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SI. INFERRING THE GENERALIZED WICK’S THEOREM FROM THE DYNAMICAL EQUATIONS
OF THE HEOM METHOD

Taking the time derivative of

ρ(n)n (t) = Trph

{
F (n)
n ρtot(t)

}
, (S1)

and using the Liouville equation ∂tρtot(t) = −i[Htot, ρtot(t)] for the density operator of the interacting carrier–phonon
system, one obtains

∂tρ
(n)
n (t) =− i[He, ρ

(n)
n (t)]

− iTrph

{
[F (n)

n , Hph]ρtot(t)
}

− iTrph

{
F (n)
n [He−ph, ρtot(t)]

}
.

(S2)

In the second term on the RHS of Eq. (S2), we performed a cyclic permutation of phonon operators under the partial
trace over phonons. Inserting He−ph =

∑
qm Vqfqm into the third term on the RHS of Eq. (S2), and performing

appropriate cyclic permutations of phonon operators, we transform Eq. (S2) into

∂tρ
(n)
n (t) =− i[He, ρ

(n)
n (t)]

− iTrph

{
[F (n)

n , Hph]ρtot(t)
}

− i
∑
qm

VqTrph

{
F (n)
n fqmρtot(t)

}
+ i

∑
qm

Trph

{
fqmF (n)

n ρtot(t)
}
Vq.

(S3)

On the other hand, using ⟨fq2m2fq1m1⟩ph = δm1m2
ηq2q1m2

and ⟨fq1m1
fq2m2

⟩ph = δm1m2
η∗q2 q1 m2

, we transform the

HEOM in Eq. (5) of the main text into

∂tρ
(n)
n (t) = −i[He, ρ

(n)
n (t)]− µnρ

(n)
n (t)

− i
∑
qm

Vq

ρ(n+1)

n+
qm

(t) +
∑
q′m′

nq′m′⟨fq′m′fqm⟩phρ(n−1)

n−
q′m′

(t)


+ i

∑
qm

ρ(n+1)

n+
qm

(t) +
∑
q′m′

nq′m′⟨fqmfq′m′⟩phρ(n−1)

n−
q′m′

(t)

Vq.

(S4)

The first terms on the RHSs of Eqs. (S3) and (S4) are identical. The commutator [F
(n)
n , Hph] is a purely phononic

operator that describes an n-phonon-assisted process (Hph conserves the number of phonons). Irrespective of the

particular form of F
(n)
n , it is clear that the commutator [F

(n)
n , Hph] is proportional to F

(n)
n itself, thus the second
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terms of the RHSs of Eqs. (S3) and (S4) have to be identical. The simplest possibility that the sum of the third and
the fourth terms of Eq. (S3) is identical to the sum of the third and the fourth terms of Eq. (S4) is that

Trph

{
F (n)
n fqmρtot(t)

}
= ρ

(n+1)

n+
qm

(t) +
∑
q′m′

nq′m′⟨fq′m′fqm⟩phρ(n−1)

n−
q′m′

(t), (S5)

Trph

{
fqmF (n)

n ρtot(t)
}
= ρ

(n+1)

n+
qm

(t) +
∑
q′m′

nq′m′⟨fqmfq′m′⟩phρ(n−1)

n−
q′m′

(t). (S6)

The generalized Wick’s theorem embodied in Eqs. (14) and (15) of the main text then follows by making use of
Eq. (S1) on the right-hand sides of Eqs. (S5) and (S6), respectively.
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SII. IMPLICATIONS OF THE TIME-REVERSAL SYMMETRY FOR THE CROSS CONTRIBUTION
TO THE CURRENT–CURRENT CORRELATION FUNCTION

The proof that ⟨je(t)je−ph(0)⟩ = ⟨je−ph(t)je(0)⟩ relies on general properties of equilibrium correlation functions and
the time-reversal operator.

The equilibrium correlation function of hermitean operators A2 and A1 satisfies

⟨A2(t)A1(0)⟩ = ⟨A1(−t)A2(0)⟩∗. (S7)

The time-reversal operator It is an antiunitary (antilinear and unitary, I−1
t = I†

t ), involutive (I2
t = 1), and thus

hermitean (I†
t = It) operator that acts on the free-electron states |k⟩ as It|k⟩ = |k⟩, while its action on phonon

creation and annihilation operators is Itb(†)q It = b
(†)
q . The Hamiltonian Htot [Eqs. (1)–(3) of the main text] is

invariant under time reversal, i.e., ItHtotIt = Htot. Using the definition of current operators je [Eq. (20) of the main
text] and je−ph [Eqs. (21)–(23) of the main text], one obtains that

Itje/e−phIt = −je/e−ph. (S8)

Using the decomposition It = UK, where K denotes complex conjugation, while U is a unitary operator, one proves
that

Tr {ItAIt} = Tr {A}∗ . (S9)

We perform the following transformations

⟨je(t)je−ph(0)⟩ = ⟨je−ph(−t)je(0)⟩∗ = ⟨Itje−ph(−t)ItItjeIt⟩ = (−1)2⟨je−ph(t)je(0)⟩. (S10)

The first equality follows from Eq. (S7). To establish the second equality, we combine Eq. (S9) and the invariance of
Htot under time reversal. The third equality makes use of the antilinearity of It and Eq. (S8).
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SIII. DETAILS OF HEOM COMPUTATIONS

In this section, N denotes the chain length, D is the maximum hierarchy depth, tmax is the maximum (real) time
up to which HEOM are propagated, while δOSR [Eq. (51) of the main text] is the relative accuracy with which the
optical sum rule is satisfied. Our HEOM data are openly available in Ref. 1.

ω0/J λ T/J N D tmax δOSR

1 0.05 1 160 1 500 9.3× 10−4

1 0.05 2 160 2 300 1.15× 10−3

1 0.05 5 71 3 150 4× 10−6

1 0.05 10 45 4 100 8× 10−5

1 0.25 1 45 4 200 10−3

1 0.25 2 45 4 70 4.5× 10−4

1 0.25 5 10 7/8 100 6.6× 10−5

1 0.25 100.8 10 7/8 100 7.1× 10−5

1 0.25 100.9 10 7/8 100 7.5× 10−5

1 0.25 10 7 7/8 100 8× 10−5

1 0.5 1 21 6 70 6× 10−4

1 0.5 2 15 6 100 1.9× 10−4

1 0.5 5 10 7/8 50 1.2× 10−4

1 0.5 100.8 10 7/8 50 1.3× 10−4

1 0.5 100.9 8 8/9 50 1.4× 10−4

1 0.5 10 7 8/9 50 1.6× 10−4

1 1 1 13 8 12 1.9× 10−3

1 1 2 13 8 15 2.1× 10−5

1 1 5 9 9/10 15 3.5× 10−4

1 1 100.8 8 10/11 15 3.9× 10−4

1 1 100.9 7 11/12 15 4.7× 10−4

1 1 10 7 11/12 10 7.0× 10−4

TABLE S1. Details of the HEOM computations performed for ω0/J = 1.

ω0/J λ T/J N D tmax δOSR

3 0.05 2 161 2 1000 2.3× 10−4

3 0.05 5 121 2 400 1.0× 10−4

3 0.05 10 91 2 100 2.2× 10−4

3 0.25 2 31 3 1000 3.6× 10−4

3 0.25 5 21 5 30 2.1× 10−4

3 0.25 100.8 19 5 30 2.2× 10−4

3 0.25 100.9 17 5 30 2.4× 10−4

3 0.25 10 15 5 30 2.5× 10−4

3 0.5 2 21 5 500 1.4× 10−4

3 0.5 5 15 6 25 2.4× 10−4

3 0.5 100.8 13 6/7 25 2.6× 10−4

3 0.5 100.9 10 7/8 25 2.8× 10−4

3 0.5 10 10 7/8 20 3.6× 10−4

3 1 2 13 5 500 2.9× 10−3

3 1 5 13 6/7 110 1.2× 10−4

3 1 100.8 13 6/7 110 1.2× 10−4

3 1 100.9 10 8/9 30 2.4× 10−4

3 1 10 10 8/9 20 3.7× 10−4

TABLE S2. Details of the HEOM computations performed for ω0/J = 3.
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SIV. POWER-LAW FITS OF THE TEMPERATURE-DEPENDENT MOBILITY IN THE REGIME OF
PHONON-ASSISTED TRANSPORT
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FIG. S1. HEOM results for µdc(T ) (symbols) and their best fits to the power-law function µdc(T ) = A/Tα with two parameters,
the amplitude A and the power-law exponent α. The fits are performed for ω0 = J = 1, in parameter regimes in which the
phonon-assisted share of the HEOM mobility is ≳ 50% and the magnitude of the cross share is ≲ 10%, see Figs. 4 (b) and 4 (c)
of the main text. The values of α are cited next to each dataset. Note the logarithmic scale on both axes.
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FIG. S2. HEOM results for µdc(T ) (symbols) and their best fits to the power-law function µdc(T ) = A/Tα with two parameters,
the amplitude A and the power-law exponent α. The fits are performed for ω0 = 3 and J = 1, in parameter regimes in which
the phonon-assisted share of the HEOM mobility is ≳ 50% and the magnitude of the cross share is ≲ 10%, see Figs. 6 (b)
and 6 (c) of the main text. The values of α are cited next to each dataset. For completeness, we also show HEOM data for
λ = 0.25. These can be fitted to the power-law function only when the magnitude of the cross contribution falls below ∼ 10%,
which happens at sufficiently high temperatures, see the red line connecting the last two squares and Fig. 6 (c) of the main
text. Note the logarithmic scale on both axes.
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SV. EVALUATING THE BOLTZMANN-EQUATION COLLISION INTEGRAL USING THE HEOM
FORMALISM

Here, we obtain the collision integral
(

∂pk

∂t

)
e−ph

for the carrier–phonon scattering in the Boltzmann approach

starting from the HEOM. Taking the matrix element ⟨k| . . . |k⟩ of Eq. (5) of the main text for n = 0 and n = 0, we
obtain that the change in the population pk(t) = ⟨k|ρ(t)|k⟩ of the free-carrier state |k⟩ due to the carrier–phonon
interaction is (

∂pk
∂t

)
e−ph

= −2
∑
qm

Im
{
M(k, q)p

(1)
k,qm(t)

}
, (S11)

where we define

p
(1)
k,qm(t) = ⟨k|ρ(1)

0+
qm

(t)|k + q⟩. (S12)

To arrive at Eq. (S11), we use ρ
(1)

0+
qm

(t) = ρ
(1)

0+
qm

(t)†. Taking the matrix element ⟨k| . . . |k + q⟩ of Eq. (5) of the main

text for n = 0+
qm and n = 1, and neglecting the coupling to HEOM auxiliaries at depth 2, we obtain the following

equation for p
(1)
k,qm(t):

∂tp
(1)
k,qm(t) = −i (εk − εk+q − iµm) p

(1)
k,qm(t)− iM(k, q)∗ [cmpk+q(t)− c∗mpk(t)] . (S13)

Integrating Eq. (S13) in the Markov approximation pk(t− s) ≈ pk(t) yields

p
(1)
k,qm(t) = −iM(k, q)∗ [cmpk+q(t)− c∗mpk(t)]

∫ t

0

ds e−i(εk−εk+q−iµm)s. (S14)

In the adiabatic approximation, one solves the integral in Eq. (S14) by letting t → +∞ to finally obtain (η → +0)

p
(1)
k,qm(t) = M(k, q)∗

cmpk+q(t)− c∗mpk(t)

εk − εk+q − iµm − iη
. (S15)

Inserting Eq. (S15) into Eq. (S11) and using c∗m = cm and Im 1
εk−εk+q−iµm−iη = πδ(εk − εk+q − iµm) yields the

following equation for pk(t): (
∂pk
∂t

)
e−ph

= −
∑
q

wk+q,kpk(t) +
∑
q

wk,k+qpk+q(t), (S16)

where the transition rate from state |k⟩ to state |k + q⟩ is given in Eq. (E3) of the main text.
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