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Transport of charge carriers in mechanically soft semiconductors is mainly limited by their interaction with
slow intermolecular phonons. Carrier motion exhibits a crossover from superdiffusive to subdiffusive, producing
a distinct low-frequency peak in the dynamical-mobility profile. These features can be understood within
approaches relying on the timescale separation between carrier and phonon dynamics, such as the transient
localization scenario (TLS). However, recovering them from fully quantum dynamics has proved elusive. Using
the hierarchical equations of motion (HEOM)-based approach exposed in a companion paper [Jankovié, Phys.
Rev. B 112, 035111 (2025)], we study carrier transport in the one-dimensional Peierls model near the adiabatic
limit. We find that the TLS approximates HEOM dynamics very well at higher temperatures and for stronger
interactions. Then, the transport is predominantly phonon-assisted and turns diffusive from the subdiffusive side
well before one phonon period. In contrast, the band current dominates at moderate temperatures and inter-
actions, relevant for transport in realistic materials. We then conclude that the super-to-subdiffusive crossover
is transient, so that the diffusive motion sets in from the superdiffusive side on timescales comparable to the
phonon period. The low-frequency dynamical mobility then additionally exhibits a dip at approximately one
phonon frequency and the zero-frequency peak. Our findings in this moderate regime show limitations of the
TLS and support the results of the most advanced quantum—classical simulations. We expect that the qualitative
differences between HEOM and TLS dynamics would diminish for a more realistic phonon density of states.
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I. INTRODUCTION

The prospect of applications in optoelectronic devices has
been driving fundamental research into charge transport in
halide perovskites [1-3] and organic semiconductors [4-8]. At
around room temperature, the main factor influencing charge
carrier motion through such materials are the slow, large-
amplitude relative motions of the underlying-lattice atoms.
The simplest model of the highly anisotropic charge transport
through crystalline organic semiconductors assumes that the
vibrations modulate hopping amplitudes between molecules
arranged along the direction of the highest conduction [9,10].
Computing the carrier mobility in the resulting Peierls (or
Su-Schrieffer—Heeger) model with nonlocal carrier—phonon
interaction [9,11-13] using the Kubo formula [14,15] faces a
number of challenges.

Although the carrier—phonon interaction is typically not
excessively strong [16], the slowness of phonons and their
large thermal populations suggest that computations have
to go beyond single phonon-assisted processes. While the
approaches based on the polaron transformation [17-24] or
exact diagonalization [25,26] treat the interaction nonper-
turbatively, these typically feature damping or broadening
parameters extrinsic to the Hamiltonian. Quantum Monte
Carlo (QMC) simulations provide numerically exact results
in the imaginary-frequency domain [27-30], yet they rely
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on the generally uncertain numerical analytical continuation
to reconstruct the frequency-dependent mobility. To cap-
ture the diffusive carrier motion, computations based on the
time-dependent density matrix renormalization group [31]
often introduce additional vibrational modes, whose interac-
tion with the carrier is Holstein-like [32,33]. Disentangling
the effects due to the off-diagonal dynamical disorder from
the resulting transport dynamics is then highly nontrivial.
The approaches rooted in the theory of open quantum sys-
tems [34-37] usually circumvent the Kubo formula, and
compute only the dc mobility by tracking the spread of
the carrier starting from a computationally convenient initial
condition. While our approach [38,39] based on the hier-
archical equations of motion (HEOM) [40-42] can yield
finite-temperature real-time correlation functions, its direct
application to the model with off-diagonal dynamical disorder
is hampered by the difficulties in treating the phonon-assisted
current [20,43,44] after the phonons have been integrated
out [38,45].

The timescale separation between carrier and lattice mo-
tions can be used to good advantage as a basis for mixed
quantum—classical simulations of coupled carrier—phonon dy-
namics [8,9,46-53]. The real-time propagation can be avoided
altogether by starting from the limit of frozen phonons,
in which the long-distance transport is inhibited due to
the Anderson localization [54], and effectively restoring
phonon dynamics (and thus nonzero diffusion constant) us-
ing the relaxation-time approximation (RTA) [55-57]. The
just described transient localization scenario (TLS) [58] has
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become the method of choice for practical computations of
carrier mobilities in molecular semiconductors [59,60]. Fur-
thermore, the phenomenological TLS-based Drude—Anderson
model [58,61] has been instrumental in explaining the ori-
gin of the finite-frequency peak [the so-called displaced
Drude peak (DDP)] in the optical absorption of charge car-
riers in different materials [62—-65]. Nevertheless, the formal
appropriateness of the TLS ansatz, even for the simplest one-
dimensional model [9,55], has not been rigorously assessed
because of the lack of reliable quantum-dynamical insights.

An important original motivation behind devising the
TLS [55] was to avoid the Ehrenfest dynamics [9,48], which
does not preserve the equilibrium distribution of a quan-
tum carrier coupled to classical phonons [66]. As a result,
the time-dependent diffusion constant steadily increases in-
stead of reaching its long-time limit [55]. A recent careful
reconsideration of the Ehrenfest dynamics [67], as well as
novel quantum-—classical schemes [67-70], have suggested
that the long-time growth of the diffusion constant following
its decrease on intermediate timescales is not necessarily an
artifact of the underlying approximations. The growth indeed
finishes by the diffusion-constant saturation, though on very
long timescales [67]. Such a pathway from ballistic to dif-
fusive transport is more involved than that predicted by the
TLS [55,58] or retrieved from the best available imaginary-
axis QMC data [27,28]. Consequently, the low-frequency
optical response exhibits both the DDP and the standard
zero-frequency peak, with a finite-frequency dip in between
them [67]. While further evidence in favor of such a rich
structure can be found in the quantum—classical simulations
of Refs. [71,72], the results of other quantum—classical ap-
proaches [52,53] overall support the TLS, which predicts the
DDP and the zero-frequency local minimum [55,58]. In the
related one-dimensional Holstein model, our HEOM [38,39]
and other numerically exact results [73-76] reveal that opti-
cal responses displaying the rich structure similar to that in
Refs. [67,71,72], yet different from the corresponding TLS
predictions [77], are ubiquitous for moderate interactions and
at moderate-to-high temperatures.

In this study, we demonstrate that our HEOM-based
methodology developed in a companion paper [78] can be
successfully applied near the adiabatic limit of the one-
dimensional Peierls model, thus unveiling the details of the
ballistic-to-diffusive crossover during charge transport limited
by slow off-diagonal dynamical disorder. We find that the TLS
is a very good approximation to the HEOM dynamics only
at sufficiently high temperatures and for sufficiently strong
interactions. The hallmark of such parameter regimes is the
prevalence of the phonon-assisted current over the band cur-
rent, and the rapid approach to the diffusive regime, which
sets in from the subdiffusive side well before a single phonon
period. In contrast, the band current prevails at moderate
temperatures and for moderate interactions, representative of
room-temperature transport in rubrene [10]. Then, we find that
the HEOM transport dynamics is qualitatively similar to that
we studied in the one-dimensional Holstein model [38,39],
in which there is no phonon-assisted current. Our HEOM
results expose the transient nature of the super-to-subdiffusive
crossover, and establish that the diffusive transport sets in
from the superdiffusive side on timescales of the order of the

phonon period. The low-frequency optical response displays
the above-discussed rich structure, in contrast to both the
TLS [55,58] and the best available QMC results [27,28].

This manuscript is structured as follows. Section II
presents the model and methods used in this study. Section III
analyzes our HEOM results and compares them to the predic-
tions of the TLS, QMC, and quantum-—classical approaches.
In Sec. IV, we critically discuss our main findings, while we
summarize them in Sec. V.

II. MODEL AND METHOD
A. Model

We consider the one-dimensional Peierls model containing
a single charge carrier in the field of dispersionless optical
phonons that modulate its kinetic energy [9,55,58]. In the
following, we set the lattice constant a;, the elementary charge
e, and physical constants /i and kg to unity. The model Hamil-
tonian reads

H=H.+ He-ph + ths (D
where

He + Heph = Y _[—J + 8(by + b}, — bup1 — b}, )]
n )
x (In)(n+ 1] + |n + 1)(nl)

governs phonon-modulated nearest-neighbor carrier hops,
whereas

Hyy = o Y _bib, 3)

is the free-phonon Hamiltonian. In Eq. (2), |n) is the single-
electron state localized on site n, and bosonic operators b,
(b:fl) create (annihilate) a phonon on site n. The characteristic
energy scales of the model are the hopping amplitude J, the
phonon frequency wy, and the electron—phonon interaction
constant g. These are conveniently combined into two di-
mensionless ratios, the adiabaticity parameter wy/J and the
dimensionless carrier—phonon interaction
A= E @)
a)()./
Comprehensive insights into charge transport can be
gained from the finite-temperature real-time current—current
correlation function

Cjj(0) = (j(1)j(0)) = Trfe™ je™™" jpd). &)

The angular brackets in Eq. (5) denote averaging over
the equilibrium state p = e=## /Tr e 71 of the interacting
carrier—phonon system at temperature 7 = ~!. The current
operator

j = je + je-ph
=—i Y [=J +g(by +b) — bye1 — b}, )]

X (In)(n+ 1| = [n 4+ 1)(n|) (©)

has the so-called phonon-assisted contribution je.pn [the term
proportional to g in Eq. (6)] in addition to the band contri-
bution j. [the term proportional to J in Eq. (6)]. A more
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intuitive understanding of transport dynamics is offered by the
time-dependent diffusion constant

D(t) = 11&2(;) = [ dsReCji(s), (7
2 dt 0 M

which determines the growth rate of the carrier’s mean-square
displacement

AX(t) = ([x(1) — x(0)]%), ®)

with x being the carrier’s position operator. The carrier mo-
tion changes its character from the short-time ballistic motion
characterized by Ax*(t) oct? and D(t) o t to the long-time
diffusive motion, when Ax?(¢t) o t and D(t) = Deo. The car-
rier mobility pq. then follows from the Einstein relation pg. =
%. Another convenient quantity to track the ballistic-to-
diffusive crossover is the diffusion exponent «(t) > 0, defined
by Ax%(t) o t*® or

_2D(r)

Ol(l) = F([)

®

In realistic systems, the crossover dynamics is often inferred
from the experimentally accessible carriers’ optical response,
which is proportional to the dynamical mobility

1— —Bo +o00 )
Re pu(w) = %f dt e Ci;(t).  (10)

B. Hierarchical equations of motion

The HEOM method offers a well-established numeri-
cally exact framework to study the dynamics of a system
of interest (here, the carrier) coupled to a collection of
harmonic oscillators (here, phonons) [40—42]. Nevertheless,
it has been quite challenging to fit the computations of
finite-temperature real-time correlation functions of mixed
carrier—phonon operators, such as the current operator in
Eq. (6), into the HEOM framework, which straightfor-
wardly treats only purely carrier operators [38,39,45,79-83].
While the related dissipaton-equations-of-motion (DEOM)
approach [84—-87] can, in principle, address the challenge,
its direct applications to models that feature a finite collec-
tion of undamped harmonic oscillators, and thus apparently
lack dissipation [88-90], can be problematic. In such a sce-
nario, our companion paper [78] explicitly expresses HEOM
auxiliaries in terms of phonon creation and annihilation op-
erators, and formulates a transparent procedure to handle the
phonon-assisted current. We perform HEOM computations on
an N-site chain with periodic boundary conditions (|N + 1) =
[1), bn+1 = by1). We represent the dynamical equations in mo-
mentum space, see Sec. IV A of Ref. [78], which reduces their
total number, and truncate the hierarchy at a sufficiently large
maximum depth D. In models that apparently lack dissipation,
the truncated HEOM exhibits numerical instabilities that pre-
vent reliable computations of the long-time carrier dynamics
and carrier mobility [88-90]. We mitigate these instabilities
by resorting to the Markovian-adiabatic hierarchy closing
scheme we developed in Refs. [38,78], which stabilizes
the long-time dynamics without introducing closing-specific

artifacts that compromise HEOM results for pg.. For more
details, consult Refs. [38,78], as well as Appendix B.

The current-operator decomposition in Eq. (6) implies
the decomposition of D(t) =) .D.(t) and Re u(w) =
> .Re pc(w) into the purely carrier (band, ¢ = e), phonon-
assisted (¢ = ph), and cross (¢ = x) contributions. As
discussed in Sec. V of Ref. [78], the character of the transport
is conveniently discussed in terms of the following phonon-
assisted Spy, 2> 0 and cross Sy < 0 shares of the dc mobility:

S = — e (11)
e + e

Section SI of the Supplemental Material [91] summarizes the

parameter regimes and numerical parameters of our HEOM

computations. The data that support our conclusions are

openly available [92].

C. Transient localization scenario

The TLS is a widely used physically motivated [55,57,
58,77] and computationally convenient [59,60,65] approach
to computing C;;(¢) in the limit of slow (wo/J < 1) and abun-
dantly present (T 2 wg) phonons. Then, charge dynamics on
timescales short compared to w; !, when phonons can be
considered as frozen, is essentially the same as the dynamics
in the presence of Gaussian static disorder in the hopping

amplitude, whose strength is o2 = 2;%20 = 2AJT. Formally,

one replaces the phonon operator g(b, + bjl — by — bl 1)
in Egs. (2) and (6) by a Gaussian random variable X, 1+
of zero mean and variance o2, and the trace in Eq. (5) by
the average over different disorder realizations. The current—
current correlation function computed upon introducing these
assumptions in Eq. (5) is denoted as C{i*(¢). Charge diffu-
sion, which is inhibited in the static-disorder setup [54], is
ultimately established through the coupled charge—phonon
dynamics, whose effects become appreciable on timescale ;.
The TLS effectively restores phonon dynamics by virtue of

the RTA, in which
Clit ) = Clpwe ™. (12)

Physically, rd_l = agwp, with the proportionality constant
ag ~ 1 [55]. Its precise value can be determined by requiring
that the TLS predictions for transport properties reasonably
agree with some reference results emerging from fully quan-
tum charge—phonon dynamics. Considering a modification of
Eq. (12), the authors of Ref. [57] concluded that the best
overall agreement between the temperature-dependent mobil-
ities obtained using the QMC [27] and the modified TLS is
achieved for oy = 2.2. Studying the related Holstein model,
the same authors reported that the same value of ¢, brings
the TLS results closest to their reference numerically exact
results [77]. Therefore, we adopt oy = 2.2 in all our TLS
computations, whose details are provided in Sec. SII of the
Supplemental Material [91]. While reasonable variations of
a4 around unity are known to influence quantitative predic-
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FIG. 1. (a) Temperature-dependent carrier mobility p4.(7 ) computed using the HEOM method (full symbols connected with dashed lines),
the TLS with «; = 2.2 in Eq. (12) (empty symbols connected with dotted lines), and the Boltzmann theory in the momentum relaxation-time
approximation (crosses connected with the solid line). (b), (c) Shares of the phonon-assisted [S,, (b)] and cross [—Sx (c)] contributions to

Mac(T') computed using the HEOM method.

tions for pqgc [57], the overall physical picture offered by the
TLS is robust against these variations.

III. RESULTS

We examine one-dimensional transport of a charge that
is weakly to moderately (A < 0.5) coupled to slow (wo/J ~
0.05) quantum phonons, which are abundantly thermally
excited (T/wo 2, 1). While we mostly analyze the regime
wo/J =0.044, . =0.336, and T/J =0.175 (T/wy = 4),
which is representative of the room-temperature transport
along the direction of maximal conduction in single-crystal
rubrene [10,58], we also study how variations in 7 and
A affect transport properties. In physical units, we set
J =143 meV (=1150cm™"), fiwy = 6.2 meV (=50 cm™'),
and q; = 72 A [10], so that the mobility is measured in
units of uiM' = ega? /h = 7.9 cm?/(Vs). As discussed in the
companion paper [78], our HEOM computations are feasi-
ble at temperatures above Tyin/@wo = 2, i.e., Tin/J =~ 0.1 or
Thin = 150 K. At low temperatures, charge transport is also
influenced by other scattering mechanisms (e.g., impurity
scattering) [28], rendering the model studied here of limited
relevance.

Our main results are summarized in Fig. 1 that shows the
temperature-dependent carrier mobility [Fig. 1(a)] along with
the relative importance of its phonon-assisted [Fig. 1(b)] and
cross [Fig. 1(c)] contributions. Before all else, although the
phonon-assisted contribution to g, around room tempera-
ture (7'/J ~ 0.2) is much smaller than the purely electronic
contribution, see Fig. 1(b), the cross contribution to w4, can-
not be neglected, see Fig. 1(c). The only exception is the
weak-interaction regime (A = 0.05), in which the predictions
of the Boltzmann transport theory closely follow our HEOM
mobilities up to very high temperatures, see Fig. 1(a), at which
the cross contribution gains importance. Therefore, Figs. 1(b)
and 1(c) show that approximate approaches attempting at
accurately evaluating the mobility of a carrier moderately
coupled to slow quantum phonons should a priori take into
account the cross contribution to pg.. We note that many
approximate approaches omit it altogether [13,20,43,93]. The
details of our computations using the Boltzmann transport
theory within the momentum relaxation-time approximation
are provided in Sec. SIII of the Supplemental Material [91].

A. Comparison of HEOM and imaginary-axis QMC results

We first compare our results with the best currently avail-
able numerically exact results [27]. For A = 0.336 and at
T/J=0.175 (T/J =0.1), we find /LEICEOM ~3 (/LI(IICEOM ~
8), which corresponds to udHCEOM ~ 23 cm?/(Vs) [/L?CEOM
63 cm?/(Vs)] in physical units. These values agree reasonably
well with the values reported in Ref. [27], which amount

QMC 2 QMC 2 —
to ug, ~ ~22cm?/(Vs) [ug,  ~50cm=/(Vs)] at T/J =
0.175 (T /J = 0.1) [94]. Also, ufFOM at T /J = 0.175 falls in
the range of the experimentally measured room-temperature
mobilities in rubrene [~10 — 20 cm?/(Vs)] [95-97].

Although the carrier mobility conveniently encodes infor-
mation on carrier dynamics on all time and length scales,
its value can be relatively insensitive to the details of the
dynamics [39], which are presented in Figs. 2(al) and 2(a2).

~
~
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FIG. 2. Dynamics of the diffusion constant (al), (bl) and diffu-
sion exponent (a2), (b2) computed using HEOM (al), (a2) and TLS
with oy = 2.2 in Eq. (12) (bl), (b2) at different temperatures. The
dotted lines in panels (a2), (b2) display the diffusive limit «(¢) = 1.
The model parameters are set to J = 1, wy = 0.044, » = 0.336. The
temperature 7 = 0.175 is representative of the room-temperature
transport. For visual clarity, we omit the dynamics of the diffusion
exponent at 7 = 1 from the lower panels.
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We find that the carrier motion during the ballistic-to-diffusive
crossover is superdiffusive at lower temperatures [a(f) > 1
at T/J = 0.1], while it displays subdiffusive [«a(t) < 1] fea-
tures at higher temperatures. Our results overall agree with
Ref. [27], which establishes that the hallmark of charge dy-
namics in the field of slow, large-amplitude intermolecular
vibrations is the gradual change from super- to subdiffusive
dynamics with increasing temperature. However, in contrast
to Ref. [27], we find that the subdiffusive carrier dynamics
at room temperature is temporally limited, see the curve for
T/J = 0.175 in Fig. 2(a2). The subdiffusion then extends to
approximately one half of the phonon period, after which the
diffusive transport ultimately sets in from the superdiffusive
side. Such dynamics of the diffusion exponent reflect the
increase of the diffusion constant that starts at i, & 1/wy,
when both D and o reach their respective local minima,
and terminates by its saturation on a timescale tyax ~ 27 /wo
comparable to the phonon period. Meanwhile, at a higher tem-
perature 7'/J = 0.5, at which the diffusion constant plateaus
well before the phonon period (already for ¢ 2 t.;,), the diffu-
sive transport sets in from the subdiffusive side, in agreement
with the conclusions of Ref. [27].

The above-discussed qualitative differences between
HEOM and QMC transport dynamics deserve additional com-
ments, as both approaches are numerically exact. The HEOM
results for a(t) at T/J = 0.175 are very close to unity for
Jt 2 10, the relative deviation not surpassing 10%. In a simi-
lar vein, the increase in D(t) for t 2 t,, is such that the local
minimum D(ty,) lies within the 10% error bar associated
with the long-time value Do, [78]. One might suspect that
the HEOM dynamics of « and D at T/J = 0.175 reflect
artifacts due to the insufficient chain length N or insuffi-
cient maximum depth D or the approximations underlying
the Markovian-adiabatic closing scheme, which is neces-
sary to obtain meaningful dynamics on intermediate-to-long
timescales [78]. In Appendix A, we check that increasing N
or D does not qualitatively change the dynamics of « and
D, while quantitative changes are consistent with the error
bars accompanying our HEOM results. Our discussion in
Appendix B highlights that the details of the approximations
underlying the most commonly used closing schemes (see
Sec. IV C of the companion paper [78]) have no qualitative
(and almost no quantitative) influence on the dynamics of
a and D. The closing scheme mainly serves to stabilize the
dynamics, which displays the increase in D(¢) for ¢ 2 tyn
even when the closing terms are set to zero, i.e., even when
the HEOM are merely truncated without closing. Therefore,
the qualitative differences between our HEOM dynamics and
those of Ref. [27] at T/J = 0.175 can be most probably
ascribed to (statistical) uncertainties of the procedures for
numerical analytical continuation. The small amplitude of the
features in «(¢) and D(¢) on intermediate-to-long timescales
renders their reconstruction from generally noisy imaginary-
axis data rather challenging [98]. Notably, this circumstance
does not compromise QMC results for the carrier mobility,
which, as an integrated quantity, is relatively insensitive to
the details of transport dynamics. This example once again
stresses that the details of charge transport can be fully un-
covered only using real-axis methods [39,76,99].

The HEOM transport dynamics for 7/J =0.175 in
Figs. 2(al) and 2(a2) and Appendices A and B might seem
somewhat unphysical, as its details are not fully compatible
with the intuition based on simplified physically appealing
models [27,55,58]. We reiterate (see Sec. I) that temporally
limited subdiffusive dynamics [38,39], the upturn in the dif-
fusion constant on intermediate timescales [38,39,75,76], and
the dynamical-mobility profile displaying both the DDP and
the zero-frequency peak (see Sec. III B) [39,73,75,76] have
been repeatedly reported in real-axis numerically exact stud-
ies of the related Holstein model at moderate interactions
and moderate-to-high temperatures. Moreover, qualitatively
similar dynamics emerge from the most recent quantum—
classical simulations of the Peierls model [67]. The common
feature of all these studies is that they take seriously the
dynamics of undamped phonon modes in Egs. (1)—(3), ei-
ther numerically exactly [38,39,73,75,76] or in appropriate
approximations [67,76]. Meanwhile, the TLS ansatz or the
picture of phonons as a viscous medium that slows the carrier
down [27] introduce effective phonon dynamics, and thus
effectively change the model Hamiltonian. We elaborate on
this in Sec. I'V.

B. Comparison of HEOM results and TLS predictions

In the following, we compare and contrast TLS predictions
with our HEOM results. Figure 1(a) shows that the agree-
ment of the TLS mobilities (g = 2.2) with the corresponding
numerically exact results improves with increasing the tem-
perature or the interaction. In the weak-interaction regime
A =0.05, the TLS yields accurate mobilities at extremely
high temperatures 7 /wy 2 20, at which the Boltzmann pic-
ture of weak occasional carrier—phonon scatterings breaks
down due to the large number of incoherent phonons. As the
temperature is lowered, the quality of the TLS predictions de-
teriorates, and the Boltzmann picture is restored. For moderate
interactions A = 0.336 and 0.5, the Boltzmann theory largely
overestimates the numerically exact pq.(7T), while the TLS
reproduces it very well throughout the temperature interval
examined. Some differences between the TLS and HEOM
mobilities appear near the lower end of the temperature range
examined (at 7/J = 0.1 and 0.175). These differences are
within or somewhat above the ten-percent relative uncertainty
accompanying HEOM results. In this weak-disorder regime,
the predictive power of the TLS in mobility computations
could be improved by modifying it so that the modification
interpolates between the Boltzmann transport theory and the
standard TLS [Eq. (12)] [57]. The rationale behind the success
of this TLS modification was that QMC results were by ~15%
lower than Boltzmann results and by ~15% higher than TLS
predictions, see Fig. 1(a) of Ref. [57]. However, Fig. 1(a)
shows that the differences between HEOM and Boltzmann
results are much larger (~50%) than the differences between
HEOM and TLS results, while we have already established
a good agreement between HEOM and QMC results. This
is discussed in more detail in Sec. SIII of the Supplemental
Material [91].

Figure 2 reveals qualitative differences between the TLS
and HEOM dynamics of D and o« for A =0.336 and
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: 11 IEI IIIII 1 :)I IIIIII 1 1 Illll : '1 = L1 111 IIIIII 111 IIIIII —: maXimum) Of Re M(w)' The Situation is Similar uPon reduc_
% 2 107 10° 10" 107 107 10° 10 ing A and increasing T by approximately the same factor,
(b1) LLRELL B R EELL B R (b2)3 LR B B R B so that the dynamical-disorder Strength 02 = 2AJT remains
I 044 B Blitz approximately constant; see Fig. 3(a2). Then, despite weak in-
5 2 0.05 1 2k — teraction, the Boltzmann picture of occasional carrier—phonon
< F - C 7 scatterings, whose formal expression is the computation of
2 4L N U - (je(?)je(0)) in the single-particle (bubble) approximation,
- . C ] cannot recover the numerically exact purely electronic con-
L | | | 1 of I < T tribution to Re u(w), see Fig. 3(b2). Even though the cross
e B Y 107 o 10 contribution is appreciable3 Figs. ;’a(a)' and 3(b) shoW that it
1 changes the purely electronic contribution only quantitatively,
(c1) ILRELLL IR UL (c2) T T TR T ] P . . )
: ] and not qualitatively. This observation is further corroborated
N 1 05 by the fact that Re . (w) in Figs. 3(a2) and 3(b2) satisfies the
3 1 “partial optical sum rule”
0.5 —
[}
o] : 0 400 T
_ | dore peter = F . (13
] - 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 0
T T T [ T R T T : : : : :
which cannot be rigorously derived, with relative accuracy of
(d1) i T T ||§||||| TR _(d2) i UBLELLLLLL I B RLL BRI | ] the Order Of 10_3. At the same time, the (full) Optical sum
0.2 __: ?LESM 2\ 02~ ] rule fOJrOO doRe p(w) = —%(He + H.pp) is satisfied with the
3 L \\ 1 i ] relative accuracy of the order of 107, see Appendix A. There-
3 01 il 1 o1F — fore, up to the nonnegligible cross contribution, the overall
e ‘;’“jo%g 1 i ] physical situation in Figs. 3(a) and 3(b) is analogous to that
rT=10 : ] = R we have recently analyzed in the Holstein model [38,39], in
0L ol il 1l o RN I which the current Operator is purely electronic. There, we have
= = ] i 2 T 0 7 R . . .
10 1,10 10 10 10" 10 10 concluded that the finite-frequency peak in the carriers’ opti-

FIG. 3. (al)-(d1) Dynamical-mobility profiles computed using
HEOM (solid lines), TLS (dashed lines), and Boltzmann theory
[the dash-dotted line in panel (b2)] in different parameter regimes.
(a2)—(d2) Purely electronic (label “e”), cross (label “x’’), and phonon-
assisted (label “ph”) contributions to the HEOM dynamical-mobility
profiles in panels (al)-(dl). The dotted lines in panels (al)—(d1)
display w = wo. We set J = 1 in all panels.

T/J =0.175 and 0.1. Just as the imaginary-axis QMC, the
TLS does not capture the transient nature of the subdiffusive
carrier dynamics at T /J = 0.175. While the TLS and HEOM
results for D(¢) and «(¢) agree very well for ¢t < tyin, the TLS
predicts that the diffusive transport is approached from the
subdiffusive side, in contrast to our HEOM results. Although
the TLS correctly predicts that the diffusive transport sets in
from the superdiffusive side at 7 /J = 0.1, it does not capture
the weakly pronounced transient slowdown of the carrier (a
dip in D and plateau in «) occurring around Jr ~ 50. At
higher temperatures (7/J = 0.5 and 1), the TLS results al-
most fully coincide with the numerically exact ones.

Figure 3 analyzes typical dynamical-mobility profiles and
different contributions to them. For A = 0.336 and T/J =
0.175, the TLS closely follows the HEOM dynamical-
mobility profile for w/J 2 0.3, reproducing the high-
frequency feature around w/J ~ 4 that stems from the
phonon-assisted contribution, see Figs. 3(al) and 3(a2).

cal response can be reproduced only by theories that compute
(je(?)je(0)) without invoking the single-particle approxima-
tion, i.e., take vertex corrections into account.

The DDPs in Figs. 3(al) and 3(b1) reflect carrier dynamics
happening well before a single phonon period, when phonon
dynamics can be safely ignored, as assumed within the TLS.
However, the TLS ansatz [Eq. (12)] is too simple to fully
take into account the nontrivial charge—phonon dynamics on
longer timescales (approaching one phonon period), when
phonon motions cannot be neglected. Computing such dy-
namics is generally an arduous task, which fortunately does
not have to be performed at sufficiently high temperatures or
for sufficiently strong interactions, when the diffusive trans-
port is expected to set in before the first phonon period.
Then, the TLS is expected to reproduce the numerically ex-
act dynamical mobility very well, which is indeed confirmed
in Fig. 3(cl). Interestingly, even though the phonon-assisted
contribution to pq. is nonnegligible, it is almost exactly can-
celed by the corresponding cross contribution, see Fig. 3(c2),
so that pug. is effectively determined only by the purely
electronic contribution. However, the phonon-assisted contri-
bution to pg. generally becomes more important as A or T
are increased, see Fig. 1(b) and the companion paper [78].
Ultimately, we expect the TLS to excel in the regime of
phonon-assisted transport. While this regime is difficult to
reach for wy/J = 0.044, see Fig. 1(b), the results in our com-
panion paper [78] suggest that it is more easily reached for
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faster phonons. Figure 3(d1) shows that the TLS works well
even when the timescales of free-phonon and free-carrier dy-
namics are comparable to one another (wg/J = 0.5), as long
as the phonon-assisted contribution dominates the transport;
see Fig. 3(d1). Therefore, the timescale separation between
carriers and phonons may not be so essential a criterion for
the applicability of the TLS. Figure 3(d1) suggests that it
may be more important that the diffusive transport be reached
(well) before the first phonon period, so that phonons are to
a very good approximation frozen over the time window in
which C;;(¢) is appreciable. In Sec. SIV of the Supplemen-
tal Material [91], we complement Fig. 3(d) by an extensive
comparison of HEOM results and TLS predictions for
wo/J = 0.5.

Finally, we note that the results of the most recent
quantum—classical approaches to the coupled carrier—phonon
dynamics [67] bear qualitative similarity to our fully quantum
results for Re pu(w) in Fig. 3(al). In Sec. SV of the Sup-
plemental Material [91], we focus on the parameter regime
wo/J =0.044, 1 =0.5,T/J = 0.175, and establish a good
agreement between the quantum—classical [67] and our fully
quantum carrier mobilities, while we find some differences
in the positions of the low-frequency features of the two
dynamical-mobility profiles. As this parameter regime pushes
our HEOM-based methodology to its limits of applicability,
we cannot definitely attribute the above-mentioned differ-
ences to the quantum—classical approximation.

IV. DISCUSSION

Both the TLS [55,58] and the treatment of phonons as a
viscous medium [27] introduce exponentially decaying terms
in the dynamics, the former through Eq. (12), and the lat-
ter through the friction force proportional to the velocity of
the harmonically bound carrier (see the Supplemental Mate-
rial to Ref. [27]). Although the exponential-decay timescale
Tg X Wy in Eq. (12) is established on the basis of physical
arguments [55,58], we note that similar ansétze are often used
to effectively take into account the influence of other scat-
tering mechanisms not included in the model [Egs. (1)-(3)]
considered.

For example, the polaron transformation-based ap-
proaches [17,20,24] assume that

Cii(0) = Cjf 0y e ™, (14)

where C f]T (¢) is the current—current correlation function eval-
vated in the polaron frame, whereas the phenomenological
parameter ' characterizes the effective line broadening due
to scattering mechanisms that are slow with respect to those
determining the dynamics of Cf]-T. This so-called inhomoge-
neous broadening [20,100-102], which is characterized by the
Gaussian damping in the time domain, is usually attributed to
the presence of static disorder. The exponential damping in
the time domain [Eq. (12)] is, however, characteristic of the
homogeneous broadening [100-102], which is due to scatter-
ing mechanisms that are fast with respect to those taken into
account in C?}“(r). The homogeneous broadening is often as-
sociated with the interaction with phonons [100-102], which
is indeed fast with respect to the scattering on static disorder

that determines Cj‘-‘ji-s(t). Therefore, the TLS ansatz [Eq. (12)]
may be thought of as a way to include scattering on additional
phonon modes not explicitly considered in the model.

From that viewpoint, the qualitative differences between
the numerically exact and TLS results may be due to the
fact Eq. (12) effectively takes into account interactions of
the carrier with additional phonon modes not considered in the
model [Egs. (1)—~(3)]. Such a possibility is supported by the
most recent quantum—classical simulations [67]. There, the
authors conclude that considering a continuous phonon spec-
trum centered around wy instead of the §-like spectrum used
here [see Eq. (3)] tends to diminish the long-time growth of
D(t) and consequently the low-frequency features of the dy-
namical mobility. While the finite-frequency peak in Re p(w)
remains largely unaffected upon replacing the discrete phonon
spectrum by the continuous one, the dip around wj and the
zero-frequency peak become less pronounced with increasing
the width of the phonon spectrum, see Fig. 4(b) of Ref. [67].
In other words, the dynamical-mobility profile bears stronger
qualitative resemblance to TLS predictions. In a similar vein,
the long-time growth of D(¢) is suppressed with increasing
the width of the phonon spectrum; see Fig. 4(a) of Ref. [67].
Keeping in mind the above-established qualitative agree-
ment between HEOM and quantum—classical approaches, one
can expect that the rich structure of the numerically exact
dynamical-mobility profiles in Figs. 3(al) and 3(b1l) would
be less pronounced when considering a more realistic spectral
density of the carrier—phonon interaction, which conveniently
combines information on the interaction constants and phonon
density of states [100].

The authors of Ref. [103] showed that the realistic spec-
tral density in partially ordered organic semiconductors can
be approximated by a superposition of a small number
of Langevin (or underdamped Brownian [100]) oscillators.
In numerically exact approaches based on the theory of
open quantum systems [34,36,37], such spectral densities are
treated in the same manner as the more widely used Drude—
Lorentz (or overdamped Brownian oscillator [100]) spectral
density [104]. Nevertheless, as noted in Sec. I, such ap-
proaches have not been applied in numerically exact mobility
computations based on C;;(t). Concerning the HEOM-based
approaches [34] dealing with continuous spectral densities,
possible reasons behind that state of affairs are the issues with
the phonon-assisted current, and the well-known incompati-
bility of the hierarchies in the imaginary-time and real-time
domains [105]. Our study could motivate an extension of the
approach used here to the case of continuous spectral den-
sities, which would rigorously prove or disprove the claims
of this section. In the meantime, the most recent numeri-
cally exact [106] and approximate [107] quantum-dynamics
computations of transport properties of the Holstein model
with overdamped and/or underdamped Brownian oscillator
spectral density show that D(¢) and Re u(w) bear stronger
qualitative resemblance to the TLS predictions [77] than to
the numerically exact results [38,73-76] that assume discrete
undamped phonons.

The model considered here also does not take into account
the extrinsic static disorder. Quantum—classical simulations
in Ref. [67] suggest that such static disorder in on-site
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energies diminishes the long-time growth of the diffusion
constant, rendering it overall qualitatively similar to the TLS
predictions, see Fig. 5 of Ref. [67]. This once again suggests
that the qualitative differences between the numerically exact
and TLS results could be ascribed to the too simple model we
consider. In more realistic models considering the interactions
with additional phonon modes and static disorder, one expects
that the true dynamical-mobility profile is qualitatively similar
to the TLS prediction.

V. CONCLUSION

Our study provides the long-awaited quantum-dynamical
insights into transport properties of the one-dimensional
Peierls model with a single undamped vibration per lattice
site in the adiabatic regime. For the parameters representative
of the room-temperature transport in crystalline rubrene, we
establish that the crossover from super- to subdiffusive carrier
dynamics is of transient nature, so that the long-time diffusive
transport is eventually approached from the superdiffusive
side on timescales of the order of one phonon period. Our find-
ings stand in qualitative contrast to those of the best available
numerically exact (imaginary-axis QMC) and the most widely
used approximate (TLS) methods, both of which conclude
that the diffusive transport sets in from the subdiffusive side.
However, our transport dynamics strongly supports the results
of the most recent quantum—classical simulations.

For the most widely studied combinations of model param-
eters, the TLS can reproduce HEOM mobilities very well once
the free-parameter oy ~ 1 is appropriately tuned. Our results
thus suggest that any approach that reasonably captures carrier
dynamics on short to intermediate timescales can be expected
to yield reasonable predictions for the carrier mobility, even
though it may poor at treating the long-time coupled carrier—
phonon dynamics. At higher temperatures or for stronger
interactions, the exact form of these long-time dynamics is
immaterial because the carrier diffusion is established well
before a single phonon period, so that the frozen-phonon
approximation is reasonable whenever the current—current
correlation function is appreciable. In such situations, the TLS
ansatz in Eq. (12) is sufficiently good to describe this predom-
inantly phonon-assisted transport, even when the timescales
of carrier and phonon dynamics are comparable. At realistic
temperatures and interactions, we argue that Eq. (12) can be
considered to effectively take into account other scattering
mechanisms not included in the present model. Apart from
providing numerically exact results for carrier dynamics, this
piece of research can be regarded as a formal justification
of the already well-established practical applicability of the
TLS to realistic systems, for which the model embodied in
Egs. (1)—(3) is too simplistic.
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APPENDIX A: FINITE-SIZE AND FINITE-DEPTH
EFFECTS IN HEOM COMPUTATIONS FOR
wy/J =0.044, X = 0.336, AND T /J = 0.175

Here, we consider in greater detail the effects due to
finite values of N and D in HEOM computations in the
parameter regime representative of the room-temperature car-
rier transport along the direction of maximal conductivity in
rubrene. We examine the dynamics of the diffusion constant
[Figs. 4(al) and 4(b1)] and the diffusion exponent [Figs. 4(a2)
and 4(b2)] for different maximum hierarchy depths D [fixing
N =31, see Figs. 4(al) and 4(a2)] and for different chain
lengths N [fixing D = 4, see Figs. 4(b1) and 4(b2)].

Fixing N = 31, we find that the dc mobility can be reliably
extracted from D(t) computed for D = 3 and 4, see Fig. 4(al).
However, D(t) for D = 5 does not exhibit the long-time sat-
uration, which prevents us from reliably estimating ft4.. On
the level of the diffusion exponent, the results for D = 3 and
D = 4 exhibit the expected long-time approach toward unity,
while the long-time behavior of the result for D = 5 is qualita-
tively wrong, see Fig. 4(a2). Such a behavior is a consequence
of the ineffectiveness of our HEOM closing strategy when the
maximum hierarchy depth is sufficiently large, see Sec. V C
of the companion paper [78]. Nevertheless, the dynamics of
D and o on short to intermediate timescales are qualitatively
(and to a large extent quantitatively) similar for all three values
of D studied. In particular, upon reaching their minima on
intermediate timescales, both D(¢) and «(¢) increase on longer
timescales. This increase is more pronounced for D = 4 than
for D = 3, so that the approach toward the long-time diffusive
transport from the superdiffusive side is not so convincing for
D = 3. Analyzing the relative error

|Jo7™ do Re () + Z (He + Hepn)|
%'(HC + He—ph)|

Sosr = , (AD)

with which the optical sum rule is satisfied, see Table I, we
conclude that the result for D = 4 is more reliable than that for

TABLE I. Dependence of dosr [Eq. (AD)], (H + Hepn), and
max |{je(t) jeph(0) — je-pu(?)je(0))| on D for N = 31. The model pa-
rameters are settoJ = 1, wy = 0.044, A = 0.336, and T = 0.175.

D fmax Josr —(He + He—ph) max |(je (t)je—ph ) — jefph (#)7e(0))1

3 450 5.1x1073 2.0630327684 8.0 x 1073
4 450 1.0 x 107 2.0674819496 9.0 x 1073
5 350 2.3 x107* 2.0687529991 6.4 x 1073
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Effects of finite hierarchy depth (N=31)
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FIG. 4. Effects of finite maximum hierarchy depth D (al), (a2) and finite chain length N (b1), (b2) on the dynamics of the diffusion constant
(al), (bl) and diffusion exponent (a2), (b2). In panels (al), (a2), the chain length is set to N = 31. In panels (b1), (b2), the maximum hierarchy
depth is set to D = 4. The insets zoom in the dynamics of D and « on intermediate to long timescales. The dashed lines in panels (al),
(b1) represent the quantities 1.1 x D31 4)(t) (label “+10%”) and 0.9 x D 4y(t) (label “—10%”), where D; 4y(t) is the diffusion constant
computed for N = 31 and D = 4. The model parameters assume the following values: J = 1, wy = 0.044, A = 0.336, and T = 0.175.

D = 3. However, we point out that, close to the adiabatic limit,
the smallness of §posg does not guarantee the absolute relia-
bility of the corresponding result. Namely, as the adiabaticity
ratio wy/J is decreases, it becomes increasingly difficult to
converge the results for the thermodynamic expectation value
(He + Hepn) that determines dosr. This is clearly seen in
Table I, which shows that §osg for D = 3 and 4 is better than
the number of significant figures in (H. + Hepn). The error
with which the symmetry (je(¢) je-pn(0)) = (jepn(#)je(0)) (see
Sec. IV C of the companion paper [78]) is obeyed is of the
order of 1072 for all three values of D. The HEOM mobilities
for D = 3 and D = 4 differ by around 10%.

Fixing D = 4, we find that the result for N = 15 displays
finite-size effects, while the results for N = 21, 31, and 45
are qualitatively and to a large extent quantitatively similar,
see Figs. 4(bl) and 4(b2). The lower quality of the result
for N = 15 with respect to the results on longer chains is
further corroborated by Table II, which shows that dosr is of
the same order of magnitude for N = 21, 31, and 45. Due to
the large computational cost of the HEOM calculations for
N =45, we stopped them as soon as we certified that the
corresponding dynamics of D and « (and consequently the dc
mobility) are very close to those on shorter chains (N = 31
and 21). We note that a fully reliable identification of the
dip of the dynamical-mobility profile at w ~ w, necessitates
simulation times that are longer than a single phonon period

21 /wp = 143. Our reference HEOM computations (N =
31, D = 4) are performed up to J¢ = 450, which is somewhat
longer than 3 phonon periods, once again suggesting that the
existence of the dip in Re p(w) at w & wy can be considered
as reliably established.

APPENDIX B: EFFECTS OF CLOSING SCHEME
IN HEOM COMPUTATIONS FOR w,/J = 0.044,
A =0.336, ANDT/J = 0.175

In Appendix A, we establish that N =31 and D =4
yield the best available HEOM results for wy/J = 0.044, A =
0.336, and T /J = 0.175. Here, we discuss the influence of
the HEOM closing scheme, which represents the main ap-

TABLE II. Dependence of §osg [Eq. (Al)] on N for D = 4.
The model parameters are set to J = 1, wy = 0.044, A = 0.336, and
T =0.175.

N T'max 6OSR

15 450 1.5x 1073
21 450 1.9 x 107*
31 450 1.0 x 107*
45 205 9.5 x 1073
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FIG. 5. (a)—(c) Dynamics of (a) the diffusion constant, (b) the diffusion exponent, and (c) the real part of the current autocorrelation
function for different hierarchy closing schemes. (d) Frequency-dependent mobility for different hierarchy closing schemes. In panels (a)), (b),
(d), we compare the results obtained using the Markovian-adiabatic scheme (label “MA,” solid lines), the Markovian-adiabatic scheme with
momentum-averaged quasiparticle scattering rates (label “MA-avg,” dashed lines), and the derivative-resum scheme (label “DR,” dash-dotted
lines). In panel (c), we compare the MA (thick line) to the time-nonlocal (label “TNL,” thin line) scheme, which sets closing terms to zero.
The insets in panels (a), (b), (c) display the dynamics of D, «, and D, respectively, on intermediate-to-long timescales.

proximation of our HEOM-based approach, on the results for
N =3land D = 4.

Figures 5(a) and 5(b) compare the dynamics of the diffu-
sion constant and exponent for different closing schemes dis-
cussed in Sec. IV C of the companion paper [78]. Apart from
the Markovian-adiabatic scheme, we consider the Markovian-
adiabatic scheme with momentum-averaged quasiparticle
scattering rates, and the derivative-resum scheme. The over-
all dynamics of D and « is essentially independent of the
particular closing scheme. Comparing the insets of Figs. 5(a)
and 5(b) to the insets of Figs. 4(al)—4(b2), we conclude that
the differences between the results relying on different closing
schemes for fixed N and D are smaller than the differences
between the results for different values of N and D and fixed
closing scheme. The frequency-dependent mobility is also
very weakly dependent on the closing scheme, see Fig. 5(d).

Figure 5(c) and its inset, which compare Re C;;(¢) and
D(t) computed using Markovian-adiabatic closing terms and

zero closing terms (the so-called time-nonlocal scheme),
emphasize that the hierarchy closing is vital to comput-
ing long-time transport dynamics and carrier mobility. The
closing-induced stabilization of carrier dynamics sets in for
t 2 1/wo, and prevents long-time oscillations of Re Cj;(t)
around zero [the main panel of Fig. 5(c)] that are responsible
for the long-time increase of D(¢) [the inset of Fig. 5(c)]. The
dynamics without closing remains reasonable up to around
one half of the phonon period (for 1/wy <t < 7 /wp), when
it qualitatively resembles the dynamics relying on the MA
closing. In particular, both curves in the inset of Fig. 5(c) show
that the diffusion constant increases after reaching its local
minimum at f,;, & 1/wg. Therefore, the increase in D(¢) for
t 2 tmin is nOt an artifact of the hierarchy closing. The closing-
induced stabilization of the long-time dynamics of D and «
is very weakly dependent on the underlying approximations,
and the corresponding carrier mobility agrees very well with
the numerically exact results available in the literature.
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