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Spectral and thermodynamic properties of the Holstein polaron: Hierarchical equations
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We develop a hierarchical equations of motion (HEOM) approach to compute real-time single-particle
correlation functions and thermodynamic properties of the Holstein model at finite temperature. We exploit the
conservation of the total momentum of the system to formulate the momentum-space HEOM whose dynamical
variables explicitly keep track of momentum exchanges between the electron and phonons. Our symmetry-
adapted HEOM enable us to overcome the numerical instabilities inherent to the commonly used real-space
HEOM. The HEOM method is then used to study the spectral function and thermodynamic quantities of chains
containing up to ten sites. The HEOM results compare favorably to existing literature. To provide an independent
assessment of the HEOM approach and to gain insight into the importance of finite-size effects, we devise a
quantum Monte Carlo (QMC) procedure to evaluate finite-temperature single-particle correlation functions in
imaginary time and apply it to chains containing up to twenty sites. QMC results reveal that finite-size effects
are quite weak, so that the results on 5 to 10-site chains, depending on the parameter regime, are representative
of larger systems. A detailed comparison between the HEOM and QMC data place our HEOM method among
reliable methods to compute real-time finite-temperature correlation functions in parameter regimes ranging
from low- to high-temperature, and weak- to strong-coupling regime.
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I. INTRODUCTION

The coupling of electronic excitations (electrons or exci-
tons) to quantum lattice vibrations fundamentally determines
physical properties of a wide variety of systems. The exam-
ples include organic semiconductors [1–3] and photosynthetic
pigment–protein complexes [4–6]. In such systems, the den-
sity of excitations, which are typically excited by light or
introduced by doping, is low. An electronic excitation in the
field of phonons is most simply modeled within the Holstein
molecular-crystal model [7], in which the excitation is lo-
cally and linearly coupled to intramolecular vibrations. The
distinctive feature of organic semiconductors and photosyn-
thetic complexes is that the energy scales of the electronic
(excitonic) bandwidth, phonon energy, and electron (exciton)–
phonon couplings are all comparable to one another and
to the thermal energy. In other words, there is no obvious
small parameter in which a perturbation expansion can be
performed, and the standard weak-coupling (Redfield-like [8])
and strong-coupling (Förster-like [9] or Marcus-like [10])
theories do not properly describe excitation dynamics [11].
Numerical studies are thus indispensable in tackling the most
interesting intermediate-coupling regime.

Thermodynamic and dynamic properties of the Holstein
model have been investigated using a host of numerical
methods. The most popular ones are the exact diagonal-
ization on finite lattices [12–18], quantum Monte Carlo
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(QMC) methods [19–26], the density matrix renormaliza-
tion group [27–29], variational techniques [30–34], and the
momentum-average approximation [35,36]. The majority of
these approaches were restricted to ground-state considera-
tions, while the evaluation of finite-temperature (real-time)
correlation functions has received limited attention. Early
approaches to the finite-temperature single-particle spec-
tral properties of the Holstein model were restricted to
analytical [37] and numerical [12,38] studies on two-site
systems. These were followed by the dynamical mean-field
theory [39]. Recently, Bonča and collaborators have ex-
amined the Holstein polaron’s spectral function using the
finite-temperature Lanczos method [40,41]. They have also
investigated the thermodynamics and spectral functions of
the Holstein polaron employing a finite-temperature time-
dependent density-matrix renormalization group method [42].
Two-particle correlation functions, such as the conductivity,
resistivity, mobility, or diffusion constant, were computed by
performing different types of unitary transformations [43–50],
or by resorting to the dynamical mean field theory [51,52], the
momentum-average approximation [53], QMC [54], or finite-
temperature time-dependent density matrix renormalization
group [55].

On the other hand, within the chemical-physics com-
munity, the method of choice to investigate the dynamical
properties of the Holstein model is the hierarchical equa-
tions of motion (HEOM) method [56–59]. The HEOM
method is a numerically exact density-matrix technique to
calculate the dynamics of a quantum system of interest (here,
electronic excitations) that is linearly coupled to a Gaus-
sian bath (here, phonons). Starting from the exact result of
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VELJKO JANKOVIĆ AND NENAD VUKMIROVIĆ PHYSICAL REVIEW B 105, 054311 (2022)

the Feynman–Vernon influence functional theory [60], the
problem is formulated as an infinite hierarchy of dynami-
cal equations for the reduced density matrix (RDM), which
completely describes the system of interest, and the so-called
auxiliary density matrices (ADMs). While the systematic hi-
erarchy truncation schemes do exist [61,62], the number of
ADMs that are necessary to obtain converged results can
be quite high, which severely limits the applicability of the
HEOM method. The HEOM method has been employed to
examine the excitonic dynamics and absorption and emission
spectra in Holstein-like models of photosynthetic molecu-
lar aggregates [63–68], as well as to study the equilibrium
(e.g., the exciton–polaron size) and dynamical (e.g., mobility)
properties of the canonical Holstein model [69–72]. Never-
theless, two aspects have received limited attention in the
HEOM-method investigations of the Holstein model. (i) The
translational symmetry, which reduces the numerical com-
plexity of standard density-matrix techniques [73,74], has not
been combined with the HEOM method. (ii) The HEOM
method is usually applied to situations in which nuclear de-
grees of freedom constitute a genuine thermodynamic bath,
i.e., the spectral density of the electron–phonon interaction is a
continuous function. Its applications to the canonical Holstein
model, for which the spectral density consists of delta-like
peaks, may face serious numerical problems [75] and have
treated relatively small systems [76,77] and/or relatively short
time scales [71]. Developing novel techniques to improve the
numerical stability of the HEOM method for discrete oscilla-
tor modes is thus an active line of research [75,78].

In this paper, we devise a momentum-space HEOM
method suitable to compute real-time single-particle correla-
tion functions and thermodynamic properties of the Holstein
Hamiltonian at finite temperature. Our momentum-space for-
mulation enhances the numerical stability of the HEOM
method with respect to its real-space formulation. We then
compute the spectral function and various thermodynamic
quantities of the one-dimensional Holstein model containing
up to ten sites and find quite good agreement with literature
results in a wide range of model parameters. To provide an
independent check of our HEOM results and to understand
the importance of finite-size effects, we also present QMC re-
sults for imaginary-time single-particle correlation functions
at finite temperature, which are obtained on chains containing
up to 20 sites. We conclude that finite-size effects are not
pronounced, while the HEOM and QMC results in imaginary
time agree exceptionally well.

The paper is organized as follows. Having specified the
model (Sec. II A) and the correlation functions we evaluate
(Sec. II B), in Sec. II C we develop the HEOM approach,
while in Sec. II D we develop the QMC approach. Section III
discusses our HEOM method in light of the well-known weak-
coupling (Sec. III A) and strong-coupling (Sec. III B) theories,
whereas Sec. III C provides an interesting perspective on the
artificial broadening of spectral lines, which is widely used
in graphic representations of spectral functions. Section IV
is devoted to a detailed presentation of the numerical results
for the one-dimensional Holstein model. We first present the
results of the HEOM method in different parameter regimes
(Secs. IV C–IV E), and then transform them to imaginary
time to enable a direct comparison with the QMC data and

to discuss finite-size effects (Sec. IV G). Section V provides
further discussion of the methodologies used in this work,
while Sec. VI summarizes our main results.

II. MODEL AND METHOD

A. Holstein model

We study the Holstein Hamiltonian on a one-dimensional
lattice containing N sites with periodic boundary conditions
(PBC). We work in the limit of low excitation (electron or
exciton) density, in which it is enough to consider only the
subspaces containing no excitations and a single excitation.
The zero-excitation subspace is spanned by the collective state
|vac〉, in which all units are unexcited. For the time being,
we assume that the energy of the collective unexcited state
sets the zero of our energy scale. An orthonormal basis in the
single-excitation subspace is the so-called local basis {| j〉| j},
whose basis state | j〉 contains a single excitation localized on
site j. We develop the theory in the momentum representation,
in which the Holstein Hamiltonian reads as

H = He + Hph + He−ph. (1)

He is the tight-binding Hamiltonian of free electronic exci-
tations that can hop between nearest-neighboring sites with
hopping amplitude J

He =
∑

k

εk|k〉〈k|. (2)

In Eq. (2), the dimensionless wave number k (expressed in
units of inverse lattice spacing) may assume any of the N
allowed values in the first Brillouin zone (IBZ) −π < k �
π , while the free-electron dispersion is εk = εe − 2J cos(k),
where εe is the on-site vertical excitation energy. The free-
phonon Hamiltonian is

Hph =
∑

q

h̄ωqb†
qbq, (3)

where ωq denotes the dispersion relation of optical phonons,
for which ω0 �= 0 (in the center of the Brillouin zone), while
bq and b†

q are the phonon annihilation and creation operators.
The electron–phonon interaction is conveniently written as

He−ph =
∑

q

VqBq. (4)

The purely electronic operator Vq increases the momentum of
the electronic subsystem by q,

Vq =
∑

k

|k + q〉〈k|, (5)

while the purely phononic operator Bq decreases the momen-
tum of phonons by q,

Bq = γ√
N

(bq + b†
−q ), (6)

where γ is the constant of the local electron–phonon coupling.
The operator Vq satisfies V−q = V †

q , and the same holds for Bq.

B. Single-particle correlation functions

The single-particle spectral function, which contains com-
plete information about the single-particle spectrum, is
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proportional to the imaginary part of the retarded (causal)
Green’s function in the real-frequency domain. The corre-
sponding expression in the real-time domain reads as [79]

GR(k, t ) = −iθ (t )〈{ck (t ), c†
k}〉. (7)

Here, ck and c†
k are electron annihilation and creation opera-

tors, which in the low-density limit should be replaced by

ck → |vac〉〈k|, c†
k → |k〉〈vac|, (8)

while θ (t ) is the step function. Temporal evolution of the
annihilation operator ck (t ) = eiHt/h̄cke−iHt/h̄ entering Eq. (7)
is governed by the total Hamiltonian H . The averaging is
performed in the thermal equilibrium of the coupled electron–
phonon system at temperature T = (kBβ )−1

〈·〉 = Tr

(
· e−βH

Z

)
, Z = Tr e−βH . (9)

In HEOM computations, we will separately compute the
time-dependent greater

G>(k, t ) = −i〈ck (t )c†
k〉 (10)

and lesser

G<(k, t ) = i〈c†
kck (t )〉 (11)

Green’s functions for t > 0. In QMC computations, we com-
pute the imaginary-time counterpart of the greater Green’s
function

C(k, τ ) = 〈ck (τ )c†
k〉p, (12)

where 0 � τ � β h̄ is the imaginary time, while ck (τ ) =
eHτ/h̄cke−Hτ/h̄ is the imaginary time-dependent operator. The
subscript p denotes that the average is taken over the space of

purely phononic states 〈O〉p = Trp(Oe−βH )
Trp(e−βH ) .

Knowing G>, the single-particle spectral function A(k, ω)
is obtained using the fluctuation–dissipation theorem [79]. In
the following, we shift the zero of the energy scale to the
on-site vertical excitation energy εe, as is commonly done
in the literature. It is physically plausible to assume that
βεe � 1, i.e., that thermal fluctuations alone cannot bridge
the gap between the unexcited and singly-excited states. The
fluctuation–dissipation theorem then reduces to

A(k, ω) = − 1

2π
Im G>(k, ω). (13)

A more detailed discussion is provided in Sec. I of the Sup-
plemental Material (SM) [80]. While A(k, ω) describes the
addition of an electron to the system with initially no elec-
trons, the following quantity

A+(k, ω) = 1

2π
Im G<(k, ω) (14)

describes the removal of an electron from the system. The
electron-addition and electron-removal spectral functions are
not mutually independent, which is discussed in Sec. I of
SM [80] and Sec. IV F.

The comparison between HEOM and QMC results is most
conveniently done by transforming HEOM results to the

imaginary-time domain

CHEOM(k, τ ) =
∫ +∞

−∞
dω e−ωτ A(k, ω) (15)

and comparing CHEOM(k, τ ) with C(k, τ ).

C. HEOM method for single-particle correlation functions

1. Preliminaries

Employing the low-density replacements [Eq. (8)] in
Eqs. (10) and (11), we obtain

G>(k, t ) = −i〈k|ρ>
k (t )|vac〉 (16)

ρ
(I,>)
k (t ) = Trph

(
U (I )

e−ph(t )|k〉〈vac|e−βHph

Zph

)
(17)

G<(k, t ) = i〈k|ρ<
k (t )|vac〉 (18)

ρ
(<,I )
k (t ) = Trph

(
U (I )

e−ph(t )
e−βH

Z
|k〉〈vac|

)
(19)

While Eqs. (16) and (18) are formulated in the Schrödinger
picture, Eqs. (17) and (19) are written in the interaction picture
with respect to the noninteracting part He + Hph of the total
Hamiltonian and the evolution operator U (I )

e−ph(t ) reads as (T
is the chronological time-ordering sign)

U (I )
e−ph(t ) = T exp

[
− i

h̄

∫ t

0
ds H (I )

e−ph(s)

]
. (20)

In Eq. (17), Zph = Trphe−βHph , while Trph denotes the partial
trace over phonons. The computation of G> proceeds in the
zero-excitation subspace, as signalized by the free-phonon
thermal distribution that is characteristic for the unexcited
system. On the other hand, the computation of G< requires a
precomputation of the thermal-equilibrium state of the cou-
pled electron–phonon system, and it thus proceeds in the
single-excitation subspace. While the computation of G> is
analogous to the computation of the absorption spectrum of a
molecular aggregate, the computation of G< is analogous to
the computation of the emission spectrum. In both cases, the
HEOM computations are less demanding than they usually
are because the objects propagated in time are not two-sided
(density matrix-like), but one-sided (wave function-like). This
is reflected in Eqs. (17) and (19) by the absence of the back-
ward evolution operator U (I )†

e−ph(t ). Equation (17) represents
temporal evolution starting from the initial state that is fac-
torized, and the manipulations that are necessary to rewrite it
as HEOM should be similar to the ones employed in the stan-
dard HEOM derivation [58,60]. Recasting Eq. (19) in form of
HEOM is more complicated because the initial condition for
time evolution cannot be factorized.

2. HEOM method to compute G>(k, t )

According to the Feynman–Vernon influence functional
theory [60], the only phonon quantity that enters the reduced
electronic description is the thermal free-phonon correlation
function

Cq2q1 (t ) = Trph

{
B(I )

q2
(t )B(I )

q1
(0)

e−βHph

Zph

}
. (21)
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The time dependence of phonon operators is with respect to
the free-phonon Hamiltonian Hph, which is emphasized by the
superscript (I ). The correlation function Cq2q1 (t ) is a sum of
two complex exponential (oscillating) terms (t > 0)

Cq2q1 (t ) = δq2,−q1 (h̄ω0)2
1∑

m=0

cq2me−μq2mt , (22)

where

cq0 =
(

γ

h̄ω0

√
N

)2

[1 + nBE(ωq, T )], μq0 = +iωq, (23)

cq1 =
(

γ

h̄ω0

√
N

)2

nBE(ωq, T ), μq1 = −iωq, (24)

while nBE(ωq, T ) = (eβ h̄ωq − 1)−1 is the number of phonons
excited in mode q at temperature T .

Integrating out phonons on the right-hand side of Eq. (17),
we obtain

ρ
(I,>)
k (t ) = U (I,>)(t )|k〉〈vac|, (25)

where the reduced evolution superoperator U (I,>)(t ) is given
by

U (I,>)(t ) = T exp

[
−ω2

0

∑
qm

∫ t

0
ds2

×
∫ s2

0
ds1 V (I )

q (s2)C cqme−μqm (s2−s1 ) V (I )
−q (s1)C

]
.

(26)

The action of the hyperoperator V C on an arbitrary operator
O is defined as V CO = V O. The hyperoperator notation is
similar to that used in Ref. [67]. The time-ordering sign T
enforces the chronological order of the arguments of hyper-
operators V C (later times are moved to the left). The structure
of U (I,>)(t ) suggests that this superoperator conserves the mo-
mentum of the electronic subsystem. In other words, the only
nontrivial matrix element of ρ>

k (t ) is 〈k|ρ>
k (t )|vac〉, which is

in agreement with Eq. (16).
Starting from Eq. (25), the HEOM is derived in the

standard manner [58]. The ADMs are characterized by the
vector n = {nqm|q ∈ IBZ, m = 0, 1} of nonnegative integers
nqm � 0 that count the order of phonon assistance. The ADM
σ

(I,>,n)
k,n (t ), which appears on the depth n = ∑

qm nqm of the
hierarchy, is defined as

σ
(I,>,n)
k,n (t ) = T

{∏
qm

[
iω2

0 cqm

∫ t

0
ds e−μqm (t−s) V (I )

−q (s)

]nqm

× U (I,>)(t )

}
|k〉〈vac|. (27)

By virtue of the conservation of the electronic momentum,
the only nontrivial matrix element of σ

(>,n)
k,n (t ) will be 〈k −

kn|σ (>,n)
k,n (t )|vac〉, where

kn =
∑
qm

qnqm (28)

is the electronic momentum carried by σ
(>,n)
k,n . Defining the

auxiliary Green’s function (AGF) at depth n characterized by
vector n

G(>,n)
n (k − kn, t ) = −i〈k − kn|σ (>,n)

k,n (t )|vac〉, (29)

we obtain the following HEOM for Green’s functions

∂t G
(>,n)
n (k − kn, t )

= −i
(
k−kn + μn

)
G(>,n)

n (k − kn, t )

+ i
∑
qm

G(>,n+1)
n+

qm
(k − kn − q, t )

+ iω2
0

∑
qm

nqmcqmG(>,n−1)
n−

qm
(k − kn + q, t ). (30)

In the last equation, we introduce

μn = −i
∑
qm

μqmnqm =
∑

q

ωq(nq0 − nq1), (31)

while k = εk/h̄ is the angular frequency of the free-electron
state |k〉. The greater Green’s function is then obtained as
the root of the hierarchy, G>(k, t ) = G(>,0)

0 (k, t ). The hierar-
chy presented in Eq. (30) is propagated separately for each
allowed value of k (there are N mutually independent hierar-
chies) with the initial condition

G(>,n)
n (k, t = 0) = −iδn,0, (32)

which follows from Eqs. (27) and (29).
In the zero-temperature limit, the hierarchy in Eq. (30)

reduces to the hierarchy presented in Refs. [35,36]. Our
HEOM may thus be regarded as an extension of the hierarchy
in Refs. [35,36] to nonzero temperatures. Due to the zero-
temperature assumption, the hierarchy in Refs. [35,36] has
only a single branch (our m = 0 branch). Since the thermal (or
incoherent) phonon occupations are identically equal to zero,
phonon-assisted processes proceed via virtual (or coherent)
phonons, that are first created from the phonon vacuum and
subsequently destroyed. On the other hand, our hierarchy has
two branches describing phonon-assisted processes that pro-
ceed via thermal phonons and in which the order of phonon
absorption and emission events is immaterial. One may at-
tempt to solve Eq. (30) by Fourier or Laplace transform, as
was done in Refs. [35,36]. This would transform the hierar-
chy of first-order linear differential equations into a (sparse)
system of linear algebraic equations. While such a route is
certainly possible, here, we opt for solving Eq. (30) directly
in the time domain, after which the spectral properties are
computed using the discrete Fourier transform.

3. HEOM method to compute G<(k, t )

The main obstacle in the derivation of HEOM for the lesser
Green’s function is the fact that the density matrix ρ<

k (0) at the
initial instant is not factorizable, see Eq. (19). Nevertheless,
one may always write

e−βH

Z
= e−βHe

Ze

e−βHph

Zph
× T exp

[
−1

h̄

∫ β h̄

0
dτH e−ph(τ )

]
,

(33)
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where Zph is the free-phonon partition sum, Ze = Z/Zph is
still unknown electronic partition sum (it contains all the ef-
fects due to the electron–phonon interaction), while H e−ph(τ )
denotes the electron–phonon coupling in the imaginary-time
interaction picture

H e−ph(τ ) = e(He+Hph )τ/h̄He−phe−(He+Hph )τ/h̄. (34)

Inserting Eq. (33) in Eq. (19), the partial trace over phonons
can be straightforwardly computed to obtain

ρ
(I,<)
k (t ) =

(
U (I,<)(t, β h̄)

e−βHe

Ze

)
|k〉〈vac|. (35)

The exact evolution superoperator U (I,<)(t, β h̄) is the time-
ordered exponential of the sum of three influence phases

U (I,<)(t, β h̄) = T exp{−[�1(t ) + �2(β h̄)

+�3(t, β h̄)]}, (36)

�1(t ) = ω2
0

∑
qm

∫ t

0
ds2

∫ s2

0
ds1 V (I )

q (s2)C

×cqme−μqm (s2−s1 ) V (I )
−q (s1)C, (37)

�2(β h̄) = −ω2
0

∑
qm

∫ β h̄

0
dτ2

∫ τ2

0
dτ1

CV −q(τ1)

×cqmeiμqm (τ2−τ1 ) CV q(τ2), (38)

�3(t, β h̄) = −iω2
0

∑
qm

∫ t

0
ds

∫ β h̄

0
dτ V (I )

q (s)C

×cqme−μqmseiμqm (β h̄−τ ) CV −q(τ ). (39)

The influence phase �1(t ) has already appeared in the deriva-
tion of HEOM for G> [see Eq. (26)] and it represents the pure
real-time evolution. The influence phase �2(β h̄) is represen-
tative of the pure imaginary-time evolution, while �3(t, β h̄)
contains cross contributions among real- and imaginary-time
evolutions. We note that similar expressions have been ob-
tained in the course of the derivation of the HEOM for
the initial states that cannot be factorized into a purely
electronic and purely phononic part [72,81]. In contrast to
Refs. [72,81], here, the backward evolution operator is miss-
ing from Eqs. (17) and (19), so that the hyperoperators V C

and CV act only from one side. The action of the hyperopera-
tor CV on an arbitrary operator O is defined as CV O = OV .
The parentheses on the right-hand side of Eq. (35) stress
that all the hyperoperators CV −q(τ ) that act from the right
should be applied before operator |k〉〈vac|. The time-ordering
sign T in Eq. (36) enforces the chronological order of the
real-time arguments s of hyperoperators V C (later times are
moved to the left) and the anti-chronological order of the
imaginary-time arguments τ of hyperoperators CV (later times
are moved to the right). There is no specific ordering of
the real-time instants with respect to the imaginary-time in-
stants because the hyperoperators V C and CV act on operator
e−βHe/Ze from opposite sides. The anti-chronological ordering
of the imaginary-time arguments of operators CV is nec-
essary in order to maintain the correct chronological order
in the general term of the expansion of Eq. (35) [see also

Eqs. (19), (20), and (33)], whose operators are ordered as
follows: V (I )

qn
(sn) . . .V (I )

q1
(s1) [e−βHe/Ze] V pm (τm) . . .V p1 (τ1),

where t � sn � · · · � s1 � 0 and β h̄ � τm � · · · � τ1 � 0,
n + m is even, and qn + · · · q1 + pm + . . . p1 = 0. The ADM
σ

(I,<,n)
k,n (t ) at depth n is defined as

σ
(I,<,n)
k,n (t, β h̄)

=
{
T

∏
qm

[
iω2

0

∫ t

0
ds cqme−μqm (t−s)V (I )

−q (s)C

+ ω2
0 e−μqmt

∫ β h̄

0
dτ cqmeiμqm (β h̄−τ ) CV −q(τ )

]nqm

×U (I,<)(t, β h̄)
e−βHe

Ze

}
|k〉〈vac|. (40)

The AGF on level n that is characterized by vector n is then
defined analogously to Eq. (29)

G(<,n)
n (k − kn, t ) = i〈k − kn|σ (<,n)

k,n (t, β h̄)|vac〉 (41)

and the HEOM for lesser Green’s functions assume the form
of Eq. (30). The initial condition under which the hierarchy for
G< is solved is obtained by setting t = 0 in Eq. (40), which
results in

σ
(n,<)
k,n (0, β h̄)

=
{
T

∏
qm

[
ω2

0

∫ β h̄

0
dτ cqmeiμqm (β h̄−τ ) CV −q(τ )

]nqm

× e−�2(β h̄) e−βHe

Ze

}
|k〉〈vac|. (42)

Setting n = 0 and n = 0 in Eq. (42), we recognize that
σ

(0,<)
k,0 (0, β h̄) is, up to the factor |k〉〈vac|, identical to the

expression for the electronic RDM, see Eqs. (35) and (40).
The equilibrium state of the coupled electron–phonon system
has been computed in different ways. The imaginary-time
HEOM was formulated only for a specific spectral density
of the electron–phonon coupling and its structure was not
compatible with the structure of the real-time HEOM [81].
The correlated equilibrium state was also computed by the
technique of stochastic unraveling [72,82] or by finding the
steady state of the real-time HEOM [83]. In the follow-
ing section, we derive the imaginary-time HEOM for the
correlated electron–phonon equilibrium that is specifically
suited for the single-mode Holstein model and whose form
is fully compatible with the real-time HEOM derived in this
section.

4. HEOM method to compute the thermal equilibrium of coupled
electrons and phonons

Taking the partial trace of Eq. (33) over phonons we
obtain the following expression for the (normalized) thermal-
equilibrium RDM for an electron that is coupled to phonons

ρeq(β h̄) = T e−�2(β h̄) e−βHe

Ze
. (43)
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However, the normalization constant Ze is not known. To
compute Ze, let us consider the unnormalized and imaginary
time-dependent analog of Eq. (43)

ρun,eq(τ ) = T e−�2(τ ) e−Heτ/h̄ (44)

where 0 � τ � β h̄. The imaginary-time HEOM is then ob-
tained as usually, while the definition of the unnormalized
ADM at level n reads as

σ (n,un,eq)
n (τ ) = T

∏
qm

[
ω2

0

∫ τ

0
dτ ′ cqmeiμqm (τ−τ ′ ) CV −q(τ ′)

]nqm

× e−�2(τ ) e−Heτ/h̄. (45)

Because of the momentum conservation, the ADM
σ

(n,un,eq)
n (τ ) has only N nonzero matrix elements,

〈k − kn|σ (n,un,eq)
n (τ )|k〉, and it turns out that the imaginary-

time HEOM can be solved independently for each of N
allowed values of k. The imaginary-time HEOM

∂τ 〈k − kn|σ (n,un,eq)
n (τ )|k〉

= −(
k−kn + μn

)〈k − kn|σ (n,un,eq)
n (τ )|k〉

+
∑
qm

〈k − kn − q|σ (n+1,un,eq)
n+

qm
(τ )|k〉

+ ω2
0

∑
qm

nqmcqm〈k − kn + q|σ (n−1,un,eq)
n−

qm
(τ )|k〉 (46)

is then solved with the initial condition that can be inferred
from Eq. (45) and that reads as [81]

〈k − kn|σ (n,un,eq)
n (0)|k〉 = δn,0. (47)

This initial condition assumes that all free-electron levels
are equally populated, which is in agreement with the fact
that point τ = 0 corresponds to the infinite-temperature limit.
Furthermore, thermal fluctuations are so strong that they
completely suppress the effects due to the electron–phonon
interaction, so that all ADMs are initially equal to zero. Once
the imaginary-time propagation of Eq. (45) is done, the nor-
malization constant Ze is obtained as

Ze =
∑

k

〈k|σ (0,un,eq)
0 (β h̄)|k〉, (48)

so that the normalized ADMs in thermal equilibrium read as

σ (n,eq)
n = Z−1

e σ (n,un,eq)
n (β h̄). (49)

Finally, the initial condition for the real-time propagation of
HEOM for G< reads as

G(<,n)
n (k − kn, 0) = i〈k − kn|σ (n,eq)

n |k〉. (50)

5. Thermodynamic properties

Thermodynamic properties of the Holstein model have
been extensively investigated using the QMC method in com-
bination with the Feynman’s path-integral theory [20–22] or
the canonical Lang–Firsov transformation of the electron–
phonon Hamiltonian [25] or the density-matrix renormaliza-
tion group [42]. The algorithm presented in Refs. [20–22], in
which the purely electronic model resulting from the analyti-
cal elimination of the nuclear degrees of freedom is simulated
using the QMC, is very close in spirit to the method developed

here. It is mainly for this reason that we here compute the
same thermodynamic quantities as in Refs. [20–22].

The kinetic energy of the electron is a purely electronic
quantity and it thus depends only on the electronic RDM
σ

(0,eq)
0

Ekin =
∑

k

εk fk =
∑

k

εk〈k|σ (0,eq)
0 |k〉, (51)

where fk = 〈k|σ (0,eq)
0 |k〉 ∈ [0, 1] is the population of elec-

tronic state with momentum k. The electron–phonon inter-
action energy is a mixed quantity that is linear in phonon
coordinates. Even though our approach mainly deals with re-
duced, i.e., purely electronic quantities, the results of Ref. [84]
suggest that the interaction energy should be extracted from
ADMs at depth 1 as follows:

Ee−ph = γ√
N

∑
kq

〈|k + q〉〈k|(bq + b†
−q)〉

= h̄ω0

∑
q

1∑
m=0

√
cqm

∑
k

〈k − q|σ (1,eq)
0+

qm
|k〉. (52)

The fermion–boson correlation function contains information
on how the electron distorts its surroundings by following how
the presence of an electron on a site affects the nuclear motion
on sites that are r lattice constants away

ϕr = γ

Ee−ph

∑
j

〈| j〉〈 j|(b j+r + b†
j+r )〉

= h̄ω0

Ee−ph

∑
q

eiqr
1∑

m=0

√
cqm

∑
k

〈k − q|σ (1,eq)
0+

qm
|k〉. (53)

This quantity has been used to gain insight into the spatial
extent of the polaron [21,22,70].

D. QMC method for single-particle correlation function

We used a QMC method to calculate the single-particle
correlation function in imaginary time. The method is based
on the path-integral representation of the correlation func-
tion. In this representation, it is possible to integrate out the
phononic degrees of freedom. For this reason, one ends up
with the sum over electronic coordinates that is performed us-
ing the Monte Carlo method. Our approach essentially follows
the path of early studies in Refs. [20–22] with a difference
that we extend these studies (where only thermodynamic
quantities were calculated) to calculate the imaginary-time
correlation function. In addition, we formulate the method in
such a way that phase space of electronic coordinates can be
directly sampled. This is significantly more convenient than
the sampling based on the Metropolis algorithm, which needs
initial equilibration of the system and which suffers from the
possibility of trapping the system in local minima. The QMC
method that we used is also similar to the stochastic path
integral method developed in the chemical physics commu-
nity [82]. Within that method, phonon degrees of freedom
are integrated out and the problem is eventually reduced to
the problem of dynamics of the electronic subsystem in the
presence of noise.
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In more detail, to evaluate the imaginary time correlation
function

C(k, τ ) = Trp
(
e−(β− τ

h̄ )Hph cke− τ
h̄ H c†

k

)
Trpe−βHph

(54)

we calculate it in the site basis

Cab(τ ) = Trp
(
e−(β− τ

h̄ )Hph cae− τ
h̄ H c†

b

)
Trpe−βHph

(55)

and then we perform the transformation

C(k, τ ) = 1

N

N−1∑
a=0

N−1∑
b=0

eik(b−a)Cab(τ ). (56)

We calculate Cab(τ ) starting from

Cab(τ )

=
∫

d{x}d{y}〈{x}|e−(β− τ
h̄ )Hph |{y}〉〈a{y}|e− τ

h̄ H |b{x}〉∫
d{x}d{y}〈{x}|e−(β− τ

h̄ )Hph |{y}〉〈{y}|e− τ
h̄ Hph |{x}〉 (57)

where {x} and {y} denote the vectors containing the coordi-
nates of all phonon modes. The term 〈{x}|e−(β− τ

h̄ )Hph |{y}〉 is
expressed in an analytical form, since the following identity
holds for a single phonon mode

〈x|e−αHph |y〉 =
√

mω0

2π h̄ sinh(αh̄ω0)
·

× e− mω0
2h̄ sinh(αh̄ω0 ) [(x2+y2 ) cosh(αh̄ω0 )−2xy]

, (58)

while the analogous term for multiple phonon modes is a
simple product of the terms for each mode (m denotes the
mass of the oscillator that can be set to 1 without the loss of
generality). To evaluate the matrix elements 〈a{y}|e− τ

h̄ H |b{x}〉
and 〈{y}|e− τ

h̄ Hph |{x}〉 we discretize the imaginary time τ by
dividing it into K steps of duration �τ = τ

K . We make use of
the Suzuki-Trotter expansion of first order, which has a small
controllable error of order (�τ )2

e− �τ
h̄ H ≈ e− �τ

h̄ Hph e− �τ
h̄ He−ph e− �τ

h̄ He . (59)

We then have

〈a{y}|e− �τ
h̄ H |b{x}〉

=
∫

d{z}
∑

c

〈{y}|e− �τ
h̄ Hph |{z}〉

× 〈a{z}|e− �τ
h̄ He−ph |c{x}〉〈c|e− �τ

h̄ He |b〉. (60)

The term involving the electron-phonon interaction can be
evaluated as

〈a{z}|e− �τ
h̄ He−ph |c{x}〉 = δace− �τ

h̄ Cxaδ({z} − {x}), (61)

where C = γ

h̄ω0

√
2h̄mω3

0 and xa denotes the coordinate of the
phonon at site a. The term containing He reads

〈c|e− �τ
h̄ He |b〉 = 1

N

∑
k

e−�τεk eik(c−b) ≡ f (c − b) (62)

and we denote it as f (c − b) in what follows. We thus obtain

〈a{y}|e− τ
h̄ H |b{x}〉

=
∑

i1...iK−1

f (a − i1) f (i1 − i2) . . . f (iK−1 − b)

×
∫

d{x}(1) . . . d{x}(K−1)〈{y}|e− �τ
h̄ Hph |{x}(1)〉

× 〈{x}(1)|e− �τ
h̄ Hph |{x}(2)〉 . . . 〈{x}(K−1)|e− �τ

h̄ Hph |{x}〉
× e− �τ

h̄ C(x(1)
a +x(2)

i1
+...+x(K−1)

iK−2
+xiK−1 ) (63)

and

〈{y}|e− τ
h̄ Hph |{x}〉

=
∫

d{x}(1) . . . d{x}(K−1)〈{y}|e− �τ
h̄ Hph |{x}(1)〉

× 〈{x}(1)|e− �τ
h̄ Hph |{x}(2)〉 . . . 〈{x}(K−1)|e− �τ

h̄ Hph |{x}〉.
(64)

After substitution of expressions (58), (63), and (64) to
Eq. (57) we obtain

Cab(τ ) = N
D , (65)

with

N =
∑

i1...iK−1

f (a − i1) f (i1 − i2) . . . f (iK−1 − b)

×
∫

d{x}d{y}d{x}(1) . . . d{x}(K−1)

× e−Q({x},{y},{x}(1),...,{x}(K−1) )e−L({x},{y},{x}(1),...,{x}(K−1) ) (66)

and

D =
∫

d{x}d{y}d{x}(1) . . . d{x}(K−1)e−Q({x},{y},{x}(1),...,{x}(K−1) ).

(67)

The term Q({x}, {y}, {x}(1), . . . , {x}(K−1)) in Eqs. (66) and (67)
denotes the quadratic form of phonon coordinates, that con-
tains the terms of second order only (i.e., the square of a
phonon coordinate or the product of two phonon coordinates),
while the term L({x}, {y}, {x}(1), . . . , {x}(K−1)) denotes the
linear term that contains a linear combination of phonon co-
ordinates. The integrals in Eqs. (66) and (67) are the Gaussian
integrals that can be evaluated analytically using the formula
for the Gaussian integral∫

dnze− 1
2 z·A·zeb·z = (2π )n/2(det A)−1/2e

1
2 b·A−1·b, (68)

where z is a real vector of dimension n, A is a real symmetric
positive definite matrix of dimension n × n, b is a vector of
dimension n, det A is the determinant of matrix A and A−1 is
its inverse. We then obtain

Cab(τ ) =
∑

i1...iK−1

f (a − i1) f (i1 − i2) . . . f (iK−1 − b)e
1
2 b·A−1·b,

(69)
where A is the matrix representing the quadratic form Q and
b is the vector representing the linear form L. To evaluate the
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last sum, we introduce the replacement of variables

a − i1 = j1, i1 − i2 = j2, . . . , iK−2 − iK−1 = jK−1. (70)

The sum then takes the form

Cab(τ ) =
∑

j1... jK−1

f ( j1) f ( j2) . . . f ( jK−1)

× f

(
a − b −

K−1∑
i=1

ji

)
e

1
2 b·A−1·b. (71)

To evaluate the last sum, we treat the non-negative function

g( j1, . . . , jK−1) = f ( j1) f ( j2) . . . f ( jK−1) (72)

as the probability density. We perform Monte Carlo summa-
tion by choosing random integers j1, j2, . . . , jK−1 that follow
the distribution h( j) = f ( j)∑

j f ( j) and perform the summation

of the term f (a − b − ∑K−1
i=1 ji)e

1
2 b·A−1·b. The replacement of

variables introduced in Eq. (70) enabled us to directly sample
the phase space of electronic coordinates rather than to per-
form sampling based on the Metropolis algorithm. The results
presented in this work were obtained from 105 samples of
electronic coordinates, unless otherwise stated. The integer K
that defines the discretization of imaginary time was chosen
so that �τ ≈ 0.05 h̄

J .
We used the same ideas to calculate the thermodynamic

expectation values using the QMC method. The details of the
method for these cases are given in Sec. II of SM [80].

III. RELATION OF THE HEOM METHOD
TO EXISTING RESULTS

A. Weak-coupling limit

In the weak-coupling limit, the electron–phonon interac-
tion constant is the smallest energy scale in the problem. It is
then reasonable to treat the interaction within the second-order
perturbation theory. In the HEOM approach, the second-order
approximation is performed by truncating the hierarchy at
depth 1 and solving the resulting equations for ADMs at
depth 1 in the Markov and adiabatic approximations [58,85].
One eventually obtains the Rayleigh–Schrödinger perturba-
tion theory expression for the self energy [79]. More details
are provided in Sec. III of SM [80].

B. Strong-coupling limit

In the opposite, strong-coupling limit, the electronic
coupling J is the smallest energy in the problem. The Hol-
stein Hamiltonian then reduces to N independent single-site
problems (the so-called independent-boson models), whose
analytic solution is known [79]. In the following discussion,
we assume for simplicity that phonons are dispersionless, i.e.,
ωq = ω0 for all q. In Sec. IV of SM [80], we demonstrate
how the exact solution presented here is recast as the Lang–
Firsov formula [86] for the single-site Green’s function. The
crux of the derivation is to note that, in the single-site limit,
the hyperoperators appearing in the evolution superoperator
become time independent, which renders the time-ordering
sign ineffective [67]. Here, we repeat the zero-temperature

FIG. 1. [(a1),(b1),(c1)] Time dependence of the real part of the
envelope G̃>(k = 0, t ) of the greater Green’s function in the zone
center for three different values of the broadening parameter η. For a
precise definition of G̃>(k, t ), see Eq. (80). [(a2),(b2),(c2)] Spectral
function A(k = 0, ω) in the zone center for three different values of
the broadening parameter η. The computation is performed on a N =
8-site chain with kBT/J = 0.4, h̄ω0/J = 1, and γ /J = √

2, while the
maximum hierarchy depth is set to D = 7.

result

G>(ω) = −2π i e−γ 2/(h̄ω0 )2

×
+∞∑
n=0

1

n!

(
γ

h̄ω0

)2n

δ

(
ω + γ 2

h̄2ω0
− nω0

)
. (73)

C. Artificial broadening of spectral lines

For graphic representations of the spectral function
[Eq. (13)], the δ functions entering Eq. (73) are commonly re-
placed by their Lorentzian representation, δ(x) → η/[π (x2 +
η2)], where the small parameter η is the artificial broad-
ening of the peaks. The discussion in Sec. IV of SM [80]
suggests that the artificial broadening can be introduced in
the exact result embodied in Eq. (26) by simply replacing
μqm → μqm + η. On the level of the HEOM, this replacement
is reflected as an artificial damping at rate nη of the AGFs
at depth n, see Eqs. (30) and (31). The excellent agreement
between the analytical and numerical results in the single-site
limit with different levels of artificial broadening is demon-
strated in Figs. 1 and 2 in Sec. IV of SM [80]. The replacement
μqm → μqm + η, however, changes the physical situation we
are dealing with by effectively replacing the discrete phonon
spectrum by a continuous one.

To elaborate on the last point, we recall that the thermal
free-phonon correlation function Cq2q1 (t ) [Eq. (21)] can be
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(a) (c)

(d)

(b)

FIG. 2. Dependence of various thermodynamic quantities on the
maximum hierarchy depth D (full dots) and comparison with QMC
results (solid line). Vertical distance between the solid line and
dashed lines is equal to the standard deviation of the sample con-
taining 10 different realizations of the QMC algorithm. The model
parameters assume the following values: kBT/J = 1, h̄ω0/J = 1,
γ /J = √

2, N = 8, Nθ = 6. (a) Negative kinetic energy of the elec-
tron [Eq. (51)] in units of J multiplied by a factor of 10 (averaging
over TBC is performed). (b) Negative electron–phonon interaction
energy [Eq. (52)] in units of J (averaging over TBC is performed).
(c) Population of the zero-momentum electronic state multiplied by
a factor of 100. TBC are used to generate fk for NNθ = 48 values
of k in the IBZ and the overall normalization is such that the sum of
these NNθ values of fk is equal to 1. (d) Fermion–boson correlation
function [Eq. (53)] at distance of a single lattice spacing multiplied
by a factor of 100 (PBC are used).

written as follows [87]:

Cq2q1 (t ) = δq2,−q1

h̄

π

∫ +∞

−∞
dω J (ω)

eiωt

eβ h̄ω − 1
, (74)

where the spectral density of the electron–phonon interaction
for the (single-mode) Holstein model

J (ω) = π

h̄

(
γ√
N

)2

[δ(ω − ω0) − δ(ω + ω0)] (75)

has two discrete peaks at ±ω0. In Sec. V of SM [80], we
demonstrate that the replacement μqm → μqm + η means that,
on the level of the spectral density, delta peaks should be
replaced by Lorentizans characterized by the full width at half
maximum η. Equation (75) is then replaced by the so-called
underdamped Brownian oscillator spectral density [88]

J (ω) = �

[
ωη

(ω − ω0)2 + η2
+ ωη

(ω + ω0)2 + η2

]
, (76)

where � = γ 2/(Nh̄ω0) is the appropriate polaron binding
energy. The demonstration in Sec. V of SM [80] leans on the
fact that the artificial broadening is the smallest energy scale in
the problem, i.e., η  ω0 and h̄η  kBT . These assumptions

are commonly satisfied whenever spectral lines are artificially
broadened [36,40].

As a numerical example beyond the single-site limit, in
Fig. 1 we discuss how different levels of artificial broad-
ening η affect the Green’s function in real time [panels
(a1)–(c1)] and the spectral function [panels (a2)–(c2)] in
the intermediate-coupling regime and at relatively low tem-
perature. The broadening renders our HEOM method more
numerically stable by ensuring that all dynamical quantities
decay to zero on a time scale ∼η−1, compare Figs. 1(b1)
and 1(c1) to Fig. 1(a1), in which the Green’s function at long
times oscillates around zero. However, we see that already
η/ω0 = 0.01 greatly underestimates the decay time of the
Green’s function, which means that the width of the quasipar-
ticle peak and its first phonon replica is greatly overestimated,
compare Figs. 1(b2) and 1(c2) to Fig. 1(a2). In the following,
we will not introduce any artificial broadening to our HEOM.

IV. NUMERICAL RESULTS

We assume that the phonons are dispersionless, ωq = ω0,
and focus on the so-called extreme quantum regime, h̄ω0/J =
1, in which the approximate treatments specifically developed
for the adiabatic and antiadiabatic regimes are not appropriate.
Furthermore, we limit our investigations to the most challeng-
ing crossover regime γ /J = √

2, in which the dimensionless
electron–phonon coupling constant is λ = γ 2/(2Jh̄ω0) = 1.
As the default value of the temperature, we choose kBT/J =
1. All of these dimensionless ratios (h̄ω0/J , γ /J , and kBT/J)
will be changed, one at a time, to examine the applicability of
the HEOM method in various parameter regimes (low-/high-
temperature, weak-/strong-coupling, adiabatic/antiadiabatic
regime).

A. Hierarchy rescaling, rotating-wave system, and twisted
boundary conditions

The HEOM for G> and G< are both of the same form, see
Eq. (30). It is known that propagating such a form of HEOM
produces numerical instabilities, especially for very strong
electron–phonon couplings [61]. Equation (27) suggests that
the ADM at depth n scales as the (2n)th power of the interac-
tion strength, meaning that, for sufficiently strong interaction,
the magnitude of ADMs increases with n. However, it is de-
sirable that the magnitude of ADMs at deeper hierarchy levels
be smaller than at shallower levels. This is accomplished by
performing the hierarchy rescaling introduced in Ref. [61]. We
define the dimensionless time t̃ = ω0t and rescale the AGFs
as follows:

G̃(n)
n (k − kn, t̃ ) = ω−n

0 f (n)G(n)
n

(
k − kn, ω

−1
0 t̃

)
, (77)

where the rescaling factor f (n) reads as

f (n) =
∏
qm

[
c

nqm
qm nqm!

]−1/2
, (78)
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while the factor ω−n
0 renders G̃(n)

n dimensionless. The dimen-
sionless and rescaled HEOM then reads as

∂̃t G̃(n)
n (k − kn, t̃ )

= −i
k−kn + μn

ω0
G̃(n)

n (k − kn, t̃ )

+ i
∑
qm

√
1 + nqm

√
cqm G̃(n+1)

n+
qm

(k − kn − q, t̃ )

+ i
∑
qm

√
nqm

√
cqm G̃(n−1)

n−
qm

(k − kn + q, t̃ ). (79)

The numerical stability of the HEOM method is fur-
ther enhanced by performing the transition to the so-called
rotating-wave system by separating out the rapidly oscillating
from the slowly changing component (the envelope) of G̃(n)

n as
follows:

G̃(n)
n (k − kn, t̃ ) = exp

(
−i

k−kn + μn

ω0
t̃

)
× G̃ (n)

n (k − kn, t̃ ). (80)

We propagate the HEOM for the envelope G̃ (n)
n (k − kn, t̃ ) us-

ing the fourth-order Runge–Kutta method. We use the time
step �̃t = ω0�t = 0.02 in all the computations to be pre-
sented.

Having computed G>/<(k, t̃ ) for 0 � t̃ � t̃max, the spectral
analysis is performed by first continuing the Green’s function
symmetrically for −̃tmax � t̃ � 0 according to G>/<(k, −̃t ) =
−G>/<(k, t̃ )∗ and then multiplying it with the Hann window
function

w (̃t ) = cos2

(
π t̃

2̃tmax

)
, −̃tmax � t̃ � t̃max. (81)

The maximum time t̃max is always long enough so that the sig-
nal windowing accurately captures the spectral content of the
short-time dynamics and yet eliminates the long-time oscil-
lations of G>/< around zero, which originate from finite-size
effects. In most cases, we take t̃max = 500.

The imaginary-time HEOM [Eq. (46)] is rescaled in a
similar manner. Its propagation in dimensionless imaginary
time τ̃ = ω0τ is performed from 0 to β h̄ω0. Typical number
of imaginary-time steps that is sufficient to obtain converged
results for the electron–phonon equilibrium is of the order of
100.

The number of dynamical variables G(n)
n (k − kn, t ) enter-

ing the HEOM is in principle infinite. Nevertheless, converged
results are obtained by truncating the hierarchy at certain
maximum depth D. The number of active variables at depth
n, 0 � n � D, is (n + 2N − 1

n ), while their total number in the
hierarchy is

nactive =
D∑

n=0

(
n + 2N − 1

n

)
=

(
2N + D

D

)
. (82)

The dimensionality of the hierarchy grows very fast with
increasing the maximum depth D and even faster with in-
creasing the system size N . This limits the applicability of
the HEOM method to relatively small systems and moderate
maximum depths.

FIG. 3. (a) Electronic distribution over momenta fk for different
temperatures. TBC are used to generate fk in NNθ points in the IBZ
and the overall normalization is such that the sum of these NNθ

values of fk is equal to 1. (b) Fermion–boson correlation function ϕr

for different temperatures (PBC are observed). Other model param-
eters assume the following values: h̄ω0/J = 1, γ /J = √

2, N = 8,
Nθ = 6, D = 7.

To reduce the influence of the finite-size effects on the
thermodynamic quantities and to obtain A(k, ω) with a de-
cent k-space resolution, we employ the twisted boundary
conditions (TBC) [89], which are widely used to minimize
one-body finite-size effects both at vanishing [40,41] and fi-
nite [90,91] electron densities. In practice, the free-electron
dispersion relation εk appearing in Eq. (2) is replaced by εkθ =
εe − 2J cos(k + θ ), where θ is the twist angle. Even though
the computations are performed on a finite chain of length
N , the N allowed k points can be continuously connected by
varying the twist angle through the range [0, 2π/N ). A typical
choice for the values of the twist angle is θm = 2πm/(NNθ ),
where m = 0, . . . , Nθ − 1.

B. Estimate of the maximum hierarchy depth

In computations based on HEOM it is always necessary to
study if the depth D is sufficiently large so that the relevant
quantities do not significantly change when D is increased
further.

We show an example of such study for different thermo-
dynamic quantities in Figs. 2(a)–2(d). Their dependence on D
is shown in full dots in these figures. The computations are
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FIG. 4. Time dependence of the real [(a1)–(a5)] and imaginary part [(b1)–(b5)] of the envelope G̃>(k = 0, t ) of the greater Green’s function
at k = 0 for temperatures ranging from kBT/J = 0 [in (a1) and (b1)] to kBT/J = 1 [in (a5) and (b5)]. [(c),(d)] Time dependence of the envelope
G̃>(k = 0, t ) during the initial (c) and later (d) stages of temporal evolution for different temperatures. Other model parameters assume the
following values: h̄ω0/J = 1, γ /J = √

2, N = 8, Nθ = 6, D = 7.

performed on a lattice with N = 8 sites, the twist angle θ may
assume Nθ = 6 different values, while D is varied between
5 and 9. The results of the HEOM method are compared
with QMC results represented by solid lines in Figs. 2(a)–
2(d), while the width of the interval delimited by dashed
lines is a measure of the statistical noise in QMC data. It
is estimated by performing 10 different realizations of the
QMC algorithm and computing the standard deviation of thus
generated sample. The agreement between the HEOM and
QMC results is remarkable. As a good compromise between
the numerical effort and accuracy, we opt in this case for the
maximum depth D = 7, so that the number of active variables
is nactive = 245 157.

An example of the estimate of D when the results for
G>(k, t ) and A(k, ω) are concerned is presented in Figs. 3
and 4 in Sec. VI of SM [80]. The figures demonstrate that
the results in both time and frequency domains do not change
significantly when D is increased from 7 to 8. At the same
time, the late-time revival of oscillations in Re G>(k = 0, t )
for D = 6 indicates that D = 6 may not be sufficient to obtain
convergent results. These observations suggest that taking
D = 7 produces meaningful results for both G>(k, t ) and
A(k, ω) in this case.

C. Variations in temperature

The effects of the temperature variations on the electronic
momentum distribution and the fermion–boson correlation

function are studied in Figs. 3(a) and 3(b), respectively. The
TBC are employed to obtain the electronic momentum dis-
tribution on a relatively dense grid in the IBZ, as specified in
greater detail in the caption of Fig. 3. As the temperature is in-
creased, the momentum distribution flattens. At the same time,
the corresponding real-space distribution fr = 1

N

∑
k eikr fk

shrinks and develops a more pronounced peak at r = 0, which
suggests that the spatial extent of the polaron is decreased.
This is also apparent from Fig. 3(b). These observations are
in agreement with earlier results [47]. The results presented in
Fig. 3(a) are further supported by their remarkable agreement
with the corresponding QMC results, see Fig. 5 in Sec. VII of
SM [80].

In Fig. 4 we present how temperature variations affect
the time dependence of the envelope G̃>(k = 0, t ) of the
greater Green’s function in the zone center. At zero tem-
perature, the phonon-assisted processes proceed via virtual
(coherent) phonons. There is no net energy exchange between
the electron and the phonon subsystem, which is seen as the
persistent oscillations in both the real and imaginary parts
of G̃>(k = 0, t ), see Figs. 4(a1) and 4(b1). As the temper-
ature is increased, the oscillations in G̃>(k = 0, t ) become
damped, see Figs. 4(a2)–4(b5), which is a direct consequence
of the energy exchange between the electron and thermally
excited (incoherent) phonons. The higher the temperature, the
more pronounced the damping of G̃>(k = 0, t ). According
to Fig. 4(c), the damping sets in already at the very initial
stages of time evolution. Because of the finite-size effects,
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FIG. 5. (a) Spectral functions A(k = 0, ω) for different temper-
atures. For the sake of graphical presentation, the spectral functions
are renormalized so that the intensity of the QP peak at h̄ωQP/J ≈ −3
is equal to unity for all the temperatures examined. (b) Integrated
spectral weight I (k = 0, ω) [Eq. (83)] at different temperatures. The
sum rule limω→+∞ I (k = 0, ω) = 1 is satisfied. Other model param-
eters assume the following values: h̄ω0/J = 1, γ /J = √

2, N = 8,
Nθ = 6, D = 7.

the envelopes at higher T do not decay to zero, but rather
oscillate around it, see Fig. 4(d). At the latest instants we
examine, the oscillation amplitude of Re G̃(k = 0, t ) drops to
less than 10% of its value around t = 0, compare the vertical-
axis scales of Figs. 4(a2)–4(a5) and 4(d). At the same time,
the amplitude of the imaginary part drops to less than 1% of
its initial value, which is equal to unity, see also Eq. (32).
Transforming the data in Fig. 4 to the frequency domain,
the corresponding spectral functions for k = 0 at different
temperatures are shown in Fig. 5(a). For the sake of graphical
presentation, the spectral functions in Fig. 5(a) are normalized
so that the quasiparticle (QP) peak, which is located around
h̄ωQP/J ≈ −3, is of unit intensity. The position of the QP
peak agrees very well with the results from the variational
ground-state study [33], the cluster perturbation theory [92],
and the momentum average approximation [36]. Figure 5(b)
presents the integrated spectral weight

I (k, ω) =
∫ ω

−∞
dω′ A(k, ω′) (83)

at k = 0 for different temperatures. At zero temperature, the
peaks of A(k = 0, ω) are quite narrow and their structure
closely resembles the single-site vibronic progression, see the

narrowest peaks in Fig. 5(a) and the step-like increments in
I (k = 0, ω) in Fig. 5(b). The small, but finite, peak width is
the consequence of performing time propagation on a finite
chain and up to finite maximum time tmax and employing the
Hann windowing procedure [Eq. (81)]. As the temperature is
increased, the peaks become broadened, and the intensity of
the QP peak is redistributed towards lower energies, see the
bottom left parts of Figs. 5(a) and 5(b). The peak broadening
is determined by the decay time of the envelope G̃>(k =
0, t ), see Fig. 4, and is larger at higher temperature. The
spectral-intensity shift originates from the process in which
the electron destroys one or more thermally excited phonons.
The higher is the temperature, the larger is the number of ther-
mal phonons and the more pronounced is the shift, compare
I (k = 0, ω) curves for different temperatures in the region
ω < ωQP in Fig. 5(b). The integrated spectral density satisfies
the sum rule for the spectral function

∫
dω A(k, ω) = 1, see

the upper right part of Fig. 5(b).
The momentum- and energy-resolved spectral functions

A(k, ω) for three different temperatures are compared in
Figs. 6(a)–6(c). At zero temperature, our result for A(k, ω),
see Fig. 6(a), agrees quite well with the zero-temperature
results of the cluster perturbation theory [92] and the mo-
mentum average approximation [36], as well as with the
low-temperature results of the finite-temperature Lanczos
method [40]. For a single electron on an infinite chain, the QP
peak at ωQP(k) is a delta function, while satellite peaks are of
nonzero width. In that case, the lowest-energy polaronic band,
which is energetically narrow enough so that it is entirely
below the minimum energy for inelastic scattering h̄ωQP(k =
0) + h̄ω0, is perfectly coherent, while higher-energy bands
formed by satellite peaks are incoherent [39]. On finite chains
studied here, the width of the QP peak is essentially de-
termined by the frequency resolution π/tmax [we continue
G>(k, t ) to negative times −tmax � t � 0], so that the lowest-
lying band in Fig. 6(a) may be regarded as perfectly coherent.
The satellite peaks at each k display some structure, mainly
due to the finite chain length N , and are thus somewhat wider,
see the band whose minimum lies at h̄ω/J ≈ −2 in Fig. 6(a).
This band may be regarded as incoherent. As the tempera-
ture is increased, in addition to the broadening of the bands,
the spectral intensity redistributes towards the region ω <

ωQP(k). This intensity redistribution is most pronounced in the
vicinity of the zone center, where the QP weight is apprecia-
ble. At kBT/J = 0.6, due to the moderate spectral-intensity
redistribution, the (broadened) polaronic band together with
the associated one-phonon replica can still be recognized,
see Fig. 6(b). On the other hand, at kBT/J = 1, the spectral-
intensity redistribution and the broadening are so pronounced
that all the features of the zero-temperature spectrum merge
into a continuum-like structure, see Fig. 6(c).

D. Variations in the electron–phonon coupling constant

The stronger the electron–phonon coupling, the larger the
maximum depth of the hierarchy needed to obtain meaningful
results. To keep the numerical effort within reasonable lim-
its, varying the electron–phonon coupling we varied both the
maximum depth D and the number of sites N . The precise
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FIG. 6. Spectral function A(k, ω) at temperatures (a) T = 0,
(b) kBT/J = 0.6, and (c) kBT/J = 1. Other model parameters as-
sume the following values: h̄ω0/J = 1, γ /J = √

2, N = 8, Nθ = 6,
D = 7.

values of the model parameters that are changed together with
the electron–phonon coupling are summarized in Table I.

As the dimensionless electron–phonon coupling constant λ

is increased from 0.5 to 1 and 2 (γ /J is increased from 1 to√
2 and 2), the electronic momentum distribution flattens, see

TABLE I. Values of model parameters that are changed together
with the electron–phonon coupling constant.

Regime γ /J λ N Nθ D nactive

Weak-coupling 1 0.5 10 5 6 230 230
Intermediate-coupling

√
2 1 8 6 7 245 157

Strong-coupling 2 2 6 8 9 293 930

FIG. 7. (a) Electronic distribution in the momentum space for
different values of the electron–phonon coupling constant γ (or λ).
TBC are used to generate fk in NNθ points in the IBZ and the overall
normalization is such that the sum of these NNθ values of fk is equal
to 1. (b) Fermion–boson correlation function (PBC are observed) for
different values of the electron–phonon coupling constant γ (or λ).
Other model parameters assume the following values: kBT/J = 1,
h̄ω0/J = 1, while the values of N, Nθ , and D are summarized in
Table I.

Fig. 7(a), which together with the narrowing of the peak of
the fermion–boson correlation function displayed in Fig. 7(b)
suggests that the polaron becomes more localized. Increasing
the electron–phonon coupling strength thus has similar effects
on the equilibrium polaron properties as increasing the tem-
perature, compare Figs. 3 and 7, which is in line with existing
studies [47]. The results presented in Fig. 7(a) are further sup-
ported by their remarkable agreement with the corresponding
QMC results, see Fig. 6 in Sec. VII of SM [80].

Spectral properties for different interaction strengths and
temperatures are summarized in Figs. 8(a1)–8(c2). The zero-
temperature results presented in Figs. 8(a1) and 8(c1) compare
favorably to available zero-temperature [36,92] and low-
temperature [40,42] results for A(k, ω). Moreover, our result
for the polaronic band ωQP(k) (under TBC) in the weak-
coupling regime, see Fig. 8(a1), is in good agreement with
the ground-state polaronic dispersion relation obtained in
Ref. [33]. In the strong-coupling regime and at T = 0, see
Fig. 8(c1), a clearly observable peak appears above the QP
peak h̄ωQP/J ∼ −4.4 and below its one-phonon replica, in
our case at around h̄ωBP/J ∼ −3.55. This peak corresponds
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FIG. 8. Spectral function A(k, ω) (measured in units h̄/J) for
different electron–phonon interaction strengths [γ /J = 1 in (a1) and
(a2), γ /J = √

2 in (b1) and (b2), γ /J = 2 in (c1) and (c2)] and
different temperatures [kBT/J = 0 in (a1)–(c1) and kBT/J = 1 in
(a2)–(c2)]. The optical-phonon energy is h̄ω0/J = 1, while the val-
ues of N, Nθ , and D are summarized in Table I.

to the so-called bound polaron state, in which a phonon is
bound to the polaron [33,40]. At kBT/J = 1, our data pre-
sented in Fig. 8(b2) overall agree with the results of the
finite-temperature Lanczos method, see Fig. 2(d) of Ref. [40].
The spectral-intensity shift below the polaronic band becomes
both larger and more intensive as the electron–phonon cou-
pling is increased. In the weak- and intermediate-coupling
regimes, the smearing of the (shifted) polaronic band makes
it barely recognizable at finite temperature, see Figs. 8(a2)
and 8(b2). On the other hand, in the strong-coupling regime,
see Fig. 8(c2), the peaks at finite T are clearly recogniz-
able, mutually separated by h̄ω0/J , and resemble the vibronic
progression in the single-site limit. Previous studies [92] sug-
gested that the physical effects in the strong-coupling regime
are predominantly local, which is also reflected in the very
narrow polaronic band observed in Fig. 8(c1).

E. Variations in the optical phonon frequency

Here, we vary both the phonon energy h̄ω0/J and the
coupling constant γ /J in such a way that we remain in the
strong-coupling regime λ = 2, which limits our investigations
to N = 6-site chains. The temperature is fixed to its default

TABLE II. Values of model parameters that are changed together
with the optical phonon frequency.

Regime h̄ω0/J γ /J N Nθ D nactive

Adiabatic 0.2
√

0.8 6 8 11 1 352 078
Extreme quantum 1 2 6 8 9 293 930
Antiadiabatic 3

√
12 6 8 9 293 930

value kBT/J = 1, while the precise values of the model pa-
rameters varied are summarized in Table II.

The adiabatic regime, h̄ω0/J = 0.2, is numerically most
challenging for the HEOM method. At the temperature
we consider, kBT/J = 1, the number of thermally excited
phonons is large [kBT/(h̄ω0) = 5], and the hierarchical cou-
plings are strong because they are determined by the product
of the large electron–phonon coupling constant and the large
number of thermally excited phonons. Therefore, one should
study in more detail how the results for G>(k, t ) and A(k, ω)
change with the maximum hierarchy depth D. In Figs. 7 and 8
in Sec. VIII of SM [80] we compare the real-time and real-
frequency data in the adiabatic regime for maximum hierarchy
depths D = 9, 10, and 11. While the real-time data for D = 10
and 11 are to some extent similar, their spectral content seems
to be very different. A comparison between the QMC and
HEOM results, which is performed in Fig. 9 in Sec. VIII of
SM [80], reveals that, as D is increased from 9 to 11, the
agreement between the QMC and HEOM results in imaginary
time becomes better. This favorable comparison suggests that
the HEOM results for A(k, ω) obtained using D = 11, which

FIG. 9. Spectral function A(k, ω) (measured in units h̄/J) for dif-
ferent values of the adiabaticity ratio [h̄ω0/J = 0.2 in (a1) and (a2),
h̄ω0/J = 3 in (b1) and (b2)] and temperature [T = 0 in (a1) and (b1),
kBT/J = 1 in (a2) and (b2)]. The changes in the electron–phonon in-
teraction strength that are necessary to remain in the strong-coupling
regime (λ = 2) are summarized in Table II. The vertical-axis ranges
in (a1) and (a2) are different.
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are shown in Figs. 9(a1) (at T = 0) and 9(a2) (at kBT/J = 1),
may be representative of the true result.

In the antiadiabatic regime, h̄ω0/J = 3, the temperature
we study is relatively low, kBT/(h̄ω0) = 1/3, so that the
zero-temperature spectrum in Fig. 9(b1) is quite similar to
the finite-temperature spectrum in Fig. 9(b2). The spectrum
consists of the polaronic band, the QP peak being located at
h̄ωQP/J ∼ −4.9, which is accompanied by its single-phonon
and two-phonon replicas, whose minima lie at approxi-
mately h̄(ωQP + ω0)/J and h̄(ωQP + 2ω0)/J , respectively. In
contrast to the zero-temperature bands in Fig. 9(b1), the
finite-temperature bands in Fig. 9(b2) are somewhat broad-
ened. The bandwidth Wpol(T = 0) of the polaronic band at
T = 0 agrees reasonably well with the Lang–Firsov predic-
tion Wpol(T = 0)/W0 = exp ( − γ 2/(h̄ω0)2) (W0 = 4J is the
bare bandwidth), while the corresponding finite-temperature
expression Wpol(T )/W0 = exp ( − γ 2 coth(β h̄ω0/2)/(h̄ω0)2)
underestimates the width of the lowest-lying band in
Fig. 9(b2).

F. Electron-removal spectral function

Figure 10(a) presents the electron-removal spectral func-
tion A+(k, ω) defined in Eq. (14) for γ /J = √

2, h̄ω0/J = 1,
and kBT/J = 0.4. We observe a prominent band whose mini-
mum is situated at the quasiparticle peak h̄ωQP/J ∼ −3 along
with its single-phonon replica, which is much less intense and
starts at h̄(ωQP + ω0)/J . The bands at frequencies ω < ωQP

are not well resolved, but one can still glimpse certain wide
structures whose minima lie at h̄(ωQP − nω0)/J , n = 1, 2, 3,
and whose intensity diminishes as n is increased. The re-
sults summarized in Fig. 10(a) overall agree with the results
for A+(k, ω) presented in Ref. [42] for the same parameter
regime. A+(k, ω) satisfies the sum rule∫ +∞

−∞
dω A+(k, ω) = fk (84)

where fk is the population of electronic state with momentum
k.

According to the fluctuation–dissipation theorem [79],
A(k, ω) and A+(k, ω) are not mutually independent and are
related by

A(k, ω) = N eβ h̄ωA+(k, ω). (85)

The normalization constant N enters Eq. (85) because A and
A+ satisfy different sum rules, while its value

N =
∑

k

∫ +∞

−∞
dω A(k, ω)e−β h̄ω (86)

is determined by the requirement that the number of electrons
is equal to unity. To numerically check the validity of Eq. (85),
in Fig. 10(b) we plot the spectral function A(k = 0, ω) in
the zone center computed using G>(k = 0, t ) [Eq. (13), solid
line] and G<(k = 0, t ) [Eqs. (14), (85), and (86), dashed line].
Figure 10(c) presents the relative deviation between the results
obtained in these two manners. While already Fig. 10(a) indi-
cates that the agreement is good, Fig. 10(c) reveals that the
relative difference between the data originating from G> and

FIG. 10. (a) Momentum- and energy-resolved electron-removal
spectral function A+(k, ω) for γ /J = √

2, h̄ω0/J = 1, and kBT/J =
0.4. Note the logarithmic scale of the color bar. [(b),(c)] Numerical
verification of the fluctuation–dissipation theorem for A and A+.
(b) Spectral function A(k = 0, ω) in the zone center obtained using
Eq. (13) (solid line, labeled “from G>”) and using Eqs. (14), (85),
and (86) (dashed line, labeled “from G<”). (c) Relative deviation (in
10−3) of A(k = 0, ω) obtained from G> with respect to A(k = 0, ω)
obtained from G<.

G< oscillates around zero and is smaller than 1%. These re-
sults offer further support for the correctness of our numerical
implementation of the HEOM method.

G. Finite-size effects

The numerical cost of the HEOM method significantly
increases with the chain length N , see Eq. (82). In all previ-
ous computations, N was restricted to relatively small values
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FIG. 11. Imaginary-time correlation function C(k, τ ) [Eqs. (12)
and (15)] (a) in the zone center k = 0 and (b) at the zone edge k = π

computed using QMC with different chain lengths (empty sym-
bols) and HEOM (solid line). Insets present the ratio of QMC and
HEOM results for N = 8 (full left-triangles) and the ratio of QMC
results for N = 8 and N = 20 (empty right-triangles). The model
parameters assume the following values: kBT/J = 0.4, h̄ω0/J = 1,
and γ /J = √

2.

(between 6 and 10). It is therefore highly important to under-
stand how the finite-size effects influence the results presented
so far. To that end, we compare the imaginary-time corre-
lation functions obtained from the HEOM spectral function
[Eq. (15)] and the QMC computations [Eq. (12)]. In addi-
tion to examining finite-size effects, the comparison of the
HEOM and QMC results provides an independent check of
the HEOM results, which makes this study self-contained.

In Figs. 11(a) and 11(b) we compare the QMC results for
different chain lengths (empty symbols) with the HEOM re-
sult (solid line) for kBT/J = 0.4, h̄ω0/J = 1, and γ /J = √

2.
A more detailed comparison between the QMC and HEOM
results for the fixed chain length is performed by calculating
their mutual ratio, see the full left-triangles in the insets. The
influence of the chain length on the imaginary-time results can
be inferred from the ratio of QMC results for two very differ-
ent chain lengths, see the empty right-triangles in the insets.
The QMC results in Fig. 11(a) are virtually independent of N
as long as N � 8, and the agreement between the QMC results
for an 8-site and a 20-site chain is up to 0.3%, see the empty
right-triangles in the inset of Fig. 11(a). The oscillations of the
ratio QMC8/QMC20 reflect the statistical noise in the QMC
data. The HEOM result (for N = 8) agrees with the corre-
sponding QMC result up to 0.6%, see the full left-triangles in
the inset of Fig. 11(a). Apart from the oscillations that reflect
QMC statistical noise, there is also a systematic deviation of
the QMC from the HEOM data that increases with τ . Keeping

in mind that C(k, βJ ) is proportional to the equilibrium pop-
ulation of state |k〉, we may conclude that the aforementioned
systematic deviation reflects small differences between the
momentum distribution function obtained within QMC and
HEOM methods, see also Fig. 5(b) in Sec. VII of SM [80]. At
the zone edge, the QMC and HEOM results exhibit somewhat
worse agreement, see the full left-triangles in the inset of
Fig. 11(b), yet their relative difference is smaller than 5% for
all τ . The systematic deviation between the HEOM and QMC
data is hidden by the very strong noise in the QMC data. The
statistical noise is much stronger at the zone boundary than
in the zone center, compare the ranges of the vertical axes
in the insets of Figs. 11(a) and 11(b), and, in principle, it
could be eliminated by increasing the statistical sample of the
QMC computation. We have checked that this is indeed the
case by performing QMC calculations for N = 8 sites with
the statistical sample that is 10 and 100 times larger than
the one used in Figs. 11(a) and 11(b). The results of these
calculations are presented in Figs. 10(a)–10(d) in Sec. IX
of SM [80]. There, we observe that increasing sample size
reduces the statistical noise in the QMC data and ultimately
reveals a small systematic deviation between the HEOM and
QMC data whose magnitude is consistent with the small
differences between the HEOM and QMC momentum distri-
bution functions, see also Fig. 11(a) and Fig. 5 of SM [80].
This relatively low-temperature regime is challenging for both
the QMC and HEOM methods. While QMC necessitates finer
discretization of the quite long imaginary-time interval over
which the algorithm is performed, the HEOM may encounter
problems with the long-time weakly damped oscillations in
the Green’s functions, see Figs. 4(a2) and 4(b2).

As the temperature is increased, the finite-size effects be-
come less pronounced, even for reduced interaction strengths.
This may be concluded from Figs. 12(a) and 12(b), which
is obtained for kBT/J = 1, h̄ω0/J = 1, and γ /J = 1. There,
both in the zone center [Fig. 12(a)] and at the zone edges
[Fig. 12(b)], QMC results depend very weakly on N (empty
right-triangles in the insets) and agree quite well (up to 1%)
with the HEOM results (full left-triangles in the insets).

For strong electron–phonon coupling and at elevated tem-
peratures, the finite-size effects are also not very pronounced
and the HEOM results agree very well with the QMC results,
see Figs. 13(a) and 13(b) that are plotted for kBT/J = 1,
h̄ω0/J = 1, and γ /J = 2. Similar conclusions may be drawn
in the adiabatic and antiadiabatic regime, see Figs. 11 and 12
in Sec. X of SM [80], which display quite a good agreement
between the QMC and HEOM imaginary-time correlation
functions and suggest that the results obtained on N = 6-site
chains are representative of larger systems.

The imaginary-time results presented in this section do
establish that the HEOM-method results on short chains are
representative of larger systems and strongly suggest that the
spectral functions presented in Secs. IV C–IV E are close to
the true result. We put some caution on this claim by noting
that the operator that transforms the real-frequency spectral
function to imaginary-time correlation function has a non-
trivial null-space. For this reason, several different spectral
functions may yield the same correlation function in imagi-
nary time within the given small uncertainty. Therefore the
agreement of imaginary-time correlation functions obtained
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FIG. 12. Imaginary-time correlation function C(k, τ ) [Eqs. (12)
and (15)] (a) in the zone center k = 0 and (b) at the zone edge k = π

computed using QMC with different chain lengths (empty symbols)
and HEOM (solid line). Insets present the ratio of QMC and HEOM
results for N = 10 (full left-triangles) and the ratio of QMC re-
sults for N = 10 and N = 20 (empty right-triangles). The model
parameters assume the following values: kBT/J = 1, h̄ω0/J = 1,
and γ /J = 1.

by QMC and by transforming the HEOM spectral function
does not provide a definite proof that HEOM spectral func-
tions are accurate but it does provide a strong evidence. In
our most recent paper [93], we compared the HEOM spectral
functions with literature results for spectral functions obtained
using the real-time/frequency numerically exact methods
such as the finite-temperature Lanczos method [40,41] and the
density-matrix renormalization group method [42]. Excellent
agreement between our results and the literature results gives
a definite proof of accuracy of HEOM for parameter values
where literature results were available.

We note however that the number of sites when finite-size
effects become negligible depends both on the parameters
of the model and the physical quantity of interest. For ex-
ample, in our previous work on the mobility in the Holstein
model [49] we found that for small electron-phonon interac-
tion when the mean free path is large, several tens of sites
are required to obtain the converged result. Large number of
sites is also necessary to obtain the long-time result if one is
interested in the transport at finite bias [94].

V. DISCUSSION

Despite the unfavorable scaling of the amount of compu-
tational resources with system size [Eq. (82)], our HEOM
approach to evaluate real-time correlation functions at finite

FIG. 13. Imaginary-time correlation function C(k, τ ) [Eqs. (12)
and (15)] (a) in the zone center k = 0 and (b) at the zone edge k = π

computed using QMC with different chain lengths (empty symbols)
and HEOM (solid line). Insets present the ratio of QMC and HEOM
results for N = 6 (full left-triangles) and the ratio of QMC results for
N = 6 and N = 20 (empty right-triangles). The model parameters
assume the following values: kBT/J = 1, h̄ω0/J = 1, and γ /J = 2.

temperatures occupies a special place in the gamut of numer-
ical tools for interacting electron–phonon systems.

The exact diagonalization is a method of choice to accu-
rately compute ground-state and finite-temperature spectral
properties of relatively small clusters. However, obtaining
real-time correlation functions is quite challenging. Further-
more, strictly speaking, the spectral function is a set of
delta peaks on the frequency axis, and to get smooth spec-
tra, one has to introduce artificial broadening. As discussed
in Sec. III C, this artificial broadening actually changes the
physical system we are dealing with by replacing a finite
number of phonon modes by a thermodynamic reservoir con-
sisting of infinitely many phonon modes. Even though the
spectra become representative of the thermodynamic limit,
the value of the broadening is to be chosen carefully [95].
On the one hand, it should be sufficiently large to remove
finite-size effects, i.e., to damp the long-time oscillations in
G>(k, t ), see Fig. 4, to zero. On the other hand, it should be
sufficiently small not to overbroaden the genuine features of
spectra, i.e., not to affect the short-time decay of G>(k, t ),
see Fig. 4. In other words, even though the results are ex-
act, the arbitrariness in the broadening casts doubts on the
exactness of the physical quantities that may be obtained
from the broadened data (e.g., the conductivity in the so-
called bubble or independent-particle approximation [96], in
which the current–current (two-particle) correlation function
is approximated as the product of two single-particle cor-
relation functions). QMC may treat larger clusters, as we
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demonstrated, and thus minimize finite-size effects without
introducing artificial broadenings. However, QMC methods
to evaluate dynamic correlation functions may face severe
problems. On the one hand, to obtain correlation functions
on the real-frequency axis, one may perform the analytic
continuation from the imaginary-frequency axis, which is
in principle an ill-posed problem. On the other hand, one
may attempt to directly evaluate correlation functions on the
real-time axis, in which case the infamous sign problem is
encountered. The difficulties in extracting real-time or real-
frequency data from the results on the imaginary axis may
be appreciated by contrasting Fig. 13 of the main text and
Figs. 11 and 12 in Sec. X of SM [80], which are obtained
in very different parameter regimes. The imaginary-time data
in these cases are both qualitatively (the overall shape of the
curves) and quantitatively (the vertical-axis ranges) similar to
one another. Nevertheless, the spectral functions presented in
Figs. 8(c2), 9(a2), and 9(b2) are considerably different from
one another. In contrast to the above-discussed approaches,
the HEOM method presented here deals directly with the
real-time correlation functions and provides numerically exact
results for the cluster of given size. HEOM data can be safely
used to further compute physical quantities of interest, and
the results will be numerically exact for the given system size.
Even though we employed HEOM on relatively short chains,
artificial broadening parameters are not necessary to obtain
results representative of larger systems, which is demonstrated
by the very good agreement between the imaginary-time
correlation functions emerging from HEOM and QMC com-
putations.

Another quantity relevant for the single-polaron prob-
lem is the phonon spectral function, which can be obtained
from the greater Green’s function in the phonon sector
D>(q, t ) = −i〈[bq(t ) + b†

−q(t )][b−q + b†
q]〉. Its computation

using the HEOM formalism developed here is complicated
by at least two factors. Firstly, the partial trace over phonons
lies at the heart of the HEOM formalism, meaning that
correlation functions of mixed electron–phonon operators
are not straightforwardly accessible from the purely elec-
tronic ADMs. Some other formalisms, such as the dissipaton
equations of motion [62] or the generalized hierarchical
equations [97,98], provide prescriptions to evaluate corre-
lation functions of mixed electron–phonon operators using
the ADMs. Secondly, while the hierarchy for G>/<(k, t )
is single-sided [there is no backward evolution operator in
Eqs. (16)–(19)], the hierarchy for D>(q, t ) would be double-
sided. The numerical effort to obtain D>(q, t ) would thus be
greater than in the case of G>/<(k, t ).

Strictly speaking, the phonon spectral function in the zero-
density limit, i.e., for one electron on an infinite chain, would
be equal to the free-phonon spectral function directly acces-
sible from Eq. (22) [99]. Even though our formulation is
restricted to the single-electron case, the numerical results,
which would be obtained on finite chains, would actually cor-
respond to finite electron densities [99]. At low temperatures,
the phonon spectra of the Holstein model on a finite chain
feature the free-phonon line (bare, unrenormalized phonon
line) at ω = ω0 and a band that replicates the polaron band
and whose minimum is at (q, ω) = (0, 0) [42,99,100]. The

minimum of the polaron band is at ω = 0 because the zero-
momentum phonon couples to the (constant) electron density,
see Eq. (5). These features may be identified already in the
single-site limit, when the phonon spectral function may be
directly evaluated

iD>(t ) = [1 + nBE(ω0, T )]e−iω0t + 4

(
γ

h̄ω0

)2

+ nBE(ω0, T )eiω0t .

As the temperature is increased, the free-phonon line at neg-
ative frequency ω = −ω0 acquires appreciable intensity, the
reflected polaron band appears at ω < 0, while the polaron
band broadens at larger momenta [42].

Generally speaking, the extension of the developed method
beyond the single-excitation case is not straightforward. This
is most directly seen on the example of the equilibrium RDM
(Sec. II C 4) within the Holstein model of mutually nonin-
teracting spinless fermions (the many-fermion version of the
present model). The expression for the RDM [Eq. (43)] and
the definition of the ADM σ

(n,un,eq)
n (τ ) [Eq. (45)] remain

the same as in the single-electron case, the only difference
being that Vq = ∑

k c†
k+qck , cf. Eq. (5). However, the number

of their nonzero matrix elements is significantly increased
so that Tr(c†

q1
. . . c†

ql
cp1 . . . cpmσ

(n,un,eq)
n ) �= 0 only if l = m

and q1 + · · · + ql − (p1 + · · · + pm) = kn. The evolution of
single-particle quantities (singlets) depends on the evolution
of two-particle quantities (doublets) etc., and one has to trun-
cate the hierarchy induced by many-body effects and yet
keep the hierarchy stemming from the electron–phonon in-
teraction. One possibility is to employ the cluster-expansion
method, see e.g., Ref. [74]. Another possibility, particularly
appealing when studying time-dependent (exciton–)polaron
formation triggered by a laser excitation [101], is the dy-
namics controlled truncation scheme, see Refs. [67,102]. For
the Holstein–Hubbard model, an extension of the present ap-
proach is even more complicated, and the HEOM formalism
has been successfully applied only to the Holstein–Hubbard
dimer [103,104], where a direct enumeration of many-
body states and the separation of different spin sectors are
feasible.

Another aspect of our HEOM approach that is worth
discussing is its symmetry-adapted formulation in the mo-
mentum space. While the application of the HEOM method to
single-mode situations is not new [70,71,77], previous studies
implemented the method in the real space, without exploiting
its translational symmetry. In contrast to perturbative theories,
which lean on approximations that have to be carried out in a
specific basis (e.g., the momentum eigenbasis for the Redfield
theory or the coordinate eigenbasis for the Marcus/Förster
theory), the HEOM permits us to calculate the properties of
interest in any basis. Furthermore, the equilibrium RDM of
the electronic subsystem [Eq. (43)], as well as the Green’s
functions [Eq. (10)], can also be represented in any basis.
However, the most convenient representation is the one in
which the electronic RDM is diagonal. In that representation,
the effects of the electron–phonon interaction on the reduced
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electronic properties (i.e., the polaronic effects) are taken into
account in the simplest possible way. The corresponding ba-
sis is known as the global basis [105], or pointer/preferred
basis [68] in the framework of decoherence theory [106,107].
According to the momentum-conservation law, the electronic
single-particle density matrix is diagonal in the eigenbasis
{|k〉} of the electronic momentum. We thus conclude that our
momentum-space HEOM is indeed formulated in the pre-
ferred basis for the Holstein Hamiltonian.

Our optimal formulation of the problem comes with an-
other advantage. The authors of Ref. [75] pointed out that
the temporal propagation of the real-space HEOM method
developed in Ref. [71] exhibits an exponential-instability wall.
Having hit that wall, the observables diverge, and advanced
techniques have to be employed to extract long-time dynamics
of the single-mode Holstein model. All the results presented
here unambiguously demonstrate that exploiting the transla-
tional symmetry of the model, i.e., transferring to the preferred
basis of the problem, renders the equations numerically stable
and thus obviates the need for advanced tools to mitigate
potential instabilities. We propagated our symmetry-adapted
HEOM in various parameter regimes up to quite long times
ω0tmax ∼ 500 with a moderate time step ω0�t = 0.02, see
Fig. 4, and observed no sign of numerical instabilities in our
data.

VI. CONCLUSIONS

We develop a novel HEOM-based approach that is
specifically suited for evaluation of real-time single-particle
correlation functions and thermodynamic properties of the
Holstein Hamiltonian at finite temperature. The conservation
of the total momentum enables us to formulate the hierar-
chy in the momentum space, so that its dynamical variables
describe multiphonon absorption and emission processes in
which the momentum is exchanged between the electron and
quantum vibrations. Our momentum-space formulation is su-
perior to the commonly used real-space formulation because it
circumvents known numerical problems that arise during the
propagation of the real-space HEOM.

We use our HEOM approach to compute the spectral func-
tion and thermodynamic quantities of the one-dimensional

Holstein model containing up to 10 sites. Our results agree
quite well with the available results of the finite-temperature
Lanczos method, the coupled-cluster theory, and the momen-
tum average approximation. A further support to the HEOM
approach comes from the comparison with imaginary-time
data obtained using our QMC approach that provides access
to the properties of larger chains. QMC results demonstrate
that finite size effects are not pronounced and that relatively
short chains, containing 5–10 sites, capture the behavior char-
acteristic for longer chains.

All these results suggest that our HEOM approach may
greatly contribute to future studies of finite-temperature
Holstein polaron dynamics. Using advanced propagation tech-
niques [108], our approach may become viable for larger or
higher-dimensional systems and in multimode situations. It
is interesting to note that our study is concurrent with other
works aiming at extending the methods commonly applied
to molecular systems (chemical-physics realm) to band-like
situations (condensed-matter realm) [109]. Our method may
contribute to revealing the (exciton-)polaron formation dy-
namics, which is highly relevant for a proper interpretation of
ultrafast experimental signals in molecular aggregates [105],
organic semiconductors [110], and photosynthetic pigment–
protein complexes [101]. Finally, the HEOM developed
here may be readily used to study finite-temperature trans-
port properties of the Holstein model by approximating a
two-particle correlation function as the product of two single-
particle correlation functions [96].
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[95] J. Vučičević, J. Kokalj, R. Žitko, N. Wentzell, D. Tanasković,
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