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Recent years have seen a revived interest in the diagrammatic Monte Carlo (DiagMC) methods for interacting
fermions on a lattice. A promising recent development allows one to now circumvent the analytical continuation
of dynamic observables in DiagMC calculations within the Matsubara formalism. This is made possible by sym-
bolic algebra algorithms, which can be used to analytically solve the internal Matsubara frequency summations
of Feynman diagrams. In this paper, we take a different approach and show that it yields improved results. We
present a closed-form analytical solution of imaginary-time integrals that appear in the time-domain formulation
of Feynman diagrams. We implement and test a DiagMC algorithm based on this analytical solution and show
that it has numerous significant advantages. Most importantly, the algorithm is general enough for any kind
of single-time correlation function series, involving any single-particle vertex insertions. Therefore, it readily
allows for the use of action-shifted schemes, aimed at improving the convergence properties of the series. By
performing a frequency-resolved action-shift tuning, we are able to further improve the method and converge the
self-energy in a nontrivial regime, with only 3–4 perturbation orders. Finally, we identify time integrals of the
same general form in many commonly used Monte Carlo algorithms and therefore expect a broader usage of our
analytical solution.
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I. INTRODUCTION

Finding controlled solutions of the Hubbard model is
one of the central challenges in condensed matter physics
[1–4]. Many common approaches to this problem rely on the
stochastic (Monte Carlo) summation of various expansions
and decompositions of relevant physical quantities. How-
ever, Monte Carlo (MC) algorithms are often plagued by
two notorious problems: the fermionic sign problem and the
analytical continuation of frequency-dependent quantities in
calculations based on the Matsubara formalism [5–8] (alter-
natively, the dynamical sign problem in the Kadanoff-Baym
and Keldysh formalism calculations [9–23]). In diagrammatic
Monte Carlo (DiagMC) methods [24–38] (as opposed to
determinantal methods such as continuous-time interaction-
expansion quantum Monte Carlo (CTINT) or, auxiliary-field
quantum Monte Carlo (CTAUX) [39–42]), an additional prob-
lem is often the slow (or absence of) convergence of the series
with respect to the perturbation order. In recent years, sev-
eral works have started to address the problems of obtaining
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real-frequency quantities [43–51] and series convergence in
DiagMC [52–57].

In Refs. [43,52], it has been shown that a convenient trans-
formation of the interaction-expansion series can be used to
significantly improve its convergence and sometimes allows
one to converge the electronic self-energy with only a few
perturbation orders where it would have otherwise been im-
possible. The method relies on a transformation of the action
which affects the bare propagator at the cost of an additional
expansion, i.e., more diagram topologies need to be taken into
account. Alternatively, this transformation can be viewed as a
Maclaurin expansion of the bare propagator with respect to
a small chemical potential shift. The resulting convergence
speedup comes from an increased convergence radius of the
transformed series.

In a separate line of work, DiagMC methods have been
proposed that are based on the Matsubara formalism that do
not require an ill-defined analytical continuation [47]. Such
methods have so far been implemented for the calculation
of the self-energy [48,49] and the dynamical spin suscep-
tibility [50]. The algorithms differ in some aspects, but all
rely on the symbolic algebra solution of the internal Matsub-
ara frequency summations appearing in Feynman diagrams.
However, this approach has some downsides. First, numeri-
cal regulators are needed to properly evaluate Bose-Einstein
distribution functions and diverging ratios that appear in the
analytical expressions, and also poles on the real axis (effec-
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tive broadening of the real-frequency results). In the case of
finite cyclic lattice calculations, multiple precision algebra is
needed in order to cancel divergences even with relatively
large regulators [48]. Most importantly, in the Matsubara
summation algorithm, applying the series transformation from
Refs. [43,52] would require a separate analytical solution for
each of the additional diagram topologies, which are very
numerous, and the calculation would become rather imprac-
tical. More generally, treating any distinct diagram requires
that the Matsubara frequency summations be performed algo-
rithmically beforehand. This makes it difficult to devise MC
sampling algorithms that go to indefinite perturbation orders,
unless the Matsubara summation part is sufficiently optimized
so that it no longer presents a prohibitive performance penalty
if performed at the time of the Monte Carlo sampling.

In this paper, we show that it can be advantageous to start
from the imaginary-time domain formulation of Feynman
diagrams. A diagram contribution then features a multiple
imaginary-time integral, rather than sums over Matsubara
frequencies. The multiple integral can be solved analytically
and we present a general solution. This analytical solution,
although equivalent to the analytical Matsubara summation,
has a simpler and more convenient form that does not feature
Bose-Einstein distribution functions or diverging ratios. As
a result, numerical regulators are not needed and the need
for multiple precision arithmetic may arise only at very high
perturbation orders. The numerical evaluation yields a sum of
poles of various orders on a uniform grid on the real axis. The
ability to separate contributions of poles of different orders
allows one to formally extract the real-frequency result with-
out any numerical broadening. Finally, the analytical solution
is general and applies to all diagram topologies that would
appear in the transformed series proposed in Refs. [43,52]
or any other diagrammatic series for single-time correlation
functions. This paves the way for real-frequency diagram-
matic algorithms formulated in real space that are not a priori
limited to small perturbation orders (similarly to CTINT or
CTAUX [42]).

In this work, we apply the analytical time integral to the
momentum-space DiagMC for the calculation of the self-
energy, and implement and thoroughly test the method. We
reproduce the self-energy results from Ref. [52] and sup-
plement them with real-axis results, free of the uncontrolled
systematic error that would otherwise come from the ana-
lytical continuation. Furthermore, we show that even if a
full convergence is not possible with a single choice of the
action-tuning parameter, one can choose the optimal tuning
parameter for each frequency independently [46]. Such a
frequency-resolved resummation can be used to improve the
solution and in some cases systematically eliminate the non-
physical features that appear in the result due to the truncation
of the series at a finite order.

The paper is organized as follows. In Sec. II, we define
the model and the basic assumptions of our calculations. In
Sec. III, we introduce our method in detail. First, in Sec. III A,
we present the analytical solution of the general multiple-time
integral that appears in the time-domain formulation of Feyn-
man diagrams and discuss the numerical evaluation of the
final expression. Then, in Sec. III B, we show the analytical
solution for the Fourier transform of the Maclaurin expansion

of the bare propagator, which is essential for our DiagMC al-
gorithm. In Sec. III C, we discuss in detail how our analytical
solutions can be applied in the context of DiagMC for the self-
energy. In Sec. IV, we discuss our results and benchmarks and
then give closing remarks in Sec. V. Additional details of the
analytical derivations and further benchmarks and examples
of the calculations can be found in the appendices.

II. MODEL

We solve the Hubbard model given by the Hamiltonian

H = −
∑
σ,i j

ti jc
†
σ,icσ, j + U

∑
i

n↑,in↓,i − μ
∑
σ,i

nσ,i, (1)

where σ ∈ {↑,↓}, i, j enumerate lattice sites, ti j is the hop-
ping amplitude between the sites i and j, U is the on-site
coupling constant, and μ is the chemical potential. We only
consider the Hubbard model on the square lattice with the
nearest-neighbor hopping t and next-nearest-neighbor hop-
ping t ′. The bare dispersion is given by

εk = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky. (2)

We define D = 4t , which will be used as the unit of energy
unless stated otherwise. We restrict to thermal equilibrium and
paramagnetic phases with full lattice symmetry.

III. METHODS

The idea of DiagMC algorithms is to stochastically com-
pute the coefficients of a perturbation series describing some
physical quantity. We will focus on expansions in the cou-
pling constant U and a shift in the chemical potential δμ.
The calculation of each coefficient involves the evaluation
of many Feynman diagrams expressed in terms of the bare
propagator, in our case taken as a function of momentum
and two imaginary times. The evaluation of a diagram then
boils down to a sum over multiple momentum variables and a
multiple imaginary-time integral that is always of the same
generic form. The goal of this section is to find a general
analytical solution for these time integrals and reformulate the
perturbation series as a function of a complex frequency z.

A. Analytical solution of time integrals

We are interested in analytically solving (N − 1)-fold inte-
grals over {τi=2...N } of the form

IX(i�η ) =
N∏

i=2

∫ τi+1

0
dτi τ

li
i eτi (i�ηδr,i+ωi ), (3)

where the parameters of the integrand are given by

X = (r, {l2...lN }, {ω2...ωN }). (4)

The argument r is an integer and determines which of the
times τi is multiplied by the external Matsubara frequency
i�η in the exponential. The frequency i�η can be any Mat-
subara frequency, either fermionic or bosonic, depending on
η; i�η=−1 ≡ iω ≡ i(2m + 1)πT and i�η=1 ≡ iν ≡ 2imπT ,
with m ∈ Z. The integer powers of τi outside of the exponent
are given by li � 0, and the parameters ωi may be complex.
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The limit of the outermost integration is the inverse tempera-
ture τN+1 ≡ β. We denote by δx,y the Kronecker delta (it will
be used throughout this paper, also in the shortened version
δx ≡ δx,0). The reason for our choice to label times starting
from 2 will become clear later.

The main insight is that upon applying the innermost inte-
gral, one gets a number of terms, but each new integrand has
the same general form ∼τ neτ z. The solution therefore boils
down to a recursive application of

∫ τf

0
τ neτ zdτ =

n+1∑
k=0

(−)kCnk
τ

n+1−k−Bnk
f eBnkzτf

zk+Bnk
, (5)

with Bnk = 1 − δk,n+1 and Cnk = n!
(n−k+δk,n+1 )! (for the proof,

see Appendix D), and

lim
z→0

∫ τf

0
τ neτ zdτ = τ n+1

f

n + 1
. (6)

The number of terms obtained after each integration is ap-
parently 1 + (1 − δz )(n + 1), and we can enumerate all terms
obtained after the full integration by a set of integers, {ki=2...N },
where ki � 0 denotes the choice of the term of the integral i
(over dτi).

For a given choice of {ki}, the propagation of exponents
[n and z in Eqs. (5) and (6)] across successive integrals can
be fully described by a simple set of auxiliary quantities. We
denote the exponent of e in the integration i as z̃i, and it is
given by

z̃i ≡ zi + bi−1z̃i−1, z̃2 ≡ z2, (7)

zi ≡ δi,r i�η + ωi, (8)

where we introduced bi ≡ Bni,ki . The meaning of bi can be
understood by looking at Eq. (5): The exponent of e that
enters the integral on the left-hand side survives in all but
the last term (k = n + 1) on the right-hand side. Therefore,
bi = 1 means that the exponent propagates from integration i
to integration i + 1, while bi = 0 means it does not, and the
calculation of the recursive z̃i is reset with each bi = 0. The
auxiliary quantity ni are the exponents of τi and is specified
below.

We will need to obtain a more convenient expression for
the exponent z̃i, where i�η appears explicitly. Straightfor-
wardly, we can write

z̃i = i�ηhi + ω̃i, (9)

with auxiliary quantities

ω̃i ≡ ωi + bi−1ω̃i−1, ω̃2 ≡ ω2, (10)

and

hi ≡
⎧⎨
⎩

0, i < r
1, i = r

bi−1hi−1, i > r.
(11)

To be able to determine whether the exponent in the integrand,
z̃i, is zero and then employ Eq. (6) if needed, we can now use

δz̃i =
{

1, hi = 0 ∧ ω̃i = 0
0 otherwise. (12)

It is important to note that at the time of integration, i�η

is unspecified and whether z̃i is zero cannot be tested by
numerical means, unless i�η does not appear in z̃i. With the
convenient rewriting of Eq. (7) as Eq. (9), one can tell whether
i�η appears in z̃i by looking at hi. If i�η does appear in z̃i

(i.e., hi = 1), we cannot use Eq. (6) even if one can find such
i�η that cancels ω̃i. This is because we are working towards
an analytical expression which ought to be general for all
possible i�η.

The exponent of τ that will be carried over from integration
i to integration i + 1 depends on the choice of the term from
the integral i, and is given by Pos(ni − ki ), where Pos denotes
the positive part of the number [Pos(x) = (x + |x|)/2]. ni

denotes the maximum exponent that can be carried over from
integration i, and is obtained as

ni =
{
δz̃i + li + Pos(ni−1 − ki−1), i > 2

δz̃i + li, i = 2.
(13)

In the case of Eq. (5), the maximal exponent that can be
carried over to the next integration coincides with the expo-
nent that entered the integral [the integral given by Eq. (5)
does not raise the power of τ ], so the definition of ni coincides
with the meaning of n in Eq. (5). In the case of the integral
given by Eq. (6), ni rather denotes the exponent after the
integration, i.e., n + 1.

After the last integration, it can happen that i�η appears
in the exponent of e (this is signaled by hN bN = 1). We can
then use the property ei�ηβ = (−1)δη,−1 to eliminate it from
this exponent. Then, the solution for the integral can be con-
tinued to the whole of the complex plane i�η → z, and can
be written as (introducing the additional superscript η because
the fermionic/bosonic nature of the expression can no longer
be inferred from the external Matsubara frequency)

Iη

X(z) =
∑

{bi∈[δz̃i ,1]}i=2...N

ebN βω̃N
∑

{ki∈[0,(1−δz̃i )ni]}i:bi=1

×
∏

i:δz̃i =1

1

ni

×(−1)bN hN δη,−1+
∑N

i=2 ki × βnN +1−bN −kN

×
∏

i:hi=0∧ω̃i 
=0

Cni,ki

ω̃
ki+bi
i

∏
i:hi=1

Cni,ki

(z + ω̃i )ki+bi
. (14)

Note that we have expressed the sum over {ki} as a sum over
{bi} and a partial (inner) sum over {ki}. This is not necessary,
being that bi is a function of ki. Each bi is fully determined by
ki, but not the other way around, so the inner sum over ki in
Eq. (14) goes over values that are allowed by the correspond-
ing bi. We present this form of Eq. (14) to emphasize that the
factor ebN βω̃N depends only on {bi}, and can thus be pulled out
of the inner {ki} sum. The notation “i : bi = 1” means that we
only consider indices i such that bi = 1. We therefore only
sum over those ki for which the corresponding bi = 1. The
remaining ki are fixed to ni + 1, which is the only possibility if
bi = 0. The notation is applied analogously in other products
over i.
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TABLE I. Illustration of the calculation of a single term in Eq. (14). Rows correspond to successive integrations over dτi. The second to
fourth columns are parameters of the integrand. The choice of the term is colored red. The remaining columns are auxiliary quantities, the
integrand before and after each integration. The prefactors that are “collected” after each integration are written in blue. The full contribution
is written in the last column and then simplified to the form of a term in Eq. (16).

i δr,i li ωi ki bi ni ω̃i hi δz̃i Integrand Integral Total

2 0 0 1 0 1 0 1 0 0 eτ21 1
1 eτ31 − 1

1 1

3 0 1 2 1 1 1 3 0 0 τ3eτ3(2+1) 1
3 τ4eτ43 − 1

32 eτ43 + 1
32 1

4 1 0 1 1 0 0 4 1 0 eτ4(i�η+1+3) 1
i�η+4 eτ5(i�η+4) − 1

i�η+4 1 1
1 (− 1

32 )(− 1
i�η+4 ) 1

1
1
4 βeβ4

5 0 0 0 0 1 1 0 0 1 eτ50 1
1 τ 1

6 → βe4β /36
[z−(−4)]1

6 0 0 4 0 1 1 4 0 0 τ6eτ64 1
4 βeβ4 − 1

42 eβ4 + 1
42 1

The only remaining step is to expand the product of poles
in Eq. (14) into a sum of poles (see Ref. [48] for more details),

∏
γ

1

(z − zγ )mγ
=

∑
γ

mγ∑
r=1

1

(z − zγ )r

×(−1)mγ −r
∑

C{pγ ′ 
=γ ∈N0}:
∑

γ ′ 
=γ pγ ′ =mγ −r

×
∏
γ ′ 
=γ

(mγ ′ + pγ ′ − 1)!

pγ ′!(mγ ′ − 1)!

1

(zγ − zγ ′ )mγ ′+pγ ′ ,

(15)

and the final expression has the form

Iη

X(z) =
∑

j,p∈N

A j,p

(z − Z j )p
. (16)

In order to illustrate our solution, we present in tabular
form (Table I) a summary of all intermediate steps, integrand
parameters, and auxiliary quantities that are used in calculat-
ing the contribution for a single choice of {ki}, in an example
with N = 6 and r = 4.

Also note that if r /∈ [2, N] (no Matsubara frequency ap-
pearing in any exponent), the result of the integral is a number,
rather than a frequency-dependent quantity. In that case, the
integral can be straightforwardly generalized to the case of
real time, where integrations go to some externally given time
t (instead of β), and the resulting expression is a function of
that time. The step given by Eq. (15) is then not needed. See
Appendix A for details.

Numerical evaluation of the analytical expression
and relation to other algorithms

The implementation of Eq. (14) is rather straightforward
and much simpler than the algorithmic Matsubara sum-
mations in our previous work [48]. Indeed, most of the
calculations just require the numerical evaluation of an an-
alytical expression and it is not necessary to implement a
dedicated symbolic algebra to manipulate the expressions.
The only exception is the last step, Eq. (15). This transfor-
mation was the centerpiece of the algorithm in Ref. [48]
and was applied recursively many times, leading to com-
plex bookkeeping and data structures. Ultimately, the result
was a symbolic expression that was stored, and a separate

implementation was needed for the comprehension and nu-
merical evaluation of such a general symbolic expression. In
the present context, however, Eq. (15) is applied only once to
produce numbers, and is simple to implement.

The other important point is that we analytically treat
cases with δz̃i = 1 by employing Eq. (6). With the frequency-
summation algorithms [48,49], one cannot take into account
possible cancellations of the ωi terms in Eq. (10) without
computing a large number of separate analytical solutions.
When untreated, these cancellations yield diverging ratios in
the final expressions, which need to be regularized. On the
contrary, in Eq. (14), the ratio 1/ω̃

ki+bi
i cannot have a van-

ishing denominator and its size will, in practice, be limited
by the energy resolution. This will also allow us to have the
final result in the form of a sum of poles on an equidistant
grid on the real axis, and extract the real-axis results with-
out any numerical pole broadening (see Sec. III C 2 and
Appendix B).

It is interesting to compare the computational effort for the
numerical evaluation of our analytical solution to the straight-
forward numerical integration. In the most straightforward
integration algorithm, one would discretize the imaginary-
time interval [0, β] with Nτ times, and then perform the
summation which has the complexity O(NN−1

τ ) for each ex-
ternal τ , so that overall O(NN

τ ). With our algorithm, we do not
have to go through all of the configurations of internal times,
but we do need to go through all of the possible permutations
of the internal times, and for each permutation there is at least
2N−1 terms to be summed over. So the number of terms one
has to sum grows at least as O[(N − 1)!2N−1]. At sufficiently
high N , this number is bound to outgrow the exponential NN

τ ,
whatever the Nτ . This will happen, however, only at very large
N . For example, if Nτ = 30, the analytical solution becomes
slower at around N = 40. Moreover, one actually needs a
much larger Nτ , especially at low temperature. In any case, the
additional computational effort can be understood as coming
from the difference in the information content of the result,
which is a lot more substantial in the case of the analytical
solution.

At orders N < 6 (within context of DiagMC), we find that
the implementation of our algorithm is significantly more
efficient than our current implementation of the Matsubara
summations from Ref. [48], and at N = 6, they are about
equally efficient. However, we anticipate that further opti-
mizations will be possible at the level of Eq. (14).
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B. Expansion of the bare propagator

The central quantity is the Green’s function defined in
Matsubara formalism as

Gσk(τ − τ ′) = −〈Tτ cσk(τ )c†
σk(τ ′)〉

=
{−〈cσk(τ )c†

σk(τ ′)〉, τ > τ ′

〈c†
σk(τ ′)cσk(τ )〉, τ ′ > τ,

(17)

where τ, τ ′ ∈ [0, β]. The noninteracting Green’s function (or
the bare propagator) in the eigenbasis of the noninteracting
Hamiltonian has a very simple general form,

G0(ε, iω) ≡ 1

iω − ε
, (18)

and for the plane wave k, the propagator is G0,k(iω) =
G0(εk − μ, iω).

As we will discuss below, the diagrammatic series for
the self-energy will, in general, be constructed from different
powers of the bare propagator,

Gl
0(ε, iω) ≡ 1

(iω − ε)l
. (19)

Indeed, these powers naturally arise after expanding the bare
propagator in a Maclaurin series, 1

z+x = ∑∞
n=0

(−x)n

zn+1 , around a
small chemical potential shift,

G0(ε, iω) =
∞∑

l=1

(−δμ)l−1Gl
0(ε + δμ, iω). (20)

This series converges (for all iω) if δμ is smaller in amplitude
than the first Matsubara frequency: |δμ| < πT . Nevertheless,
this expression will become a part of a larger series with addi-
tional expansion parameters, which may result in a modified
convergence radius of the overall series with respect to δμ.

We anticipate that the Feynman diagrams will be formu-
lated in the imaginary-time domain, so it is essential to work
out the Fourier transform of Gl

0(ε, iω). We present the full
derivation in Appendix E and here only write the final solu-
tion,

Gl
0(ε, τ − τ ′)

= sτ,τ ′e−ε(τ−τ ′ )nF(sτ,τ ′ε)
l−1∑
ζ=0

l−ζ−1∑
ς=0

c
sτ,τ ′
lζς

(ε) τ ζ τ ′ς , (21)

with sτ,τ ′ = sgn(τ ′ − τ ). In our notation, l in Gl
0 is a su-

perscript index, rather than the power of G0 [although these
meanings coincide in the case of Gl

0(ε, iω)]. The Fermi func-
tion is defined as nF(ε) = 1/(eβε + 1) and the coefficients that
go with the τ ζ τ ′ς terms are

c−
l,ζ ,ς (ε) =

l−ς−ζ−1∑
n=0

n!(−1)l+ς−1[−nF(ε)]nβ l−ς−ζ−1

(l − ς − ζ − 1)!(ς + ζ )!

×
{

l − ς − ζ − 1

n

}(
ς + ζ

ζ

)
, (22)

and c+
l,ζ ,ς

(ε) = (−1)l−1c−
l,ς,ζ

(−ε). Here we make use of bino-

mial coefficients
(n

k

) = n!
k!(n−k)! and the Stirling number of the

second kind,
{n

k

} = ∑k
i=0

(−1)i

k!

(k
i

)
(k − i)n.

C. Application to DiagMC

In the following, we apply the analytic time integral and the
expansion of the bare propagator in the context of DiagMC.
We discuss two kinds of self-energy series (Hartree shifted
and bare) and the corresponding implementation details. Note
that some symbols will be redefined with respect to previous
sections.

1. Hartree-shifted series

In this section, we discuss the construction of the self-
energy series, where all tadpolelike insertions are omitted in
the topologies of the diagrams. Rather, the full Hartree shift
is absorbed in the bare propagator. The diagrams are therefore
expressed in terms of the Hartree-shifted bare propagator,

GHF
0,k(iω) = G0(ε̃k, iω), (23)

with the Hartree-shifted dispersion defined as

ε̃k = εk − μ + U 〈nσ 〉, (24)

where 〈nσ̄ 〉 is the average site occupation per spin.
After constructing the tadpoleless topologies, we are free to

expand all propagators that appear in the diagrams according
to Eq. (20):

GHF
0,k(iω) =

∞∑
l=1

(−δμ)l−1Gl
0(ε̃k + δμ, iω). (25)

In the frequency domain, this step can be viewed as in-
troducing new topologies: we now have diagrams with any
number of single-particle-vertex (δμ) insertions on any of
the propagator lines. Each arrangement of these additional
single-particle vertices on the diagram does require a separate
solution by the symbolic algebra algorithm, as presented in
Refs. [48,49]. Nevertheless, as a δμ vertex cannot carry any
momentum or energy, the formal effect of it is that it just raises
the power l of the propagator that passes through it. In the
imaginary-time domain, it turns out that the contribution of
the δμ-dressed diagrams is readily treatable by the analytical
expression (14) and we no longer have to view the δμ inser-
tions as changes to topology, but rather as additional internal
degrees of freedom to be summed over. This is illustrated in
Fig. 1.

Up to the Hartree shift, the self-energy expansion can
now be made in powers of the interaction U and the small
chemical-potential shift δμ,

�
(HF)
k (τ ) =

∑
N

(−U )N

×
∞∑

l1,...,l2N−1=1

(−δμ)
∑

j (l j−1)
∑
ϒN

DϒN ,k,{l j },δμ(τ ),

(26)

where j enumerates the propagators, of which there are
Nprop = 2N − 1, N is the perturbation order in U , each l j

goes from 1 to ∞, ϒN enumerates distinct topologies of the
diagram at order N (without any δμ or Hartree insertions), and
D is the contribution of the diagram. The general form of the
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FIG. 1. Illustration of the use of the Gl
0(ε, τ − τ ′) propagator. The entire series of diagrams with all possible δμ insertions can be captured

by a single diagram with additional degrees of freedom.

diagram contribution is

DϒN ,k,{l j },δμ(τ )

= (−1)Nbub

N−1∏
i=2

∫ β

0
dτi

∑
k1...kN

2N−1∏
j=1

G
lj

0

(
ε̄k̃ j

, τ̃ j − τ̃ ′
j

)
, (27)

with ε̄k ≡ ε̃k + δμ. We denote Nbub as the number of closed
fermion loops in the diagram; τ1...τN−1 are internal times,
and we fix τi=1 = 0; τ is the external time, k is the external
momentum, k1...kN are the independent internal momenta,
j indexes the propagator lines, and k̃ are the corresponding

linear combinations of the momenta k̃ j ≡ ∑N
λ=0 s̃ jλkλ, where

s̃ jλ ∈ {−1, 0, 1}, and we index with 0 the external momentum
k0 ≡ k. τ̃ j and τ̃ ′

j are the outgoing and incoming times for the
propagator j, and take values in {τ1...τN }, where we denote
with index N the external time τN ≡ τ . The coefficients s̃ jλ,
times τ̃ j, τ̃

′
j , and the number Nbub are implicit functions of the

topology ϒN . Throughout the paper, we assume normalized k
sums,

∑
k ≡ 1

Nk

∑
k, where Nk is the number of lattice sites.

We can perform the Fourier transform of the external time
to obtain the contribution of the diagram in the Matsubara-
frequency domain,

DϒN ,k,{l j },δμ(iω) = (−1)Nbub

N∏
i=2

∫ β

0
dτie

iωτN
∑

k1...kN

2N−1∏
j=1

G
lj

0

(
ε̄k j , τ̃ j − τ̃ ′

j

)
. (28)

The Green’s function Gl
0(ε, τ − τ ′) is discontinuous at τ = τ ′, so to be able to perform the τ integrations analytically, we

first need to split the integrals into ordered parts,

∫ β

0
dτ2...

∫ β

0
dτN =

∑
(τp2 ...τpN )∈P ({τ2...τN })

∫ β

0
dτpN

∫ τpN

0
dτpN−1 ...

∫ τp4

0
dτp3

∫ τp3

0
dτp2 , (29)

where P denotes all (N − 1)! permutations of the time indices. p labels the permutation and pi is the permuted index of vertex i.
Let us rewrite the contribution of the diagram, with propagators written explicitly using the expression (21),

DϒN ,k,{l j },δμ(iω) = (−1)Nbub
∑

k1...kN

∑
(τp2 ...τpN )∈P ({τ2...τN })

(−1)Nfwd (p)
∏

j

nF
(
s j ε̄k̃ j

) l j−1∑
ζ j=0

l j−ζ j−1∑
ς j=0

c
s j

l j ,ζ j ,ς j

(
ε̄k̃ j

) ∏
j∈Ji (i=1)

δζ j

∏
j∈Jo(i=1)

δς j

×
∫ β

0
dτpN

∫ τpN

0
dτpN−1 ...

∫ τp4

0
dτp3

∫ τp3

0
dτp2 eiωτN

N∏
i=2

τ

∑
j∈Ji (i) ζ j+

∑
j∈Jo (i) ς j

i e
τi (

∑
j∈Jo (i) ε̄k̃ j

−∑
j∈Ji (i) ε̄k̃ j

)
, (30)

where Ji/o(i) is the set of incoming/outgoing propagators j of the vertex i, which depends on the topology ϒN . We also
introduced shorthand notation s j = sτ̃ j ,τ̃

′
j
. Practically, s j depends on whether p(i( j)) > p(i′( j)) or the other way around, where

i( j)/i′( j) is the outgoing/incoming vertex of propagator j in the given permutation p. The total number of forward-facing
propagators is Nfwd(p) = ∑

j δ−1,s j , which depends on the permutation and the topology. The products of δζ j and δς j are there to
ensure that the time τ1 = 0 is not raised to any power other than 0, as such terms do not contribute.

Now we can apply the analytic solution for the time integrals [Eq. (14)] to arrive at the final expression:

DϒN ,k,L,δμ(z) = (−1)Nbub
∑

{l̃ j�0}:∑ j l̃ j=L

∑
k1...kN

∑
(τp2 ...τpN )∈P ({τ2...τN })

(−1)Nfwd (p)

×
∏

j

nF
(
s j ε̄k̃ j

) l̃ j∑
ζ j=0

l̃ j−ζ j∑
ς j=0

c
s j

l̃ j+1,ζ j ,ς j

(
ε̄k̃ j

) ∏
j∈Ji (i=1)

δζ j

∏
j∈Jo(i=1)

δς jI
η=−1
X (z),

X =
⎛
⎝p(N ),

⎧⎨
⎩

∑
j∈Ji (i(pi′ ))

ζ j +
∑

j∈Jo(i(pi′ ))

ς j

⎫⎬
⎭

i′=2...N

,

⎧⎨
⎩

∑
j∈Jo(i(pi′ ))

ε̄k̃ j
−

∑
j∈Ji (i(pi′ ))

ε̄k̃ j

⎫⎬
⎭

i′=2...N

⎞
⎠, (31)
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where i(pi′ ) is the vertex index i of the permuted index pi′ and
we have introduced a new expansion variable L = ∑

j (l j − 1)

and a convenient variable l̃ j = l j − 1, so that

�
(HF)
k (z) =

∞∑
K=2

K∑
N=2

K−N∑
L=0

(−U )N (−δμ)L
∑
ϒN

DϒN ,k,L,δμ(z),

(32)

which is the series that we implement and use in practice.
The meaning of K is the number of all independent (internal
and external) times in the diagram. Note that in D, we per-
form only N − 1 integrations over time. Those are the times
associated with N interaction vertices, minus the one that is
fixed to zero. The integrations of the times associated with
δμ insertions have already been performed in Eq. (21), and
there are L such integrals. Overall, the number of independent
times is K = N + L. Ultimately, we group contributions by
the expansion order K and look for convergence with respect
to this parameter.

2. Numerical implementation of DiagMC and relation to other
algorithms

The expression (31) is very convenient for numerical eval-
uation. First, we restrict the values of ε̄k to a uniform grid on
the real axis with the step �ω (ε̄k = j�ω). These appear in
ω2, ..., ωK as terms with integer coefficients, which means that
{ωi} entering IX will also be restricted to the same uniform
grid. The final result therefore has the form

DϒN ,k,L,δμ(z) =
∑

j∈Z,p∈N

A j,p

(z − j�ω)p
. (33)

This form allows us to reinterpret the finite-lattice results as
that of the thermodynamic limit and extract DϒN ,k,L,δμ(ω +
i0+) without any numerical broadening (see Appendix B for
details).

In our present implementation, we perform a flat-weight
(uniform) MC sampling over internal momenta {ki}, do
a full summation of all the other sums, and accumulate
the amplitudes A j,p. There are, however, other options.
For example, one may sample {ki}, {pi}, {bi} and use P ≡∏

j nF(s j ε̄k̃ j
)ebN βω̃N as the weighting function. We have thor-

oughly checked that the factor P closely correlates with
the contribution to A j,p coming from a given choice of the
{ki}, {pi}, {bi} variables (with other variables summed over),
and thus P could be a good choice for a weighting function.
However, this requires additional operations related to move
proposals and trials, and we have not yet been able to make
such an algorithm more efficient than the flat-weight MC.
Nevertheless, it is apparent that our approach offers more flex-
ibility than the algorithmic Matsubara summations (AMS). In
AMS, no convenient weighting function can be defined for the
Monte Carlo, so one either does the flat-weight summation
[48] or uses the whole contribution to the result as the weight,
which comes at the price of having to repeat the calculation for
each frequency of interest [49] (on the contrary, in Ref. [48],
as well as in this paper, the entire frequency dependence of
the self-energy is obtained in a single MC run). At present, it
is unclear which scheme is best—whether one should evaluate

D(z) one z at a time or capture all z at once as we do here. This
choice, as well as the choice of the weighting function, likely
needs to be made on a case-by-case basis, as it is probable
that in different regimes, different approaches will be optimal.
In that sense, the added flexibility of our time-integration
approach in terms of the choice of the weighting function may
prove valuable in the future.

Concerning floating-point arithmetic, it is important that
the factor ebN βω̃N stemming from IX can always be absorbed
into the product of nF functions in the second row of Eq. (31).
This can be understood as follows. A given ε̄k̃ j

can, at most,
appear twice as a term in ω̃N , once with sign +1 and once
with sign −1, corresponding to the incoming τ̃ ′

j and outgoing
τ̃ j ends of the propagator j. In that case, the exponent cancels.
The other possibility is that it appears only once, in which case
it must correspond to the later time in the given permutation.
If the later time is the outgoing end of the propagator, then the
propagator is forward facing and the sign in front is s = −1; if
it is the incoming end, then the propagator is backward facing
and the sign in front is s = 1. In both cases, we can make use
of

esβεnF(sε) = nF(−sε). (34)

Therefore, no exponentials will appear in the final expression.
A product of nF functions is, at most, 1 and the coeffi-
cients c are not particularly big. Then, the size of the pole
amplitudes that come out of Eq. (14) is determined by the
energy resolution (1/�ω) and temperature (βnN +1−bN −kN ).
In our calculations so far, the amplitudes remain relatively
small. Our approach ensures that we do not have very large
canceling terms, such as we had in Ref. [48]. Indeed, we
have successfully implemented Eq. (31) without the need for
multiple-precision floating-point types.

Compared to the Matsubara-frequency summation algo-
rithm [47–49], Eq. (31) presents an improved generality.
Equation (31) is valid for any number and arrangement of in-
stantaneous (i.e., frequency-independent) insertions, i.e., any
choice of {l̃ j}. In contrast, the algorithmic Matsubara summa-
tion has to be performed for each choice of {l̃ j} independently,
and the resulting symbolic expressions need to be stored. For
example, at N = 4, we have 12 ϒN topologies. Therefore, at
L = 0, the number of analytical solutions to prepare is 12.
However, at L = 2, this number is 336, i.e., 28-fold bigger (we
can place L = 2 insertions on 2N − 1 = 7 fermionic lines in
7 × 6/2 + 7 = 28 ways, times 12 ϒN topologies, i.e., 336).

3. Bare series

We are also interested in constructing a bare series where
tadpole insertions are present in diagram topologies. Tadpole
(or Hartree) insertions are instantaneous and an evaluation
of their amplitudes can be done relatively simply by vari-
ous means. At the level of the Hubbard model, the Hartree
insertions factor out: For each Hartree diagram, the internal
momentum summations and time integrations can be per-
formed beforehand and only once, leading to a significant
speedup.

In the expression (31), there is no difference between a
Hartree insertion and a chemical-potential vertex insertion.
Therefore, the inclusion of the Hartree insertions can be en-
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FIG. 2. Top: Illustration of possible Hartree diagrams, without
any δμ insertions. Middle: Amplitude of a Hartree diagram with a
single δμ insertion. Bottom: An example of a diagram dressed with
both Hartree and δμ insertions, and the values of the parameters
N, L, {ML′

i }, K that it falls under (with ML′ 
=1
i 
=1 = 0).

tirely accounted for in the resummation of the DϒN ,k,L,δμ(z)
contributions from the previous section, with the replacement

ε̄k ≡ εk − μ + δμ (35)

(i.e., full Hartree shift excluded).

Note that the expansion of the propagators in δμ is per-
formed in Hartree insertions as well, so we need to account for
possible additional δμ insertions inside the Hartree diagrams.
As before, our expansion order will be K , which is the total
number of independent times, with each time associated to
a single interaction or a δμ vertex, including those within
Hartree insertions.

We will for now focus on the series up to K = 5. As the
number of interactions in ϒN is at least two, we can have, at
most, three interaction vertices in a Hartree insertion. There
are only five such Hartree diagrams (Fig. 2). We can evaluate
these five amplitudes with very little effort by making use of
spatial and temporal Fourier transforms.

Before we proceed with the calculation of the amplitudes
D of possible Hartree insertions relevant for the series up to
K = 5, we define some auxiliary quantities. We first define the
bare density,

nl̃
0 =

∑
k

Gl=1+l̃
0 (ε̄k, τ = 0−), (36)

and the real-space propagator,

Gl=1+l̃
0,r =

∑
k

eik·rGl=1+l̃
0 (ε̄k, τ = 0−). (37)

We will also need the polarization bubble diagram,

χ
l̃1,l̃2
0,r (τ ) = Gl=1+l̃1

0,r (τ )Gl=1+l̃2
0,−r (−τ ), (38)

χ
l̃1,l̃2
0,q=0(iν = 0) =

∑
r

∫
dτχ

l̃1,l̃2
0,r (τ ), (39)

and the second-order self-energy diagram (up to the constant
prefactor),

�
l̃1,l̃2,l̃3
2,r (τ ) = Gl=1+l̃1

0,r (τ )χ l̃2,l̃3
0,r (τ ), (40)

which can be Fourier transformed to yield �
l̃1,l̃2,l̃3
2,k (iω).

We can now calculate the amplitudes of the possible
Hartree insertions with a number L of δμ insertions on them,
in any arrangement

DL
1 = (−)nL

0 , (41)

DL
2 = (−)2

∑
l̃1, l̃2, l̃3

l̃1 + l̃2 + l̃3 = L

nl̃1
0 χ

l̃2,l̃3
0,q=0(iν = 0), (42)

DL
3 = (−)3

∑
l̃1, ..., l̃5∑

i l̃i = L

nl̃1
0 χ

l̃2,l̃3
0,q=0(iν = 0)χ l̃4,l̃5

0,q=0(iν = 0), (43)

DL
4 = (−)3

∑
l̃1, ..., l̃3∑

i l̃i = L

(
2 + l̃3

2

)
nl̃1

0 nl̃2
0 n2+l̃3

0 , (44)

DL
5 = (−)2

∑
l̃1, ..., l̃5∑

i l̃i = L

T
∑

iω

e−iω0− ∑
k

Gl=1+l̃1
0,k (iω)� l̃2,l̃3,l̃4

2,k (iω)Gl=1+l̃5
0,k (iω). (45)

As we are restricting to K � 5 calculations, the DL
3...5 insertions can only be added once, and only with L = 0. We now define

ML
i as the number of insertions of DL

i tadpoles, and we define Ni as the number of interaction vertices contained in the tadpole
Di (regardless of L, we have N1 = 1, N2 = 2, N3 = N4 = N5 = 3).
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(a) (b) (c)

(d) (e) (f)

FIG. 3. DiagMC solution for the Hubbard model on a square lattice. Parameters of the model are t ′ = −0.3t , μ = 0, U = 1D, and T =
0.125D, which corresponds to 〈nσ 〉 ≈ 0.3625. Top row: Imaginary part of self-energy at k = (π/4, π ) on the real axis (with broadening
η = 0.3D) obtained with three different series, up to perturbation order K . Bottom row: Illustration of convergence with respect to perturbation
order K , using values of the imaginary part of the self-energy at the lowest four Matsubara frequencies, iωn=0...3. Full lines are our result,
dash-dotted lines with crosses are the analogous result with a numerical τ -integration algorithm from Ref. [52], and horizontal dashed lines
are the determinantal QMC result on a 16 × 16 lattice from Ref. [52].

The series can now be resummed as

�
(HF)
k (z) =

∞∑
K=2

K∑
N=2

K−N∑
L=0

K−N−L∑
{ML′

i } = 0
N + L + ∑

i,L′ ML′
i (Ni + L′ ) = K

(−U )N+∑
i,L′ ML′

i Ni (−δμ)L+∑
i,L′ ML′

i L′ ∏
i,L′

(
DL′

i

)ML′
i
�

(
L,

{
ML′

i

})

×
∑
ϒN

DϒN ,k,L+∑
i,L′ ML′

i
(z), (46)

where �(L, {ML′
i }) is the combinatorial prefactor which

counts all the possible ways the selected single-particle ver-
tices δμ, {Di} can be arranged. This corresponds to the
number of permutations of the multisets,

�
(
L,

{
ML′

i

}) =
(
L + ∑

i,L′ ML′
i

)
!

L!
∏

i,L′ ML′
i !

. (47)

We emphasize that Eq. (46) is fully general, but at orders K �
5, additional Hartree insertions D [compared to Eqs. (41)–
(45)] need to be considered.

Finally, we stress that our analytical time-integral solution
and action-shift tuning scheme in DiagMC are not restricted
to the treatment of the Hubbard Hamiltonian. See Appendix F
for a discussion of DiagMC in the case of a general Hamilto-
nian with two-body interactions.

IV. RESULTS

A. Convergence speedup with δμ expansion in the bare series

Here we focus on supplementing the results from Ref. [52]
with real-frequency self-energies calculated without any nu-
merically ill-defined analytical continuation.

The model parameters are t ′ = −0.3t , μ = 0, U = 1.0D,
T = 0.125D, and 〈nσ 〉 = 0.3625. In Ref. [52], the calculation
was performed with the Hartree-shifted series with δμ = 0,
as well as with the bare series, with two values of δμ, namely,
0.15D and 0.3825D. We repeat these calculations with our
method. We use lattice size 32 × 32, and project the disper-
sion onto a uniform energy grid, as described in Ref. [48] and
discussed in Sec. III C 2. In Fig. 3, we show our results and
compare them with the results of Ref. [52].

In the upper row of Fig. 3 are the real-frequency self-
energies calculated up to order K � 5. We are keeping a finite
broadening η = 0.3D to smoothen the curves. As discussed in
Appendix B, in our method, numerical pole broadening is not
a formal necessity. However, there is still a significant amount
of statistical noise in our real-frequency result (although the
imaginary-frequency result is already very well converged).
It is important to note that some of the noisy features in our
real-frequency result may be artifacts of the finite-lattice size
that would not vanish with increasing number of MC steps.
However, by comparing the result with a 256 × 256 lattice
calculation (Appendix C), we check that already at η = 0.2D,
no such artifact should be visible. It appears that for the given
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external k and broadening η = 0.2D, increasing the lattice
size further from 32 × 32 brings no new information, but it
also does not present an additional cost: at η = 0.2D, our
256 × 256 lattice calculation appears equally well converged
as the 32 × 32 lattice calculation, with the equal number of
MC steps and a similar runtime, and yields a result that is on
top of the 32 × 32 calculation.

In the bottom row of Fig. 3, we show the change in the
imaginary part of the self-energy at the first four Matsubara
frequencies, as a function of the maximal order K . Full-line
and dots are the result of our calculations. The dash-dotted
lines with crosses are data points taken from Ref. [52]. The
horizontal dashed lines are the 16 × 16-lattice determinantal
QMC result, also from Ref. [52].

The excellent agreement with the results from Ref. [52]
serves as a stringent test of our implementation. In the δμ =
0.3825D calculation, even on the real axis, the self-energy
does appear well converged by order K = 5, although there
is some discrepancy between K = 4 and K = 5 at around
ω = 1.5D.

B. ω-resolved resummation

We can now go one step further by resumming the series
presented in Figs. 3(a) and 3(c) for each ω individually, using
an ω-dependent optimal shift δμ∗(ω). The results are shown
in Figs. 4 and 5.

We determine the optimal δμ∗(ω) by minimizing the
spread of the Im�(ω + iη) results between orders K = 3
and K = 5. This spread as a function of ω and δμ is color
plotted in Figs. 4 and 5. We have results for a discrete set of
δμ ∈ {δμi}, so the optimal δμ∗(ω) is a priori a discontinuous
curve. As this is clearly nonsatisfactory, we smoothen the
curve (shown with the blue line on the top panels in Figs. 4 and
5). However, we do not have results for each precise value of
this optimal δμ∗(ω). One could take, for each ω, the available
δμi that is closest to δμ∗(ω), but this would, again, result in
a discontinuous curve. To avoid this, we average the available
results as

�(ω) =
∑

i �δμi�(ω; δμi )w(δμ∗(ω), δμi )∑
i �δμiw(δμ∗(ω), δμi )

, (48)

where �δμi is the size of the δμ step in the available results at
the ith value (allows for nonuniform grids). We use a narrow
Gaussian weighting kernel,

w(δμ∗(ω), δμi ) = e−(δμi−δμ∗(ω))2/W 2
. (49)

The width of the kernel W is chosen such that it is as narrow
as possible, while still encompassing at least 3–4 δμi points,
so that the final result is reasonably smooth as a function of ω;
W is therefore determined according to the resolution in δμ.
We use W = 0.05 and �δμi ≈ 0.02 and have checked that the
results are insensitive to the precise choice of this numerical
parameter.

The results of the averaging around the optimal δμ∗(ω) are
shown in the middle and bottom panels of Figs. 4 and 5. In
both cases, the ω-resolved resummation helps to converge the
result. In the case of the bare series, the convergence is now
almost perfect, and already order K = 3 is on top of the exact
result. In the case of the Hartree-shifted series, the results are

(a)

(b)

(c)

FIG. 4. Results of the Hartree-shifted series with ω-resolved re-
summation, to be compared to Figs. 3(a) and 3(d) (all parameters
are the same). Top panel: Color plot of the spread of the imaginary
part of the self-energy at a given ω + iη between orders K = 3 and
5, in a calculation with a given δμ. The blue line smoothly connects
the minima of the spread (at each ω), and defines the ω-dependent
optimal shift δμ∗(ω) used in the resummation. Middle and bottom
panels are analogous to Figs. 3(a) and 3(d). In the bottom panel, the
dash-dotted and dashed lines are the same as in Fig. 3(d).

not perfectly converged at ω < 0, yet the K = 5 calculation
is practically on top of the exact result on the imaginary axis,
and presents an improvement to the δμ = 0 series in Fig. 3(a).
Note that the improvement in convergence is seen on the
imaginary axis, as well.

C. Removing nonphysical features

In this section, we focus on the parameters case dis-
cussed in Ref. [48]. We calculate the Hartree-shifted series
with parameters of the model t ′ = 0, μ − U 〈nσ 〉 = −0.1D,
T = 0.1D, and employ various δμ shifts. The lattice size is
again 32 × 32 and we focus on the self-energy at k = (0, π ).
Note that in Hartree-shifted series, the quantity that enters the
calculation is μ − U 〈nσ 〉, rather than μ. If 〈n〉 is calculated,
μ can be estimated a posteriori. In our calculation, we fix
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(a)

(b)

(c)

FIG. 5. Results of the bare series with ω-resolved resummation,
to be compared to Figs. 3(c) and 3(f) (all parameters are the same).
The top panel is analogous to Fig. 4(a). The horizontal orange dashed
line denotes the value of δμ used in Figs. 3(c) and 3(f) to best con-
verge the imaginary-axis result. The middle and bottom panels are
analogous to Figs. 3(c) and 3(f). In the bottom panel, the dash-dotted
and dashed lines are the same as in Fig. 3(f).

μ − U 〈nσ 〉, and 〈nσ 〉 is then U dependent. Roughly, as given
in Ref. [48], at U = 1, we have 〈nσ 〉 ≈ 0.455.

FIG. 7. Analogous to Fig. 4(a), for the parameters of the model
corresponding to Fig. 6. The blue line is the optimal δμ∗, to be used
in Fig. 8.

The results are presented in Fig. 6 for three values of U .
At low U , the series is well converged by K = 5, and the
result is entirely insensitive to the choice of δμ, as expected.
At intermediate and high U , the result can be strongly δμ

sensitive. The δμ dependence of the result, however, strongly
varies with ω. It appears that for a given ω, there are ranges of
the δμ value where the result (at fixed order K) is insensitive
to the precise choice of δμ. This presents an alternative way
of choosing an optimal δμ (a similar idea was employed in a
different context in Ref. [58]).

The striking feature at large U is the causality violations at
|ω| ≈ 2 that were previously discussed in Ref. [48] (note that
the broadening somewhat masks the extent of the problem).
The dips in the self-energy spectrum appear to happen only
at certain values of δμ: at ω = −2, the problem is present at
δμ large and negative, and at ω = 2, at δμ large and positive.
In particular, at ω = 2, the result appears to vary uniformly
with δμ, and one cannot select an optimal δμ based on the
sensitivity of the result to the δμ value. We therefore repeat
the procedure from the previous section and select the optimal
δμ∗(ω) based on the level of convergence between orders K =
4 and K = 5. The spread of the results and a smooth choice of
δμ∗(ω) are presented in Fig. 7.

In Fig. 8, the results of the averaging are shown and
compared to the δμ = 0 results at the highest available
orders K = 4 and K = 5, at three values of U . The conver-
gence is visibly better around our δμ∗ than with δμ = 0 at
problematic frequencies |ω| ≈ 2. More importantly, the non-
physical features are clearly absent. At U = 1, in the δμ = 0

(a) (b) (c)

FIG. 6. Imaginary part of the self-energy on the real axis (with broadening η), at different values of coupling constant U , obtained with
our method at K = 5 using different chemical-potential shifts δμ. The parameters of the calculation are the same as in Ref. [48], i.e., t ′ = 0,
μ − U 〈nσ 〉 = −0.1D, T = 0.1D. The self-energy is calculated at k = (0, π ). Passing of the curves above the gray dashed line indicates
breaking of causality.
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(a) (b)

(c) (d)

(e) (f)

FIG. 8. Imaginary part of self-energy, real-frequency results
(with broadening η). Right column: obtained with the ω-resolved
resummation for the model parameters from Fig. 6, using the op-
timal δμ∗(ω) from Fig. 7; to be compared to the standard δμ = 0
calculation in the left column. Purple dashed lines in the top row are
the K = 6 calculation with δμ = 0.

calculation, the causality is not yet violated, but the dip at
ω = 2 is already starting to appear, which is clearly an artifact
of the series truncation which should be removed systemati-
cally. It is important that the intermediate frequency behavior
that we obtained by averaging results around the optimal δμ

is indeed the correct one, and it will not change much further
with increasing orders. We show in the top panels the K = 6,
the δμ = 0 result of which has been benchmarked against a
fully converged imaginary-axis result in Fig. 9 (the converged
result was obtained with the �Det method [59,60] at order

FIG. 9. Matsubara-frequency self-energy result, with model pa-
rameters as in Fig. 6. Crosses are the real part, pluses are the
imaginary part, and lines are eye guides. Solid lines are the Hartree-
shifted series with δμ = 0 at different maximal K . The same result
was obtained with both the algorithm presented in this work and the
algorithmic Matsubara summation method from Ref. [48] (the two
methods were compared diagram by diagram). Black dashed lines
are the �Det result at maximal order N = 8.

8). Clearly, the improved convergence between orders 4 and
5 that we have achieved by choosing δμ appropriately does
indeed mean an improved final result. However, our proce-
dure does not improve the result at around ω = 0, where the
optimal δμ does appear to be close to 0. The K = 6, δμ = 0
result shown in the upper panels of Fig. 8 is still a bit different
from the K = 5, δμ ≈ δμ∗(ω) results around ω = 0.

In the case of U = 1D, it is interesting that a large negative
δμ does bring the ω ≈ 0 result at order K = 5 much closer to
the exact value. This can be anticipated from Fig. 6, where we
show the corresponding results for U = 0.8D and U = 1.2D.
Also, by looking at the color plot in Fig. 7, we see that at
ω = 0, there is indeed a local minimum in the spread at around
δμ = −0.2, which could be used as the optimal δμ∗. This
minimum, however, cannot be continuously connected with
the other minima that we observe at ω < 0, so we chose a dif-
ferent trajectory in the (ω, δμ) space. It would be interesting
for future work to inspect the behavior at even more negative
δμ, where another continuous trajectory δμ∗(ω) might be
found.

V. DISCUSSION, CONCLUSIONS, AND PROSPECTS

In this paper, we have derived an analytical solution for
the multiple-time integral that appears in the imaginary-time
Feynman diagrams of an interaction series expansion. The
solution is general for any diagram with a single external
time or no external times. We find this generality to be a
great advantage compared to the recently proposed algo-
rithmic solutions of the corresponding Matsubara-frequency
summations. Our analytical solution allowed us to develop
a very flexible DiagMC algorithm that can make use of the
possibility to optimize the series with shifted actions. As
a result, we were able to almost perfectly converge a real-
frequency self-energy in just 3–4 orders of perturbation, in
a nontrivial regime and practically in the thermodynamic
limit.

More importantly, the fact that one does not have to prepare
a solution for each diagram topology individually opens the
possibility to develop algorithms more akin to CTINT and
allow the MC sampling to go to indefinite perturbation orders.
In fact, upon a simple inspection of CTINT and continuous-
time hybridization-expansion quantum Monte Carlo in the
segment picture (segment-CTHYB) equations [42], it be-
comes clear that our solution can, in principle, be applied
there, so as to reformulate these methods in real frequency.
This would, however, come at the price of having to break
into individual terms the determinant that captures all the
contributions to the partition function at a given perturbation
order. In turn, this may lead to a more significant sign prob-
lem, and an effective cap on the perturbation orders that can
be handled in practice. On the other hand, it is not entirely
clear how much of the sign problem comes from summing
the individual terms and how much from the integration of
the internal times, and we leave such considerations for future
work. In any case, DiagMC algorithms based on hybridization
expansion have been proposed before (see Refs. [23,28,61]),
where our analytical solution may be applied.

Our solution also trivially generalizes to real-time inte-
grals and may have use in Keldysh and Kadanoff-Baym [9]
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calculations, where the infamous dynamical sign problem
arises precisely due to oscillating time integrands. There have
been recent works [62,63] with imaginary-time propagation
of randomized walkers where our solution may also find ap-
plication.

Finally, we emphasize that avoiding analytical continuation
could be beneficial at high temperature where the Matsub-
ara frequencies become distant from the real axis, and thus
noisy imaginary-axis correlators contain little information
[64,65]. The high-temperature regime is particularly relevant
for optical lattice simulations of the Hubbard model [66].
In that context, we anticipate our method will find appli-
cation in the calculation of conductivity and other response
functions.
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APPENDIX A: REAL-TIME INTEGRATION

Let us consider the following special case of the integral
given by Eq. (3), which is relevant for real-time integrations
featuring integrands of the form eitE :

Ĩ{l2...lN },{E2...EN }(t ) =
N∏

i=2

∫ ti+1

0
dti t li

i eitiEi , (A1)

with tN+1 ≡ t . This corresponds to the case r /∈ [2, N] in
Eq. (3), and ωi = iEi, and we will define Ẽi analogously to ω̃i.
The result is then obtained straightforwardly from Eq. (14),

Ĩ{l2...lN },{E2...EN }(t ) =
∑

{bi∈[δz̃i ,1]}i=2...N

eitẼN bN
∑

{ki∈[0,(1−δz̃i )ni]}i:bi=1

× (−1)
∑N

i=2 ki
∏

i:δz̃i =1

1

ni

× t nN +1−bN −kN
∏

i:Ẽi 
=0

Cni,ki

(iẼi )ki+bi
, (A2)

which has the following general form:

Ĩ(t ) =
∑

j;p∈N0

Zp, jt
peitE j . (A3)

APPENDIX B: EXTRACTING REAL-AXIS RESULTS
WITHOUT POLE BROADENING

In this section, we show how the results on the real axis can
be extracted without any numerical broadening of the poles.
Rather, we make use of the pole amplitudes by interpreting
the result as being representative of the thermodynamic limit,
where poles on the real axis merge into a branch cut, and thus
we consider that the pole amplitude is a continuous function
of the real frequency. We extract the imaginary part of the
contribution [ImD(ω)], and then the Hilbert transform can be
used to reconstruct the real part.

The procedure relies on the following construction: A func-
tion f (z) which is analytic everywhere in the upper half of the
complex plane (z+ = x + iy with y > 0) and decays to zero
with |z+| satisfies the relation

f (z+) = − 1

π

∫
dx′ Im f (x′ + i0+)

z+ − x′ . (B1)

After applying the pth derivative with respect to x (i.e., the
real part of z+) on both sides of the equation, one obtains

∂ p
x f (z+) = − 1

π

∫
dx′∂ p

x

Im f (x′ + i0+)

z+ − x′

= − 1

π

∫
dx′(−1)p(p + 1)!

Im f (x′ + i0+)

(z+ − x′)p+1
. (B2)

We can now move the constant prefactors to the left-hand side
and rename p + 1 → p. Just above the real axis, we have

(−1)pπ

p!
∂ p−1

x f (x + i0+) =
∫

dx′ Im f (x′ + i0+)

(x − x′ + i0+)p
. (B3)

We can now discretize the expression on a uniform x grid with
the step �x, say, x j = j�x, and we see that the right-hand side
has the form of a sum of poles of order p, equidistant along
the real axis, and with amplitudes A j = Im f (x j + i0+),

(−1)pπ

p!
∂̃

p−1
j A j ≈ Im

∑
j′

�x
A j′

(x j − x j′ + i0+)p
, (B4)

where ∂̃ is the finite-difference approximation for the deriva-
tive along the x axis. Clearly, the imaginary part of the entire
sum of p-order poles at a certain point x j can be estimated by
looking only at the (p − 1)th derivative of the amplitudes of
these poles at x j , as given in the above expression.

The expression (B4) can be readily applied in our case
[Eq. (33)] where the real axis is the frequency axis ω, with step
�ω and ω j = j�ω, and the sum of the poles determines our
diagram contribution D. In general we have poles of various
orders, but we can group the poles by order and treat their
contributions separately. We therefore have

ImD(ω j + i0+) ≈ π

�ω

∑
p

(−1)p

p!
∂̃

p−1
j A j,p. (B5)

In the case of simple poles only, the contribution at any ω j is
simply proportional to the amplitude of the pole A j,1. Other-
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FIG. 10. Illustration of a η = 0+ result obtained from Eq. (31)
without any numerical broadening, based only on pole amplitudes.
The diagram used is the second-order diagram (illustrated in the top
panel), with L = 2. In the propagators, we take δμ = 0. The rest of
the parameters are μ − U 〈nσ 〉 = −0.1D, T = 0.1D, and the external
momentum is k = (0, π ). The top three panels are contributions
from first-, second-, and third-order poles, respectively. The bottom
panel is the total result. Lines with η > 0 are obtained with numerical
broadening. The crosses on the η = 0 result denote the available
frequencies (in between, we assume linear interpolation).

wise, the procedure requires that the pole amplitudes form a
reasonably smooth function of the real frequency. Addition-
ally, the energy resolution is a measure of the systematic error
made in this procedure.

To avoid statistical noise and noisy features coming from
the finite size of the lattice (see next section), we test our
method on the example of a N = 2, L = 2 diagram, which
we can solve with the full summation of Eq. (31), on a lattice

FIG. 11. Comparison of the real-frequency imaginary self-
energy result for a single fifth-order diagram (illustrated in the
bottom-left corner), for the lattice sizes 32 × 32 and 256 × 256,
at three different levels of broadening. The calculation is in both
cases performed with the same number of MC steps and took sim-
ilar time. The parameters are L = 0, δμ = 0, μ − U 〈nσ 〉 = −0.1D,
T = 0.1D, and the external momentum is k = (0, π ).

of the size 96 × 96. This diagram produces poles up to order
3. The result is shown in Fig. 10. In the first three panels, we
show the contribution from the poles of each order, and in the
bottom panel, we show the total result.

APPENDIX C: CONVERGENCE WITH LATTICE SIZE

In this section we discuss the convergence of the result with
respect to the lattice size. In Fig. 11, we compare the results
for a single N = 5, L = 0 diagram on the lattices of size 32 ×
32 and 256 × 256. We observe that the result is almost exactly
the same at broadening level η = 0.2, which brings further
confidence in the results in the main part of the paper.

In Fig. 12, we illustrate how the size of the lattice de-
termines the highest energy resolution that one can have,
under requirement that the results form a continuous curve
on the real axis and are, therefore, representative of the ther-
modynamic limit. We perform the full summation for the
second-order diagram with L = 0, with various sizes of the
lattice and various resolutions. Clearly, the bigger the lattice,
the higher the energy resolution one can set without affecting
the smoothness of the results.

The numerical parameters of the calculation are there-
fore the size of the lattice, the energy resolution, and the
broadening (the resolution and the broadening can be tuned
a posteriori), and one can tune them to get the optimal ratio
between performance and the error bar. If the pole amplitudes
A j p are a relatively smooth function of j, no broadening is
then needed at all.
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FIG. 12. Real-frequency result (η = 0+) for the contribution of the lowest-order diagram (illustrated in the rightmost panel) at various
lattice sizes and frequency resolutions, obtained with full summation (gray code). The step of the uniform energy grid is denoted �ω. The
parameters are L = 0, δμ = 0, μ − U 〈nσ 〉 = −0.1D, T = 0.1D, and the external momentum is k = (0, π ).

APPENDIX D: DERIVATION OF EQ. (5)

After applying n times the partial integration over the integral from the left-hand side of Eq. (5), we get∫ τ f

0
τ neτ zdτ = 1

zn+1

∫ zτ f

0
τ neτ dτ

= 1

zn+1

[
ezτ f (zτ f )n − nezτ f (zτ f )n−1 + · · · + (−1)nn!

∫ zτ f

0
τ 0eτ dτ

]

= 1

zn+1

[
n!

(n − 0)!
(−1)0ezτ f (zτ f )n−0 + (−1)1 n!

(n − 1)!
ezτ f (zτ f )n−1 + · · · + (−1)n n!

(n − n)!

∫ zτ f

0
τ 0eτ dτ

]

= 1

zn+1

[
n!

(n − 0)!
(−1)0ezτ f (zτ f )n−0 + (−1)1 n!

(n − 1)!
ezτ f (zτ f )n−1 + · · · + (−1)n n!

(n − n)!
(zτ f )0(ezτ f − 1)

]

= 1

zn+1
ezτ f

n∑
k=0

(−1)k (zτ f )n−k n!

(n − k)!
− (−1)n n!

zn+1
, (D1)

which can be readily identified with the right-hand side of Eq. (5).

APPENDIX E: DERIVATION OF EQ. (21)

We are looking for a solution of the Fourier transform

Gl
0(ε, τ ) = 1

β

∑
i�η

e−i�ητ

(i�η − ε)l
. (E1)

For any τ , we can express the sum above as a contour integral,
and we find

Gl
0(ε, τ ) = −Resz=ε

e−zτ

(z − ε)l

η� τ
β �e� τ

β �βz

1 − ηe−βz
dz

= − η� τ
β �

(l − 1)!

dl−1

dzl−1

e−βz{ τ
β
}

1 − ηe−βz

∣∣∣∣
z=ε

, (E2)

where �...� denotes the integer part (floor function), and {x} ≡
x − �x� denotes the fractional part.

We see that it will be useful to have an expression for
derivatives of (1 − ηez )−1. They have the general form

dk

dzk

1

1 − ηez
=

k∑
n=0

Ck
n

(ez )n

(1 − ηez )n+1
. (E3)

By deriving this expression on both sides, one obtains a recur-
sion for the coefficients Ck

n ,

Ck+1
n = nCk

n + ηnCk
n−1, (E4)

with holds for k > −1 and n > 0 with C0
0 = 1. That can be

rewritten

ηn

n!
Ck+1

n = n
ηn

n!
Ck

n + ηn−1

(n − 1)!
Ck

n−1. (E5)

If we define Sk
n = ηn

n! C
k
n , we have the recursion Sk+1

n = nSk
n +

Sk
n−1, which is the recursion for the Stirling numbers of the

second kind. This allows one to have the following important
result:

dk

dzk

1

1 − ηez
=

k∑
n=0

ηnn!

{
k
n

}
(ez )n

(1 − ηez )n+1

=
k∑

n=0

ηnn!

{
k
n

}
e−z

(e−z − η)n+1
. (E6)
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With this, one obtains the following expression:

Gl
0(ε, τ ) = −eεβ(1−{ τ

β })η� τ
β �+1(−β )l−1

×
l−1∑
m=0

l−m−1∑
n=0

n!

(l − m − 1)!m!

{
l − m − 1

n

}

×
(

1

ηeεβ − 1

)n+1{
τ

β

}m

, (E7)

which already satisfies the (anti)periodicity properties of the
Green’s function.

To make use of the result given by Eq. (E7), we need to
express Gl

0(ε, τ ) as a function of two times Gl
0(ε, τ, τ ′) ≡

Gl
0(ε, τ − τ ′), with τ, τ ′ ∈ [0, β]. We first consider τ � τ ′.

By substituting (τ − τ ′)m = ∑m
ζ=0(−1)m−ζ

(m
ζ

)
τ ζ τ ′m−ζ into

Eq. (E7) and substituting m − ζ with ς , we get

Gl
0(ε, τ − τ ′) = ηeε(τ ′−τ )nη(−ε)

l−1∑
ζ=0

l−ζ−1∑
ς=0

c−
l,ζ ,ς (ε)τ ζ τ ′ς ,

(E8)
with c−

l,ζ ,ς
(ε) as defined in Eq. (22). The result for τ < τ ′ can

then be easily obtained by proving the property Gl
0(ε, τ ) =

(−1)lGl
0(−ε,−τ ),

Gl
0(ε,−τ ) = 1

β

∞∑
n=−∞

ei�ητ

(i�η − ε)l

= 1

β

∞∑
n=−∞

e−i�ητ

(−i�η − ε)l

= (−1)l 1

β

∞∑
n=−∞

e−i�ητ

(i�η + ε)l

= (−1)lGl
0(−ε, τ ),

which implies that in the definition (21), we must have

c+
l,ζ ,ς (ε) = (−1)l−1c−

l,ς,ζ (−ε). (E9)

APPENDIX F: GENERAL HAMILTONIAN CASE

It is important to show that our method is not restricted
to a specific choice of Hamiltonian. The local density-density
interaction and the single band of the Hubbard Hamiltonian
bring many simplifications, but none of them are necessary for
our imaginary-time integral solution or the chemical-potential
tuning scheme.

Consider the general Hamiltonian

H =
∑

α

(εα − μ) +
∑

α1α2α3α4

Uα1α2α3α4 c†
α1

cα2 c†
α3

cα4 . (F1)

The α are the eigenstates of the noninteracting Hamil-
tonian, e.g., a combined momentum, band, and spin
index. The self-energy can be now expressed as a

series,

�
(HF)
α,α′ (τ ) =

∑
N

∑
ϒN

2N−1∏
j=1

∞∑
l j=1

∑
α j,1...α j,l j

l j−1∏
n=1

∑
V j,n

× [V j,n]α j,nα j,n+1

N∏
i=1

Uα j1 (i)α j2 (i)α j3 (i)α j4 (i)

×
N−1+∑

j (l j−1)∏
m=1

∫ β

0
dτm G0

(
ε̄α j,n , τ̃ j,n − τ̃ ′

j,n

)
.

(F2)

Similarly as before, ϒN enumerates topologies without any
instantaneous insertions (Hartree or chemical potential) at
perturbation order N (the number of interaction vertices).
The fermionic lines in the ϒN topology are enumerated with
j. On each fermionic line, we make any number l j − 1 of
instantaneous insertions with amplitudes V j,n (interaction am-
plitudes in Hartree insertions are included in V; n enumerates
the insertions at the fermionic line j). In general, Hartree
insertions may contain off-diagonal terms in the α basis and
are therefore a matrix in the α space. However, it is necessary
that chemical-potential shifts are diagonal in this basis, as
we want to have the bare propagator diagonal in this basis
as well. Otherwise, the form of G0 from Eq. (18) would
no longer hold. Nevertheless, one may still have a separate
chemical-potential shift for each state, δμα . After making
insertions, the number of fermionic lines increases to

∑
j l j .

The fermionic lines are now enumerated with j, n, and the
corresponding states are α j,n. The index i enumerates the in-
teraction vertices outside of any Hartree insertions. We denote
α j1...4 (i) as the single-particle states at four terminals of each
interaction vertex. The interaction vertices at incoming (i = 1)
and outgoing (i = N) terminals of the self-energy diagram
are α j1 (i = N ) = α, α j2 (i = 1) = α′. With m, we enumerate
all times to be integrated over. With each interaction vertex
i > 1, we associate one time, and there is a time associated to
each instantaneous insertion of which there are

∑
j (l j − 1).

We assume that the incoming time corresponding to the vertex
i = 1 is 0. The times on the terminals of each bare propa-
gator j, n are τ̃ j,n and τ̃ ′

j,n and they take on values from the
set {τm}m=0...N−1+∑

j (l j−1), with the external incoming time
fixed, τ0 ≡ 0. τ̃ j,n, τ̃

′
j,n, and α j1...4 (i) are implicit functions of

topology ϒN . Finally, ε̄α j,n ≡ εα j,n − μ + δμα j,n . We can now
focus only on the time-integral part and proceed completely
analogously to Eqs. (27)–(31).

It is worth noting that with general interactions, pulling
the coupling constant in front of the diagram contribution is
impossible, as the frequency dependence of the contribution
of each diagram will depend on the precise form of Uα1α2α3α4 .
In the most general case, one must set specific values for
Uα1α2α3α4 and δμα before performing the Monte Carlo summa-
tion. One can then choose the variables that will be sampled
stochastically and the ones that will be fully summed over.
In the end, the contributions can be easily grouped by total
number of independent times (K), including those in Hartree
insertions. The integration of times in Hartree insertions can
always be performed beforehand. Therefore, in the fully
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general case, the number of integrations to be performed at
the time of Monte Carlo sampling is N − 1 + ∑

j (l j − 1).
In the case of purely density-density interactions (as is the
case in the Hubbard model) or spin-spin interactions in the
absence of external magnetic fields, this simplifies further
because instantaneous insertions lead to expressions of the
type 1

(iω−ε)l for which we can work out the temporal Fourier
transform analytically [Eq. (21)] and the remaining number of
integrations to perform is N − 1 [as we do in Eq. (31)]. In the
general case, when Hartree insertions are not diagonal in the α

basis, one has expressions of the type 1
iω−ε1

1
iω−ε2

· · · 1
iω−εl

. In

principle, one could prepare the analytical Fourier transforms
for a general function of this form, but it might be increasingly
involved at large l , so we assume one would do these integra-
tions at the level of the Monte Carlo, when ε1...l are already
specified.

We finally emphasize that even more general construc-
tions are possible, even in bases other than the noninteracting
eigenbasis. In such cases, the G0’s are nondiagonal and
may have a continuous real-frequency dependence, instead
of being a single pole. We leave such considerations for
future work.
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