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Dynamics of exciton formation and relaxation in photoexcited semiconductors
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We investigate the dynamics of the exciton formation and relaxation on a picosecond time scale following a
pulsed photoexcitation of a semiconductor. The study is conducted in the framework of the density matrix theory
complemented with the dynamics controlled truncation scheme. We truncate the phonon branch of the resulting
hierarchy of equations and propose the form of coupling among single-phonon-assisted and higher-order phonon-
assisted density matrices so as to ensure the energy and particle-number conservation in a closed system. Time
scales relevant for the exciton formation and relaxation processes are determined from numerical investigations
performed on a one-dimensional model for the values of model parameters representative of a typical organic
and inorganic semiconductor. The exciton dynamics is examined for different values of central frequency of
the exciting field, temperature, and microscopic model parameters, such as the strengths of carrier-carrier and
carrier-phonon couplings. We find that for typical organic semiconductor parameters, formation of bound excitons
occurs on a several-hundred-femtosecond time scale, while their subsequent relaxation and equilibration take
at least several picoseconds. These time scales are consistent with recent experimental studies of the exciton
formation and relaxation in conjugated polymer-based materials.
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I. INTRODUCTION

The continual and ever-increasing demand for economic
and efficient ways of utilizing solar energy drives a huge
part of current research activities. In particular, organic
solar cells have developed rapidly in the past decade and
have become promising candidates for economically viable
large-scale power generation due to their flexibility, cost
effectiveness, relatively simple fabrication techniques, and
mass production [1,2]. Processes upon which the operation of
solar cells is based are the light absorption in a semiconducting
material and the subsequent conversion of photons into mobile
charge carriers that produce an electric current [3,4]. An
optical excitation of a semiconductor creates an exciton, i.e.,
an electron-hole pair in which Coulomb attraction between
oppositely charged electron and hole prevents their separa-
tion. In a conventional inorganic semiconductor, relatively
weak Coulomb interaction (primarily due to large dielectric
constant) results in the exciton binding energy of the order of
10 meV [5–7]. Thus, thermal excitations are likely to split the
exciton in an electron and a hole. On the other hand, in a typical
organic semiconductor, the attraction between an electron
and a hole is much stronger (mainly due to low dielectric
constant), the exciton binding energy being of the order of or
larger than 500 meV [3,8]. Therefore, while optical absorption
in an inorganic semiconductor results in almost immediate
generation of free charges, in an organic semiconductor it
leads to formation of tightly bound electron-hole pairs, which
should be separated in order to generate current [1,3,4]. This
last conclusion has an enormous impact on the design and
geometry of organic photovoltaic devices.

Photoexcitation of a semiconductor creates electron-hole
pairs in a highly nonequilibrium state. Apart from the Coulomb
interaction, which primarily induces correlations, the carrier-
phonon interaction is also vital for a thorough understanding
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of nonequilibrium processes taking place in photoexcited
semiconductors. Theoretical approaches for treating these pro-
cesses are most often based on the density matrix theory [9,10]
or the nonequilibrium Green’s functions formalism [11].
Density matrix theory has become the preferred technique
in the treatment of experiments with ultrashort pulses since it
deals with quantities that depend on one time argument and
are directly related to observables.

Previous theoretical studies of the exciton formation pro-
cess after an ultrafast optical excitation of a semiconductor
were typically focused on inorganic semiconductors. Early
studies were conducted in the framework of the semiclassical
Boltzmann approach [12,13]. The fully microscopic and
quantum theory for the interacting system of electrons, holes,
photons, and phonons, capable of treating a wide variety of
optical and excitonic effects after an ultrafast optical excitation
of a semiconductor, was elaborated in Refs. [14–18]. On the
other hand, the exciton formation from an initial state of
two opposite charges in organic semiconductors was typically
modeled by simulating the time evolution of empirical Hamil-
tonians applied to small systems, where the effects of the lattice
are not included or are treated classically [19,20].

The main aim of this work was to investigate the dynamics
of exciton formation on short (up to several ps) time scale. This
time scale is of particular relevance for the operation of organic
solar cells since it has been well established that the exciton
separation at the interface of donor and acceptor materials
occurs on a subpicosecond time scale [21,22]. However, the
details of the exciton formation and separation process and the
factors that determine its efficiency are still not well under-
stood. In recent years, significant insights have been obtained
from subpicosecond time-resolved experiments performed
both on neat materials [23,24] and blends [25–29]. The results
of all these experiments highlight the importance of nonequi-
librium nature of excitons formed after photoexcitation.

In our study, we employ the Hamiltonian which includes
all relevant physical effects in the system: electronic coupling
which leads to band formation, electron-hole interaction
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which causes exciton formation, electron-phonon interaction
that leads to relaxation, and the interaction with external
electromagnetic field. We do not, however, include the effects
of stimulated emission which lead to radiative recombination
of excitons since we are interested in the exciton dynamics
on a short time scale, where these effects are negligible. From
the time evolution of relevant quantities, we identify the time
scale of the processes of formation of free charges and bound
excitons and their subsequent relaxation. Rather than focusing
on the details of one particular material system, we have chosen
a Hamiltonian whose parameters can be easily varied so that
we can identify the influence of different physical effects on
relevant time scales. The study is conducted in the framework
of the density matrix formalism combined with the so-called
dynamics controlled truncation (DCT) scheme, first developed
in 1994 by Axt and Stahl [30,31]. This method is particularly
suited for a system described by a pair-conserving Hamiltonian
which is initially unexcited and was successfully applied to
study the dynamics of exciton formation for near-band-gap
excitations and low-excitation densities [32–34]. Here, we
truncate the phonon branch of the hierarchy so as to ensure
that the resulting equations are compatible with the energy and
particle-number conservation in a closed system. Furthermore,
we propose the form of coupling between single-phonon-
assisted and higher-order phonon-assisted electronic density
matrices which is compatible with the energy conservation in
a closed system.

The paper is organized as follows. In Sec. II, the general
form of the Hamiltonian, along with the equations which de-
scribe the exciton formation process, is presented. Section III
is devoted to the results of our numerical investigations of
the exciton formation process which are carried out on a
one-dimensional model system. The discussion of our results
in light of recent experimental investigations of ultrafast
exciton dynamics is presented in Sec. IV, whereas concluding
remarks are given in Sec. V.

II. THEORETICAL FRAMEWORK

We use the standard two-band semiconductor model which
takes into account the interaction of carriers with the external
electromagnetic field applied to the semiconductor, as well as
carrier-carrier and carrier-phonon interactions. We will work
in the electron-hole picture which is particularly suited for
describing the effects which arise after the optical excitation of
an initially unexcited semiconductor. Notation from Ref. [35]
will be used. The Hamiltonian has the form

H = Hc + Hph + Hc-ph + Hc-f, (1)

where Hc describes interacting carriers

Hc =
∑
q∈CB

εc
qc

†
qcq −

∑
q∈VB

εv
qd

†
qdq

+ 1

2

∑
pqkl∈CB

V cccc
pqklc

†
pc

†
kclcq + 1

2

∑
pqkl∈VB

V vvvv
pqkl d

†
qd

†
l dkdp

+
∑

pq ∈ VB
kl ∈ CB

(
V vccv

plkq − V vvcc
pqkl

)
c
†
kd

†
qdpcl, (2)

Hph =
∑

μ

�ωμb†μbμ (3)

is the free-phonon Hamiltonian, Hc-ph describes the carrier-
phonon interaction

Hc-ph =
∑

pq ∈ CB
μ

(
γ μ

pqc
†
pcqb

†
μ + γ μ∗

pq c†qcpbμ

)

−
∑

pq ∈ VB
μ

(
γ μ

pqd
†
qdpb†μ + γ μ∗

pq d†
pdqbμ

)
, (4)

whereas the coupling to the optical field is given by

Hc-f = −E(t)

⎛
⎜⎜⎜⎝
∑

p ∈ VB
q ∈ CB

Mvc
pqdpcq +

∑
p ∈ CB
q ∈ VB

Mcv
pqc

†
pd†

q

⎞
⎟⎟⎟⎠. (5)

Fermi operators c
†
q (cq) create (annihilate) an electron of

energy εc
q in the single-particle state q in the conduction band,

while Fermi operators d
†
q (dq) create (annihilate) a hole of

energy −εv
q in the single-particle state q in the valence band.

Matrix elements of the Coulomb interaction potential V (x − y)
are defined as

V
λpλqλkλl

pqkl =
∫

dx dy φ
λp∗
p (x)φ

λq

q (x)V (x − y)φλk∗
k (y)φλl

l (y),

(6)

where φ
λp

p (x) are single-particle eigenfunctions for an electron
in the state p and in the band λp. Bose operators b†μ (bμ) create
(annihilate) a phonon in mode μ, while γ

μ
pq are carrier-phonon

matrix elements. We neglect intraband contributions to the
carrier-field interaction and retain only interband dipole matrix
elements.

We note that the Hamiltonian of interacting carriers
[Eq. (2)] includes the limiting cases of Wannier and Frenkel
excitons. Namely, when single-particle eigenfunctions are of
the Bloch form labeled by a wave vector k, then under suitable
approximations, described, e.g., in Ref. [36], we obtain the
Hamiltonian describing the limiting case of Wannier excitons.
On the other hand, if single-particle eigenfunctions are taken
to be atomic states labeled by a position vector R, then using
approximations that exploit localization properties of this basis
set the Hamiltonian appropriate for the limiting case of Frenkel
excitons is obtained [37].

We study the dynamics of exciton formation in photoexcited
semiconductors in the framework of the density matrix theory.
Differential equations for dynamic variables are formed and,
due to the many-body nature of the problem, an infinite
hierarchy of differential equations is obtained. The main
approximation is then the truncation of the hierarchy, which
can be based upon different physical pictures. The Hamiltonian
defined by Eqs. (1)–(5) has the property that only the
interaction with the optical field can change the number of pair
excitations. The DCT scheme relies upon the aforementioned
property of the Hamiltonian and classifies higher-order density
matrices according to their leading order in the optical
field [30,35,38]. Namely, when the system is initially in the
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ground state represented by the vacuum of electron-hole pairs,
the expectation value of the normal-ordered product of ne

electron operators c† and c, nh hole operators d† and d and
an arbitrary number of phonon operators b† and b is at least
of the order m = max{ne,nh} in the applied field. Therefore,
higher-order density matrices are also of higher order in the
optical field and only a finite number of electronic density
matrices contributes to the optical response at any given
order in the optical field. The DCT scheme truncates only
the electronic branch of the hierarchy and can be used along
with any strategy to deal with the phonon-assisted branch
of the hierarchy [7]. We limit ourselves to the case of weak
optical field and low carrier densities, in which it is justified to
neglect biexcitonic effects and keep only contributions up to
the second order in the optical field. In Refs. [32,35] a reduced
treatment of the phonon branch of the hierarchy, which can be
combined with the DCT scheme for the electronic branch of the
hierarchy, was presented. This treatment includes correlation
expansion for phonon-assisted variables combined with the
Markov approximation. As a result, phonon-assisted variables
are eliminated from the formalism and only two types of
electronic density matrices remain. These are the interband
transition amplitude (excitonic amplitude)

Yab = 〈dacb〉 (7)

and the electron-hole pair density (excitonic population)

Nabcd = 〈c†ad†
bdccd〉. (8)

In this study, we adopt a different strategy for dealing with
the phonon-assisted density matrices. In order to facilitate the
truncation of the phonon-assisted branch of the hierarchy,
the following generating functions for the phonon-assisted
electronic density matrices are defined [35]:

Y
αβ

ab = 〈dacbF̂
αβ〉, (9)

N
αβ

abcd = 〈c†ad†
bdccdF̂

αβ〉, (10)

Fαβ = 〈F̂ αβ〉 =
〈

exp

(∑
ρ

αρb
†
ρ

)
exp

(∑
ρ

βρbρ

)〉
, (11)

where {αρ} and {βρ} are arbitrary sets of real parameters.
As a consequence of the generating-function property, all
phonon-assisted electronic density matrices can be obtained
as derivatives of these functions taken at αμ = βμ = 0. The
electron and hole populations and correlations 〈c†acb〉 and
〈d†

adb〉, as well as their phonon-assisted counterparts, do
not have to be considered as independent variables in the
formalism since they can be eliminated in favor of N by
identities (contraction identities) that are exact within the
second-order treatment [35,38]. The differential equations for
variables Y

αβ

ab and N
αβ

abcd are given in Appendix A.
The most general form of an electron-hole pair state is [36]

|p〉 =
∑

a ∈ VB
b ∈ CB

ψabc
†
bd

†
a |0〉, (12)

where |0〉 represents the state in which the conduction band is
completely empty and the valence band is completely filled.

The excitonic basis is defined by the eigenvalue problem
Hc|p〉 = E|p〉 which can be transformed into equations for
amplitudes ψab:(

εc
b − εv

a

)
ψx

ab +
∑

p ∈ VB
q ∈ CB

(
V vccv

pqba − V vvcc
pabq

)
ψx

pq = �ωxψ
x
ab. (13)

The excitonic basis is orthonormal∑
a ∈ VB
b ∈ CB

ψx̄∗
ab ψx

ab = δxx̄ . (14)

We perform all calculations in the excitonic basis and expand
all density matrices in the excitonic basis, for example,

Yab =
∑

x

ψx
ab yx, (15)

Nabcd =
∑
x̄x

ψx̄∗
ba ψx

cd nx̄x, (16)

and similarly for the corresponding phonon-assisted electronic
density matrices; in the case of single-phonon assistance, the
explicit definitions are

Yabμ+ ≡ 〈dacbb
†
μ〉 =

∑
x

ψx
abyxμ+ , (17a)

Nabcdμ+ ≡ 〈c†ad†
bdccdb

†
μ〉 =

∑
x̄x

ψx̄∗
ba ψx

cdnx̄xμ+ . (17b)

The creation operator for the exciton in the state x can be
defined as

X†
x =

∑
a ∈ CB
b ∈ VB

ψx
bac

†
ad

†
b. (18)

The number of excitons in the state x, after performing the de-
coupling (which is exact up to the second order in the op-
tical field) 〈c†ad†

bdccd〉 = 〈c†ad†
b〉〈dccd〉 + δ〈c†ad†

bdccd〉, where
δ〈c†ad†

bdccd〉 stands for the correlated part of the electron-hole
pair density, can be expressed as the sum

〈X†
xXx〉 = |yx |2 + n̄xx, (19)

where n̄x̄x = nx̄x − y∗
x̄ yx . The first term in Eq. (19) de-

scribes the so-called coherent excitons, whereas the second
term describes the incoherent excitons. Namely, an optical
excitation of a semiconductor first induces single-particle
excitations in form of optical polarizations and carrier den-
sities. Optical polarizations decay very fast due to various
scattering mechanisms present [15]. Therefore, their squared
moduli, which are usually referred to as coherent excitonic
populations [32], do not provide information about the true
excitonic populations, which are the consequence of Coulomb-
induced correlations between electrons and holes and which
typically exist in the system for a long time after the decay
of optical polarizations [7]. In order to describe true excitons,
which are atomlike complexes of electrons and holes bound
by the Coulomb attraction, we have to consider two-particle
correlations between them, and not single-particle quanti-
ties [15]. The last conclusion justifies identification of the term
δ〈c†ad†

bdccd〉 with the incoherent excitonic populations.
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The dynamic equations for the relevant variables should be
compatible with the energy conservation in a system without
external fields. Our system, however, interacts with external
optical field, but, since we consider a pulsed excitation, the
energy of the system should be conserved after the field has
vanished. The total energy of the system, i.e., the expectation
value of the Hamiltonian 〈H 〉 defined in Eqs. (1)–(5), is
expressed as

E = Ec + Eph + Ec-ph + Ec-f, (20)

where the carrier energy is

Ec =
∑

x

�ωx nxx, (21)

the phonon energy is

Eph =
∑

μ

�ωμ 〈b†μbμ〉, (22)

the carrier-phonon interaction energy is

Ec-ph = 2
∑
x̄xμ

Re
{
�

μ
x̄xnx̄xμ+

}
, (23)

and the carrier-field interaction energy is

Ec-f = −E(t)
∑

x

(
M∗

xyx + y∗
x Mx

)
. (24)

In Eqs. (20)–(24) we have kept only contributions up to
the second order in the external field and transferred to the
excitonic basis. We also introduce excitonic dipole matrix
elements

Mx =
∑

a ∈ VB
b ∈ CB

ψx∗
ab Mcv

ba, (25)

as well as matrix elements of the carrier-phonon interaction in
the excitonic basis which describe the coupling to the phonon
mode μ:

�
μ

xx ′ =
∑

a ∈ VB
b ∈ CB

ψx∗
ab

(∑
k∈CB

γ
μ

bkψ
x ′
ak −

∑
k∈VB

γ
μ

kaψ
x ′
kb

)
. (26)

Within previous approaches to solving the hierarchy of
equations obtained after performing the DCT scheme, single-
phonon-assisted density matrices nx̄xμ+ , which appear in
Eq. (23), were not explicitly taken into account, but the
respective differential equations were solved in the Markov
and adiabatic approximations. However, it can be shown that
the total energy under these approximations is not exactly
conserved after the external field has vanished. In order to
satisfy the energy conservation, we retain density matrices
nx̄xμ+ as independent dynamic variables in the formalism.

The dynamics should also conserve the particle number
after the external field has vanished since all the other terms
in the Hamiltonian given by Eqs. (1)–(5) commute with the
total particle-number operator. The number of electrons (and
also the number of holes, since carriers are generated in pairs
in this model), with accuracy up to the second order in the

external field, is given as

Ntot = Ne = Nh =
∑

x

nxx. (27)

The equations for the purely electronic relevant variables
and phonon distribution function are

∂tyx = −iωxyx − 1

i�
E(t)Mx

+ 1

i�

∑
μx ′

�
μ

xx ′ yx ′μ+ + 1

i�

∑
μx ′

�
μ∗
x ′x yx ′μ− , (28)

∂tnx̄x = −i(ωx − ωx̄)nx̄x − 1

i�
E(t)

(
y∗

x̄ Mx − M∗
x̄yx

)
+ 1

i�

∑
μx ′

�
μ

xx ′nx̄x ′μ+ − 1

i�

∑
μx̄ ′

�
μ

x̄ ′x̄nx̄ ′xμ+

+ 1

i�

∑
μx ′

�
μ∗
x ′xn

∗
x ′x̄μ+ − 1

i�

∑
μx̄ ′

�
μ∗
x̄x̄ ′n

∗
xx̄ ′μ+ , (29)

∂t 〈b†μbμ〉 = 2

�

∑
x̄x

Im
{
�

μ
x̄xnx̄xμ+

}
. (30)

Even at this level, without specifying the form of equations
for one-phonon-assisted electronic density matrices, using
Eq. (29) with vanishing electric field it is easily shown that,
in the absence of external fields, our dynamics conserves the
total number of particles.

We will neglect hot-phonon effects and assume that in
all the equations for yx , nx̄x , and their phonon-assisted
counterparts the phonon numbers assume their equilibrium
values n

ph
μ = (eβ�ωμ − 1)−1. We will, however, retain Eq. (30)

in the formalism because it is necessary to prove the energy
conservation.

In equations for phonon-assisted electronic density matrices
we neglect the coupling to the light field, i.e., we neglect
contributions arising from the combined action of the phonon
coupling and the interaction with the light field (so-called
cross terms) [35,39]. The equations for the electronic den-
sity matrices with one-phonon assistance contain electronic
density matrices with two-phonon assistance, from which we
explicitly separate the factorized part and the correlated part,
for example

〈c†ad†
bdccdb

†
μbρ〉 = 〈c†ad†

bdccd〉δμρn
ph
μ + δ〈c†ad†

bdccdb
†
μbρ〉,

(31)

〈dacbb
†
μbρ〉 = 〈dacb〉δμρn

ph
μ + δ〈dacbb

†
μbρ〉. (32)

We should bear in mind that the two-phonon-assisted elec-
tronic density matrices with two creation (annihilation) phonon
operators, whose factorized part vanishes, should be consid-
ered on this level of truncation of the phonon branch [40].
Further comments on the factorization performed in Eq. (31)
are given in Appendix B. The following equations for the
electronic density matrices with single-phonon assistance are
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obtained:

∂tnx̄xμ+ = −i(ωx − ωx̄ − ωμ)nx̄xμ+ + n
ph
μ

i�

∑
x ′

�
μ∗
x ′xnx̄x ′

− 1 + n
ph
μ

i�

∑
x̄ ′

�
μ∗
x̄x̄ ′nx̄ ′x

− 1

i�

∑
ρx̄ ′

(
�

ρ∗
x̄x̄ ′δnx̄ ′xμ+ρ− + �

ρ

x̄ ′x̄ δnx̄ ′xμ+ρ+
)

+ 1

i�

∑
ρx ′

(
�

ρ∗
x ′xδnx̄x ′μ+ρ− + �

ρ

xx ′δnx̄x ′μ+ρ+
)
, (33)

∂tyxμ+ = −i(ωx − ωμ) yxμ+ + n
ph
μ

i�

∑
x ′

�
μ∗
x ′x yx ′

+ 1

i�

∑
ρx ′

(
�

ρ

xx ′δyx ′μ+ρ+ + �
ρ∗
x ′xδyx ′μ+ρ−

)
, (34)

∂tyxμ− = −i(ωx + ωμ) yxμ− + 1 + n
ph
μ

i�

∑
x ′

�
μ

xx ′ yx ′

+ 1

i�

∑
ρx ′

(
�

ρ

xx ′δyx ′ρ+μ− + �
ρ∗
x ′xδyx ′ρ−μ−

)
. (35)

The correlated parts of two-phonon-assisted density matri-
ces appearing in Eqs. (33) (δnx̄xμ+ρ− ,δnx̄xμ+ρ+ ), (34), and (35)
can be obtained solving their respective differential equations,
in which all three-phonon-assisted density matrices have been
appropriately factorized and their correlated parts have been
neglected, in the Markov and adiabatic approximations. This
procedure closes the phonon branch of the hierarchy. However,
the full solution to these equations, when combined with
Eq. (33), is cumbersome to evaluate, so further approximations
are usually employed. The most common one is the so-
called random phase approximation, which neglects sums
over correlated parts of one-phonon-assisted electronic density
matrices (which are complex quantities) due to random phases
at different arguments of these density matrices [9]. After
performing all the discussed approximations, the last two
summands in Eq. (33), which represent the rate at which nx̄xμ+

changes due to the coupling to electronic density matrices with
higher phonon assistance, reduce to

(∂tnx̄xμ+ )higher = −γx̄xμnx̄xμ+ , (36)

where γx̄xμ is given as

γx̄xμ = 1
2 (�x + �x̄), (37)

�x = 2π

�

∑
x̃ρ

[∣∣�ρ
xx̃

∣∣2δ(�ωx − �ωx̃ + �ωρ)nph
ρ

+ ∣∣�ρ
x̃x

∣∣2δ(�ωx − �ωx̃ − �ωρ)
(
1 + nph

ρ

)]
. (38)

Details of the procedure employed to close the phonon branch
of the hierarchy are given in Appendix B.

It was recognized that this form of the coupling to higher-
order phonon-assisted electronic density matrices is at variance
with the energy conservation [9,10,41]. In this work, we will

use the following form of the coupling to higher-order phonon-
assisted density matrices:

(∂tn
(+)
x̄xμ)higher = −γx̄xμn

(+)
x̄xμ + γx̄xμn

(+)∗
x̄xμ , (39)

where γx̄xμ is, as before, defined by Eqs. (37) and (38).
This form of (∂tn

(+)
x̄xμ)

higher
is compatible with the energy

conservation, as long as excitonic matrix elements of the
carrier-phonon interaction �

μ
x̄x are purely real, which is the

case relevant for our numerical investigation in Sec. III.
Namely, as is shown in Appendix C, the rate at which the
total energy changes after the pulse is equal to the rate at
which the carrier-phonon interaction energy changes due to
the coupling of the single-phonon-assisted electronic density
matrices nx̄xμ+ to density matrices with higher-order phonon
assistance,

∂t E = (∂t Ec-ph)higher

= 2
∑
x̄xμ

Re
{
�

μ
x̄x(∂t nx̄xμ+ )higher

}
. (40)

It is then clear that, if all �μ
x̄x are real, the form of (∂t nx̄xμ+ )higher

given in Eq. (39) does not violate the energy conservation.
Furthermore, as nx̄xμ+ describes the elementary process in
which an exciton initially in the state x is scattered to the state x̄

emitting the phonon from the mode μ, the reverse microscopic
process, described by nxx̄μ− = n∗

x̄xμ+ , is also possible, so in the
differential equation for nx̄xμ+ the quantity n∗

x̄xμ+ may appear.
In Appendix C, we comment on the energy conservation in
greater detail.

Similar strategy can be adopted to simplify the coupling
to electronic density matrices with higher phonon assistance
in (34) and (35), with the final result

(∂ty
(±)
xμ )higher = −γxμ y(±)

xμ , (41)

where

γxμ = 1
2�x, (42)

and �x is defined in Eq. (38).
An alternative route to derive equations for the relevant

variables is to rewrite the Hamiltonian given in Eq. (1) in terms
of operators Xx,X

†
x [see Eq. (18)], keeping only contributions

whose expectation values are at most of the second order in
the optical field. The result is

H =
∑

x

�ωxX
†
xXx +

∑
μ

�ωμb†μbμ

+
∑
μx̄x

(
�

μ
x̄xX

†
x̄Xxb

†
μ + �

μ∗
x̄x X†

xXx̄bμ

)

− E(t)
∑

x

(M∗
xXx + MxX

†
x). (43)

The excitonic operators (up to the second order in the optical
field) satisfy Bose commutation relations [Xx,X

†
x̄] = δxx̄ . In

this representation [42], the excitons are treated as noninter-
acting bosons and the form of the exciton-phonon interaction
is transparent, with exciton-phonon coupling constants �

μ
x̄x

defined in Eq. (26).
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III. ONE-DIMENSIONAL SEMICONDUCTOR MODEL
AND NUMERICAL RESULTS

Numerical computations will be carried out on a two-band
one-dimensional semiconductor model. We use a tight-binding
model on a one-dimensional lattice with N sites and lattice
spacing a to describe the semiconductor. Periodic boundary
conditions are used. The Hamiltonian describing interacting
carriers is given as

Hc =
N−1∑
i=0

εc
0 c

†
i ci −

N−1∑
i=0

J c(c†i ci+1 + c
†
i+1ci)

−
N−1∑
i=0

εv
0 d

†
i di +

N−1∑
i=0

J v(d†
i di+1 + d

†
i+1di)

+ 1

2

N−1∑
i,j=0

(c†i ci − d
†
i di)Vij (c†j cj − d

†
j dj ). (44)

It is assumed that the carrier transfer integrals J c,J v are
nonzero only among nearest-neighbor pairs of sites. The
Coulomb interaction is taken in the lowest monopole-
monopole approximation [43], and the interaction potential
Vij is taken to be the Ohno potential

Vij = U√
1 + ( |i−j |a

a0

)2 . (45)

U is the onsite carrier-carrier interaction, while a0 is the char-
acteristic length given as a0 = e2/(4πε0εrU ), where εr is the
static relative dielectric constant. This form of carrier-carrier
interaction is an interpolation between the onsite Coulomb
interaction U and the ordinary Coulomb potential (in which the
static relative dielectric constant is taken) e2/(4πε0εrr) when
r → ∞ (see, e.g., the discussion on the effective electron-hole
interaction in Ref. [5]). The interaction with phonons is taken
to be of the Holstein form, where a charge carrier is locally
and linearly coupled to a dispersionless optical mode

Hc-ph =
N−1∑
i=0

gc c
†
i ci(bi + b

†
i ) −

N−1∑
i=0

gv d
†
i di(bi + b

†
i ), (46)

where the free-phonon Hamiltonian is

Hph =
N−1∑
i=0

�ωphb
†
i bi . (47)

Despite the fact that the carrier-phonon interaction in real
materials has a more complicated form, we choose for our
numerical investigations its simplest possible form [Eq. (46)]
capable of providing the energy relaxation of the electronic
subsystem. The interaction with the electric field is

Hc-f = −dcvE(t)
N−1∑
i=0

(dici + c
†
i d

†
i ). (48)

As the system described is translationally symmetric, we
can transfer to the momentum space and obtain the same
Hamiltonian as described in Eqs. (1)–(5) with the following

values of parameters:

ε
c/v
k = ε

c/v
0 − 2J c/v cos(ka), (49a)

γ
q

k1k2
= δk2,k1+q

gc

√
N

for k1,k2 ∈ CB, (49b)

γ
q

k1k2
= δk1,k2+q

gv

√
N

for k1,k2 ∈ VB, (49c)

V vvcc
pqkl = δk+q,p+lVk−l , V vccv

plkq = 0. (49d)

The signs of the transfer integrals are J c > 0, J v < 0. The
constant energy εc

0 > 0, while εv
0 < 0 is chosen so that the

maximum of the valence band is the zero of the energy scale.
Vk−l is the Fourier transformation of the Ohno potential and it
is computed numerically as

Vk = 1

N2

N−1∑
i,j=0

Vij e
−ika(i−j ). (50)

The translational symmetry of our model enables us to
solve efficiently the eigenvalue problem (13) which defines
the excitonic basis. Instead of solving eigenvalue problem of
a N2 × N2 matrix, we can solve N -independent eigenvalue
problems of matrices of dimension N × N , thus obtaining
N2 excitonic eigenstates and their eigenenergies, which are
counted by the center-of-mass wave vector Q and the band
index ν. Thus, the general index of an excitonic state x should
be, in all practical calculations, replaced by combination
(Q,ν). This has the following consequences on the matrix
elements in the excitonic basis: dipole matrix elements reduce
to

M(Qν) = δQ,0 dcv

∑
ke

ψ
(Qν)∗
Q−ke,ke

, (51)

whereas carrier-phonon interaction matrix elements reduce to

�
q

(Qν)(Q′ν ′) = δQ′,Q+q

1√
N

∑
ke

ψ
(Qν)∗
Q−ke,ke

× (gcψ
(Q′ν ′)
Q−ke,Q′−Q+ke

− gvψ
(Q′ν ′)
Q′−ke,ke

)
. (52)

Due to the translational symmetry of our model, only the
dynamic variables for which the total created wave vector is
equal to the total annihilated wave vector will have nontrivial
values in the course of the system’s evolution. For example,
from all density matrices y(Qν) only those with Q = 0 can have
nonzero values.

Our objective is to analyze, in the framework of this rela-
tively simple model, the characteristic time scales of exciton
formation and relaxation in a photoexcited semiconductor,
along with the impact that various model parameters have
on these processes. Basic parameters in our model are transfer
integrals J c,J v (which determine bandwidths of the conduc-
tion and valence bands), electron-phonon coupling constants
gc,gv, the phonon energy �ωph, the dielectric constant εr , and
the onsite Coulomb interaction U . We will, throughout the
computations, assume for simplicity that J c = J v = J and
gc = gv = g.

As is well known, the main differences between a typical
organic and inorganic semiconductor can be expressed in terms
of bandwidths, dielectric constant, and the carrier-phonon
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interaction strength. Namely, inorganic semiconductors are
characterized by wide bands and high value of dielectric
constant, whereas organic semiconductors have narrow bands
and small value of dielectric constant. The carrier-phonon
interaction is stronger in organic than in inorganic semi-
conductors. Having all these facts in mind, we propose two
sets of model parameters which assume values typical of an
organic and inorganic semiconductor. Values of our model
parameters are adjusted to material parameters of GaAs for
the inorganic case and pentacene for the organic case. Values
of carrier-phonon coupling constants are chosen to correspond
to typical values for mobility and/or typical values for the
polaron binding energy.

Typical bandwidths in organic semiconductors are W ∼
500 meV [8], which corresponds to the transfer integral J ∼
125 meV, whereas inorganic semiconductors usually exhibit
bandwidths of several electronvolts [8] and we take in our
calculations the value of the transfer integral J = 500 meV.
In both cases, the lattice constant was fixed to a = 1 nm. The
dielectric constant in a typical inorganic semiconductor is of
the order of 10 and in the calculations we take the value of static
dielectric constant of GaAs εr = 12.9. For a representative
value of the dielectric constant in organic semiconductors
we take εr = 3.0 [4,8]. The value of the onsite Coulomb
interaction U is chosen to give the correct order of magnitude
for the exciton binding energy, which is calculated numerically.
For the organic parameter set, we set U = 480 meV, which
gives the exciton binding energy around 320 meV, while for the
inorganic parameter set U = 15 meV and the corresponding
exciton binding energy is roughly 10 meV.

The carrier-phonon coupling constants for the inorganic
case are estimated from the mobility values. The mobility of
carriers is estimated using the relation μ = eτ/m∗, where τ

is the scattering time and m∗ is the effective mass of a carrier.
For cosine bands considered in this work, m∗ = �

2/(2|J |a2)
in the vicinity of the band extremum. The scattering time is
estimated from the expression for the carrier-phonon inelastic
scattering rate based on the Fermi’s golden rule, which around
the band extremum k = 0 assumes the following form:

1

τ (k)
= g2

�|J |
nph√

1 − ( cos(ka) − �ωph

2|J |
)2 , (53)

where nph = (eβ�ωph − 1)−1. Therefore, the carrier-phonon
coupling constant in terms of the carrier mobility reads as

g = |J |
√

2ea2

�μnph

[
1 −

(
1 − �ωph

2|J |
)2
]1/4

. (54)

Using the value for the electron mobility in GaAs at
300 K μe ≈ 8500 cm2/(Vs) [44], we obtain g ≈ 25 meV.

We can also estimate the carrier-phonon coupling constants
from the polaron binding energy. As an estimate of this
quantity, we use the result of the second-order weak-coupling
perturbation theory at T = 0 in the vicinity of the point
k = 0 [45]:

ε
pol
b (k) = g2

2|J |
1√(

cos(ka) + �ωph

2|J |
)2 − 1

. (55)

TABLE I. Model parameters which are representative of a
typical organic and inorganic semiconductor. References from which
material parameters are taken are indicated.

Parameter Inorganic Organic

Eg (meV) 1519 [32] 2000 [47]
J (meV) 500 125
εr 12.9 [32] 3.0 [8]
g (meV) 25 40
�ωph (meV) 36.4 [32] 10.0 [48,49]
U (meV) 15 480

It is known that polaron binding energies in typical inorganic
semiconductors are ε

pol
b ∼ 1 meV and we used this fact along

with Eq. (55) to check our estimate for g from the value
of mobility; for g ≈ 25 meV, we obtain ε

pol
b ≈ 2 meV. The

polaron binding energies in polyacenes lie in the range
between 21 and 35 meV [46]. The value of g in the set of
model parameters representative of organic semiconductors
was estimated from the polaron binding energy in pentacene,
which is around 20 meV. We obtain that g ≈ 40 meV. The
values used for the organic/inorganic set of parameters are
listed in Table I.

The form of the electric field is assumed to be a rectangular
cosine pulse

E(t) = E0 cos(ωct)θ (t + t0)θ (t0 − t), (56)

where ωc is the central frequency of the field and θ (t) is the
Heaviside step function. Time t0 is chosen large enough so
that the pulse is so spectrally narrow that the notion of the
central frequency makes sense. On the other hand, the pulse
should be as short as possible, so that after its end we observe
the intrinsic dynamics of our system, the one which is not
accompanied by the carrier generation process, but merely
shows how initially generated populations are redistributed
among various states. Trying to reconcile the aforementioned
requirements, we choose t0 = 250 fs. The amplitude of the
electric field E0 and the interband dipole matrix element dcv are
chosen so that we stay in the low-density regime; particularly,
we choose them so that the corresponding Rabi frequency
�ωR = dcvE0 assumes the value of 0.2 meV, which is smaller
than any energy scale in our problem and ensures that the
excitation is weak.

In order to quantitatively study the process of exciton
formation after a pulsed excitation of a semiconductor,
we solved the system of quantum kinetic equations for
electronic density matrices yx,nx̄x and their single-phonon-
assisted counterparts [Eqs. (28), (29), (33), (34), and (35)
supplemented with Eqs. (36) and (41)] using the fourth-order
Runge-Kutta algorithm. The computations are performed for
the temperature T = 300 K and the central frequency of the
pulse equal to the single-particle gap (�ωc = Eg). The exciton
is considered bound (unbound) if its energy �ω(Qν) is smaller
(larger) than the smallest single-particle energy difference
εc
ke

− εv
Q−ke

[47]. The equation of the boundary line which
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separates bound from unbound pair states reads as

εsep(Q) = εc
0 − εv

0 − 2
√

(J c)2 + (J v)2 − 2J cJ v cos(Qa).

(57)

An unbound exciton may be considered as (quasi)free electron
and hole, so this way it is possible to distinguish between bound
excitons and free carriers.

The pulsed excitation of a semiconductor leads, in the first
step, to the generation of coherent electron-hole pairs that are
described in our formalism by the coherent pair amplitudes yx .
The decay of the coherent pair occupation

Ncoh =
∑

x

|yx |2 (58)

is due to the scattering processes which initiate already during
the generation of the pairs and gives a direct measure of the
loss of coherence [32]. At the same time, incoherent pair
occupations start to grow, driven by the loss rate of coherent
pair occupations [32,35]. In order to quantify the process of
exciton formation, we will follow the time dependence of the
total number of incoherent bound excitons

Nincoh,b =
∑

x∈bound

(nxx − |yx |2). (59)

This quantity represents the number of truly bound electron-
hole pairs which exist even after the optical field has vanished
and as such is the direct measure of the efficiency of the exciton
formation process. We will, when useful, also consider the
number of incoherent excitons in a particular band ν, Nincoh,ν .
The quantities Nincoh,b and Nincoh,ν will be normalized to the
total number of excitons Ntot defined in Eq. (27).

A. Numerical results: Organic set of parameters

We start this section by an overview of properties of the
excitonic spectrum, shown in Fig. 1(a), which will be relevant
for further discussions of the exciton formation process. The
lowest excitonic band is energetically well separated from
the rest of the spectrum, the energy separation between the
minima of the bands ν = 0 and 1 being around 200 meV,
which is much larger than both the value of kBT at room
temperature and the phonon energy in our model (see Table I).
As a consequence, downward transitions that end at the lowest
excitonic band start almost exclusively from the states on ν = 1
band and an exciton, which is at some instant in a state on
the ν = 0 band, cannot be scattered to an unbound excitonic
state.

We briefly comment on the size of the exciton for these
values of model parameters. From the exciton wave function
ψ

(Qν)
Q−ke,ke

in k space, we can obtain the exciton wave function
in real space performing the Fourier transformation

ψ (Qν)
re,rh

=
∑
ke

ei(Q−ke)rheikereψ
(Qν)
Q−ke,ke

= eiQ(re+rh)/2
∑
ke

e−i(Q−2ke)(re−rh)/2ψ
(Qν)
Q−ke,ke

. (60)

The exciton wave function in real space is a product of the
plane wave which describes the motion of the center of mass

-40 -20 0 20 400

0.2

0.4
ν=0
ν=1
ν=2
ν=3

FIG. 1. (Color online) (a) Excitonic spectrum for the organic set
of parameters. Dots represent individual excitonic states (Q,ν), while
thick red line is the boundary between bound and unbound excitonic
states computed using Eq. (57). (b) Squared modulus of the wave
function which describes the relative motion of an electron-hole pair
[Eq. (61)] calculated for different states (Q = 0,ν). Mean electron-
hole separations in these states are 0.7a (ν = 0), 2.5a (ν = 1), 4.6a

(ν = 2), and 7.8a (ν = 3). Computations are performed for N = 101.

with the wave vector Q and the wave function of the relative
motion of an electron and a hole:

ψ rel
(Q,ν) =

∑
ke

e−i(Q−2ke)(re−rh)/2ψ
(Qν)
Q−ke,ke

. (61)

The latter part is directly related to the exciton size. We
calculated squared modulus of the wave function of the
relative motion of a pair for states (Q = 0,ν) in various bands.
The result is shown in Fig. 1(b). It is clearly seen that an
electron and a hole are tightly bound in these states and
their relative separations are of the order of lattice constant,
which is the typical value for the exciton radius in organic
semiconductors. We point out that this does not mean that an
exciton is localized; due to the translational symmetry of our
system, it is delocalized over the whole lattice, as described by
the plane-wave factor in the total wave function of a pair.
Moreover, we note that the system size N = 101 is large
enough for the results to be numerically accurate, as it is much
larger than the typical size of the exciton in a bound state.
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FIG. 2. (Color online) Time dependence of the relative number
of incoherent bound excitons for different central frequencies of the
pulse.

The impact that different parameters have on the exciton
formation process is studied by changing one parameter, at
the same time fixing the values of all the other parameters
to the previously mentioned ones. We performed all the
computations for a limited number of lowest excitonic bands,
which crucially depends on the central frequency ωc of the
excitation. For the given excitation, we took into account all
the bands whose minima lie below �ωc + αkBT , where α ∼ 5
is a numerical constant.

We will first discuss the exciton formation process for
different central frequencies of the exciting pulse. We have
considered central frequencies in resonance with (Q = 0,

ν = 1) state, (Q = 0, ν = 2) state, single-particle gap, and
the central frequency which is 100 meV above the band gap.
As can be noted from Fig. 2, raising the central frequency of
the laser field leads to lower relative number of incoherent
bound excitons. Namely, the higher is the central frequency,
the higher (in energy) are the bands in which the initial
coherent excitonic populations are created and the slower is
the conversion of these coherent populations to incoherent
populations in lower excitonic bands. However, in the long-
time limit, the relative number of incoherent bound excitons
should not depend on the central frequency of the laser,
but tend to the value predicted by the Maxwell-Boltzmann
distribution, which is above 99%. Such a high value is due
to the large energy separation between the lowest excitonic
band and the rest of the spectrum. We can thus infer, based on
Fig. 2, that the semiconductor dynamics right after the pulsed
excitation shows highly nonequilibrium features. Relaxation
towards equilibrium occurs on a time scale longer than the
picosecond one.

Next, we consider the dependence of the exciton formation
process on temperature. The temperature enters our model
only through phonon numbers nph. The overall behavior of
the relative number of incoherent bound excitons for different
temperatures is shown in Fig. 3. During the pulse, the relative
number of incoherent bound excitons is highest for T = 300 K
and lowest for T = 100 K, which is the consequence of the fact
that scattering processes from higher excitonic bands (in which
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0.8
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FIG. 3. (Color online) Time dependence of the relative number
of incoherent bound excitons for different temperatures. The inset
shows the portions of the same curves after the pulse.

initial coherent excitonic populations are created and which are
situated both in the pair continuum and below it) towards lower
excitonic bands are most efficient at T = 300 K. After the
generation of carriers has been completed, phonon-mediated
processes lead to the redistribution of created incoherent exci-
tons among different excitonic states and the relative number
of incoherent bound excitons increases with decreasing the
temperature, which is the expected trend. In the inset of
Fig. 3 we also note that the relative number of incoherent
bound excitons after the pulse experiences an initial growth
followed by a slow decay at T = 300 K, whereas at T = 100
K it monotonically rises. The initial growth at T = 300 K is
attributed to downward scattering processes, but since at this
temperature upward scattering events cannot be neglected, the
following slow decay is due to the fact that some excitonic
bands well below the pair continuum (bands ν = 1,2,3) lose
excitons both by downward scattering and upward scattering
to excitonic states which are near to or belong to the pair
continuum [see Figs. 4(a) and 4(b)]. At T = 100 K, these
upward processes are much less probable than downward
processes, thus the decay of the relative number of incoherent
bound excitons is not observed; in Figs. 4(c) and 4(d) we see
that lowest excitonic bands (ν = 0,1,2) gain excitons, whereas
bands which are near to or belong to the pair continuum
(ν = 9,11,13,15) lose excitons. The population of the lowest
excitonic band ν = 0 continually grows at all the temperatures
studied, due to the large energetic separation between this band
and the rest of the spectrum.

We briefly comment on the behavior of the number of
coherent excitons Ncoh and its temperature dependence. Right
after the start of the pulse, coherent excitons comprise virtually
the total excitonic population (see Fig. 5). Due to the carrier-
phonon interaction, the relative number of coherent excitons
decays during the pulse, so that at its end coherent excitons
comprise around 1% of the total excitonic population. The
conversion from coherent to incoherent populations is thus
almost completed by the end of the pulse. From the inset of
Fig. 5, we note that Ncoh/Ntot exhibits a very fast decay after
the pulse has vanished, with decay times of the order of 50 fs or
less. Therefore, we infer that the transformation from coherent
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FIG. 4. (Color online) Time dependence of the relative popula-
tion of various excitonic bands for different temperatures T = 300 K
for panels (a) and (b) and T = 100 K for panels (c) and (d). Panels
(a) and (c) concern bands which are well below the pair continuum
(ν = 0,1,2,3), whereas panels (b) and (d) deal with the bands which
are near the continuum (ν = 9) or in the continuum (ν = 11,13,15).

to incoherent excitonic populations takes place on a 50-fs time
scale. Based on Fig. 5, we also note that the lower is the
temperature, the slower is the transformation from coherent to
incoherent excitonic populations, which is the expected trend.

We continue our investigation by examining the effects that
changes in the carrier-phonon coupling constant g have on
the exciton formation process. Since increasing (lowering)
g increases (lowers) semiclassical transition rates, just as
increasing (lowering) T does, the changes in g and T should
have, in principle, similar effects on the exciton formation
process. Considering first the relative number of incoherent
bound excitons, whose time dependence for different values
of g is shown in Fig. 6(a), we note that after the end of the
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FIG. 5. (Color online) Time dependence of the relative number
of coherent excitons for different temperatures. The inset shows the
portions of the same curves (note the logarithmic scale on the vertical
axis) after the pulse.
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FIG. 6. (Color online) Time dependence of (a) the relative num-
ber of incoherent bound excitons, (b) the relative number of
incoherent excitons in the ν = 0 band, for various values of g. The
inset in the panel (a) shows the portions of the same curves after the
pulse.

pulse it increases with decreasing g. However, during the pulse,
higher values of g lead to more incoherent bound excitons,
as is expected since scattering processes which populate
low-energy states are more intensive for larger g. We also
show the time dependence of the relative number of excitons
in ν = 0 band in Fig. 6(b). It is observed that the lower is g, the
lower is the number of excitons in the lowest excitonic band.
This is due to the fact that populations on the lowest band are
generated mainly via scattering processes from the ν = 1 band
and these processes are less efficient for smaller g.

We conclude this section by studying the effects that
changes in the onsite Coulomb interaction U have on the
process of exciton formation. Changing U has profound effects
on the excitonic spectrum. Exciton binding energy lowers with
lowering U along with the energy separation between the band
ν = 0 and the rest of the spectrum. We studied the impact of
U on the exciton formation process for three values of U ,
U = 480, 240, and 48 meV, for which the exciton binding
energy is ∼ 320, ∼ 175, and ∼ 40 meV, respectively. Lowering
U lowers the relative number of incoherent bound excitons,
as is shown in Fig. 7. Smaller energy separation between the
lowest excitonic band and the rest of the spectrum means that
phonon-mediated transitions which start/end on the band ν =
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FIG. 7. (Color online) Time dependence of the relative number
of incoherent bound excitons for various values of U . The inset shows
the portions of the same curves after the pulse.

0 can end/start not predominantly on the band ν = 1, but also
on higher excitonic bands, which, for lower U , are more certain
to belong to the electron-hole pair continuum than to the part of
the spectrum which contains bound pair states. Thus, the lower
is U , the more likely are the dissociation processes in which
an exciton, initially in a bound state, after a phonon-mediated
transition ends in an unbound pair state, which explains the
observed trend in the relative number of incoherent bound
excitons. This agrees with the usual picture according to which
thermal fluctuations are likely to dissociate loosely bound
electron-hole pairs. For U = 48 meV, in the long-time limit
and according to the Maxwell-Boltzmann distribution, around
78% of the total number of excitons should be in bound states,
whereas for the other two values of U this number is above
99%. Thus, the dynamics observed is highly nonequilibrium,
but unlike the cases U = 480 and 240 meV, in which we cannot
observe that the relative number of incoherent bound excitons
starts to tend to its equilibrium value, for U = 48 meV we
observe such a behavior (see the inset of Fig. 7).

In summary, we list the time scales of the exciton formation
and relaxation that stem from our computations. The transfor-
mation from coherent to incoherent excitons takes place in
less than 50 fs. A significant number of incoherent bound
excitons are established on a time scale of several hundreds of
femtoseconds, whereas the subsequent relaxation of excitonic
populations occurs on a time scale longer than the picosecond
one. Further discussion of these results is deferred for Sec. IV.

B. Numerical results: Inorganic set of parameters

In this section, we will investigate the exciton formation
process in the case when material parameters assume values
typical of inorganic semiconductors, i.e., relatively large band-
widths, large dielectric constant (weak Coulomb interaction),
and weak carrier-phonon interaction. The excitonic spectrum
is shown in Fig. 8(a). We see that almost all excitonic bands
belong to the pair continuum, except for a couple of lowest
bands, which is more clearly seen in the inset of Fig. 8(a). This
is an entirely different situation from the one that we encounter

-50 0 50
0

0.02

0.04

ν=0
ν=1
ν=2
ν=3

FIG. 8. (Color online) (a) Excitonic spectrum for the inorganic
set of parameters. Dots represent individual excitonic states (Q,ν),
while thick red line is the boundary between bound and unbound
excitonic states computed using Eq. (57). The inset shows the same
spectrum in the range of energies around the single-particle gap.
(b) Squared modulus of the wave function which describes the relative
motion of an electron-hole pair [Eq. (61)] calculated for different
states (Q = 0,ν). Mean electron-hole separations are 9.1a (ν = 0)
and 29.4a (ν = 1), while states (Q = 0, ν = 2) and (Q = 0, ν = 3)
are not bound. Computations are performed for N = 151.

for the organic set of parameters, where large energy separation
of the lowest excitonic band from the rest of the spectrum
was crucial to understand the exciton formation process. As a
consequence, excitons in bound states are likely to scatter to a
state in the pair continuum, in contrast to the situation for the
model parameters representative of an organic semiconductor.

Having noted the important characteristics of the excitonic
spectrum, we move on to comment briefly on the exciton size
for the inorganic set of parameters. We plot in Fig. 8(b) the
squared modulus of the wave function of the relative motion
of the pair, which is defined in Eq. (61). We note that for
the inorganic set of parameters, electron and hole are not as
tightly bound as for the organic set of parameters, which is
in accord with the fact that excitons in a typical inorganic
semiconductor have large radii, typically of the order of 10
lattice constants [5,6]. From Fig. 8(b), it is also clear that, if
we are to see the lowest excitonic state (Q = 0, ν = 0) as a

235208-11
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FIG. 9. (Color online) (a) Time dependence of the relative num-
ber of incoherent bound excitons for excitation resonant with the
single-particle gap and the one which is 100 meV above it. The
temperature in both cases is T = 300 K. (b) Time dependence
of the relative number of incoherent bound excitons for various
temperatures. The central frequency of the laser pulse is 100 meV
above the single-particle gap.

bound pair, we should take the system size N � 120. We opted
for N = 151 because this value makes a good compromise
between the minimal size of the system needed for the results
to be numerically accurate and the computational time.

For the inorganic set of parameters, we note that incoherent
unbound excitons comprise the major part of the total excitonic
population [see Fig. 9(a)], which is different from the case
when model parameters assume values representative of an
organic semiconductor, when excitons in bound states prevail.
Considering an unbound exciton as quasifree electron and hole,
we interpret the last observation in the following manner: after
an optical excitation of an organic semiconductor, (strongly)
bound electron-hole pairs (excitons) are mainly generated,
whereas in the case of an inorganic semiconductor an optical
excitation predominantly generates (quasi)free charges. In
Fig. 9, we also note that for higher central frequency of the
laser field, the relative number of bound excitons is lower.
However, in the long-time limit the number of incoherent
bound excitons should assume the value predicted by the
Maxwell-Boltzmann distribution, which is around 36.5%,

irrespectively of the central frequency of the pulse. The values
of the relative number of incoherent bound excitons at the end
of our computations do not strongly deviate from the value
predicted by the Maxwell-Boltzmann distribution, in contrast
to the situation for the organic set of parameters, where this
deviation was more pronounced (see Fig. 2). It can thus be
inferred that nonequilibrium features of the semiconductor
dynamics after a pulsed excitation are more pronounced for
the organic than for the inorganic set of parameters.

Finally, we comment on the temperature dependence of the
exciton formation process for the excitation whose central
frequency is 100 meV above the single-particle gap. The
lower is the temperature, the higher is the relative number
of the incoherent bound excitons [see Fig. 9(b)]. During the
pulse, higher temperature leads to higher relative number of
incoherent bound excitons, which has already been explained
in the section dealing with the organic set of parameters. The
long-time limit values of the relative number of incoherent
bound excitons are 44.7% for T = 200 K and 62.7% for
T = 100 K. In all three cases, the dynamics is highly
nonequilibrium, but it displays the trend of a slow, but
monotonic, approach towards the equilibrium.

IV. DISCUSSION

In this section, we discuss the time scales of exciton forma-
tion and relaxation processes obtained from our calculations
in light of recent subpicosecond time-resolved experiments. In
Ref. [23], femtosecond-resolved fluorescence up-conversion
spectroscopy was applied to investigate the exciton dynamics
in pristine PCDTBT polymer. The results obtained were
interpreted to originate from formation of free charges on
less than 100 fs time scale, followed by formation of bound
excitons in less than 1 ps and their further relaxation at a
longer time scale. Similar results were obtained in Ref. [24]
for P3HT polymer. Despite the fact that our Hamiltonian
does not include the effects of disorder that are present
in real materials and uses an oversimplified form of the
carrier-phonon interaction, we obtain time scales consistent
with these data in our computations. Namely, for the organic
parameter set we find that significant population of bound
excitons is formed on the time scale of several hundreds
of femtoseconds and that their further relaxation occurs for
at least several picoseconds. These conclusions are further
corroborated by fitting the relative number of incoherent bound
excitons Nincoh,b/Ntot after the carrier generation has been
completed to a sum of three exponentially decaying terms.
For the organic parameter set, we obtain characteristic time
scales of ∼50 fs, ∼500 fs and �1 ps. We attribute the fastest
time scale to decoherence processes which are responsible
for conversion from coherent (|yx |2) to incoherent (n̄xx)
populations due to the interaction with phonons. The time scale
of ∼500 fs may be associated with the buildup of the Coulomb-
induced correlations between electrons and holes by formation
of bound incoherent electron-hole pairs via phonon-assisted
scattering processes. After this time scale, however, intraband
coherences n̄x̄x (x̄ 
= x), as well as single-phonon-assisted
density matrices nx̄xμ+ , still have significant values. In the
long-time limit, these variables asymptotically vanish, and we
remain only with incoherent populations whose dynamics will
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eventually lead to thermalized distribution of excitons [35].
As our computations are certainly not long enough to observe
these effects, we speculate that the slowest time scale we obtain
may be related to the decay of the intraband coherences and/or
phonon-assisted variables.

Next, we comment on the relation of our results with recent
experimental insights which have challenged the commonly
accepted physical picture of the generation of free charges in
bulk heterojunction solar cells. Namely, it is widely believed
that physical processes leading to current generation are
formation of bound excitons due to light absorption in the
donor material, their diffusion to the donor/acceptor interface,
and their subsequent separation at the interface [4]. From
the discrepancy between the distance that a donor exciton
can diffuse in 100 fs and the distance it has to cover in
order to reach the donor/acceptor interface in efficient bulk
heterojunction solar cells, Cowan et al. [25] conclude that
the subpicosecond charge transfer to the acceptor occurs
before exciton formation in the donor. The results of our
computations, which indicate that the formation of incoherent
bound excitons occurs on a ∼500-fs time scale, are therefore
consistent with their observations. The formation of hot
charge transfer excitons which occurs in less than 100 fs and
which is followed by their relaxation to lower energies and
shorter electron-hole distances on a picosecond time scale was
experimentally observed in a small molecule CuPc/fullerene
blend using time-resolved second harmonic generation and
time-resolved two-photon photoemission [28]. The presence
of hot charge transfer excitons, which are delocalized, i.e., in
which the electron-hole separation is rather large, and their
essential role in subpicosecond charge separation in efficient
OPV systems were also identified in Refs. [26,27,29]. Our
simulation results that indicate exciton equilibration times
longer than picoseconds are fully consistent with observations
that during charge separation at the donor/acceptor interface
the excitons remain out of equilibrium (hot excitons).

V. CONCLUSION

In conclusion, we have investigated the exciton dynamics
in a photoexcited semiconductor on a picosecond time scale.
The study was conducted on the two-band semiconductor
Hamiltonian, which includes relevant physical effects in
the system, using the density matrix theory combined with
the DCT scheme. We truncate the phonon branch of the
hierarchy and propose the form of coupling between electronic
density matrices with single-phonon assistance and higher-
order phonon assistance so as to achieve the compatibility
of the resulting equations with the energy and particle-number
conservation in a system without external fields. The numerical

study aiming at identifying time scales of exciton formation
and relaxation processes was performed on a one-dimensional
model system for the values of model parameters represen-
tative of a typical organic and inorganic semiconductor. We
concluded that the dynamics on a picosecond time scale
shows highly nonequilibrium features, relaxation processes
towards equilibrium occurring on a longer time scale. While
for the organic set of parameters the excitons generated are
mainly tightly bound, for the inorganic set of parameters
the major part of excitons is in unbound pair states and
may thus be considered as (quasi)free electrons and holes.
In other words, a photoexcitation of an initially unexcited
organic semiconductor leads to creation of bound electron-hole
pairs, whereas in an inorganic semiconductor it leads to
generation of free charges. This difference can be mainly
attributed to different properties of the excitonic spectrum,
which for the organic set of parameters exhibits large energy
separation between the lowest excitonic band and the rest
of the spectrum. Furthermore, although the carrier-phonon
interaction is stronger for the organic set of parameters, we
have noted that the number of excitons in bound states more
strongly deviates from its equilibrium value for the organic
set of parameters than for the inorganic one. This observation
emphasizes the importance of nonequilibrium effects for the
proper understanding of the ultrafast dynamics of photoexcited
organic semiconductors and unraveling the working principles
of organic photovoltaic devices.
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APPENDIX A: EQUATIONS OF MOTION

In this appendix, we present equations of motion for
relevant dynamic variables. These are the same equations as
in Ref. [35], with only slight modifications in notation, which
are exact up to the second order in the external field. We
point out that, according to the generating function property,
differential equations for the corresponding phonon-assisted
density matrices are obtained after performing appropriate
differentiations and setting αμ = βμ = 0:

i� ∂tY
αβ

ab = (
εc
b − εv

a

)
Y

αβ

ab +
∑

p ∈ VB
q ∈ CB

(
V vccv

pqba − V vvcc
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μ
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αβ, (A1)
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APPENDIX B: CLOSING THE HIERARCHY OF EQUATIONS

In Eq. (33), correlated parts of two-phonon-assisted density matrices δnx̄xρ+σ− and δnx̄xρ+σ+ appear. In their differential
equations, three-phonon-assisted density matrices are present. In order to close the hierarchy of equations, we factorize them
into all possible combinations of phonon distribution functions and phonon-assisted electronic density matrices and neglect their
correlated parts. The strategy for the factorization is the one we employed in Eq. (31) where we considered an exciton as a basic
entity and did not take into account contributions arising from the excitonic amplitude (with possible phonon assistance). Namely,
the two-phonon-assisted electronic density matrix 〈c†ad†

bdccdb
†
μbρ〉 can be written in terms of exciton creation and annihilation

operators [see Eq. (18)] as
∑

x̄x ψx̄∗
ba ψx

cd〈X†
x̄Xxb

†
μbρ〉. Since it appears in the equation of motion for one-phonon-assisted

electronic density matrix n
(+)
x̄xμ, which is coupled to Eq. (29) describing excitonic populations and intraband coherences, we treat

an exciton as a basic entity and accordingly perform the factorization 〈X†
x̄Xxb

†
μbρ〉 = 〈X†

x̄Xx〉〈b†μbρ〉 + δ〈X†
x̄Xxb

†
μbρ〉. In the case

of three-phonon-assisted electronic density matrices, the described factorization procedure, neglecting the correlated part, gives

〈c†ad†
bdccdb

†
μb†ρbσ 〉 = δρσ 〈c†ad†

bdccdb
†
μ〉nph

ρ + δμσ 〈c†ad†
bdccdb

†
ρ〉nph

μ . (B1)

Performing transition to the excitonic basis, the following differential equation for the variable δnx̄xρ+σ− is obtained:

∂t δnx̄xρ+σ− = −i(ωx − ωx̄ + ωσ − ωρ)δnx̄xρ+σ− + 1 + n
ph
σ
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x ′xn

∗
x ′x̄σ+ , (B2)

and similarly for the variable δnx̄xρ+σ+ . Solving Eq. (B2) in the Markov and adiabatic approximations [39,40], the following
result is obtained:

δnx̄xρ+σ− = (
1 + nph

σ

)∑
x ′

�σ
xx ′D(�ωx ′ − �ωx − �ωσ )nx̄x ′ρ+ − nph
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+ (1 + nph
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�
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xx̄ ′σ+ − nph
ρ

∑
x ′

�
ρ∗
x ′xD∗(�ωx − �ωx ′ − �ωρ)n∗

x ′x̄σ+ , (B3)

where D(ε) = −iπδ(ε) + P(1/ε). We thus expressed two-phonon-assisted electronic density matrices in terms of one-phonon-
assisted electronic density matrices. When these results are inserted in Eq. (33), we neglect all terms involving principal values
which, in principle, lead to polaron shifts in energies [9,40]. Furthermore, we note that the inserted terms involve multiple
summations over excitonic indices x and we use the random phase approximation to simplify the expression obtained. This
approximation is easier to understand and justify when we transfer to a particular representation for the excitonic index x, for
example, the one that we used in our computational study, where we took advantage of the translational symmetry and had
x = (Q,ν). Electronic density matrices with one-phonon assistance n(Q̄,ν̄)(Q,ν)q+

μ
are complex quantities, which acquire nontrivial

values during the evolution provided that the condition Q̄ + qμ = Q is satisfied. Having in mind the selection rule for carrier-
phonon matrix elements in the excitonic basis [see Eq. (52)], we can express the first term which describes the coupling of the
one-phonon-assisted electronic density matrix n(Q−qμ,ν̄)(Q,ν)q+

μ
to density matrices with higher phonon assistance [see Eq. (33)] as

− 1

i�

∑
ρx̄ ′

�
ρ∗
x̄x̄ ′δnx̄ ′xμ+ρ−

= π

�
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(
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)
δ(�ω(Q+qρ,ν ′) − �ω(Q,ν) − �ωqρ

)n(Q−qμ+qρ,ν̄ ′)(Q+qρ ,ν ′)q+
μ
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In the first, the third, and the fourth sums in the previous equation we perform summation of terms which involve complex-
valued single-phonon-assisted electronic density matrices over the wave vector qρ , whereas in the second sum the summation is
not carried out over any of the wave vectors describing the density matrix. In the lowest approximation, we can assume that all
the sums apart from the second are negligible due to random phases at different wave vectors. For the sake of simplicity, in the
second sum we keep only the contribution for ν̄ ′′ = ν̄, thus expressing the coupling to higher-phonon-assisted density matrices
only in terms of the single-phonon-assisted density matrix for which the equation is formed. Restoring the more general notation,
we obtain the result

− 1
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⎠nx̄xμ+ . (B5)

Repeating similar procedure with the remaining three terms which describe coupling to density matrices with higher-order
phonon assistance in Eq. (33), we obtain the result embodied in Eqs. (36)–(38).

Analogously, the following results for two-phonon-assisted electronic density matrices δyxρ+σ− ,δyxρ+σ+ are obtained, solving
their respective differential equations in the Markov and adiabatic approximations

δyxρ+σ− = (1 + nph
σ

)∑
x ′

�σ
xx ′D(�ωx ′ − �ωx − �ωσ )y(+)

x ′ρ − nph
ρ

∑
x ′

�
ρ∗
x ′xD∗(�ωx − �ωx ′ − �ωρ)y(−)

x ′σ , (B6)

and similarly for the variable δyxρ+σ+ . Inserting the results obtained in Eqs. (34) and (35) and performing the random phase
approximation as described, the result given in Eqs. (41) and (42) is obtained.

APPENDIX C: COMMENTS ON THE ENERGY CONSERVATION IN THE MODEL

In this appendix, we will comment on the energy conservation in the model after the external field has vanished. Using
Eqs. (21), (22), (29), and (30), we obtain the rate at which the energy of carriers and phonons changes after the pulse

∂t (Ec + Eph) = −2

�

∑
μx̄x

(�ωx − �ωx̄ − �ωμ)Im
{
�

μ
x̄xnx̄xμ+

}
, (C1)

which exactly cancels the part from ∂t Ec-ph [see Eq. (23)] that originates from the free rotation term −i(ωx − ωx̄ − ωμ)nx̄xμ+ in
Eq. (33). The terms in ∂t Ec-ph which arise from the second and third terms in Eq. (33) are identically equal to zero each since
they are purely real, which is easily checked. Therefore, the rate at which the total energy changes after the pulse is equal to
the rate at which the carrier-phonon interaction energy changes due to the coupling of single-phonon-assisted to higher-order
phonon-assisted density matrices, (∂t Ec-ph)higher, which is equal to [see Eq. (33)]
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. (C2)

The first and the third terms on the right-hand side of Eq. (C2) are separately equal to zero (since the quantities under the
sign of the imaginary part are purely real), whereas the second and the fourth terms exactly cancel each other, so the total
energy is conserved. In particular, this is true for the form of the correlated parts of two-phonon-assisted density matrix δnx̄xρ+σ−

given in Eq. (B3) and the similar form of the density matrix δnx̄xρ+σ+ . In Eq. (C2), all the sums are performed over all
indices that are present in a particular expression, so the crux of the proof that the energy is conserved is the interchange of
dummy indices combined with the properties δn∗

x̄xρ+σ− = δnxx̄σ+ρ− and δnx̄xρ+σ+ = δnx̄xσ+ρ+ . However, when we apply the
random phase approximation, the aforementioned properties are lost and the energy is not conserved any more. For example,
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the first term on the right-hand side in Eq. (C2) after performing the random phase approximation is not equal to zero, but to
− 2π

�
(
∑

ρx̃ |�ρ
x̄x̃ |2nph

ρ δ(�ωx̃ − �ωx̄ + �ωρ))Re{∑μx̄x �
μ
x̄xnx̄xμ+} [see Eq. (B5)], which is just one term of the total rate (∂t Ec-ph)higher

when we use the result from Eq. (36).
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