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SI. INFERRING THE GENERALIZED WICK’S THEOREM FROM THE DYNAMICAL EQUATIONS
OF THE HEOM METHOD

Taking the time derivative of

P (1) = Trpn { F{ pron(8) } (s1)
and using the Liouville equation 0;piot(t) = —i[Htot, prot (t)] for the density operator of the interacting carrier—phonon
system, one obtains

Dipi) (1) = — i[He, p" (1))
— i Trgn {[FS, Hpnpeor(£) } (s2)

—iTrpp {FK(I") [He—ph, Prot (t)]} :

In the second term on the RHS of Eq. ( ., we performed a cyclic permutation of phonon operators under the partial
trace over phonons. Inserting Ho_pn = Z Vyfqm into the third term on the RHS of Eq. .7 and performing

appropriate cyclic permutations of phonon operators, we transform Eq. (| into

6tp£,”) (t) - [H87 Pl(an)( )]
— i Trpy {[F,ﬁ”% Hpnprot (t)}
—i Z Vo Trpn {Frgn)fqmptot (t)} (83)
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On the other hand, using (fg,m, fgimi)ph = OmimaTgagims a0 (fgrms fgama)ph = Omymsties g7y We transform the
HEOM in Eq. (5) of the main text into

Bl (t) = —i[He, p ()] — pnp§ (2)
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The first terms on the RHSs of Egs. and are identical. The commutator [F\", Hpy) is a purely phononic
operator that describes an n-phonon-assisted process (Hpn conserves the number of phonons). Irrespective of the

n)

particular form of Fr(1 , it is clear that the commutator [F,S"),th] is proportional to F,(ln) itself, thus the second
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terms of the RHSs of Eqgs. and have to be identical. The simplest possibility that the sum of the third and
the fourth terms of Eq. is identical to the sum of the third and the fourth terms of Eq. is that

Tron { S fampron () } = oS00 + 3 ngrm Farme Famdonl- 2 (0), (55)
q'm’ am

Trpn {fqmFt(ln)Ptot (t)} = pfj}il)(t) + E Ng'm/ <fquq’m’>php:l;1/) (t). (S6)
q'm’ am

The generalized Wick’s theorem embodied in Eqs. (14) and (15) of the main text then follows by making use of
Eq. on the right-hand sides of Egs. and , respectively.
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SII. IMPLICATIONS OF THE TIME-REVERSAL SYMMETRY FOR THE CROSS CONTRIBUTION
TO THE CURRENT-CURRENT CORRELATION FUNCTION

The proof that (je(t)je—pn(0)) = (Je—pn(t)je(0)) relies on general properties of equilibrium correlation functions and
the time-reversal operator.
The equilibrium correlation function of hermitean operators As and A satisfies

(A2(t)A1(0)) = (A1 (—t)A2(0))". (S7)

The time-reversal operator Z; is an antiunitary (antilinear and unitary, Z, * = Z), involutive (Z2 = 1), and thus

hermitean (Z] = Z;) operator that acts on the free-electron states |k) as Zy|k) = |k), while its action on phonon

creation and annihilation operators is ItbéT)It = bg). The Hamiltonian Hiot [Eqgs. (1)—(3) of the main text] is

invariant under time reversal, i.e., Z; HyotZ: = Hior. Using the definition of current operators j, [Eq. (20) of the main
text] and je—pn [Egs. (21)—(23) of the main text], one obtains that

Itje/efphIt = _je/efph' (SS)

Using the decomposition Z; = UK, where K denotes complex conjugation, while U is a unitary operator, one proves
that

Tr {L, AT} = Tr {A}". (S9)
We perform the following transformations
<je(t)je*ph(0)> = <je*ph(_t)je(0)>* = <Itje*ph(_t)ItItjeIt> = (_1)2<J.efph(t)je(0)>‘ (S10)

The first equality follows from Eq. . To establish the second equality, we combine Eq. (S9)) and the invariance of
Hiot under time reversal. The third equality makes use of the antilinearity of Z; and Eq. (S8).
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DETAILS OF HEOM COMPUTATIONS

In this section, N denotes the chain length, D is the maximum hierarchy depth, ¢y,.x is the maximum (real) time
up to which HEOM are propagated, while dosr [Eq. (51) of the main text] is the relative accuracy with which the
optical sum rule is satisfied. Our HEOM data are openly available in Ref. [1l

wo/J| A |T/J| N| D |tmax| Sosr

1 J0.05] 1 [160] 1 [500[9.3x 107 %
1 [0.05] 2 [160] 2 [300([1.15x10°3
1 J0.05] 5 [71] 3 [150] 4x10°°
1 [0.05] 10 [45] 4 [100] 8x107°
1 J0.25] 1 [45] 4 [200 1077

1 (025 2 [45] 4 |70 [45x1077%
1 ]0.25] 5 [10] 7/8 [100] 6.6 x 107°
1 [0.25[10°%| 10| 7/8 [100] 7.1 x 1077
1 [0.25[10°9]10] 7/8 [100| 7.5 x 10°°
1 J025] 10 | 7] 7/8 [100] 8x107°
1 Jos5] 1 [21] 6 [70] 6x10°°
1 [05] 2 [15] 6 [100[1.9x 1077
1 [o5] 5 [10] 7/8 |50 [1.2x 1077
1 [05[10°%[10] 7/8 | 50 [ 1.3 x 1077
1 [05[10°9] 8 [ 8/9 | 50 [1.4x 10 *
1 [o5][ 10| 7]8/9 |5 [1.6x1077
1 171 J13] 8 J12[1.9x10°3
1 11 2 [13] 8 [15[21x107°
1 [ 1] 5 [9]9/10]15[35x1077
1 [ 1 [10°%] 8 [10/11] 15 [ 3.9 x 1077
1 | 1 [1077] 7 J11/12] 15 [4.7x 1077
1 [ 1 [10]7[11/12] 10 [7.0x 1077

TABLE S1. Details of the HEOM computations performed for wo/J = 1.

wo/J| A |T/J| N | D |tmax| Josr

3 [0.05] 2 [161] 2 [1000[2.3 x 10~*
3 [0.05] 5 [121] 2 [400 [1.0x 107*
3 [0.05] 10 [91] 2 [100[2.2 x 107
3 [0.25] 2 [31] 3 [1000[3.6 x 10~*
3 [025] 5 [21]5 ] 30 [21x107*
3 [0.25[10°%1 19 5 | 30 [2.2x 1077
3 [0.25[10°°117] 5 | 30 [2.4 x 107*
3 [025] 10 [15] 5 | 30 [2.5x 1077
3 05[] 2 J21] 5 [500](1.4x 1072
3 [o5] 5 [15] 6| 25 [2.4x 1077
3 [0.5]10°%] 13 ]6/7| 25 [2.6 x 10~*
3 [05[10°7] 10 [7/8] 25 [2.8 x 10 *
3 05| 10 [10[7/8] 20 [3.6 x 1072
3 1 [ 2 [13]5]500[2.9x%x1073
3 1] 5 [13]6/7]110[1.2x107%
3 | 1 [10°%]13 ]6/7| 110 [1.2 x 1077
3 | 1 [10°°]10(8/9] 30 [2.4x 10 *
3 1 [ 10 [10[8/9] 20 [3.7x 107 %

TABLE S2. Details of the HEOM computations performed for wo/J = 3.
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SIV. POWER-LAW FITS OF THE TEMPERATURE-DEPENDENT MOBILITY IN THE REGIME OF
PHONON-ASSISTED TRANSPORT
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FIG. S1. HEOM results for pqc(T") (symbols) and their best fits to the power-law function pac(7) = A/T with two parameters,
the amplitude A and the power-law exponent «. The fits are performed for wo = J = 1, in parameter regimes in which the
phonon-assisted share of the HEOM mobility is = 50% and the magnitude of the cross share is < 10%, see Figs. 4 (b) and 4 (c)
of the main text. The values of « are cited next to each dataset. Note the logarithmic scale on both axes.
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FIG. S2. HEOM results for pac(7T") (symbols) and their best fits to the power-law function pgc(T) = A/T with two parameters,
the amplitude A and the power-law exponent a. The fits are performed for wy = 3 and J = 1, in parameter regimes in which
the phonon-assisted share of the HEOM mobility is = 50% and the magnitude of the cross share is < 10%, see Figs. 6 (b)
and 6 (c) of the main text. The values of a are cited next to each dataset. For completeness, we also show HEOM data for
A = 0.25. These can be fitted to the power-law function only when the magnitude of the cross contribution falls below ~ 10%,
which happens at sufficiently high temperatures, see the red line connecting the last two squares and Fig. 6 (c) of the main
text. Note the logarithmic scale on both axes.
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SV. EVALUATING THE BOLTZMANN-EQUATION COLLISION INTEGRAL USING THE HEOM
FORMALISM

Here, we obtain the collision integral (%Ltk) for the carrier—phonon scattering in the Boltzmann approach
e—ph

starting from the HEOM. Taking the matrix element (k|...|k) of Eq. (5) of the main text for n = 0 and n = 0, we
obtain that the change in the population pi(t) = (k|p(t)|k) of the free-carrier state |k) due to the carrier—phonon
interaction is

dp
<5~tk> o -2) Im {M(kaQ)p;(f,;m(t)} : (S11)
e— qm
where we define
P (t) = (kI3 (Bl + ). (s12)

To arrive at Eq. (S11J), we use péli (t) = pé{} (). Taking the matrix element (k|...|k + ¢) of Eq. (5) of the main
text for n = OJm and n = 1, and neglecting the coupling to HEOM auxiliaries at depth 2, we obtain the following

equation for pg;m (t):

Orlogn (1) = = (£ = Eiiq = i) Dy (1) = IM (K, @) e (t) = Chupr(8)] (S13)
Integrating Eq. (S13)) in the Markov approximation pg(t — s) = pg(t) yields
t
DAy (£) = —iM (K, )" [empiyq(t) — C%pk(t)]/ ds ek kraihm)s, (514)
0
In the adiabatic approximation, one solves the integral in Eq. (S14) by letting ¢ — 400 to finally obtain ( — +0)

) « CmPhtq(t) — i (t)
t) = M(k, : 2 S15
Phogm (t) (k,q) PR — (S15)

Inserting Eq " into Eq " and using C*W = Cm and Im m = 7T6(8k — Ek+4q — Z/Jm) ylelds the
q m
following equation for py(t):

0
(g) = = Wi g opi(t) + D wrkgPrrq (D), (S16)
e—ph q

q

where the transition rate from state |k) to state |k + ¢) is given in Eq. (E3) of the main text.
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