

si� j − εγ

∑
i1...iN−1

ρr(γ ;i0...iN )(εγ ). (A24)

For a given choice of ε’s and i’s, this is formally the same
as what we had in Eq. (4) in the main text. A completely
analogous symbolic algebra algorithm can be used to resolve
the Matsubara summations, but the results will be different.
The difference from the k-space case is that all the ε’s
are now independent, which will lead to different analytical
expressions for each diagram. The final expressions will,
however, have the same general form [Eq. (9) and Eq. (10)
in the main text], yet slightly simplified: now one obtains only
simple poles because no two Green’s functions are identical,
i.e., mγ = 1,∀γ . In fact, even in the k-space case, higher-
order poles appear only in dressed diagrams; a skeleton series
would not have this feature. After the analytical summation
of the Matsubara frequencies, the remaining expression to be
evaluated has the form

Di0iN (z) = (−1)Nb

∫
dε1 . . . dε2N−1

∑
κ

Aκ

z − ωκ

×
∏
γ

∑
i1...iN−1

ρr(γ ;i0...iN )(εγ ), (A25)

where A and ω implicitly depend on ε1 . . . ε2N−1. The remain-
ing variables to be summed over now include both the energies
ε and the lattice sites i. Note, however, that A and ω do not
depend on the i’s, so recalculating them for each configuration
of i’s would be inefficient. We are immediately inclined to use∏

γ

∑
i1...iN−1

ρr(γ ;i0...iN )(εγ ) as the weight for Monte Carlo over
the space of ε’s. We recall the general expression∫

f (x)w(x)dx∫
w(x)dx

=
∑

x∈MC(|w|) f (x)sgn[w(x)]∑
x∈MC(|w|) sgn[w(x)]

, (A26)

where MC(|w|) is the Markov chain constructed with respect
to |w| as the weight. Therefore it is necessary that the overall
integral of our weight function is known and nonzero. How-
ever, this will only be the case if i0 = iN . First, the integrals
over our proposed weight decouple:∫

dε1 . . . dε2N−1

∏
γ

∑
i1...iN−1

ρr(γ ;i0...iN )(εγ )

=
∑

i1...iN−1

∏
γ

∫
dεγ ρr(γ ;i0...iN )(εγ ). (A27)

We see that the only contribution comes from the choice
i0 = i1 = . . . = iN in which case r(γ ; i0 . . . iN ) = (0, 0),∀γ ,
and so each integral over energy equals 1, and the total
integral of the weight is also equal 1. Otherwise, if i0 
= iN ,
there will always be at least one nonlocal ρr(ε) involved, the
integral of which is 0. Therefore, the proposed weight has
total integral zero for any nonlocal self-energy component and
cannot be used in this purpose. Nevertheless, one can use it

for calculating the local self-energy. Furthermore, in a local
problem, e.g., Anderson impurity [48], this scheme can be
used straightforwardly without the summations over lattice
sites. We use it in our Anderson impurity benchmark below.

8. Diagram topologies

In Fig. 4 we present all the topologies of the interaction-
expansion diagrams up to order 5. Full lines are the Hartree-
shifted bare propagators, and the dashed lines are interactions.
All the drawn diagrams went into calculation of the self-
energy in Fig. 1.

APPENDIX B: BENCHMARK

Here we benchmark our method in the following cases:
(i) atomic limit against analytic result;
(ii) 4-site Hubbard chain against exact diagonalization

(ED) [51];
(iii) 4 × 4 lattice against numerically exact Rubtsov algo-

rithm, continuous-time interaction-expansion quantum Monte
Carlo (CTINT) [1,2,52];

(iv) single Anderson impurity problem against the approx-
imative NRG [47];

(v) 32 × 32 lattice against imaginary-time diagrammatic
Monte Carlo, � Det, up to 8th order in perturbation theory
[22,23].

1. Atomic limit

We start by benchmarking our method in the case of the
half-filled Hubbard atom. It corresponds to setting t = 0, μ =
U/2 (and nσ = 0.5 in the definition of the Hartree-shifted
bare propagator). As there is no longer k dependence in the
dispersion, the k sums now reduce to a single term, and
each diagram needs to be evaluated only once, for εk = 0.
As explained in Appendix A 6, this cannot be done straight-
forwardly because it would lead to divergent terms in the
analytical expression, namely of the form nB(0) and 1/0 [see
Eq. (10) and the example Eq. (A10)]. The numerical treatment
boils down to adding small shifts to a certain number of
ε’s at the symbolic level so that zeros are avoided in the
arguments of nB and denominators of fractions, and only then
letting the original ε’s go to zero (say, εk2−q1 → εk2−q1 + ζ ,
εk1 → εk1 + 2ζ , and so on, simultaneously across all terms in
a given diagram; the shifts are integer multiples of ζ which we
set depending on perturbation order ζ = 10−12+N ; the choice
of ε’s to be shifted is nonunique). This will a priori lead to
systematic numerical error and here we check whether the
numerical treatment is satisfactory (the atomic limit is the
worst case scenario in this respect).

First, we recall the analytical expression for the self-energy
beyond the Hartree shift:

�(HF)(iωn) = U 2

4

1

iωn
. (B1)

It can be shown that this expression corresponds to the second-
order diagram in the U series written down in terms of the
Hartree-shifted bare propagator. The contribution of higher
orders is zero “order by order,” but individual higher-order
diagrams are not necessarily zero. Therefore, it is a stringent
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FIG. 4. Hartree-shifted self-energy series up to 5th order. The
numbers of diagrams per order are 1, 2, 12, 70, 515, . . . starting from
the second order, respectively.

FIG. 5. Benchmark in the case of an isolated Hubbard atom at
half filling. Big panel: Our method (GC) is compared to the analytical
expression. Smaller panels on the right: Self-energy contributions
order by order; the only contribution comes from the second-order
diagram.

check of our method to show that the higher orders truly
cancel.

We present the results in Fig. 5. We evaluate all the dia-
grams up to and including the 6th order, at a fixed U = T = 1.
The total series is in excellent agreement with the analytical
result (big panel). On the smaller panels on the right, we
examine the contributions order by order (�N denotes contri-
bution at order N). Indeed, the only contribution comes from
the second-order diagram, while the contributions of higher
orders are negligible. However, the numerical error grows
with approaching the real axis, and with growing order. The
real part of self-energy coming from the 6th-order diagrams
already reaches 10−5. This is expected, as we use bigger
numerical shifts in higher-order diagrams. Alternatively, one
would need to drastically increase the floating-point precision
in the evaluation of higher-order diagrams, which is not
suitable for lattice computations, so we do not consider this
approach; rather, we keep the floating-point precision fixed
across orders.

In the atomic limit, the real-frequency self-energy cannot
be reliably extracted from our method. This is, however, a
somewhat pathological case where the self-energy is a single
simple pole at ω = 0. Due to numerical shifts and cutting
the series at finite order, our numerical self-energy here is
composed of multiple poles of various orders at various small
frequencies ∼ζ . Very close to the real axis, these numerical
artifacts become apparent, and the method is of little use.

2. 4-site Hubbard chain

Next, we benchmark our method in the case of the half-
filled 4-site cyclic Hubbard chain at temperature T = 0.2D =
0.8t (note that the actual half-bandwidth in this case is 2t).
This small system can be solved using exact diagonalization
(ED). In our method, the k summations go over only 4 points
and can be performed fully, so we denote our method GC
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FIG. 6. Benchmark in the case of the 4-site cyclic Hubbard chain
at half filling.

(gray code). In this case we go up to order 4 [due to particle-
hole (PH) symmetry, the order 5 does not contribute, but order
6 we cannot fully sum].

We present our result in Fig. 6. The agreement is excellent
at U = 1D, yet at U = 1.5D higher orders become important.

Similarly to the atomic limit, the self-energy in the 4-site
chain is composed of a relatively small number of poles
on the real axis, and does not form a smooth frequency
spectrum. On the other hand, having that εk takes on only
three distinct values (−0.5, 0, 0.5), our method can yield
poles only at frequencies which are integer multiples of 1/2
(plus/minus small numerical shifts). The immediate question
is then, How does one recover the correct self-energy even
with an infinite self-energy series? One would expect the poles
in self-energy to appear at various different frequencies and
even move continuously with increasing U , yet our analytical
expression seemingly does not support that. The answer is
that all the higher-order poles ultimately merge into (shifted)
simple poles through

∞∑
k=1

ak−1

zk
= 1

z − a
(B2)

and that way recover the correct physical result. Note, how-
ever, that the principle part of the Laurent series Eq. (B2) cut
at a finite order no longer resembles a simple pole at η � a,
irrespective of the maximum order in the series. Therefore,
it makes no sense to look at �(ω + iη) results at small η.
One reasoning is that we should take η proportional to the

FIG. 7. Benchmark of the method in the case of 4 × 4 cyclic
Hubbard cluster.

distance between the poles we get, which is in this case 0.5.
We therefore compare our result to ED at η = 0.6 which is
just below the first Matsubara frequency πT and find similarly
good agreement to that on the imaginary axis.

Again, our method cannot be used to reliably extract
discrete spectra on the real axis. Fitting the result at η = 0.6
to a causal and piecewise constant spectrum on the real axis
does reproduce the correspondingly binned ED result, but the
detailed pole structure cannot be inferred.

3. 4 × 4 lattice

We now turn to the 4 × 4 cyclic Hubbard cluster. This sys-
tem cannot easily be solved with ED, so we use the Rubtsov
algorithm continuous-time interaction expansion Monte Carlo
(CTINT) which is numerically exact. However the compar-
ison can now only be made on the imaginary axis. In our
method, full k summations can be performed up to order 5.

In Fig. 7 we show the results at μ − Unσ = 0.1D, T =
0.2D, k = (0, 0). Additionally, we show the GC results
for different perturbation-order cutoffs Nmax = 2 . . . 5. At
U = 1D the agreement is excellent and the perturbation series

075113-12



REAL-FREQUENCY DIAGRAMMATIC MONTE CARLO AT … PHYSICAL REVIEW B 101, 075113 (2020)

FIG. 8. Benchmark of our method in the case of the single-
impurity Anderson model with a semicircular bath.

seems converged at order 5. At U = 1.5D the agreement is
solid, but 5th order still makes a sizable contribution.

As for the real-frequency spectrum, there is a similar prob-
lem as in the 4-site chain case: dispersion now assumes only
the values (±1,±0.5, 0), and again one obtains poles only at
integer multiples of 0.5 plus an integer multiple of μ − Unσ .
Although discrete, the exact self-energy spectrum is expected
to be much denser, and any kind of fit to the η ∼ 0.5 result
is likely to miss details of it. Our method is suitable only for
continuous spectra, as we will show in the following sections.

4. Anderson impurity

To test our method in the continuous spectrum case,
we start with the simplest possible model: the Anderson
impurity model with a semicircular bath. We consider only
the PH-symmetric case. The Hartree-shifted bare propagator
is given by

GHF
0 (z) = 1

z − �(z)
(B3)

and the hybridization function

�(z) = V 2
∫

dε
ρ(ε)

z − ε
, (B4)

ρ(ε) = θ (D − |ε|)2
√

D2 − ε2/(πD2), (B5)

where V 2 sets the norm, and D sets the width of Im�(ω).
This model can be solved approximately using numerical

renormalization group (NRG). NRG yields the self-energy
directly on the real axis.

In our method, we utilize the real-space algorithm intro-
duced in Appendix A 7, with the important simplification that
there are no sums over lattice sites. We discretize the energy
(200 points between −1 and 1), and perform Monte Carlo
integration for the ε integrals using the product

∏
γ ρ(εγ ) as

the weight.
A priori, now we should be able to approach the real axis

to around η ∼ 1/100. However, the statistical error now also
plays the role, and we find that Im �(ω + iη) becomes noisy
below η ∼ 0.05D. Nevertheless, this should be sufficient to
resolve all the details of the spectrum. We compare our results
to NRG at η = 0.05 and find excellent agreement (Fig. 8).
Note that we do not impose PH symmetry, but the result
is PH-symmetric apparently within the level of noise in the
curve. Next, we fit our result at η = 0.05D to a PH-symmetric
piecewise-trapezoid spectrum on the real axis with resolution
∼0.1 and compare to the NRG result on the real axis. The
agreement is excellent, and the resolution is sufficient to
capture all the features in Im �(ω + i0+).

5. 32 × 32 lattice

Finally, we benchmark our method in the 32 × 32 Hub-
bard lattice case. The best available result is that of the

FIG. 9. Matsubara self-energy on the 32 × 32 Hubbard lattice: benchmark against the � Det method at 8th order.
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imaginary-time � Det diagrammatic Monte Carlo calculation,
performed up to 8th order. We compare the two methods on
the Matsubara axis in Fig. 9.

At U = 0.5D the agreement is excellent, and the calcula-
tion is clearly converged by order 5, but clearly not by order 2.

At U = 1D higher orders still contribute, and there is
a bit of discrepancy at low frequency. From the real-

frequency results (Fig. 1 in the main text), however, it
is clear that the self-energy is qualitatively converged, al-
though some corrections are expected with inclusion of higher
orders.

We do not benchmark using U = 1.5 data, as in that case
the higher orders are expected to contribute more, and results
are not expected to coincide.
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