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Charge transport limited by nonlocal electron-phonon interaction.
I. Hierarchical equations of motion approach
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Studying charge transport in models with nonlocal carrier–phonon interaction is difficult because it requires
finite-temperature real-time correlation functions of mixed carrier–phonon operators. Focusing on models with
discrete undamped phonon modes, we show that such correlation functions can be retrieved from the hierarchical
equations of motion (HEOM), although phonons have been integrated out. Our procedure relies on the general
explicit expression of HEOM auxiliaries in terms of phonon creation and annihilation operators. It reveals that the
auxiliaries describe multiphonon-assisted carrier transitions induced by genuine many-phonon correlations, from
which lower-order correlations are subtracted according to the finite-temperature Wick’s theorem. Applying the
procedure to our recently developed momentum-space HEOM method featuring appropriate hierarchy closing,
we compute the numerically exact dynamical mobility of a carrier within the one-dimensional Peierls model.
The carrier mobility at moderate temperatures decreases with increasing interaction, whereas high temperatures
see the opposite trend, reflecting the prevalence of the phonon-assisted current over the purely electronic band
current. The pronounced finite-size effects and HEOM instabilities delimit the range of applicability of our
approach to moderate interactions, moderate to high temperatures, and not too fast phonons. Importantly, this
range comprises the values relevant for charge transport in crystalline organic semiconductors, and we present
and discuss the corresponding numerically exact results in a companion paper [Janković, Phys. Rev. B 112,
035112 (2025)].
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I. INTRODUCTION

The transport of charge carriers that interact with quantum
lattice vibrations has been at the forefront of both applied and
fundamental research [1–7]. One of the main challenges in
theoretical studies is the computationally intensive simulation
of fully quantum dynamics of mutually coupled carriers and
phonons [8]. To reliably compute the phonon-limited carrier
mobility, which is one of the key quantities in applications
[9], such a simulation should be performed on a sufficiently
large system and capture the long-time diffusive motion of
the carrier. Thus, it is not surprising that transport proper-
ties based on the fully quantum carrier–phonon dynamics
remain largely inaccessible even within the simplest models
of local (Holstein-type) [10–12] and nonlocal (Peierls- or Su–
Schrieffer–Heeger-type) [13–16] carrier–phonon interaction.

One usually contents oneself with approximate dynamics
relying on physically motivated [16–34] or technically conve-
nient [35–44] assumptions. However, the domain of validity
of such assumptions is a priori unknown, and it can be de-
termined only if some reference (numerically) exact results
were available. Recently, the method of hierarchical equa-
tions of motion (HEOM) [45–47] has emerged as a reliable
numerically exact method for interacting electron–phonon (or
exciton–phonon) systems featuring harmonic phonons and
the interaction that is linear in both phonon displacements

*Contact author: veljko.jankovic@ipb.ac.rs

and single-electron densities [48]. The HEOM method has
been used to study electronic dynamics in Holstein-type mod-
els featuring a relatively small number of electronic states
interacting with an infinite number of harmonic oscillators
mimicking their condensed-phase environment [49–53]. The
HEOM-based computations of transport properties of Peierls-
type models in which each electronic state interacts with
a finite number of undamped phonons [16,20,22] face two
major challenges. (i) The dynamics exhibit numerical insta-
bilities stemming from the discreteness of phonon spectrum
[54–56]. (ii) Apart from the purely electronic (band) contribu-
tion, the current operator, whose finite-temperature autocorre-
lation function determines the frequency-dependent mobility
[11,57], has a phonon-assisted contribution [27,58,59]. Study-
ing the one-dimensional Holstein model, we have resolved
challenge (i) by devising an appropriate hierarchy closing
scheme [60]. Overcoming challenge (ii), i.e., devising the
HEOM method-based framework for computing correlation
functions of mixed electron–phonon operators, is the main
topic of this study.

Retrieving hybrid electron–phonon dynamics from the
HEOM formalism, which integrates phonons out and thus
straightforwardly deals with purely electronic quantities
[60–66], is a highly nontrivial task [67–69]. While it is in-
tuitively clear that the dynamics of mixed electron–phonon
quantities is related to the auxiliary operators of the HEOM
formalism [70,71], systematic connections between these in-
gredients had not been established before the development
of the formalism of dissipaton equations of motion (DEOM)
[72–75]. Although the dynamical equations of the DEOM
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formalism are identical to those of the HEOM formalism, the
former provides a physical interpretation of the auxiliary oper-
ators in terms of many-dissipaton configurations. However, in
the most general setup with dissipation, the single-dissipaton
operators, the dissipaton algebra they obey, as well as their
many-body configurations, remain somewhat abstract. More-
over, the generalized Wick’s theorem, which is at the crux of
computing mixed electron–phonon dynamics from auxiliary
operators, appears more an axiom than a theorem. Therefore,
care should be exercised when applying the prescriptions of
the DEOM formalism to compute hybrid electron–phonon dy-
namics in models that lack explicit dissipation [54–56], such
as the single-mode Peierls [16,20,22] or Holstein models.

Motivated by the DEOM theory, in this study we establish
a HEOM-based framework for studying carrier transport in
a model with nonlocal carrier–phonon interaction and one
discrete undamped phonon mode. We explicitly express the
HEOM auxiliary operators in terms of phonon creation and
annihilation operators. Our expression is quite general as it
does not rely on the specific properties of the model (e.g.,
local or nonlocal interaction), but only on the assumptions
of harmonic phonons and linear carrier–phonon interaction
[48]. It reveals that the HEOM auxiliaries at level n contain
only the essential information about n-phonon assisted elec-
tronic transitions, omitting the information already encoded at
shallower levels. The electronic transitions described at level
n are assisted by n-phonon correlations from which lower-
order correlations are subtracted according to the prescription
valid in thermal equilibrium. Using the expression derived,
we rigorously prove the generalized Wick’s theorem [72–75],
which we subsequently use to formulate the HEOM-based
framework for computing the autocorrelation function of the
current operator containing both band and phonon-assisted
contributions. We discuss in detail the approximations in-
volved in different hierarchy closing schemes, and provide
solid evidence that the scheme we developed in Ref. [60]
stabilizes long-time HEOM dynamics without appreciably
affecting the carrier mobility. While the transport at moderate
temperatures and interactions is dominated by the purely elec-
tronic part of the current operator, the phonon-assisted current
becomes increasingly important as the temperature and/or
interaction are increased. We conclude that our framework
is practically applicable only at moderate-to-high tempera-
tures and for not excessively strong interactions. Remarkably,
it is precisely this parameter range that is relevant for
carrier transport in high-mobility organic semiconductors
[3,5,16,20,22]. Our companion paper [76] presents numer-
ically exact quantum-dynamical insights into the transport
of a carrier moderately coupled to slow intermolecular
phonons.

The paper is structured as follows. Section II exposes
our general results on the nature of HEOM auxiliaries and
proves the generalized Wick’s theorem, relegating the details
to Appendices A–C. Section III formulates the HEOM-based
computational framework for studying charge transport in the
Peierls model, while Sec. IV summarizes necessary imple-
mentation details. In Sec. V, we assess the applicability of
the framework, and present and discuss our numerically exact
results for transport properties in the field of intermediate and
fast phonons. Our main findings are summarized in Sec. VI.

II. FORMAL PROPERTIES OF HIERARCHICAL
EQUATIONS OF MOTION WITH DISCRETE

UNDAMPED PHONONS

Having reviewed the basics of the HEOM formalism in
Sec. II A and Appendix A, we unveil the physical con-
tent of HEOM auxiliaries in models with undamped phonon
modes in Sec. II B and Appendix B. In Sec. II C and Ap-
pendix C, we rigorously prove the generalized Wick’s theorem
[72–75], which is at the heart of HEOM-based computations
of real-time finite-temperature correlation functions of mixed
electron–phonon operators (see Sec. III).

We consider a single carrier on an N-site chain. We as-
sume that each site is equipped with an undamped harmonic
oscillator of frequency ω0, whose coupling g to the carrier is
uniform and linear in both the oscillator displacement and
single-carrier densities [10–12,14–16]. For definiteness, we
use periodic boundary conditions, and formulate the model in
momentum space. We set the lattice constant al , the elemen-
tary charge e0, and physical constants h̄ and kB to unity. The
Hamiltonian reads

Htot = He + Hph + He-ph

=
∑

k

εk|k〉〈k| + ω0

∑
q

b†
qbq +

∑
q

VqBq. (1)

The carrier (k) and phonon (q) wave numbers can assume any
of the N allowed values 2πn/N (n is an integer) in the first
Brillouin zone (−π, π ], and εk is the dispersion of the free-
carrier band. The carrier–phonon interaction depends on the
purely carrier operator

Vq =
∑

k

M(k, q)|k + q〉〈k|, (2)

and the purely phononic operator

Bq = g√
N

(bq + b†
q). (3)

In Eq. (3), we define q = −q, so that B†
q = Bq and Vq = V †

q .
The carrier–phonon matrix element M(k, q) encodes the de-
tails of the interaction (e.g., whether it is local or nonlocal).

We emphasize that the results of Secs. II A–II C are quite
general as these are formulated in a manner that permits
their immediate applications in coordinate space (instead
of momentum space), models with nonuniform couplings
[g → gq in Eq. (3)] or more oscillators per site.

A. Hierarchical equations of motion

Within the HEOM formalism, the dynamics of the elec-
tronic reduced density matrix (RDM)

ρ(t ) = Trph{ρtot (t )} = Trph
{
e−iHtottρtot (0)eiHtott

}
(4)

is obtained by propagating the following hierarchically cou-
pled equations [46,47,74]:

∂tρ
(n)
n (t ) = −i

[
He, ρ

(n)
n (t )

]− μnρ
(n)
n (t )− i

∑
qm

[
Vq, ρ

(n+1)
n+

qm
(t )
]

− i
∑
qm

nqm

∑
q′

(
ηqq′mVq′ρ

(n−1)
n−

qm
(t )

− η∗
q q′ m

ρ
(n−1)
n−

qm
(t )Vq′

)
. (5)
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The auxiliary operator ρ (n)
n (t ) at depth n � 0 [with ρ

(0)
0 (t ) ≡

ρ(t )] is a purely electronic operator characterized by the 2N-
dimensional vector

n = [nqm|q; m = 0, 1] (6)

of nonnegative integers nqm such that n = ∑
qm nqm. The

auxiliaries at depth n couple to auxiliaries at depths n ± 1,
which are characterized by vectors n±

qm defined as [n±
qm]q′m′ =

nq′m′ ± δq′qδm′m. The quantities μn and ηq2q1m are defined in
Appendix A.

B. HEOM auxiliaries and many phonon-assisted events

The auxiliaries ρ (n)
n (t ) are most often treated as purely

mathematical constructs, i.e., as intermediate quantities
needed to obtain ρ(t ). Physical intuition suggests that ρ (n)

n (t )
describes an n-phonon-assisted process whose details (quan-
tum numbers of individual phonons and whether they are
absorbed or emitted) are summarized in vector n. This claim
is formalized by writing

ρ (n)
n (t ) = Trph

{
F (n)

n ρtot (t )
}
. (7)

The purely phononic operator F (n)
n is to be expressed in terms

of phonon creation and annihilation operators appearing in
vector n considered as a set of n pairs

n = {(qi, mi )|i = 1, . . . , n}. (8)

The order of pairs is immaterial, and some of them can be
mutually equal. Introducing operators

fq0 = g√
N

bq, fq1 = g√
N

b†
q (9)

such that Bq = ∑
m fqm, and abbreviating fqimi ≡ fi, in Ap-

pendix B we prove that

F (n)
n = :

n∏
a=1

fa: −
n∑

(i j)

〈: f j fi:〉ph :
n∏

a=1
a 	=i, j

fa:

+
n∑

(i j)(rs)

〈: fs fr :〉ph〈: f j fi:〉ph :
n∏

a=1
a 	=i, j,r,s

fa: − · · · . (10)

In Eq. (10), the normal-ordering symbol :: rearranges the
product of f operators so that the creation operators fq1 are
to the left of all annihilation operators fq0, while 〈Oph〉ph =
Trph{Ophρ

eq
ph} denotes the average of a purely phononic op-

erator Oph in the phonon equilibrium ρ
eq
ph = e−βHph

Trph e−βHph
at

temperature T = β−1. In the second term on the right-hand
side (RHS) of Eq. (10), the sum

∑n
(i j) runs over

(n
2

)
pairs

(i j) that can be chosen out of n elements {1, . . . , n}. The
sum

∑n
(i j)(rs) in the third term on the RHS of Eq. (10) runs

over 1
2

(n
2

)(n−2
2

)
double pairs (i j)(rs) that can be chosen from

{1, . . . , n}.
Apart from the normally ordered product of n phonon

operators, Eq. (10) also contains normally ordered products of
n − 2, n − 4, etc., phonon operators appearing with alter-
nating signs. This form somewhat resembles the cluster-
expansion approach to quantum dynamics [77–80], and
suggests that F (n)

n describes genuine n-phonon correlations,

from which lower-order many-phonon correlations are sub-
tracted. Indeed, in Appendix B we also derive the following
expression for F (n)

n , in which the subtraction of lower-order
F operators from the normally ordered product of n phonon
operators is manifest:

F (n)
n = :

n∏
a=1

fa: −
n∑

(i j)

〈: f j fi:〉phF (n−2)
n−

ji

−
n∑

(i j)(rs)

〈: fs fr :〉ph〈: f j fi:〉phF (n−4)
n−

sr ji
− · · · . (11)

In Eq. (11), n−
ji = n \ {(q j, mj ), (qi, mi )}.

The Wick’s theorem at finite temperature shows that
〈F (n)

n 〉ph = δn,0, i.e., the choice of F (n)
n embodied in Eqs. (10)

or (11) provides the most convenient representation of
many-phonon correlations in thermal equilibrium. In the time-
dependent setup [Eq. (7)], Eq. (11) suggests that the HEOM
auxiliaries at level n remove lower-order many-phonon cor-
relations only partially, effectively assuming that phonons
are in thermal equilibrium. This assumption is often used
when studying the coupled carrier–phonon dynamics in,
e.g., photoexcited semiconductors [81–83]. However, cluster
expansion-based approaches [77–80] strive to fully remove
the dynamical lower-order many-phonon correlations by us-
ing the time-dependent expectation values instead of the
equilibrium expectation values entering Eq. (11).

C. Generalized Wick’s theorem

Using Eq. (10), in Appendix C we prove the so-called
generalized Wick’s theorem

F (n)
n fn+1 = F (n+1)

n+
n+1

+
n∑

i=1

〈 fi fn+1〉phF (n−1)
n−

i
, (12)

fn+1F (n)
n = F (n+1)

n+
n+1

+
n∑

i=1

〈 fn+1 fi〉phF (n−1)
n−

i
. (13)

In Eqs. (12) and (13), n is defined as in Eq. (8), and n+
n+1 =

n ∪ {(qn+1, mn+1)}. If we put emphasis on the number of nqm

of phonon-assisted events with momentum q and type m and
use the definition of n in Eq. (6), as well as Eq. (B3), then we
rewrite the generalized Wick’s theorem in the form in which
it appears in DEOM references [72–75]:

F (n)
n fqm = F (n+1)

n+
qm

+
∑
q′m′

nq′m′ηq′qm′F (n−1)
n−

q′m′
, (14)

fqmF (n)
n = F (n+1)

n+
qm

+
∑
q′m′

nq′m′η∗
q′ q m′F

(n−1)
n−

q′m′
. (15)

In Sec. SI of the Supplemental Material [84], we discuss
how the generalized Wick’s theorem can be inferred from
the dynamical equations of the HEOM formalism [Eq. (5)]
themselves.

III. HEOM-BASED THEORY OF CHARGE TRANSPORT
IN THE PEIERLS MODEL

Exploiting the formal results of Sec. II, we formulate a
HEOM-based framework for studying carrier transport in a
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widely studied model [14–16,22,85] with nonlocal carrier–
phonon interaction. In the limit of low carrier density,
transport dynamics are encoded in the real-time current–
current correlation function [60,61]

Cj j (t ) = 〈 j(t ) j(0)〉 = Tr
{

je−iHtott jρeq
tote

iHtott
}
. (16)

The angular brackets 〈·〉 in Eq. (16) denote averaging over the
equilibrium state

ρ
eq
tot = e−βHtot

Tr{e−βHtot } (17)

of the interacting electron–phonon system.
In the one-dimensional Peierls model, the nearest-neighbor

hopping amplitude J [giving rise to the free-carrier dispersion
εk = −2J cos k in Eq. (1)] is modulated by the difference
between coordinates of the corresponding local oscillators
[14–16,22,85]. The carrier–phonon matrix element M(k, q)
[Eq. (2)] then reads [86]

M(k, q) = −2i[sin(k + q) − sin k]. (18)

Equation (18) implies that the totally symmetric phonon mode
(q = 0) is exactly uncoupled from the remaining phonon
modes and carrier states. In the following, it is understood that
the q = 0 term is excluded from all summations over phonon
wave number q, as well as from vector n in Eq. (6), which
contains 2(N − 1) nonnegative integers nqm (for q 	= 0 and
m = 0, 1).

The current operator is

j = je + je-ph, (19)

where the purely electronic contribution

je =
∑

k

vkPk (20)

describes the band conduction, while the phonon-assisted con-
tribution is

je-ph =
∑

q

JqBq =
∑
qm

Jq fqm. (21)

In Eqs. (20) and (21), vk = ∂εk
∂k is the band velocity, Pk =

|k〉〈k|, while

Jq =
∑

k

MJ (k, q)|k + q〉〈k|, (22)

with

MJ (k, q) = ∂M(k, q)

∂k
= −2i[cos(k + q) − cos k], (23)

is a purely electronic operator increasing the electronic mo-
mentum by q and satisfying Jq = J†

q .
The central object of our HEOM-based framework is the

operator

ιtot (t ) = e−iHtott jρeq
tote

iHtott , (24)

in terms of which Eq. (16) reads Cj j (t ) = Tr{ jιtot (t )}.
Although Sec. II B deals with the RDM ρ(t ) and the corre-
sponding auxiliaries ρ (n)

n (t ), its results are quite general as
these do not rely on the properties of the density matrix (her-
miticity, normalization) but only on the properties of phonons
(Gaussian statistics, finite-temperature Wick’s theorem) and

the electron–phonon interaction (linear in phonon displace-
ments and electronic densities) [87]. Even though the operator
ιtot (t ) is nonhermitean, it is determined by the HEOM embod-
ied in Eq. (5) for the auxiliaries defined by [see Eqs. (7) and
(10)]

ι(n)
n (t ) = Trph

{
F (n)

n ιtot (t )
}
. (25)

The corresponding initial conditions [see Eqs. (24) and (19)]

ι(n)
n (0) ≡ ι(n,eq)

n = ι(n,eq)
e,n + ι

(n,eq)
e-ph,n

= Trph
{
F (n)

n jeρ
eq
tot

}+ Trph
{
F (n)

n je-phρ
eq
tot

}
(26)

are fixed by the HEOM representation {ρ (n,eq)
n =

Trph{F (n)
n ρ

eq
tot}} of ρ

eq
tot [Eq. (17)], which is discussed below.

The contribution to Eq. (26) that depends on the band current
is

ι(n,eq)
e,n = Trph

{
F (n)

n jeρ
eq
tot

} =
∑

k

vkPkρ
(n,eq)
n . (27)

The contribution containing the phonon-assisted current is
evaluated using the generalized Wick’s theorem [Eq. (14)]

ι
(n,eq)
e-ph,n = Trph

{
F (n)

n je-phρ
eq
tot

}
=
∑
qm

(
Jqρ

(n+1,eq)
n+

qm
+ nqm

∑
q′

ηqq′mJq′ρ
(n−1,eq)
n−

qm

)
. (28)

One then propagates the real-time HEOM for ι(n)
n (t ) =

ι(n)
e,n(t ) + ι

(n)
e-ph,n(t ), see Eq. (5), with the initial conditions

in Eq. (26). At each instant t , one inserts Eqs. (19)–(21)
and (24) into Eq. (16), and uses F (0)

0 = 1ph and F (1)
0+

qm
= fqm

[see Eq. (10)] to finally obtain

Cj j (t ) = Tr{ jιtot (t )}
=
∑

k

vkTre
{
Pkι

(0)
0 (t )

}+
∑
qm

Tre
{
Jqι

(1)
0+

qm
(t )
}
. (29)

Equations (28) and (29) overcome the long-standing issue
with the phonon-assisted current within the HEOM formalism
for discrete undamped phonons. From a broader perspective,
these equations show the utility of the generalized Wick’s
theorem in the computation of real-time finite-temperature
correlation functions of mixed electron–phonon operators.
Within the model considered here, these equations enable us
to separately analyze different contributions to the current–
current correlation function and gain important physical
insights into the character of charge transport. The decompo-
sition of the current operator in Eq. (19) implies that Cj j (t )
can be decomposed as

Cj j (t ) = Ce(t ) + Cph(t ) + Cx(t ), (30)

where

Ce(t ) = 〈 je(t ) je(0)〉 =
∑

k

vkTre
{
Pkι

(0)
e,0(t )

}
(31)

is the purely electronic (band) contribution,

Cph(t ) = 〈 je-ph(t ) je-ph(0)〉 =
∑
qm

Tre
{
Jqι

(1)
e-ph,0+

qm
(t )
}

(32)
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is the phonon-assisted contribution, while

Cx(t ) = 〈 je(t ) je-ph(0)〉 + 〈 je-ph(t ) je(0)〉

=
∑

k

vkTre
{
Pkι

(0)
e-ph,0(t )

}+
∑
qm

Tre
{
Jqι

(1)
e,0+

qm
(t )
}

(33)

is the cross contribution to Cj j .
The HEOM representation of ρ

eq
tot is obtained by propagat-

ing the following imaginary-time HEOM

∂τσ
(n)
n (τ ) = −Heσ

(n)
n (τ ) + iμnσ

(n)
n (τ )

−
∑
qm

Vqσ
(n+1)
n+

qm
(τ )

−
∑
qm

nqm

∑
q′

ηqq′mVq′σ
(n−1)
n−

qm
(τ ) (34)

from τ = 0 to β with the infinite-temperature initial condi-
tion σ (n)

n (0) = δn,01e [60,62]. The operator ρ
(n,eq)
n then reads

[60,62]

ρ (n,eq)
n = σ (n)

n (β )∑
k〈k|σ (0)

0 (β )|k〉 . (35)

IV. NUMERICAL IMPLEMENTATION

A. Rescaled and dimensionless momentum-space HEOM

The momentum conservation implies that the only nonzero
matrix elements of real-time HEOM auxiliaries ι(n)

n (t )
[Eq. (25)] are 〈k|ι(n)

n (t )|k + kn〉, and similarly for imaginary-
time HEOM auxiliaries σ (n)

n (τ ) [Eq. (34)] [60–62]. Here,

kn =
∑
qm

qnqm (36)

is the total momentum exchanged between the carrier and
phonons in the multiphonon-assisted process described by
vector n. Instead of σ (n)

n (τ ) and ι(n)
n (t ), our numerical imple-

mentation considers the following rescaled and dimensionless
auxiliaries:

σ̃ (n)
n (τ ) = f (n)σ (n)

n (τ ), ι̃ (n)
n (t ) = f (n)ι(n)

n (t ), (37)

where the rescaling factor f (n) reads [with cm defined in
Eqs. (A2) and (A3)] [88]

f (n) =
∏
qm

(|cm|nqm nqm!)−1/2. (38)

The rescaled and dimensionless imaginary-time
momentum-space HEOM reads [see Eq. (34)]

∂τ 〈k|σ̃ (n)
n (τ )|k + kn〉

= −(εk − iμn)〈k|σ̃ (n)
n (τ )|k + kn〉

−
∑
qm

√
1 + nqm

√
|cm| M(k − q, q)

× 〈k − q|σ̃ (n+1)
n+

qm
(τ )|k + kn〉

−
∑
qm

√
nqm

√
|cm| M(k + q,−q)

× 〈k + q|σ̃ (n−1)
n−

qm
(τ )|k + kn〉. (39)

The rescaled and dimensionless HEOM representation
{̃ρ (n,eq)

n } of the equilibrium state ρ
eq
tot of the interacting

electron–phonon system is then given by Eq. (35). The matrix
elements of the rescaled and dimensionless HEOM represen-
tation {̃ι (n,eq)

n = ι̃
(n,eq)
e,n + ι̃

(n,eq)
e-ph,n} of the operator jρeq

tot are [see
Eqs. (27) and (28)]

〈k |̃ι (n,eq)
e,n |k + kn〉 = vk〈k |̃ρ (n,eq)

e,n |k + kn〉, (40)

〈k |̃ι (n,eq)
e-ph,n|k + kn〉

=
∑
qm

√
1 + nqm

√
|cm| MJ (k − q, q)

× 〈k − q|̃ρ (n+1,eq)
n+

qm
|k + kn〉

+
∑
qm

√
nqm

cm√|cm| MJ (k + q,−q)

× 〈k + q|̃ρ (n−1,eq)
n−

qm
|k + kn〉. (41)

The rescaled and dimensionless real-time momentum-
space HEOM for ι̃ (n)

n (t ) reads [see Eq. (5)]

∂t 〈k |̃ι (n)
n (t )|k + kn〉 = −i(εk − εk+kn − iμn)〈k |̃ι (n)

n (t )|k + kn〉 − i
∑
qm

√
1 + nqm

√
|cm| M(k − q, q)〈k − q|̃ι (n+1)

n+
qm

(t )|k + kn〉

+ i
∑
qm

√
1 + nqm

√
|cm| M(k + kn, q)〈k |̃ι (n+1)

n+
qm

(t )|k + kn + q〉

− i
∑
qm

√
nqm

cm√|cm| M(k + q,−q)〈k + q|̃ι (n−1)
n−

qm
(t )|k + kn〉

+ i
∑
qm

√
nqm

c∗
m√|cm| M(k + kn,−q)〈k |̃ι (n−1)

n−
qm

(t )|k + kn − q〉 + [∂t 〈k |̃ι (n)
n (t )|k + kn〉]close. (42)

The same equations govern the dynamics of its contributions ι̃ (n)
e,n (t ) and ι̃

(n)
e-ph,n(t ). The closing term [∂t 〈k |̃ι (n)

n (t )|k + kn〉]close is
discussed in Sec. IV B.
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Finally, different contributions to the current–current cor-
relation functions are computed as [see Eqs. (31)–(33)]

Ce(t ) =
∑

k

vk〈k |̃ι(0)
e,0(t )|k〉, (43)

Cph(t ) =
∑
qmk

√
|cm|MJ (k, q)〈k |̃ι(1)

e-ph,0+
qm

(t )|k + q〉, (44)

Cx(t ) =
∑

k

vk〈k |̃ι(0)
e-ph,0(t )|k〉

+
∑
qmk

√
|cm|MJ (k, q)〈k |̃ι(1)

e,0+
qm

(t )|k + q〉. (45)

B. HEOM closing schemes

In actual computations, we truncate both the imaginary-
time HEOM in Eq. (39) and the real-time HEOM in Eq. (42)
at the same maximum depth D. In models with discrete un-
damped phonons, the truncated real-time HEOM is known
to exhibit numerical instabilities at sufficiently long times
[54–56], which severely hamper accurate computations of
carrier mobility. The instabilities can be overcome by de-
vising a hierarchy closing scheme [60], which amounts
to approximately solving the dynamical equations at depth
D + 1 in terms of the auxiliaries at depth D, see Ap-
pendix D. We simplify the resulting closing term, which
introduces couplings between auxiliaries at depth D, by in-
voking the random-phase approximation [83,89,90], which
neglects momentum-averaged matrix elements of auxiliaries
at depth D due to random phases at different momenta. There-
fore, our general closing term reads[

∂t 〈k |̃ι (n)
n (t )|k + kn〉

]
close = −δn,D(k, n)〈k |̃ι (n)

n (t )|k + kn〉.
(46)

In Appendix D 1, we solve the equations at depth D + 1 in
the Markovian and adiabatic (MA) approximations and obtain
the MA closing term [60]

MA(k, n) = 1
2

(
τ−1

k + τ−1
k+kn

)
. (47)

In Eq. (47), τ−1
k is the quasiparticle scattering rate out of the

free-electron state |k〉 computed in the second-order perturba-
tion theory and in the infinite-chain limit. The corresponding
expression reads (see, e.g., Ref. [23])

τ−1
k = 4g2

J (eβω0 − 1)

2 − (
εk
2J

)2 − (
εk+ω0

2J

)2√
1 − (

εk+ω0
2J

)2

+ 4g2

J (1 − e−βω0 )

2 − (
εk
2J

)2 − (
εk−ω0

2J

)2√
1 − (

εk−ω0
2J

)2
. (48)

It is known that, for ω0/J � 2, there exist k-states such that
τ−1

k = 0 [25,36], which underlies the ineffectiveness of our
closing scheme in the antiadiabatic regime [60]. An ad hoc
solution to this problem is to replace Eq. (47) with

MA−avg(k, n) = 1

N

∑
p

τ−1
p . (49)

Equation (49) is used to obtain the results for ω0/J = 3 in
Figs. 6 and 7(d).

The hierarchy closing scheme represents the main approx-
imation of our framework, which otherwise provides an exact
treatment of phonon-assisted processes up to order D. For
sufficiently large D, we expect that the dynamics of the zeroth-
and first-tier auxiliaries determining Cj j (t ) [see Eqs. (30)
and (43)–(45)] is stabilized in a manner that weakly depends
on the particular form of the closing terms (k, n) entering
Eq. (46). To confirm this expectation, in Appendix D 2 we
generalize the derivative-resum (DR) closing scheme origi-
nally developed in Refs. [91,92] to our undamped-phonon
model. We compare and contrast representative examples em-
ploying MA and DR schemes in Sec. V D.

C. Further technical details

Both the real-time HEOM [Eq. (42)] and the imaginary-
time HEOM [Eq. (39)] are propagated with the timestep
J�t = J�τ = (1 − 2) × 10−2 using the propagation scheme
from Ref. [52]. We propagate the real-time HEOM up to suf-
ficiently long real times t such that the integrals determining
the carrier mobility [see Eq. (56)] enter saturation as functions
of t .

The main indicator we use to assess the quality of our
HEOM results is the relative accuracy with which the optical
sum rule [14]∫ +∞

0
dω Re μ(ω) = −π

2
〈He + He-ph〉 (50)

is satisfied. Similarly as in our recent HEOM-based study of
transport properties of the Holstein model [60], we find that N
and D should be chosen sufficiently large so that the relative
accuracy

δOSR =
∣∣∫ +∞

0 dω Re μ(ω) + π
2 〈He + He-ph〉

∣∣
π
2 |〈He + He-ph〉| (51)

becomes essentially independent on N and D, and thus mainly
determined by the resolution �ω in the frequency domain.
The spectral resolution �ω = π/tmax is determined by the
maximum time tmax up to which the hierarchy is propagated
(the numerical Fourier transformation is performed on Cj j (t )
continued to negative times −tmax < t < 0). Quite generally,
we find that the convergence of 〈He-ph〉 with respect to D is
slower than the convergence of 〈He〉 (one example is pro-
vided in Sec. V C). In some situations, we make compromise
between minimizing finite-size effects (which requires a suf-
ficiently large N) and minimizing errors in 〈He-ph〉 (which
primarily requires a sufficiently large D). In particular, for
weaker interactions (λ � 0.25) and/or at not too high tem-
peratures (T/ω0 � 5), when finite-size effects are expected
to be pronounced, we sacrifice increasing D to increasing
N . We thus choose N, D, and tmax sufficiently large so that
δOSR � 10−3. The present tolerance on δOSR is an order of
magnitude larger than the tolerance we imposed studying the
Holstein model [60]. This is not surprising, keeping in mind
that δOSR in the Holstein model is determined only by 〈He〉,
whose convergence with respect to D is controlled better than
the convergence of 〈He-ph〉.
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In Sec. SII of the Supplemental Material [84], we establish
the equality

〈 je(t ) je-ph(0)〉 − 〈 je-ph(t ) je(0)〉 = 0 (52)

as a consequence of the time-reversal symmetry. In actual
computations, Eq. (52) is never perfectly satisfied. We gen-
erally find that the maximal magnitude of the left-hand side
(LHS) of Eq. (52) decreases with increasing D, while it is not
very sensitive to changes in N . The maximal value is generally
reached on short timescales Jt ∼ 1. We choose D sufficiently
large so that the maximal magnitude of the LHS of Eq. (52) is
of the order of 10−2 or below.

V. NUMERICAL RESULTS

Here, we explore the viability of the above-introduced
HEOM-based approach and study transport properties of the
one-dimensional Peierls model. We focus on the regime of
intermediate phonon frequency ω0/J = 1, which has been
used to explore practical applicability of various numeri-
cally exact methods to the Holstein model [60,62,93–97].
We also present some results in the antiadiabatic regime of
fast phonons ω0/J = 3, in which our hierarchy closing is not
entirely effective; see Sec. IV B. The results in the adiabatic
slow-phonon regime ω0/J � 0.5, which are relevant to charge
transport in organic semiconductors [3,5,16,20,22], are pre-
sented and discussed in the companion paper [76]. The data
that support our conclusions are openly available [98].

As a convenient measure of the electron–phonon interac-
tion strength, we use the dimensionless interaction parameter

λ = 2g2

ω0J
. (53)

Our choice of λ coincides with the definition used in
Refs. [14,15], and differs from the definition used in Ref. [22]
by a factor of 2.

A. Physical quantities characterizing charge transport

Although the central quantity of the formalism is Cj j (t ),
see Eq. (16), our time-domain considerations mostly focus on
the time-dependent diffusion constant

D(t ) =
∫ t

0
ds Re Cj j (s). (54)

In the frequency domain, we examine the dynamical-mobility
profile

Re μ(ω) = 1 − e−βω

2ω
Cj j (ω) = Cj j (ω) − Cj j (−ω)

2ω
, (55)

where Cj j (ω) = ∫ +∞
−∞ dt eiωtCj j (t ). General symmetries of

finite-temperature correlation functions [57] imply that
Cj j (−t ) = Cj j (t )∗ and Cj j (−ω) = e−βωCj j (ω). Taking the
ω → 0 limit of Eq. (55) yields the charge mobility

μdc = lim
t→+∞

1

T

∫ t

0
ds Re Cj j (s)

= lim
t→+∞ −2

∫ t

0
ds s Im Cj j (s). (56)

Equations (54)–(56) imply that the decompositions into
band, phonon-assisted, and cross contributions analogous to
Eq. (30) also hold for D(t ), Re μ(ω), and μdc. The charac-
ter of the transport is most conveniently discussed in terms
of relative magnitudes of different contributions μα

dc (α ∈
{e, ph, x}) to carrier mobility. While μe

dc, μ
ph
dc > 0, we find

that the cross contribution is negative (μx
dc < 0) in most of

the parameter regimes covered. A convenient measure of the
relative importance of the phonon-assisted contribution is

Sph = μ
ph
dc

μe
dc + μ

ph
dc

. (57)

As a measure of the relative importance of the cross correlator,
we use

Sx = μx
dc

μe
dc + μ

ph
dc

. (58)

B. Example of a converged calculation

We find that the herein proposed HEOM-based evaluation
of the transport properties of the Peierls model is viable at
moderate to high temperatures T/ω0 � 2, at which thermally
excited phonons are abundant. It is precisely this temperature
range that is relevant to charge transport in high-mobility or-
ganic semiconductors, which is ultimately limited by the slow
and large-amplitude intermolecular motions [3,5,16,20,22].
While we discuss the implications of the phonons’ slow-
ness (the smallness of the adiabaticity ratio ω0/J) on charge
transport dynamics in the companion paper [76], Figs. 1(a)–
1(d) analyze how finite values of N and D influence the
time-dependent diffusion constant for ω0/J = 1, λ = 0.5, and
T/J = 5.

Fixing N = 7, we observe that the overall dynamics of
D does not appreciably depend on D as it is varied from
6 to 10, see Fig. 1(a). The same holds for the quantity
−2T

∫ t
0 ds s Im Cj j (s), whose long-time limit should be equal

to D∞, see Fig. 1(b). We find that using either Re Cj j (t )
[Fig. 1(a)] or Im Cj j (t ) [Fig. 1(b)] yields virtually the same
results for D∞, and thus μdc. The long-time oscillations
observed in Fig. 1(b) can be made less pronounced by per-
forming the moving-average procedure [60]. In the inset of
Fig. 1(b), the result at time t is obtained from the main-panel
data by performing the arithmetic average of Nmove main-
panel points right before t and Nmove main-panel points right
after t , where we take Nmove to be 10% of the total number
of data points. Both Fig. 1(a) and the inset of Fig. 1(b) show
that the relative variation of D∞ upon varying D from 7 to 10
is of the order of 5%. For D � 7, we obtain δOSR ∼ 10−4 for
the maximum propagation time Jtmax = 50. As discussed in
our previous study [60], at sufficiently high temperatures, the
convergence with respect to D can be somewhat enhanced by
averaging HEOM results for two consecutive depths for which
δOSR is of the same order of magnitude. We thus conclude that
the arithmetic average of the results for D = 7 and D = 8 is
representative of the result converged with respect to D. In
Fig. 1(c), we plot D(t ) obtained by averaging HEOM results
for D = 7 and D = 8 and different values of N . We find that
the finite-size effects are very weakly pronounced, so that
HEOM results for N = 7 are representative of the long-chain
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FIG. 1. (a) Time-dependent diffusion constant D(t ) computed
for N = 7 and different maximum depths D. (b) Time evolution
of the quantity −2T

∫ t
0 ds s ImCj j (s), which tends to D∞ as t →

+∞ [see Eqs. (54) and (56)]. The inset shows the same quantity
after applying the moving-average procedure described in the text.
(c) Time-dependent diffusion constant D(t ) computed by averaging
the results for D = 7 and D = 8 for different chain lengths N . (d) The
maximal modulus of the difference 〈 je(t ) je-ph(0) − je-ph(t ) je(0)〉 as
a function of D for N = 7. The model parameters are J = ω0 =
1, λ = 0.5, T = 5. The vertical-axis ranges in panels (a) and (b) are
identical.

limit. To gain additional confidence in our implementation of
the HEOM method, we check how well it respects Eq. (52).
Figure 1(d) shows that the maximum of the LHS of Eq. (52)
over the time interval [0, tmax] exhibits a slow yet almost
exponential decrease with D. For D = 7 and 8, we see that the
maximum is of the order of 10−2. While the latter value might
seem large, and might suggest that even larger maximum
depths are needed to obtain fully converged HEOM results,
the results in Figs. 1(a)–1(d) show that our results are to be
regarded as numerically exact for all practical purposes.

In the analysis of the temperature-dependent mobility
μdc(T ) in Sec. V E, our final results at temperatures T/ω0 � 2
are arithmetic averages of the results obtained using only
Re Cj j (t ) and only Im Cj j (t ).

C. Challenges at moderate temperatures and interactions.
Effectiveness of the hierarchy closing scheme

We find it quite challenging to obtain converged results
for μdc at temperatures T such that T/ω0 < 2, i.e., when the
number of thermally excited phonons is relatively small.

For moderate to strong interactions λ � 0.5, the numerical
instabilities originating from the combination of relatively
strong interaction and relatively low temperature prevent us
from fully capturing the carrier’s diffusive motion and reli-
ably computing the low-frequency dynamical mobility. The
situation is overall similar to that we have encountered in
our recent study of the Holstein model, see Sec. III.F of
Ref. [60]. For weak interactions λ � 0.05, propagating the
hierarchy truncated at D = 1 − 2 (with sufficiently large N)

TABLE I. Carrier’s kinetic energy and carrier–phonon interac-
tion energy for J = ω0 = T = 1, λ = 0.25, N = 21 and different
values of D. The timestep on the imaginary axis is set to �τ =
10−2. Significant figures of the results for D = 3–5 are reported in
bold in separate columns. For a quantity QD computed using the
imaginary-time HEOM truncated at depth D, the number of signif-
icant figures after the decimal point is the maximum nonnegative
integer n satisfying |QD − QD+1| < 5 × 10−(n+1).

D −〈He〉 −〈He〉sig −〈He-ph〉 −〈He-ph〉sig

3 1.2163385532 1.216 0.74124663880 0.74
4 1.2161795982 1.2161 0.74251418518 0.742
5 1.2161720532 1.21617 0.74258695586 0.74259
6 1.2161717604 – 0.74259024005 –

yields decent results for transport properties, again similarly
as in Ref. [60]. The aforementioned challenges, which we
have not encountered studying the Holstein model, are the
most pronounced for moderate carrier–phonon interactions,
e.g., λ = 0.25. We then find that somewhat larger values of
D (typically 3 < D < 6) are required to obtain reasonably
accurate results for thermodynamic quantities. This is illus-
trated in Table I, which summarizes the results for the carrier’s
kinetic energy and the carrier–phonon interaction energy for
ω0 = J = T = 1, λ = 0.25, N = 21, and different values of
D. For each D, the significant figures, which are reported
in bold in separate columns, are identified by comparing the
results at depths D and D + 1. We observe that each increase
in D by one adds an additional significant figure, and that
〈He-ph〉 converges more slowly than 〈He〉. Table I suggests
that we should set D � 4 if we want δOSR � 10−3. However,
Fig. 2(a) shows that D(t ) does not saturate at long real times
for N = 21 and D = 4, 5, 6. Such a behavior, which reflects
a very slow long-time decrease of Cj j (t ) toward zero, could
be caused by finite-size effects in the dynamics. Fixing D = 4
and increasing N from 21 to 45, we find that the improvement
in the long-time behavior of D(t ) is only modest, see Fig. 2(b),
and insufficient to reliably estimate μdc. The same conclu-
sion is reached upon increasing N from 21 to 71 for D = 3,
see Fig. 2(a). Therefore, the problems we face at moderate
temperatures and for moderate interactions originate from the
ineffectiveness of our hierarchy closing scheme.

The effectiveness of the closing scheme depends on the
model studied, i.e., on the properties of the electron–phonon
interaction Hamiltonian. Namely, the electron–phonon inter-
action vertex M(k, q) within the Holstein model is inde-
pendent of both the electron (k) and phonon (q) momenta,
whereas it explicitly depends on both k and q within the
present model [Eq. (18)]. The “strength” of the hierarchical
links between HEOM auxiliaries is thus independent of the
auxiliaries’ momenta within the Holstein model, while the
links’ “strength” within the present model is highly nonuni-
form due to their pronounced momentum dependence. In
other words, in the Holstein model, the closing-induced hier-
archy stabilization is efficiently transferred from the deepest
HEOM layer all the way to the HEOM root, thus ensur-
ing the long-time decrease of the current–current correlation
function toward zero. However, the momentum-dependent
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FIG. 2. (a), (b) Time-dependent diffusion constant for (a) N =
21 and various D, (b) D = 4 and various N . In panel (a), we addition-
ally show D(t ) for N = 71, D = 3. In panel (b), the curve labeled
“fit” shows the best fit of D(t ) for N = 45 and 30 � t � 80 to
the exponentially saturating function f (t ) = a0 + a1 e−t/a2 . (c) The
maximal magnitude of the difference 〈 je(t ) je-ph(0) − je-ph(t ) je(0)〉
[multiplied by a factor of 100, see Eq. (52)] as a function of D for
N = 21. (d) The RHS of the second equality in Eq. (56) as a function
of t for D = 4 and different values of N . The line and color codes
in panels (b), (d) are identical. In all panels, ω0 = J = T = 1 and
λ = 0.25.

hierarchical links in the Peierls model present obstacles to the
transfer of the closing-induced hierarchy stabilization toward
the HEOM root and its first-layer auxiliaries, thus rendering
the decrease of the current–current correlation function slow.
This viewpoint is further corroborated by Fig. 2(a), which
shows that increasing D is detrimental to the effectiveness
of the closing-induced stabilization. The larger is the max-
imum depth, the more abundant are the obstacles due to
momentum-dependent hierarchical couplings, and the more
inefficient is the stabilization. This behavior stands in contrast
to what we have found in the Holstein model [60], in which
increasing D does not appreciably affect the stabilization
effectiveness.

Figure 2(c) shows that the maximal magnitude of the LHS
of Eq. (52), which remains ∼10−2 upon varying D from 3
to 6, cannot help us decide on the best value of D (for N =
21). Computing the diffusion constant using only Im Cj j (t )
for D = 4 and different chain lengths shows that the long-
time saturation toward D∞ can be inferred from the data
for N = 45. Almost the same value of D∞ can be obtained
by fitting the portion of the D(t ) curve for 30 � Jt � 80 to
the exponentially saturating function f (t ) = a0 + a1 e−t/a2 ,
see the curve labeled “fit” in Fig. 2(b). The fitting window
chosen does not include short-time transients of D(t ), and
captures the early approach toward the diffusive transport,
during which finite-chain effects are under control. One might
thus regard this fitting procedure to yield D(t ) representative
of a currently unaffordable HEOM computation on a longer
chain. Finally, our result for μdc is the arithmetic average of
the results in Figs. 2(b) and 2(d) at Jt = 300. It should be
accompanied with the relative uncertainty of the order of 10%,

FIG. 3. Short-time HEOM dynamics of Re Cj j obtained using
the TNL [(k, n) ≡ 0, thin solid line], MA [Eq. (47), thick solid
line], MA-avg [Eq. (49), dashed line], and DR [Eq. (D10), dash-
dotted line] closing schemes. The insets show (a) the time-dependent
diffusion constant and (b) the dynamical-mobility profile. For visual
clarity, the insets do not show the MA-avg results, which are almost
identical to the MA results. The model parameters are J = ω0 = 1
and (a) λ = 0.5, T = 5, (b) λ = 0.25, T = 2. Note the logarithmic
scale on the horizontal axis of both insets.

which can be estimated from Fig. 2(b) by comparing D∞
emerging from the fit and the HEOM data for N = 45 and
Jt = 300.

D. Influence of the HEOM closing scheme on the results
of converged calculations

Here, we analyze the influence of the HEOM closing
schemes introduced in Sec. IV B on transport dynamics at
the high temperature T/ω0 = 5 considered in Sec. V B [with
ω0/J = 1 and λ = 0.5, see Fig. 3(a)] and at a lower tempera-
ture T/ω0 = 2 [with ω0/J = 1 and λ = 0.25, see Fig. 3(b)].

Setting (k, n) = 0 in Eq. (42) (the so-called time-
nonlocal (TNL) closing [51]), the dynamics of Re Cj j in
Figs. 3(a) and 3(b) exhibit oscillatory instabilities that prevent
us from reliably extracting carrier mobility, see the inset of
Fig. 3(a). Notably, these instabilities cannot be removed by
further increasing the maximum depth D [54]. Both the MA
and DR schemes ensure that Re Cj j tends to zero at long
times, although the MA scheme is more efficient at damping
long-time oscillations around zero, especially at the lower
temperature considered. The quantitative differences between
D∞ or μdc relying on the MA or DR closing schemes are
consistent with the above-established 10% relative accuracy
that should accompany HEOM results, see the appropriate
parts of the insets of Figs. 3(a) and 3(b).
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FIG. 4. Temperature dependence of (a) the carrier mobility μdc, (b) the share Sph of the phonon-assisted contribution to μdc [Eq. (57)], and
(c) the share −Sx of the cross contribution to μdc [Eq. (58)] for different carrier–phonon interaction strengths. In all panels, ω0 = J = 1. The
results at T = 1, which are accompanied by asterisks, may not be fully converged. Panel (a) additionally displays the results of Eq. (59) when
the transport is predominantly phonon-assisted (λ = 0.5 and 1, 5 � T � 10).

At sufficiently high temperatures and for sufficiently strong
interactions, as in Fig. 3(a), the diffusive transport typically
sets in before the appearance of oscillatory instabilities in
the TNL-closing solution. Then, stopping HEOM propagation
before the TNL-closing instabilities have developed [at Jt ≈ 1
in Fig. 3(a)], all four closing possibilities considered yield
virtually the same value for the carrier mobility, see the inset
of Fig. 3(a). Still, the full dynamical-mobility profile with a
decent spectral resolution necessitates dynamics up to longer
times, see Sec. IV C. The explicit long-time propagation can
be avoided by resorting to, e.g., zero padding [95], which
is justified in the situation analyzed in Fig. 3(a). However,
the low-frequency features in Re μ(ω) stemming from the
zero-padded signal may be unreliable. Such features can be
of interest in realistic situations, see the companion paper
[76], and we prefer explicit propagation of the HEOM with
an appropriate closing scheme to techniques such as zero
padding.

At lower temperatures, there are some qualitative differ-
ences between the dynamical-mobility profiles relying on the
MA and DR closing schemes, see the inset of Fig. 3(b).
Namely, the dynamical mobility relying on the DR clos-
ing displays pronounced high-frequency features stemming
from the short-time oscillatory features that closely repli-
cate TNL-closing instabilities, see Fig. 3(b). Such features
remain appreciable even for weaker interactions, at which
the Boltzmann transport theory is plausible. The Boltzmann
theory yields Drude-like dynamical-mobility profiles, which
are smooth at high frequencies. For weak interactions, the MA
closing yields such smooth dynamical-mobility profiles, see
Fig. 7(a2), and carrier mobilities that agree very well with the
Boltzmann theory, see Fig. 5. Therefore, we give preference
to the MA over the DR closing scheme at lower temperatures.

Overall, we conclude that the MA closing scheme stabi-
lizes HEOM dynamics in a manner that does not introduce
spurious high-frequency features and does not compromise
low-frequency features of the dynamical mobility, and, in
particular, the magnitude of the carrier mobility.

The k-independent version [Eq. (49)] of the MA closing
term yields virtually the same dynamics as the MA closing
term, compare the curves “MA” and “MA-avg” in Figs. 3(a)
and 3(b). This strongly suggests that our manner of enhancing

the effectiveness of the MA closing for ω0/J � 2 does not
introduce additional artifacts into HEOM dynamics.

E. Temperature-dependent charge mobility

Figure 4(a) summarizes our results for the temperature-
dependent carrier mobility for ω0/J = 1 and different inter-
action strengths. Section SIII of the Supplemental Material
[84] summarizes the parameter regimes in which we per-
formed HEOM computations, along with the corresponding
numerical parameters (N , D, and the maximum propagation
time tmax). Sections V B and V C show that the relative uncer-
tainties accompanying μdc(T ) in Fig. 4(a) generally decrease
with T , and are of the order of (or somewhat below) 10%
throughout the temperature range examined.

Fixing λ, we find that μdc decreases with temperature
within the temperature range examined. This decrease be-
comes milder at higher temperatures and/or for stronger
interactions. At T/J = 1, μdc decreases with increasing in-
teraction, while the opposite trend is observed at temperatures
T/J = 5 and 10. We connect these findings with the character
of the transport in Figs. 4(b) and 4(c), which respectively
present the temperature dependence of the phonon-assisted
[Eq. (57)] and cross [Eq. (58)] shares of the mobility. We
conclude that the opposite trends in μdc with increasing in-
teraction reflect the crossover from the transport dominated
by the purely electronic contribution at lower temperatures
toward the phonon-assisted transport at higher temperatures.
Figure 4(a) suggests that the crossover takes place at tem-
peratures around 2J , at which μdc is almost independent of
the interaction as long as it is sufficiently strong (λ � 0.25).
In contrast to the phonon-assisted contribution, which gains
importance as the temperature and/or the interaction are in-
creased, see Fig. 4(b), the cross contribution is the most
appreciable for moderate interactions and/or at lower temper-
atures, see Fig. 4(c).

The above-described trends in μdc upon varying T and λ in
the regime of predominantly phonon-assisted transport can be
reproduced by the early theories developed in Refs. [58,99].
Assuming that the temperature is the largest energy scale
in the problem, factorizing carrier–phonon correlators as
products of purely carrier and free-phonon correlators, and
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FIG. 5. Temperature-dependent charge mobility computed using
the HEOM method (label “HEOM total”) and the Boltzmann equa-
tion (label “Boltzmann,” see Appendix E). We also show the HEOM
results for the band contribution to μdc (label “HEOM e”). The
model parameters are ω0 = J = 1 and λ = 0.05. The data labeled
“Boltzmann” are the courtesy of N. Vukmirović.

computing the former in the independent-particle (bubble) ap-
proximation using the local (momentum-independent) carrier
propagator (as in, e.g., Sec. III C of Ref. [61]), one arrives at
(see also Sec. 3.1 of Ref. [22])

μ
high−T
dc =

√
π

4λ

(
J

T

)3/2(
1 + 2λ

T

J

)
≈
√

πλ
J

T
. (59)

Figure 4(a) reveals that Eq. (59), which predicts μ
high−T
dc ∝

T −0.5, reasonably reproduces the exponent of the power-law
decrease of the numerically exact μdc with T for λ � 0.5
and at T/J � 5. The fits of the HEOM results for μdc(T )
to a power-law function are performed in Sec. SIV of the
Supplemental Material [84]. Figure 4(a) also suggests that
the dependence of the HEOM mobility on λ for fixed T
is weaker than predicted by Eq. (59). Importantly, Eq. (59)
severely overestimates the numerically exact results, which
can be traced back to the bubble approximation inherent to
Eq. (59) [22].

For λ = 0.05, we expect that the mobility within the
Boltzmann transport theory [11,100,101], which considers
only the purely electronic contribution to μdc, should closely

follow HEOM results at least at lower temperatures featuring
small phonon-assisted and cross contributions. This expecta-
tion in confirmed in Fig. 5, which compares the predictions
μBltz

dc of the Boltzmann theory with the (total) HEOM mo-
bility μdc (label “HEOM total”) and its purely electronic
contribution μe

dc (label “HEOM e”). Figure 5 shows that the
Boltzmann theory accurately reproduces HEOM results up
to temperatures T/J ∼ 5. Interestingly, although the phonon-
assisted and cross contributions to mobility are both sizable
at T/J = 5, these approximately cancel one another, see
Figs. 4(b) and 4(c), so that the μBltz

dc is almost identical to
the numerically exact mobility. At T/J = 10, the Boltzmann
theory underestimates already the purely electronic contri-
bution to the mobility. Still, the deviation of its prediction
from the total HEOM result is mainly due to the considerable
phonon-assisted contribution. We note that the Boltzmann
results presented in Fig. 5 go beyond the usually employed
approximations, such as the momentum relaxation time ap-
proximation [1,23]. We discuss this aspect in greater detail in
Appendix E.

For λ = 1, the temperature dependence of μdc is very
weak at the lower end of the temperature range examined,
while it can be reasonably approximated by μdc ∝ T −0.5 at
the higher end of that range, see Fig. 4(a) and Sec. SIV
of the Supplemental Material [84]. An overall similar be-
havior of μdc(T ) was observed in Ref. [27] for sufficiently
strong interactions (see the temperature-dependent dc con-
ductivity labeled “σ DC

c ” in Fig. 1 of Ref. [27]). The almost
temperature-independent mobility we observe upon decreas-
ing the temperature to T/J ∼ 1 most probably corresponds
to the well studied thermally activated transport, in which
the mobility weakly increases with temperature [99]. This
type of transport characterizes the transition from the low-
temperature band transport, for which μdc ∝ T −1 [25], to the
high-temperature phonon-assisted transport [27], and is also
observed in the Holstein model [25].

Finally, we discuss the temperature-dependent carrier mo-
bility in the fast-phonon regime ω0/J = 3 in Figs. 6(a)–6(c).
Overall, the trends displayed by the mobility and its contri-
butions upon variations in T and λ are similar to those in
Fig. 4(a). Interestingly, in contrast to our findings in Fig. 4(c),
in Fig. 6(c) we find that the cross contribution to μdc is positive

FIG. 6. Temperature dependence of (a) the carrier mobility μdc, (b) the share Sph of the phonon-assisted contribution to μdc [Eq. (57)], and
(c) the share −Sx of the cross contribution to μdc [Eq. (58)] for different carrier–phonon interaction strengths. In all panels, J = 1 and ω0 = 3.
The results may not be entirely reliable because our HEOM closing scheme is only partially effective for ω0/J � 2. Panel (a) additionally
displays the results of Eq. (59) for λ = 1 and at 5 � T � 10.
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FIG. 7. Purely electronic (dashed lines, label “e”), phonon-
assisted (dash-dotted lines, label “ph”), and cross (double dash-
dotted lines, label “x”) contributions to: (a1)–(d1) the time-
dependent diffusion constant (normalized by the temperature);
(a2)–(d2) the dynamical-mobility profile. Solid lines (label “total”)
show the sum of the three contributions. The values of model param-
eters are cited inside panels (a1)–(d1).

for weak interactions. Comparing Figs. 6(b) and 4(b), we find
that the shares of the phonon-assisted contribution at T = 2

3ω0

and T = 5
3ω0 in Fig. 6(b) are greater than the shares at T =

ω0 and T = 2ω0 in Fig. 4(b), respectively. This observation
suggests that faster phonons promote a faster transition to
the predominantly phonon-assisted transport with increasing
interaction at a fixed temperature. A similar trend is observed
upon increasing temperature at a fixed interaction. Figure 6(a)
suggests that the decrease of the mobility for T � ω0 and
sufficiently strong interaction can be reasonably approximated
by the power-law μdc ∝ T −α with α ∼ 0.5, as predicted by
Eq. (59). The corresponding fits are provided in Sec. SIV of
the Supplemental Material [84].

F. Insights from time and frequency domain

In Fig. 7, we analyze how the relative importance of dif-
ferent contributions to transport affects the signatures of the

carrier–phonon interaction in the time [D(t ), Figs. 7(a1)–
7(d1)] and frequency [Re μ(ω), Figs. 7(a2)–7(d2)] domains.
As the infinite-time limit of D(t )/T and the zero-frequency
limit of Re μ(ω) should coincide, Figs. 7(a1)–7(d1) show
D(t ) normalized by the temperature. We start with a regime
in which the purely electronic contribution dominates trans-
port properties, see Figs. 7(a1) and 7(a2), and proceed by
increasing the relative importance of the phonon-assisted
contribution, see Figs. 7(b1)–7(c2). Figures 7(d1) and 7(d2)
present some reliable results for fast phonons.

When the band contribution dominates the transport, the
diffusion constant steadily increases with time, see Fig. 7(a1),
and the dynamical-mobility profile is overall Drude-like, see
Fig. 7(a2). The Drude-like shape of the purely electronic
contribution to Re μ(ω) is not affected by the nontriv-
ial cross contribution, which simply provides a nonuniform
(in frequency) shift of the purely electronic contribution in
the low-frequency region. Even though the phonon-assisted
contribution is negligible, it leaves its footprint in the high-
frequency region in form of a low-intensity peak centered
around ω/J = 5. Keeping in mind the definition of the
phonon-assisted current in Eqs. (21)–(23), this peak most
probably reflects a highly off-resonant process in which a sin-
gle phonon belonging to the totally antisymmetric mode (q =
π ) mediates transitions between the bottom (k = 0, εk=0 =
−2J) and the top (k = π, εk=π = 2J) of the electronic band.
These values of k and q maximize the matrix element MJ (k, q)
in Eq. (23), which renders the corresponding peak visible.

When the band and phonon-assisted contributions are
comparable, the diffusion constant displays nonmonotonic
behavior that is qualitatively similar to that we have stud-
ied in the Holstein model [60,61], see Fig. 7(b1). After
the initial ballistic-like increase, the diffusion constant ex-
hibits a decrease after Jt ∼ 0.4, which is mainly due to
the phonon-assisted contribution. While the purely elec-
tronic contribution to D exhibits a similar behavior on these
timescales, it reaches its maximum somewhat later than the
phonon-assisted contribution. Finally, on longer timescales,
the phonon-assisted contribution to D decreases and saturates,
whereas the purely electronic contribution to D increases. The
dynamical-mobility profile in Fig. 7(b2) displays a local min-
imum around ω = ω0 and a broad finite-frequency peak. The
weakly pronounced, yet observable, long-time growth of D(t )
in Fig. 7(b1) can be traced back to the temperature T/ω0 = 2
lying on the borderline between the regions in which our
computational framework is (un)feasible.

The prevalence of the phonon-assisted contribution is char-
acterized by the diffusion constant that exhibits no long-time
increase, but approaches its long-time limit while decreasing,
see Fig. 7(c1). The dynamical-mobility profile is then domi-
nated by a finite-frequency peak, see Fig. 7(c2), and exhibits a
local minimum at ω = 0. This stands in contrast to Fig. 7(b2),
in which ω = 0 is a local maximum in Re μ(ω). Overall, the
results in Figs. 7(c1) and 7(c2) bear qualitative resemblance to
typical predictions of the transient localization scenario (TLS)
[20,22]. However, we emphasize that here ω0/J = 1, while
the TLS is physically plausible in the limit of slow phonons.
In the companion paper [76], we present our HEOM results
for small adiabaticity ratios and assess the appropriateness of
the TLS.
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When the phonon-assisted contribution dominates the
transport for ω0/J = 3, the behavior of D(t ) and Re μ(ω) is
overall Drude-like, see Figs. 7(d1) and 7(d2). Similarly as in
Fig. 7(b1), we find that the phonon-assisted contribution to
D exhibits no long-time increase, in contrast to the purely
electronic contribution to D, which increases in a step-like
fashion. Such a behavior of the purely electronic contribution
to D qualitatively resembles our findings within the Hol-
stein model [60]. Although the position of the steps is not
seemingly correlated with the integer multiples of the phonon
period, the dynamical-mobility profile in Fig. 7(d2) exhibits
a dip around ω = ω0, which is mainly due to the purely
electronic contribution, cf. Fig. 7(b2).

VI. SUMMARY AND OUTLOOK

In this study, we have overcome the long-standing chal-
lenge of correctly treating the phonon-assisted current in
HEOM-based computations of transport properties of mod-
els with nonlocal carrier–phonon interaction. Admittedly, the
general ideas needed to address the challenge have been
developed in different setups [67–69,71], and ultimately sys-
tematized in the DEOM formalism [74,75]. However, our
approach combines them in a novel manner, shedding new
light on the very nature of the HEOM formalism and its
dynamical variables in one particular case. It is a model in
which a charge carrier moving on a lattice interacts with
an environment composed of a finite number of undamped
harmonic oscillators, which has received much attention in
different contexts [16,19,20,22,54–56].

We explicitly express HEOM auxiliaries in terms of sin-
gle oscillator’s creation and annihilation operators [Eqs. (7)
and (10)]. The auxiliaries are found to describe many
phonon-assisted transitions between free-carrier states that are
mediated by genuine many-phonon correlations, from which
the redundant information already present in lower-order aux-
iliaries is eliminated [Eq. (11)]. We then rigorously prove the
generalized Wick’s theorem [Eqs. (15) and (14)], which is the
essential ingredient of the computational framework (Sec. III)
that handles finite-temperature correlation functions of mixed
carrier–phonon operators.

This framework is then used to obtain numerically exact
transport properties of the one-dimensional Peierls model.
We find that our HEOM-based computations deliver reliable
results for the carrier mobility only when phonons are abun-
dantly thermally excited. At sufficiently high temperatures,
and for sufficiently strong interactions, thermal fluctuations
of the carrier transfer integral become so pronounced that
they provide the main driving force for the long-distance
carrier transport. The phonon-assisted nature of transport can
be inferred from the prevalence of the phonon-assisted over
the band contribution to carrier mobility, so that the mobility
increases with interaction at a fixed temperature. Another in-
dicator confirming that the transport is phonon-assisted is the
temperature dependence of the mobility, which, for fixed in-
teraction, follows the power-law behavior μdc(T ) ∝ T −α with
α ≈ 0.5. Our results suggest that the minimum interaction
and temperature above which the transport can be considered
as phonon-assisted decrease as phonon dynamics becomes
faster with respect to carrier dynamics. The pronounced dis-

placed Drude peak in the carrier’s optical response reflects the
predominance of the phonon-assisted transport channel when
the timescales of free-carrier and free-phonon dynamics are
comparable.

While here we have focused on intermediate to fast
phonons, our computational framework lends itself to pro-
viding the long-awaited quantum dynamical insights into
the fundamentals of carrier transport in the field of slow,
large-amplitude intermolecular phonons. The corresponding
physical situation, which is relevant to transport in mechan-
ically soft semiconductors, is analyzed in the companion
paper [76]. Our methodological developments could motivate
further studies concerning the fundamentals of quantum dis-
sipation. In the language of the DEOM formalism, we have
obtained explicit expressions for single dissipatons and many-
dissipaton configurations in a model in which the environment
is not a real and proper bath, i.e., in which the dissipation is
not apparent. The ideas proposed here could be useful in more
explicitly connecting the quasiparticle picture of dissipation
embodied in the DEOM formalism with the microscopic bath
Hamiltonian, and clarifying the pathway from the reversible
system-plus-bath dynamics toward the irreversible system dy-
namics.
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APPENDIX A: HEOM FORMAL DEFINITIONS

According to the Feynman–Vernon influence func-
tional theory [48], the only phononic quantity influencing
the reduced carrier dynamics in Eq. (4) is Cq2q1 (t ) =
〈B(I )

q2
(t )B(I )

q1
(0)〉ph (t > 0), which is proportional to the greater

free-phonon Green’s function. The lesser counterpart of this
quantity is 〈B(I )

q1
(0)B(I )

q2
(t )〉ph = Cq2 q1 (t )∗. Time-dependent op-

erators in the interaction picture are defined as O(I )(t ) =
ei(He+Hph )t Oe−i(He+Hph )t . The construction of the hierarchically
coupled equations [Eq. (5)] relies on the exponential decom-
positions (t > 0)

Cq2q1 (t ) =
∑

m

ηq2q1me−μmt , Cq2 q1 (t )∗ =
∑

m

η∗
q2 q1 m e−μmt ,

(A1)
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where we introduce m by μm = μ∗
m. For the model specified

in Eqs. (1)–(3), the sums in Eq. (A1) contain two terms (m =
0, 1), and the quantities ηq2q1m and μm read

ηq2q10 = δq1q2 c0, c0 =
( g√

N

)2

1 − e−βω0
, μ0 = iω0, (A2)

ηq2q11 = δq1q2 c1, c1 =
( g√

N

)2

eβω0 − 1
, μ1 = −iω0. (A3)

In our previous studies [60–62], we incorporated the mo-
mentum conservation [embodied in the factor δq1q2 entering
Eqs. (A2) and (A3)] into the formalism from the outset,
and omitted the complex conjugation in Eq. (A1), which is
justified in models with undamped phonons. Here, keeping
the formalism as general as possible facilitates our formal
developments, and reveals their connections to the DEOM
formalism [74,75].

Equation (5) is most conveniently derived by assuming
that the interacting electron–phonon system starts from the
factorized initial condition ρtot (0) = ρ(0)ρeq

ph in Eq. (4). Then,
the electronic RDM at instant t and in the interaction picture
is [60,61,102,103]

ρ (I )(t ) = T e−�(t )ρ(0), (A4)

where T denotes the chronological time-ordering sign (latest
superoperator to the left), while

�(t ) = i
∑
qm

∫ t

0
ds V (I )

q (s)×ϕqm(s). (A5)

The superoperators V × and V ◦ act on an arbitrary operator O
as V ×O = [V, O] (commutator) and V ◦O = {V, O} (anticom-
mutator). The superoperator

ϕqm(s) = −i
∑

q′

∫ s

0
ds′ e−μm (s−s′ )

[
ηqq′m + η∗

q q′ m

2
V (I )

q′ (s′)×

+
ηqq′m − η∗

q q′ m

2
V (I )

q′ (s′)◦
]

(A6)

defines the interaction-picture auxiliaries ρ (n,I )
n (t ) as

ρ (n,I )
n (t ) = T

∏
qm

ϕqm(t )nqm e−�(t )ρ(0). (A7)

Equation (A7) uses the second-quantization-like definition of
vector n, see Eq. (6). Together with Eq. (A6), it reveals that

μn =
∑
qm

nqmμm = iω0

∑
q

(nq0 − nq1). (A8)

If we adopt the first-quantization-like definition in Eq. (8),
then we rewrite Eq. (A7) as

ρ (n,I )
n (t ) = T

n∏
a=1

ϕqama (t )e−�(t )ρ(0). (A9)

We emphasize that the hierarchical structure of Eq. (5) is
independent on the particular form of ρtot (0), which only de-
termines the initial conditions ρ (n)

n (0) for HEOM auxiliaries
[104].

APPENDIX B: CONNECTING HEOM AUXILIARIES
AND MANY-PHONON-ASSISTED PROCESSES:

DERIVATION OF EQS. (10) AND (11)

The derivation of Eqs. (10) and (11) is largely facilitated
by the symmetric notation [Eq. (9)] for phonon creation
and annihilation operators. The operators fqm, which satisfy
Bq = ∑

m fqm, are analogous to the dissipaton operators of
the DEOM theory [72–75]. The model considered here, how-
ever, lacks explicit dissipation, so that the properties of the f
operators in Eq. (9) are somewhat different from the prop-
erties of dissipaton operators summarized in, e.g., Sec. 3.1
of Ref. [74]. Nevertheless, the generalized Wick’s theorem,
which is the most important ingredient of our theoretical and
computational framework, turns out to assume the same form
as in the DEOM theory.

The correlation functions of f operators in the free-phonon
ensemble are (see Eq. (A1) and cf. Eq. (3.2) of Ref. [74])〈

f (I )
2 (t ) f (I )

1 (0)
〉
ph = δm1m2ηq2q1m2 e−μm2 t ,〈

f (I )
1 (0) f (I )

2 (t )
〉
ph = δm1m2η

∗
q2 q1 m2

e−μm2 t . (B1)

The f operators obey f †
qm = fqm (cf. the text follow-

ing Eq. (3.6) of Ref. [74]), and the commutation rela-
tion [ f2, f1] = δm1m2δq1q2 (−1)m2 ( g√

N
)2 (cf. the text following

Eq. (3.7) of Ref. [74]). The contraction of operators f2 and f1

is defined in the standard manner [105]

(B2)

The second line of Eq. (B2) can be checked by direct inspec-
tion, and it emphasizes that the contraction of two operators is
a c-number. The equilibrium expectation values of a product
of f operators is determined by the two-point expectation
value (cf. Eq. (3.8) of Ref. [74])

〈 f2 f1〉ph = δm1m2ηq2q1m2 , 〈 f1 f2〉ph = δm1m2η
∗
q2 q1 m2

, (B3)

which can be obtained by letting t → +0 in Eq. (B1). All the
properties above, and in particular Eqs. (B2) and (B3), heavily
rely on the assumption of undamped phonons, for which the
coefficients ηq2q1m (μm) are purely real (imaginary). In a gen-
eral setup with dissipation, in which ηq2q1m (μm) have nonzero
imaginary (positive real) parts, an appropriate generalization
of Eq. (B2) is under debate [106].

The operators F (n)
n in Eq. (7) ultimately stem from the

quantum dynamics e−iHtott . . . eiHtott of the total carrier–phonon
system, and as such they do not depend on the initial con-
dition ρtot (0) from which the evolution of the interacting
electron–phonon system starts. It is, therefore, possible and
most convenient to obtain F (n)

n starting from the factorized
initial condition ρtot (0) = ρ(0)ρeq

ph, when we can utilize the
definitions of HEOM auxiliaries in Eqs. (A7) or (A9).

The proof of Eq. (10) starts from evaluating the partial trace
Trph{Bqn . . . Bq1ρtot (t )}. To that end, we introduce auxiliary
fields ξq(s) such that the ξ -dependent total DM in the inter-
action picture reads (T is the antichronological time-ordering
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sign) [71]

ρ
(I )
tot,ξ (t ) = T exp

{
− i

∑
q

∫ t

0
ds
[
V (I )

q (s) + ξq(s)
]
B(I )

q (s)

}

× ρ(0)ρeq
phT exp

{
i
∑

q

∫ t

0
ds V (I )

q (s)B(I )
q (s)

}
.

(B4)

Then,

Trph
{
Bqn . . . Bq1ρtot (t )

} = in

[
δnρξ (t )

δξqn (t ) . . . δξq1 (t )

]
ξ=0

, (B5)

where the ξ -dependent RDM in the interaction picture is

ρ
(I )
ξ (t ) = Trphρ

(I )
tot,ξ (t ) = T e−�ξ (t )ρ(0). (B6)

The ξ -dependent superoperator �ξ (t ) differs from the super-
operator �(t ) [Eq. (A5)] by

�ξ (t ) − �(t ) = i
∑
qm

∫ t

0
ds ξq(s)ϕqm(s)

+
∑

q2q1m

∫ t

0
ds2

∫ s2

0
ds1 e−μm (s2−s1 )

× [
V (I )

q2
(s2)× + ξq2 (s2)

]
ηq2q1mξq1 (s1). (B7)

Only the first two functional derivatives of �ξ (t ) with respect
to the auxiliary fields ξq(s) are nonzero:[

δ�ξ (t )

δξq1 (t )

]
ξ=0

= i
∑
m1

ϕ1(t ), (B8)

δ2�ξ (t )

δξq2 (t )δξq1 (t )
=
∑
m2m1

〈 f2 f1〉ph. (B9)

In Eq. (B9) we made use of Eq. (B3). We eventually obtain

δnρ
(I )
ξ (t )

δξqn (t ) . . . δξq1 (t )

= i2nT
n∏

a=1

δ�ξ (t )

δξqa (t )
e−�ξ (t )ρ(0)

+ i2n−2
n∑

(i j)

δ2�ξ (t )

δξq j (t )δξqi (t )
T

n∏
a=1

a 	=i, j

δ�ξ (t )

δξqa (t )
e−�ξ (t )ρ(0)

+ i2n−4
n∑

(i j)(rs)

δ2�ξ (t )

δξqs (t )δξqr (t )

δ2�ξ (t )

δξq j (t )δξqi (t )
T

×
n∏

a=1
a 	=i, j,r,s

δ�ξ (t )

δξqa (t )
e−�ξ (t )ρ(0) + · · · . (B10)

Setting ξ = 0 in Eq. (B10), remembering the definition of
the auxiliary operators [Eq. (A9)], and transferring to the

Schrödinger picture, we find

Trph
{
Bqn . . . Bq1ρtot (t )

}
=
∑

mn...m1

ρ (n)
n (t ) +

∑
mn...m1

n∑
(i j)

〈 f j fi〉phρ
(n−2)
n−

ji
(t )

+
∑

mn...m1

n∑
(i j)(rs)

〈 fs fr〉ph〈 f j fi〉phρ
(n−4)
n−

sr ji
(t ) + · · · . (B11)

The final term on the RHS of Eq. (B11) is proportional to
the RDM if n is even, while it is a linear combination of the
first-level auxiliary operators for odd n. Upon inserting Bq =∑

m fqm and Eq. (7) into Eq. (B11), we obtain

∑
mn...m1

[
fn . . . f1 − F (n)

n −
n∑

(i j)

〈 f j fi〉phF (n−2)
n−

ji

−
n∑

(i j)(rs)

〈 fs fr〉ph〈 f j fi〉phF (n−4)
n−

sr ji
− · · ·

]
= 0. (B12)

Each term in the square brackets of Eq. (B12) should be
separately equal to zero. The situation is, however, compli-
cated by the fact that different terms behave differently under
permutations of pairs (qi, mi ). Equation (B11) is invariant
under permutations of momenta qi because (i) the operators
Bq mutually commute, (ii) the auxiliaries are invariant under
permutations of the involved momenta (the dummy indices
mi can be permuted at will), and (iii) the expectation value
〈 f j fi〉ph is invariant under permutation q j ↔ qi [see Eqs. (A2),
(A3), and (B3)]. However, the expression in the square brack-
ets of Eq. (B12) is not invariant under permutations of pairs
(qi, mi ) because the operators fi do not commute. To make
the product fn . . . f1 invariant under permutations of indices
(qi, mi ), we resort to Wick’s theorem in its operator form
[105]:

(B13)

Combining Eqs. (B12) and (B13), we obtain

(B14)
To express F (n)

n in terms of fqm only, we have to recursively in-
sert analogues of Eq. (B14) for lower-order phonon operators
F (n−2)

n−
ji

, F (n−4)
n−

sr ji
, etc., into Eq. (B14) itself. This is done order by

order in phonon assistance. We illustrate the procedure on the
example of n-, (n − 2)-, and (n − 4)-phonon contributions to
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F (n)
n , for which in Eq. (B14) we replace

F (n−4)
n−

sr ji
→ :

n∏
a=1

a 	=i, j,r,s

fa: (B15)

and

F (n−2)
n−

ji
→ :

n∏
a=1

a 	=i, j

fa: −
n−2∑
(rs)

〈: fs fr :〉ph :
n∏

a=1
a 	=i, j,r,s

fa: . (B16)

In the resulting equation, when grouping terms containing the
same number of phonons, we observe the following formal
replacement

∑n
(i j)

∑n−2
(rs) = 2

∑n
(i j)(rs), which reflects the fact

that the order of pairs in immaterial when these are chosen out
of n elements from the outset. We eventually obtain Eq. (10).

The derivation of Eq. (11) is also performed recursively.
Equation (10), which can be recast as

:
n∏

a=1

fa: = F (n)
n +

n∑
(i j)

〈: f j fi:〉ph :
n∏

a=1
a 	=i, j

fa:

−
n∑

(i j)(rs)

〈: fs fr :〉ph〈: f j fi:〉ph :
n∏

a=1
a 	=i, j,r,s

fa: + · · · ,

(B17)

is recursively inserted into itself to express the normal-order
product :

∏n
a=1 fa: of phonon operators in terms of operators

describing irreducible phonon correlations. Here, we concen-
trate on deriving the contributions of irreducible correlations
comprising (n − 2) (F (n−2)

n−
ji

) and (n − 4) (F (n−4)
n−

sr ji
) phonons to

n-phonon irreducible correlations embodied in F (n)
n . To that

end, using Eq. (B17), we insert

:
n∏

a=1
a 	=i, j,r,s

fa: → F (n−4)
n−

sr ji
,

:
n∏

a=1
a 	=i, j

fa: → F (n−2)
n−

ji
+

(n−2)∑
(rs)

〈: fs fr :〉phF (n−4)
n−

sr ji
(B18)

into Eq. (10), and consider the formal replacement∑n
(i j)

∑n−2
(rs) = 2

∑n
(i j)(rs) to obtain the three terms on the RHS

of Eq. (11).

APPENDIX C: PROOF OF THE GENERALIZED
WICK’S THEOREM

The crux of the proof of Eq. (12) [Eq. (13) is proven
analogously] is the rule by which an operator is introduced
into a normally ordered string of operators [105]:

(C1)

We use Eq. (C1) to express F (n)
n fn+1 in terms of normally

ordered products:

(C2)

We proceed by grouping the terms on the RHS of Eq. (C2) based on the number of phonon operators that do not participate in
expectation values, i.e.,

F (n)
n fn+1 = [

F (n)
n fn+1

]
n+1 + [

F (n)
n fn+1

]
n−1 + [

F (n)
n fn+1

]
n−3 + · · · . (C3)

The only term containing n + 1 phonon operators outside of expectation values is the first term on the RHS, i.e.,[
F (n)

n fn+1
]

n+1 = :
n+1∏
a=1

fa: . (C4)

The terms containing n − 1 phonon operators are[
F (n)

n fn+1
]

n−1 =
n∑

i=1

〈 fi fn+1〉ph :
n∏

a=1
a 	=i

fa: −
n∑

i=1

〈: fi fn+1:〉ph :
n∏

a=1
a 	=i

fa: −
n∑

(i j)

〈: f j fi:〉ph :
n+1∏
a=1

a 	=i, j

fa:

=
n∑

i=1

〈 fi fn+1〉ph :
n∏

a=1
a 	=i

fa: −
n+1∑
(i j)

〈: f j fi:〉ph :
n+1∏
a=1

a 	=i, j

fa: . (C5)
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In going from the first to the second equality of Eq. (C5), we observed that all possible two-combinations from a set of n + 1
elements {1, . . . , n + 1} can be obtained from all possible two-combinations from a set of n elements {1, . . . , n} by adding the n
missing pairs {(n + 1, 1), . . . , (n + 1, n)}. The terms containing n − 3 phonon operators read

[
F (n)

n fn+1
]

n−3 = −
n∑

(i j)

n∑
r=1

r 	=i, j

〈: f j fi:〉ph〈 fr fn+1〉ph :
n∏

a=1
a 	=i, j,r

fa:

+
n∑

(i j)

n∑
r=1

r 	=i, j

〈: f j fi:〉ph〈: fr fn+1:〉ph :
n∏

a=1
a 	=i, j,r

fa:

+
n∑

(i j)(rs)

〈: fs fr :〉ph〈: f j fi:〉ph :
n+1∏
a=1

a 	=i, j,r,s

fa: . (C6)

The first term on the RHS of Eq. (C6) contains
(n

2

)
(n − 2) = n

(n−1
2

)
summands, and exchanging the order of summations we

recast it as

−
n∑

i=1

〈 fi fn+1〉ph

n−1∑
( jr)
j,r 	=i

〈: fr f j :〉ph :
n∏

a=1
a 	=i, j,r

fa: . (C7)

The other two terms on the RHS of Eq. (C6) contain
(n

2

)
(n − 2) + 1

2!

(n
2

)(n−2
2

) = 1
2!

(n+1
2

)(n−1
2

)
summands in total, and these can

be regrouped as

n+1∑
(i j)(rs)

〈: fs fr :〉ph〈: f j fi:〉ph :
n+1∏
a=1

a 	=i, j,r,s

fa: . (C8)

We finally obtain

F (n)
n fn+1 = :

n+1∏
a=1

fa: −
n+1∑
(i j)

〈: f j fi:〉ph :
n+1∏
a=1

a 	=i, j

fa: +
n+1∑

(i j)(rs)

〈: fs fr :〉ph〈: f j fi:〉ph :
n+1∏
a=1

a 	=i, j,r,s

fa: − · · ·

+
n∑

i=1

〈 fi fn+1〉ph

⎡⎢⎢⎣:
n∏

a=1
a 	=i

fa: −
n−1∑
( jr)
j,r 	=i

〈: fr f j :〉ph :
n∏

a=1
a 	=i, j,r

fa: + · · ·

⎤⎥⎥⎦. (C9)

Using Eq. (10), the three terms in the first line of the RHS of Eq. (C9) can be recognized as the leading three terms (with respect
to the number of phonons) of F (n+1)

n+
n+1

. Similarly, the two terms within the square brackets in the second line of the RHS of

Eq. (C9) can be recognized as the leading two terms of F (n−1)
n−

i
. Since the remaining terms, containing an even smaller number

of phonons, can be obtained by considering further terms in Eq. (C3), the proof of the generalized Wick’s theorem can be
considered completed.

APPENDIX D: DERIVATION OF HEOM CLOSING SCHEMES

Let us assume that vector D of nonnegative integers Dqm (q 	= 0; m = 0, 1) is such that
∑

qm Dqm = D, where D is the

maximum hierarchy depth. The term that couples the auxiliary ρ
(D)
D (t ) with the auxiliaries at depth D + 1 is[

∂tρ
(D)
D (t )

]
close = −i

∑
qm

√
1 + Dqm

√
|cm|V ×

q ρ
(D+1)
D+

qm
(t ). (D1)

The evolution of ρ
(D+1)
D+

qm
(t ) is governed by (with LeO = [He, O],V >O = V O,V <O = OV )

∂tρ
(D+1)
D+

qm
(t ) = −(iLe + μD + μm)ρ (D+1)

D+
qm

(t ) − i
∑
q′m′

√
1 + Dq′m′ + δq′qδm′m

√
|cm′ |V ×

q′ ρ
(D+2)
D+,+

qm,q′m′
(t )

− i
∑
q′m′

√
Dq′m′ + δq′qδm′m√|cm′ |

[
cm′V >

q′ − c∗
m′V

<

q′
]
ρ

(D)
D+,−

qm,q′m′
(t ). (D2)
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1. Markovian and adiabatic scheme

We developed and tested this scheme on the one-dimensional Holstein model in Ref. [60]. It transforms Eq. (D2) by neglecting
the hierarchical couplings to auxiliaries at depth D + 2 [the second term on the RHS of Eq. (D2)] and retaining only the coupling
to ρ

(D)
D (t ) for which Eq. (D1) is formulated [the summand with q′ = q and m′ = m in the third term on the RHS of Eq. (D2)]. As

ρ
(D+1)
D+

qm
(0) = 0 (both the imaginary-time and real-time HEOM are truncated at maximum depth D), the solution of the transformed

Eq. (D2) reads

ρ
(D+1)
D+

qm
(t ) = −i

√
1 + Dqm√|cm|

∫ t

0
ds e−μms e−iLes

[
cmV >

q − c∗
mV <

q

]
eiLes e−(iLe+μD )t ρ̃

(D)
D (t − s). (D3)

In Eq. (D3), ρ̃ (D)
D (s) = e(iLe+μD )sρ

(D)
D (s) denotes the slowly changing part of the auxiliary ρ

(D)
D (s). The Markovian approximation

replaces ρ̃
(D)
D (t − s) ≈ ρ̃

(D)
D (t ) in Eq. (D3). The adiabatic approximation extends the upper integration limit in Eq. (D3) to

infinity. Physically, the final, (D + 1)-st single phonon-assisted process, is assumed to be temporally well separated from the D
single phonon-assisted processes that are treated exactly. Combining Markovian and adiabatic approximations, we express the
auxiliaries at depth D + 1 in terms of ρ

(D)
D (t ) as follows:

ρ
(D+1)
D+

qm
(t ) = −i

√
1 + Dqm√|cm|

∫ +∞

0
ds e−μms

[
cmV (I )

q (−s)ρ (D)
D (t ) − c∗

mρ
(D)
D (t )V (I )

q (−s)
]
. (D4)

Inserting Eq. (D4) into Eq. (D1), we obtain the following closing term:

[
∂tρ

(D)
D (t )

]
close = −

∑
qm

(1 + Dqm)
∫ +∞

0
ds e−μms

[
cmVqV (I )

q (−s)ρ (D)
D (t ) + c∗

mρ
(D)
D (t )V (I )

q (−s)Vq
]

+
∑
qm

(1 + Dqm)
∫ +∞

0
ds e−μms

[
cmV (I )

q (−s)ρ (D)
D (t )Vq + c∗

mVqρ
(D)
D (t )V (I )

q (−s)
]
. (D5)

The matrix element 〈k| . . . |k + kD〉 of the last equation reads[
∂t 〈k|ρ (D)

D (t )|k + kD〉]close

= −
[∑

qm

(1 + Dqm)cm|M(k − q, q)|2
∫ +∞

0
ds e−[μm+i(εk−q−εk )]s

]
〈k|ρ (D)

D (t )|k + kD〉

−
[∑

qm

(1 + Dqm)c∗
m|M(k + kD, q)|2

∫ +∞

0
ds e−[μm+i(εk+kD −εk+kD+q )]s

]
〈k|ρ (D)

D (t )|k + kn〉

+
∑
qm

(1 + Dqm)cmM(k, q)∗M(k + kD, q)
∫ +∞

0
ds e−[μm+i(εk−εk+q )]s〈k + q|ρ (D)

D (t )|k + kD + q〉

+
∑
qm

(1 + Dqm)c∗
mM(k, q)∗M(k + kD, q)

∫ +∞

0
ds e−[μm+i(εk+kD+q−εk+kD )]s〈k + q|ρ (D)

D (t )|k + kD + q〉. (D6)

The third and the fourth term on the RHS of Eq. (D6) involve summations of complex-valued q-dependent quantities
M(k, q)∗M(k + kD, q)〈k + q|ρ (D)

D (t )|k + kD + q〉. In the random-phase approximation [83,89,90], these terms are considered
as vanishing. In the first two terms on the RHS of Eq. (D6), which contain q-independent matrix elements of ρ

(D)
D (t ), we replace

1 + Dqm → 1, approximate
∫ +∞

0 ds e−i�s ≈ πδ(�) (i.e., we neglect the imaginary part that would change the free-oscillation
frequency of 〈k|ρ (D)

D (t )|k + kD〉 [83,89,90]), and evaluate the sums over q in the infinite-chain limit N → +∞. As a result, we
finally obtain Eq. (47).

2. Derivative-resum scheme

In Eq. (D2), we assume that [91]

∂tρ
(D+1)
D+

qm
(t ) ≈ −i

∑
q′m′

√
1 + Dq′m′ + δq′qδm′m

√
|cm′ |V ×

q′ ρ
(D+2)
D+,+

qm,q′m′
(t ) (D7)
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and retain only the coupling to ρ
(D)
D (t ) [the summand with q′ = q and m′ = m in the third term on the RHS of Eq. (D2)] [92].

We thus obtain

ρ
(D+1)
D+

qm
(t ) = −

√
1 + Dqm√|cm| [Le − i(μD + μm)]−1

(
cmV >

q − c∗
mV <

q

)
ρ

(D)
D (t ). (D8)

Inserting Eq. (D8) into Eq. (D1) yields the following closing term:[
∂tρ

(D)
D (t )

]
close = i

∑
qm

(1 + Dqm)V ×
q [Le − i(μD + μm)]−1

(
cmV >

q − c∗
mV <

q

)
ρ

(D)
D (t ). (D9)

Similar to the Markovian and adiabatic closing, we replace 1 + Dqm → 1 in Eq. (D9). The random-phase approximation
[83,89,90] neglects the two terms in which Vq and Vq act on ρ

(D)
D (t ) from opposite sides. In the remaining two terms, in which Vq

and Vq act on ρ
(D)
D (t ) from the same side, we consider that μm has a small positive real part [the exponential decomposition in

Eq. (A1) is considered for t > 0] and approximate [�ε − i(μD + μm) − i0+]−1 ≈ iπδ[�ε − i(μD + μm)], i.e., we neglect the
imaginary part that would change the free-oscillation frequency of 〈k|ρ (D)

D (t )|k + kD〉. We then evaluate the sums over q in the
N → +∞ limit, and finally obtain

DR(k, D) = 2g2

J (eβω0 − 1)

⎡⎢⎣2 − (
εk
2J

)2 − ( εk+kD −(ND−1)ω0

2J

)2√
1 − ( εk+kD −(ND−1)ω0

2J

)2
+ 2 − ( εk+kD

2J

)2 − (
εk+(ND+1)ω0

2J

)2√
1 − (

εk+(ND+1)ω0
2J

)2

⎤⎥⎦

+ 2g2

J (1 − e−βω0 )

⎡⎢⎣2 − (
εk
2J

)2 − ( εk+kD −(ND+1)ω0

2J

)2√
1 − ( εk+kD −(ND+1)ω0

2J

)2
+ 2 − ( εk+kD

2J

)2 − (
εk+(ND−1)ω0

2J

)2√
1 − (

εk+(ND−1)ω0
2J

)2

⎤⎥⎦, (D10)

while ND = −i μD
ω0

= ∑
q(Dq0 − Dq1) is the net number of exchanged phonons.

In contrast to the MA scheme, which is physically motivated and considers only the final, (D + 1)-st single phonon-assisted
process, the DR scheme is less physically transparent and effectively considers all D + 1 single phonon-assisted processes.

APPENDIX E: ELECTRON MOBILITY IN THE
WEAK-INTERACTION LIMIT: PREDICTIONS

BASED ON THE BOLTZMANN EQUATION

We summarize the procedure to compute carrier mobility
in the weak-interaction limit using the Boltzmann (semiclas-
sical) description of transport.

Quite generally, when the interacting carrier–phonon sys-
tem is placed in an external electric field E , the stationary
population pk of the free-carrier state |k〉 satisfies

E
∂ pk

∂k
=
(

∂ pk

∂t

)
e-ph

. (E1)

The collision integral ( ∂ pk

∂t )e-ph describes the redistribution
of populations due to the carrier–phonon scattering. In the
second order in the carrier–phonon interaction, one obtains
(see Sec. SV of the Supplemental Material [84])(

∂ pk

∂t

)
e-ph

= −
∑

q

wk+q,k pk +
∑

q

wk,k+q pk+q, (E2)

where the transition rate from state |k〉 to state |k + q〉 reads
as

wk+q,k = 2π
g2

N
|M(k, q)|2

∑
±

(
nph + 1

2
± 1

2

)
× δ(εk+q − εk ± ω0). (E3)

The transition rates satisfy the detailed-balance condition

wk+q,k pk,0 = wk,k+q pk+q,0, (E4)

where pk,0 ∝ e−βεk [we abbreviate pk,0 = pk (E = 0)] are the
stationary populations of free-carrier states for E = 0 and in
the limit of weak carrier–phonon scattering.

Assuming that the external electric field is weak, and
inserting pk ≈ pk,0 + (∂E pk )0E [we abbreviate (∂E pk )0 =
(∂ pk (E )/∂E )E=0] into Eq. (E1), we obtain the following lin-
earized version of the Boltzmann equation (see, e.g., Eq. (40)
of Ref. [1]):

vk
∂ pk,0

∂εk
= −

∑
q

wk+q,k (∂E pk )0 +
∑

q

wk,k+q(∂E pk+q )0.

(E5)
The solution for the linear-response coefficients (∂E pk )0 is
sought in the form [1]

(∂E pk )0 = −vk
∂ pk,0

∂εk
τ̃k, (E6)

where k-dependent quantities τ̃k have the dimension of time
and determine carrier mobility via

μBltz
dc =

∑
k

v2
k τ̃k

e−βεk

Z
, (E7)

where Z = ∑
k e−βεk . Transforming Eq. (E5) as described in

Sec. 2.3 of Ref. [1], we obtain that the quantities τ̃k have to
satisfy the following system of implicit equations:

1

τ̃k
=
∑

q

wk+q,k

(
1 − cos θk+q,k

|vk+q |̃τk+q

|vk |̃τk

)
, (E8)
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FIG. 8. Temperature-dependent mobility computed using the
HEOM (symbols) and Eq. (E7) in which τ̃k is the true (self-
consistent) solution to Eq. (E8) (label “Boltzmann”) and the
approximate solution given in Eq. (E10) (label “SERTA”), Eq. (E11)
(label “MRTA”), and Eq. (E12) (label “MRTA1”). The model param-
eters are ω0 = J = 1 and λ = 0.05. The data labeled “Boltzmann,”
“SERTA,” “MRTA,” and “MRTA1” are the courtesy of N. Vuk-
mirović.

where

cos θk+q,k = vk+qvk

|vk+q||vk| (E9)

is the cosine of the angle θk+q,k between the carrier ve-
locities before and after its scattering on phonons. In the
one-dimensional model we study, θk+q,k can take only two
values, 0 and π . We emphasize that the ansatz embodied
in Eq. (E6) does not introduce any new approximation to
Eq. (E5) because it simply restates it as an equation for
quantities τ̃k [Eq. (E8)]. In other words, solving Eq. (E8) for
τ̃k in a self-consistent manner, we obtain the exact solution
of Eq. (E5), which we compared to the HEOM solution in
Fig. 5. The data labeled “Boltzmann” in Fig. 5 are obtained
by iteratively solving the system in Eq. (E8) starting from

1

τ̃
(0)
k

= 1

τ SERTA
k

=
∑

q

wk+q,k . (E10)

This initial guess for τ̃k is known as the self-energy relaxation-
time approximation (SERTA) [1] to the true solution of

Eq. (E8). The iterative algorithm is stopped once the mobilties
computed from Eq. (E7) using the solutions τ̃

(n−1)
k and τ̃

(n)
k

from two consecutive iterations become nearly identical.
Practical computations on first-principles models of real

materials [107,108] rely on approximate solutions to Eq. (E8),
such as the SERTA [107]. The momentum relaxation-time
approximation (MRTA) assumes that |vk+q |̃τk+q ≈ |vk |̃τk and
yields [108]

1

τMRTA
k

=
∑

q

wk+q,k (1 − cos θk+q,k ). (E11)

Another widely used version of MRTA (here labeled MRTA1)
uses [1,23]

1

τMRTA1
k

=
∑

q

wk+q,k

(
1 − vk+qvk

|vk|2
)

. (E12)

Figure 8 compares the mobilities in Fig. 5 with the mobil-
ities μSERTA

dc , μMRTA
dc , and μMRTA1

dc computed by replacing τ̃k

in Eq. (E7) with τ SERTA
k , τMRTA

k , and τMRTA1
k , respectively.

We conclude that the widely used approximations to the true
solution of Eq. (E8) yield mobilities that either overestimate
(SERTA) or underestimate (MRTA and MRTA1) the numer-
ically exact results. At temperatures 1 � T/J � 5, when the
Boltzmann approach can be justified by the smallness of the
phonon-assisted and cross contributions to μdc, we find that
the MRTA (MRTA1) underestimates the HEOM results by
around 30% (50%), while the SERTA overestimates them by
around 50%. The inaccuracy of the SERTA can be explained
by its neglect of the geometric factor that appropriately weighs
the contributions from small-angle and large-angle scattering
events [11]. Meanwhile, we ascribe the inaccuracy of MRTA
and MRTA1 to the phonon energy being comparable to the
carrier energy (ω0/J = 1) [108]. Namely, the approximation
|vk+q |̃τk+q ≈ |vk |̃τk underlying MRTA is best satisfied when
the change of momentum in a scattering event is small. This
is, however, not the case for ω0 = J , when the relatively large
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the Supplemental Material of the companion paper [76].
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Vertex corrections to conductivity in the Holstein model:
A numerical-analytical study, Phys. Rev. B 109, 214312
(2024).
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