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ABSTRACT
Ultracold-atom simulations of the Hubbard model provide insights into the character of charge and spin correlations in and out of equi-
librium. The corresponding numerical simulations, on the other hand, remain a significant challenge. We build on recent progress in the
quantum Monte Carlo (QMC) simulation of electrons in continuous space and apply similar ideas to the square-lattice Hubbard model. We
devise and benchmark two discrete-time QMC methods, namely the fermionic-propagator QMC (FPQMC) and the alternating-basis QMC
(ABQMC). In FPQMC, the time evolution is represented by snapshots in real space, whereas the snapshots in ABQMC alternate between
real and reciprocal space. The methods may be applied to study equilibrium properties within the grand-canonical or canonical ensemble,
external field quenches, and even the evolution of pure states. Various real-space/reciprocal-space correlation functions are also within their
reach. Both methods deal with matrices of size equal to the number of particles (thus independent of the number of orbitals or time slices),
which allows for cheap updates. We benchmark the methods in relevant setups. In equilibrium, the FPQMC method is found to have an excel-
lent average sign and, in some cases, yields correct results even with poor imaginary-time discretization. ABQMC has a significantly worse
average sign, but also produces good results. Out of equilibrium, FPQMC suffers from a strong dynamical sign problem. On the contrary,
in ABQMC, the sign problem is not time-dependent. Using ABQMC, we compute survival probabilities for several experimentally relevant
pure states.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0133597

I. INTRODUCTION

The last two decades have witnessed remarkable develop-
ments in laser and ultracold-atom technologies that have enabled
experimental studies of strongly correlated electrons in and out
of equilibrium.1,2 Ultracold atoms in optical lattices2,3 and opti-
cal tweezers arrays4–6 have been used as quantum simulators for
paradigmatic models of condensed-matter physics, such as the Hub-
bard model.7,8 Recent experiments with fermionic ultracold atoms
have probed the equation of state,9 charge, and spin correlation
functions,10–13 as well as transport properties (by monitoring charge
and spin diffusion14–17).

These experimental achievements pose a significant challenge
for the theory. The level of difficulty, however, greatly depends
on whether one computes instantaneous (equal-time) correlations

or the full time/frequency dependence of dynamical correlators.
The other factor is whether one considers thermal equilibrium or
out-of-equilibrium setups.

Instantaneous correlators in equilibrium are the best-case
scenario. The average density, double occupancy, and correla-
tions between particle or spin densities on adjacent sites are still
very important. They serve as a thermometer: the temperature in
cold-atom experiments cannot be measured directly and is often
gauged in comparison with numerical simulations.11,14 For this
kind of application, current state-of-the-art methods18–43 are often
sufficient. Equal-time multipoint density correlations are also of
interest, as they hold information, e.g., about the emergence of
string patterns13,44,45 or the effect of holes on antiferromagnetic
correlations.46–48 However, measuring density at a larger number
of points simultaneously is more difficult in many algorithms. For
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example, in the Hirsch–Fye (HF) algorithm,24,49 one cannot do
this straight-forwardly, as the auxiliary Ising spins only distinguish
between singly occupied and doubly occupied/empty sites.

Of even greater interest and much greater difficulty are the
time-dependent correlations in equilibrium. These pertain to stud-
ies of transport and hydrodynamics at the level of linear response
theory.50–52 The limitations of current state-of-the-art methods here
become starkly apparent. If one is interested in long-wavelength
behavior (as is precisely the case in the study of hydrodynamic
properties52), the lattices treated in the simulation need to be suffi-
ciently large. The finite-temperature Lanczos method53,54 can only
treat up to 20 lattice sites50,55 and is unsuitable for such appli-
cations. Quantum Monte Carlo (QMC) methods can treat up to
300 sites,29,30 but only under certain conditions: doping away from
half-filling leads to a significant sign problem, which becomes
more severe as the lattice size, inverse temperature, and coupling
constant are increased. Moreover, QMC methods are formulated
in imaginary time and require ill-defined analytical continuation
to reconstruct optical conductivity or any other real-frequency
spectrum.51

Direct real-time calculations, regardless of proximity to the
equilibrium, are the most difficult.31,56–69 These present an alterna-
tive to analytical continuation in equilibrium calculations but are
necessary to describe non-equilibrium regimes, e.g., in external field
quenches.16 In the corresponding Kadanoff–Baym–Keldysh three-
or two-piece contour formalism, QMC computations are plagued
by the dynamical sign problem, which has so far been overcome
in only the smallest systems.61 The time-dependent density matrix
renormalization group70–72 produces practically exact results, how-
ever, only in one-dimensional63,64 or ladder systems.73 Simulations
based on the nonequilibrium Green’s functions formalism74 are also
possible but not numerically exact. They can, however, treat much
larger systems over much longer time scales than other real-time
approaches.64,75–77

The main goal of this work is to construct a numerically exact
way to compute spatially resolved densities in setups relevant for
optical lattice experiments. This includes general multipoint corre-
lators in real space and momentum space, and we focus on densities
of charge and spin. We are interested in both the equilibrium
expectation values and their time dependence in transient regimes.
(The latter can formally be used to access temporal correlations in
equilibrium as well.)

We take a largely unexplored QMC route78–80 toward the com-
putation of correlation functions in the square-lattice Hubbard
model. Current state-of-the-art methods, such as the continuous-
time interaction-expansion (CT-INT),31–33 the continuous-time
auxiliary field (CT-AUX),31,34 and HF,24,49 rely on the computa-
tion of large matrix determinants, which, in many cases, presents
the bottleneck of the algorithm. In CT-INT and CT-AUX, the size
of the matrices generally grows with coupling, inverse temperature,
and lattice size. In the HF, which is based on the Suzuki–Trotter
decomposition (STD), the matrix size is fixed, yet presents a mea-
sure of the systematic error: the size of the matrix scales with
both the number of time slices and the number of lattice sites. A
rather separate approach is possible, where the size of the matri-
ces scales only with the total number of electrons. This approach
builds on the path-integral MC (PIMC).81,82 In PIMC, the trajecto-
ries of individual electrons are tracked. In continuous-space models,

PIMC was used successfully even in the calculation of dynamical
response functions.83,84 The downside is that the antisymmetry of
electrons feeds into the overall sign of a given configuration, thus
contributing to the sign problem. A more sophisticated idea was
put forward in Refs. 85–87. Namely, the propagation between two
time slices can be described by a single many-fermion propagator,
which groups (blocks) all possible ways the electrons can go from
one set of positions to another—including all possible exchanges.
The many-fermion propagator is evaluated as a determinant of a
matrix of size equal to the total number of electrons. This scheme
automatically eliminates one important source of the sign problem
and improves the average sign drastically. Such permutation blocking
algorithms have been utilized with great success to compute ther-
modynamic quantities in continuous-space fermionic models.88–96

Here, we investigate and test analogous formulations in the lattice
models of interest and try generalizing the approach to real-time
dynamics.

We develop and test two slightly different QMC methods. The
Fermionic-propagator QMC (FPQMC) is a real-space method sim-
ilar to the permutation-blocking and fermionic-propagator PIMC,
respectively, developed by Dornheim et al.90 and Filinov et al.96 for
continuous models. On the other hand, the alternating-basis QMC
(ABQMC) method is formulated simultaneously in both real and
reciprocal space, which makes measuring distance- and momentum-
resolved quantities equally simple. The motion of electrons and their
interactions are treated on an equal footing. Both methods are based
on the STD and are straight-forwardly formulated along any part
of or the entire Kadanoff–Baym–Keldysh three-piece contour. This
allows access to both real- and imaginary-time correlation functions
in and out of equilibrium. Unlike CT-INT, CT-AUX, and HF, our
methods can also be used to treat canonical ensembles as well as
the time evolution of pure states. Our formulation ensures that the
measurement of an arbitrary multipoint charge or spin correlation
function is algorithmically trivial and cheap.

We perform benchmarks on several examples where numeri-
cally exact results are available.

In calculations of instantaneous correlators for the 2D Hub-
bard model in equilibrium, our main finding is that the FPQMC
method has a rather manageable sign problem. The average sign is
anti-correlated with coupling strength, which is in sharp contrast
with some of the standard QMC methods. More importantly, we
find that the average sign drops off relatively slowly with the lattice
size and the number of time slices—we have been able to con-
verge results with as many as eight time slices, or as many as 80
lattice sites. At strong coupling and at half-filling, we find the aver-
age sign to be very close to 1. In the temperature range relevant
for optical-lattice experiments, we find that the average occupancy
can be computed to a high accuracy with as few as two time slices;
the double occupancy and the instantaneous spin–spin correlations
require somewhat finer time discretization, but often not more than
six time-slices in total. We also document that FPQMC appears to
be sign-problem-free for Hubbard chains.

However, in calculations of the time-evolving and spatially
resolved density, we find that the FPQMC sign problem is
mostly prohibitive of obtaining results. Nevertheless, employing the
ABQMC algorithm, we are able to compute survival probabilities of
various pure states on 4 × 4 clusters—in the ABQMC formulation,
the sign-problem is manifestly independent of time and interaction
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strength, and one can scan the entire time evolution for multiple
strengths of interaction in a single run. The numerical results reveal
several interesting trends. Similarly to observations made in Ref. 97,
we find in general that the survival probability decays over longer
times when interactions are stronger. At shorter times, we observe
that the behavior depends strongly on the type of the initial state,
likely related to the average density.

The paper is organized as follows: The FPQMC and ABQMC
methods are developed in Sec. II and applied to equilibrium and
out-of-equilibrium setups in Sec. III. Section IV discusses the
FPQMC and ABQMC methods in light of other widely used QMC
algorithms. Section V summarizes our main findings and their
implications, and discusses prospects for further work.

II. MODEL AND METHOD
A. Hubbard Hamiltonian

We study the Hubbard model on a square-lattice cluster con-
taining Nc = NxNy sites under periodic boundary conditions (PBC).
The Hamiltonian reads as

H = H0 +Hint. (1)

The noninteracting (single-particle) part H0 of the Hamiltonian
describes a band of itinerant electrons

H0 = −J ∑
⟨r,r′⟩σ

c†rσ cr′σ = ∑
kσ
εk nkσ , (2)

where J is the hopping amplitude between the nearest-neighboring
lattice sites r and r′, while the operators c†rσ (crσ) create (destroy) an
electron of spin σ on lattice site r. Under PBC, H0 is diagonal in the
momentum representation; the wave vector k may assume any of the
Nc allowed values in the first Brillouin zone of the lattice. The free-
electron dispersion is given by εk = −2J(cos kx + cos ky). The density
operator is nkσ = c†kσ ckσ with ckσ = ∑r⟨k∣r⟩crσ . The Hamiltonian of
the on-site Hubbard interaction (two-particle part) reads as

Hint = U∑
r

nr↑ nr↓, (3)

where U is the interaction strength, while nrσ = c†rσ crσ .
If the number of particles is not fixed, Eq. (1) additionally

features the chemical-potential term −μ∑rσ nrσ = −μ∑kσ nkσ that
can be added to either H0 or Hint. Here, since we develop a
coordinate-space QMC method, we add it to Hint.

B. FPQMC method
Finding viable approximations to the exponential of the form

e−αH is crucial to many QMC methods. With α = 1/T (T denotes
temperature), this is the Boltzmann operator, which will play a role
whenever the system is in thermal equilibrium. In the formulation
of dynamical responses, the time-evolution operator will also have
this form, with α = it, where t is the (real) time. One possible way to
deal with these is the lowest-order STD98

e−αH
≈ (e−ΔαH0 e−ΔαHint)

Nα
, (4)

where the interval of length ∣α∣ is divided into Nα subintervals of
length ∣Δα∣ each, where Δα = α/Nα. The error of the approximation
is of the order of ∣Δα∣2∥[H0, Hint]∥, where the norm ∥[H0, Hint]∥may
be defined as the largest (in modulus) eigenvalue of the commutator
[H0, Hint].80 The error can in principle be made arbitrarily small by
choosing Nα large enough. However, the situation is complicated by
the fact that the RHS of Eq. (4) contains both single-particle and
two-particle contributions. The latter are diagonal in the coordinate
representation, so that the spectral decomposition of e−ΔαHint is per-
formed in terms of totally antisymmetric states in the coordinate
representation, aka the Fock states,

∣Ψi⟩ = ∏
σ

Nσ

∏
j=1

c†rσj σ ∣∅⟩ (5)

that contain Nσ electrons of spin σ whose positions rσ1 , . . . , rσNσ

are ordered according to a certain rule. We define εint(Ψi)

≡ ⟨Ψi∣Hint∣Ψi⟩. On the other hand, the matrix element of e−ΔαH0

between many-body states ∣Ψ′i⟩ and ∣Ψi⟩ can be expressed in terms
of determinants of single-electron propagators

⟨Ψ′i ∣e
−ΔαH0 ∣Ψi⟩ = ∏

σ
det S(Ψ′i ,Ψi,Δα, σ), (6)

[S(Ψ′i ,Ψi,Δα, σ)]
j1 j2
= ⟨r′σj1 ∣e

−ΔαH0 ∣rσj2⟩. (7)

We provide a formal proof of Eqs. (6) and (7) in Appendix A. The
same equations lie at the crux of conceptually similar permutation-
blocking90 and fermionic-propagator96 PIMC methods, which are
formulated for continuous-space models. When Δα is purely real
(purely imaginary), the quantity on the right-hand side of Eq. (7)
is the imaginary-time (real-time) lattice propagator of a free particle
in the coordinate representation.80 Its explicit expressions are given
in Appendix B.

Further developments of the method somewhat depend on
the physical situation of interest. We formulate the method first
in equilibrium and then in out-of-equilibrium situations. To facil-
itate discussion, in Figs. 1(a)–1(d), we summarize the contours
appropriate for the different situations we consider.

1. FPQMC method for thermodynamic quantities
The equilibrium properties at temperature T = β−1 follow

from the partition function Z ≡ Tr e−βH , which may be computed
by dividing the imaginary-time interval [0,β] into Nτ slices of
length Δτ ≡ β/Nτ , employing Eq. (4), and inserting the spectral
decompositions of e−ΔτHint . The corresponding approximant for Z
reads as

Z ≈ ∑
C
Dβ(C,Δτ)e−Δτεint(C ). (8)

The configuration

C = {∣Ψi,1⟩, . . . , ∣Ψi,Nτ ⟩} (9)

resides on the contour depicted in Fig. 1(a) and consists of Nτ Fock
states ∣Ψi,l⟩ in the coordinate representation. Dβ(C,Δτ) depends
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FIG. 1. Contours appropriate for computing (a) thermodynamic quantities at tem-
perature T = 1/β, (b) time-dependent quantities after quantum quench in which
the Hamiltonian is suddenly changed from H(0) at t < 0 to H at t > 0, (c) time-
dependent quantities during evolution from a pure state ∣ψ(0)⟩ ≡ ∣Ψi,1⟩, (d) the
survival probability of the initial pure state ∣ψ(0)⟩ ≡ ∣Ψi,1⟩. In (a) and (b), the ver-
tical part is divided into Nτ identical slices of length Δτ. In (b)–(d), each horizontal
line is divided into Nt identical slices of length Δt. Within the FPQMC method, a
many-body state in the coordinate representation ∣Ψi,l⟩ [Eq. (5)] is associated with
each slice l. Within the ABQMC method, in addition to ∣Ψi,l⟩, each slice l features
a many-body state in the momentum representation ∣Ψk,l⟩ [Eq. (29)].

on the temperature and imaginary-time discretization through the
imaginary-time step Δτ

Dβ(C,Δτ) ≡
Nτ

∏
l=1
⟨Ψi,l⊕1∣e

−ΔτH0 ∣Ψi,l⟩

=

Nτ

∏
l=1
∏
σ

det S(Ψi,l⊕1,Ψi,l,Δτ, σ) (10)

and is a product of 2Nτ determinants of imaginary-time single-
particle propagators on a lattice (this is emphasized by adding
the subscript β). The cyclic addition in Eq. (10) is the standard
addition for l = 1, . . . , Nτ − 1, while Nτ ⊕ 1 = 1. The symbol εint(C)
stands for

εint(C) ≡
Nτ

∑
l=1
εint(Ψi,l). (11)

By virtue of the cyclic invariance under trace, the ther-
modynamic expectation value of an observable A can be
expressed as

⟨A⟩ =
1

Nτ

Nτ−1

∑
l=0

1
Z

Tr{(e−ΔτH
)

lA(e−ΔτH
)

Nτ−l
}. (12)

The FPQMC method is particularly suitable for observables diago-
nal in the coordinate representation (e.g., the interaction energy Hint
or the real-space charge density nrσ). Such observables will be dis-
tinguished by adding the subscript i. Equation (12), combined with
the lowest-order STD [Eq. (4)], produces the following approximant
for ⟨Ai⟩ :

⟨Ai⟩ ≈
∑C Dβ(C,Δτ) e−Δτεint(C ) 1

Nτ
∑

Nτ
l=1 Ai(Ψi,l)

∑C Dβ(C,Δτ) e−Δτεint(C )
, (13)

where

Ai(Ψi,l) ≡ ⟨Ψi,l∣Ai∣Ψi,l⟩. (14)

Defining the weight w(C,Δτ) of configuration C as

w(C,Δτ) ≡ ∣Dβ(C,Δτ)∣e−Δτεint(C ), (15)

Eq. (13) is rewritten as

⟨Ai⟩ ≈
⟨sgn(C) 1

Nτ
∑

Nτ
l=1 Ai(Ψi,l)⟩

w

⟨sgn(C)⟩w
, (16)

where ⟨⋅ ⋅ ⋅⟩w denotes the weighted average over all C with respect
to the weight w(C); sgn(C) ≡ Dβ(C,Δτ)/∣Dβ(C,Δτ)∣ is the sign of
configuration C, while ∣⟨sgn⟩∣ ≡ ∣⟨sgn(C)⟩w ∣ is the average sign of the
QMC simulation.

By construction, our FPQMC approach yields exact results for
the noninteracting electrons (ideal gas, U = 0) and in the atomic
limit (J = 0). In both limits, due to [H0, Hint] = 0, the FPQMC
method with arbitrary Nτ should recover the exact results. How-
ever, the performance of the method, quantified through the average
sign of the simulation, deteriorates with increasing Nτ . For Nτ = 1,
the FPQMC algorithm is sign-problem-free because it sums only
diagonal elements ⟨Ψi,1∣e−βH0 ∣Ψi,1⟩ of the positive operator e−βH0 .
The sign problem is absent also for Nτ = 2 because Dβ(C,β/2) is a
square of a real number.

An important feature of the above-presented methodology
is its direct applicability in both the grand-canonical and canon-
ical ensemble. The grand-canonical formulation is essential to
current state-of-the-art approaches31 (e.g., CT-INT or CT-AUX)
relying on the thermal Wick’s theorem, which is not valid in
the canonical ensemble.99 In the auxiliary-field QMC,22,23,25,27,28

the Hubbard–Stratonovich transformation100 decouples many-body
propagators into sums (or integrals) over one-body operators
whether the particle number is fixed or not. Working in the grand-
canonical ensemble is then analytically and computationally more
convenient because the traces over all possible fermion occupations
result in determinants.23,101 In the canonical ensemble, the compu-
tation of traces over constrained fermion occupations is facilitated
by observing that the Hubbard–Stratonovich decoupling produces
an ensemble of noninteracting systems101 to which theories devel-
oped for noninteracting systems in the canonical ensemble, such as
particle projection102,103 or recursive methods,104,105 can be applied.
While such procedures may be numerically costly and/or unsta-
ble,101 a very recent combination of the auxiliary-field QMC with
the recursive auxiliary partition function formalism105 is reported
to be stable and scale favorably with the numbers of particles and
available orbitals.106 In contrast to all these approaches, the for-
mulation of the FPQMC method does not depend on whether the
electron number is fixed or not. However, the selection of MC
updates does depend on the ensemble we work with. In the canonical
ensemble, the updates should conserve the number of electrons; in
the grand-canonical ensemble, we also need to include the updates
that insert/remove electrons. Our MC updates, together with the
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procedure used to extract MC results and estimate their statistical
error, are presented in great detail in Sec. SI of the supplementary
material.

2. FPQMC method for time-dependent quantities
Ideally, numerical simulations of quench experiments such as

those from Refs. 14, 16, and 17 should provide the time-dependent
expectation value ⟨A(t)⟩ of an observable A at times t > 0 after the
Hamiltonian undergoes a sudden change from H(0) for t < 0 to H
for t > 0. Again, in many instances,14,17 the experimentally measur-
able observable A is diagonal in the coordinate representation, which
will be emphasized by the subscript i. The computation proceeds
along the three-piece Kadanoff–Baym–Keldysh contour1

⟨Ai(t)⟩ =
Tr(e−βH(0) eiHt Ai e−iHt

)

Tr(e−βH(0) eiHt e−iHt)
, (17)

where one may employ the above-outlined fermionic-propagator
approach after dividing the whole contour into a number of slices,
see Fig. 1(b). While H is the Hubbard Hamiltonian given in
Eqs. (1)–(3), H(0) describes correlated electrons whose charge (or
spin) density is spatially modulated by external fields.

The immediate complication (compared to the equilibrium
case) is that there are now three operators (instead of one) that need
to be decomposed via the STD. A preset accuracy determined by the
size of both Δτ and Δt will, therefore, require a larger number of
time-slices. In turn, this will enlarge the configuration space to be
sampled and potentially worsen the sign problem in the MC summa-
tion. Even worse, the individual terms in the denominator depend
on time, so that the sign problem becomes time-dependent (dynam-
ical). The problem is expected to become worse at long times t, yet
vanishes in the t → 0 limit.

To simplify the task and yet keep it relevant, we consider the
evolution from a pure state ∣ψ(0)⟩ that is an eigenstate of real-
space density operators nrσ , so that its most general form is given by
Eq. (5). Such a setup has been experimentally realized.5,6,14,17 Replac-
ing e−βH(0)

→ ∣ψ(0)⟩⟨ψ(0)∣ in Eq. (17) leads to the expression for the
time-dependent expectation value of the observable Ai

⟨Ai(t)⟩ =
⟨ψ(0)∣eiHt Ai e−iHt

∣ψ(0)⟩
⟨ψ(0)∣eiHt e−iHt ∣ψ(0)⟩

. (18)

Here, the STD should be applied to both the forward and backward
evolution operators, see Fig. 1(c), which requires a larger number of
time-slices to reach the desired accuracy (in terms of the systematic
error). Nevertheless, Eq. (18) is the simplest example in which the
applicability of the real-time FPQMC method to follow the evolution
of real-space observables may be examined.

Generally speaking, the symmetries of the model should be
exploited to enable as efficient as possible MC evaluation of Eq. (18).
Recent experimental15 and theoretical107 studies have discussed the
dynamical symmetry of the Hubbard model, according to which the
temporal evolution of certain observables is identical for repulsive
and attractive interactions of the same magnitude. The symmetry
relies on specific transformation laws of the Hamiltonian H, the

initial state ∣ψ(0)⟩, and the observable of interest Ai under the com-
bined action of two symmetry operations. The first is the bipartite
lattice symmetry, or the π-boost15 operation, which exploits the
symmetry εk = −εk+(π,π) of the free-electron dispersion and is rep-
resented by the unitary operator B. The second is the time reversal
symmetry represented by the antiunitary operator T (TiT = −i)
that reverses electron spin and momentum according to Tc(†)rσ T
= (−1)δσ,↓c(†)rσ and Tc(†)kσ T = (−1)δσ,↓c(†)

−k,σ . In Appendix C, we formu-
late our FPQMC method to evaluate Eq. (18) in a way that manifestly
respects the dynamical symmetry of the model (each contribution to
the MC sums respects the symmetry). Here, we only cite the final
expression for the time-dependent expectation value of an observ-
able Ai that satisfies TBAiBT = Ai when the evolution starts from a
state ∣ψ(0)⟩ satisfying TB∣ψ(0)⟩ = eiχ

∣ψ(0)⟩

⟨Ai(t)⟩ ≈
∑C Ai(Ψi,Nt+1) Re{D2t(C,Δt)} cos[Δεint(C)Δt]

∑C Re{D2t(C,Δt)} cos[Δεint(C)Δt]
. (19)

Here, the configuration resides on the contour depicted in Fig. 1(c),
which is divided into 2Nt slices in total, and contains 2Nt − 1
independent states. We assume that states ∣Ψi,l⟩ for l = 1, . . . , Nt
(l = Nt + 1, . . . , 2Nt) lie on the forward (backward) branch of the
contour, while ∣Ψi,1⟩ ≡ ∣ψ(0)⟩. Ai(Ψi,Nt+1) is defined as in Eq. (14),
while

Δεint(C) ≡
Nt

∑
l=1
[εint(Ψi,l+Nt) − εint(Ψi,l)]. (20)

The symbol D2t(C,Δt) stands for the following combination
of forward and backward fermionic propagators (which is also
emphasized by the subscript 2t):

D2t(C,Δt) =
2Nt

∏
l=Nt+1

⟨Ψi,l⊕1∣e
iH0Δt
∣Ψi,l⟩

Nt

∏
l=1
⟨Ψi,l⊕1∣e

−iH0Δt
∣Ψi,l⟩. (21)

The bipartite lattice symmetry guarantees that D2t(C,Δt)
= D2t(C,−Δt), see Eq. (C9). The numerator and denominator of the
RHS of Eq. (19) are term-by-term invariant under the transforma-
tions Δt → −Δt and Δεint(C) → −Δεint(C) that respectively reflect
the transformation properties under the time reversal symmetry and
the fact that the dynamics of ⟨Ai(t)⟩ are identical in the repulsive
and the attractive model. Defining w(C) ≡ ∣Re{D2t(C,Δt)}∣ and
sgn(C) ≡ Re{D2t(C,Δt)}/∣Re{D2t(C,Δt)}∣, Eq. (19) is recast as

⟨Ai(t)⟩ ≈
⟨Ai(Ψi,Nt+1) sgn(C) cos[Δεint(C)Δt]⟩w

⟨sgn(C) cos[Δεint(C)Δt]⟩w
. (22)

The sign problem in the MC evaluation of Eq. (22) is dynam-
ical. It generally becomes more serious with increasing time t and
interaction strength ∣U∣. Moreover, w(C) also depends on both t
and U, meaning that MC evaluations for different ts and Us should
be performed separately, using different Markov chains. It is thus
highly desirable to employ further symmetries in order to improve
the performance of the method. Particularly relevant initial states
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∣ψ(0)⟩, from both an experimental14,17 and theoretical108 viewpoint,
are pure density-wave-like states. Such states correspond to extreme
spin-density wave (SDW) and charge-density wave (CDW) patterns,
which one obtains by applying strong external density-modulating
fields. The SDW-like state can be written as

∣ψSDW(G)⟩ = ∏
r1∈G

c†r1↑
∏

r2∈ U/G

c†r2↓
∣∅⟩, (23)

where G denotes the multitude of sites on which the electron spins
are polarized up, while set U contains all sites of the cluster stud-
ied. The electron spins on sites belonging to U/G are thus polarized
down. Such states have been experimentally realized in Ref. 17. The
CDW-like states have also been realized in experiment,14 and they
read as

∣ψCDW(G)⟩ = ∏
r∈G

c†r↑c
†
r↓∣∅⟩. (24)

The sites belonging to G are doubly occupied, while the remain-
ing sites are empty. The state ∣ψCDW(G)⟩ can be obtained from the
corresponding ∣ψSDW(G)⟩ state by applying the partial particle–hole
transformation that acts on spin-down electrons only

∣ψSDW(G)⟩ = ∏
r∈ U
(c†r↓(1 − nr↓) + cr↓ nr↓)∣ψCDW(G)⟩, (25)

see also Refs. 109 and 110. By combining the partial particle–hole,
time-reversal, and bipartite lattice symmetries, the authors of
Ref. 108 have shown that the time evolution of spatially resolved
charge and spin densities starting from states ∣ψCDW(G)⟩ and
∣ψSDW(G)⟩, respectively, obey

⟨ψCDW(G)∣eiHt
(nr↑ + nr↓ − 1)e−iHt

∣ψCDW(G)⟩

= ⟨ψSDW(G)∣eiHt
(nr↑ − nr↓)e−iHt

∣ψSDW(G)⟩. (26)

Equation (26) may be used to acquire additional statistics by com-
bining the Markov chains for the two symmetry-related evolutions.
The procedure is briefly described in Appendix C and applied to all
corresponding computations presented in Sec. III B.

3. ABQMC method for time-dependent quantities
In this section, we develop the so-called alternating-basis QMC

method, which is aimed at removing the dynamical character of the
sign problem in real-time FPQMC simulations. Moreover, using the
ABQMC method, the results for different real times t and different
interactions U may be obtained using just a single Markov chain, in
contrast to the FPQMC method, which employs separate chains for
each t and U.

Possible advantages of the ABQMC over the FPQMC method
are most easily appreciated on the example of the survival probability
of the initial state ∣ψ(0)⟩

P(t) = ∣⟨ψ(0)∣e−iHt
∣ψ(0)⟩∣

2
, (27)

which is the probability of finding the system in its initial state after
a time t has passed. Evaluating Eq. (27) by any discrete-time QMC

method necessitates only one STD, see Fig. 1(d). The survival prob-
ability is thus the simplest example on which the applicability of
any QMC method to out-of-equilibrium setups can be systematically
studied.

The FPQMC computation of P(t)may proceed via the ratio

R(t) = ⟨ψ(0)∣e
−iHt
∣ψ(0)⟩

⟨ψ(0)∣e−iH0t ∣ψ(0)⟩
(28)

of the survival-probability amplitudes in the presence and absence
of electron–electron interactions. However, the average sign of the
MC simulation of Eq. (28) is proportional to the survival-probability
amplitude of the noninteracting system, which generally decays very
quickly to zero, especially for large clusters.62 This means that the
dynamical sign problem in the FPQMC evaluation of Eq. (28) may
become very severe already at relatively short times t.

Instead of expressing the many-body free propagator
⟨Ψ′i ∣e−iH0Δt

∣Ψi⟩ as a determinant of single-particle free propagators
[Eqs. (6) and (7)], we could have introduced the spectral decom-
position of e−iH0Δt in terms of Fock states ∣Ψk⟩ in the momentum
representation. In analogy with Eq. (5), such states are defined as

∣Ψk⟩ = ∏
σ

Nσ

∏
j=1

c†kσj σ ∣∅⟩. (29)

The state ∣Ψk⟩ contains Nσ electrons of spin σ whose momenta
kσ1 , . . . , kσNσ are ordered according to a certain rule and we define
ε0(Ψk) ≡ ⟨Ψk∣H0∣Ψk⟩. In this case, the final expression for the sur-
vival probability of state ∣ψ(0)⟩ that satisfies TB∣ψ(0)⟩ = eiχ

∣ψ(0)⟩
reads as

P(t) ≈ ∣∑C Re{D (C )} cos[ε0(C )Δt] cos[εint(C )Δt]
∑C Re{D (C )}

∣

2

. (30)

A derivation of Eq. (30) is provided in Appendix D. The MC eval-
uation of Eq. (30) should sample a much larger configuration space
than the MC evaluation of Eq. (28). The configuration C in Eq. (30)
also resides on the contour depicted in Fig. 1(d), but comprises
2Nt − 1 states in total: Nt Fock states ∣Ψk,l⟩ (l = 1, . . . , Nt) and Nt − 1
Fock states ∣Ψi,l⟩ (l = 2, . . . , Nt) (again, ∣Ψi,1⟩ ≡ ∣ψ(0)⟩). D(C) is the
product of 2Nt Slater determinants

D(C) =
Nt

∏
l=1
⟨Ψi,l⊕1∣Ψk,l⟩⟨Ψk,l∣Ψi,l⟩ (31)

that stem from the sequence of basis alternations between the
momentum and coordinate eigenbasis. Using the notation of
Eqs. (5) and (29), the most general Slater determinant ⟨Ψi∣Ψk⟩

entering Eq. (10) is given as

⟨Ψi∣Ψk⟩ = ∏
σ

det S̃(Ψi,Ψk, σ), (32)

[̃S(Ψi,Ψk, σ)]
j1 j2
= ⟨rσj1 ∣k

σ
j2⟩ =

exp(ikσj2
⋅ rσj1
)

√
Nc

, (33)

where 1 ≤ j1, j2 ≤ Nσ . The symbol ε0(C) stands for [cf. Eq. (11)]
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ε0(C) ≡
Nt

∑
l=1
ε0(Ψk,l). (34)

We note that each term in Eq. (30) is invariant under transfor-
mations ε0(C) → −ε0(C) and Δt → −Δt, which reflect the action
of the bipartite lattice symmetry and the time reversal symmetry,
respectively. Being term-by-term invariant under the transforma-
tion εint(C) → −εint(C), Eq. (30) explicitly satisfies the requirement
that the dynamics of P(t) for repulsive and attractive interactions of
the same magnitude are identical. Defining w(C) ≡ ∣Re{D(C)}∣ and
sgn(C) ≡ Re{D(C)}/∣Re{D(C)}∣, Eq. (30) is recast as

P(t) ≈ ∣
⟨sgn(C ) cos[ε0(C )Δt] cos[εint(C )Δt]⟩w

⟨sgn(C)⟩w
∣

2

. (35)

This choice for w is optimal in the sense that it minimizes the vari-
ance of ⟨sgn(C)⟩w ,111 whose modulus is the average sign of the
ABQMC simulation. The sign problem encountered in the MC eval-
uation of Eq. (35) does not depend on either time t or interaction
strength U, i.e., it is not dynamical. The weight w(C) in Eq. (35)
does not depend on either Δt or any other property of configuration
C (ε0, εint). Therefore, the MC evaluation of Eq. (35) may be per-
formed simultaneously (using a single Markov chain) for any U and
any t. This presents a technical advantage over the FPQMC method,
which may be outweighed by the huge increase in configuration
space when going from FPQMC to ABQMC. To somewhat reduce
the dimension of the ABQMC configuration space and improve
the sampling efficiency, we design the MC updates so as to respect
the momentum conservation law throughout the real-time evolu-
tion. The momentum conservation poses the restriction that all the
momentum-space states ∣Ψk,l⟩ have the same total electron momen-
tum K ≡ ∑kσk⟨Ψk,l∣nkσ ∣Ψk,l⟩ [modulo (2π, 2π)]. The MC updates
in the ABQMC method for the evaluation of the survival proba-
bility are presented in great detail in Sec. SII of the supplementary
material.

By relying on the partial particle–hole and bipartite lattice
symmetries, in Appendix D we demonstrate that the dynamics of
the survival probabilities of states ∣ψSDW(G)⟩ and ∣ψCDW(G)⟩ are
identical, i.e.,

∣⟨ψSDW(G )∣e−iHt
∣ψSDW(G)⟩∣

2
= ∣⟨ψCDW(G )∣e−iHt

∣ψCDW(G)⟩∣
2
.
(36)

Evaluating Eq. (35), additional statistics can be acquired by
combining the Markov chains for the P(t) calculations starting from
the two symmetry-related states ∣ψCDW(G)⟩ and ∣ψSDW(G)⟩. The
procedure is similar to that described in Appendix C, and we apply
it to all corresponding computations presented in Sec. III C.

III. NUMERICAL RESULTS
We first apply the FPQMC method to equilibrium situations

(the particle number is not fixed), see Sec. III A, and then to time-
dependent local densities during the evolution of pure states, see
Sec. III B. Section III C presents our ABQMC results for the sur-
vival probability of pure states. Our implementation of the ABQMC
method on the full Kadanoff–Baym–Keldysh contour [Eq. (17)] is
benchmarked in Sec. SVII of the supplementary material.

A. Equilibrium results: Equation of state
We start by considering the Hubbard dimer, the minimal

model capturing the subtle interplay between electron delocalization
and electron–electron interaction.112 We opt for moderate temper-
ature T/J = 1 and interaction U/J = 4, so that the expected num-
ber of imaginary-time slices needed to obtain convergent FPQMC
results is not very large. Figure 2 presents the equation of state
(i.e., the dependence of the electron density ρe = ⟨N̂↑ + N̂↓⟩/Nc on
the chemical potential μ) for a range of μ below the half-filling.
Here, N̂↑ and N̂↓ are the operators of the total number of spin-
up and spin-down electrons, respectively. Figure 2 suggests that
already Nτ = 2 imaginary-time slices suffice to obtain very good
results in the considered range of μ, while increasing Nτ from 2
to 4 somewhat improves the accuracy of the FPQMC results. It
is interesting that, irrespective of the value of Nτ , FPQMC sim-
ulations on the dimer are manifestly sign-problem-free. First, the
one-dimensional imaginary-time propagator defined in Eq. (B2) is
positive, I(JΔτ, l) = [eJΔτ

+ (−1)le−JΔτ
]/2 for both l = 0 and 1. Sec-

ond, the configuration containing two electrons of the same spin is
of weight cosh2

(JΔτ) − sinh2
(JΔτ) ≡ 1, implying that the weights of

all configurations are positive. Furthermore, our results on longer
chains suggest that FPQMC simulations of one-dimensional lattice
fermions do not display a sign problem. While similar statements
have been repeated for continuum one-dimensional models of both
noninteracting85,86 and interacting fermions,87 there is, to the best
of our knowledge, no rigorous proof that the sign problem is
absent from coordinate-space QMC simulations of one-dimensional
fermionic systems. While we do not provide such a proof either,
Fig. 3 is an illustrative example showing how the FPQMC results
for the double occupancy ∑r⟨nr↑ nr↓⟩/Nc of the Hubbard chain at
half-filling approach the reference result (taken from Ref. 113) as the
imaginary-time discretization becomes finer. For all Nτs considered,
the average sign of FPQMC simulations is ∣⟨sgn⟩∣ = 1.

We now apply the FPQMC method to evaluate the equation
of state on larger clusters. We focus on a 4 × 4 cluster, which may
already be representative of the thermodynamic limit at T/J ≳ 1.50

We compare our ρe(μ) results with the results of the numerical
linked-cluster expansion (NLCE) method.40–42 The NLCE results
are numerically exact and converged with respect to the control
parameter, i.e., the maximal cluster-size used. NLCE is commonly

FIG. 2. Equation of state ρe(μ) for the Hubbard dimer with T/J = 1, U/J = 4.
Full red circles (green squares) are the results of FPQMC simulations employing
Nτ = 2 (Nτ = 4) imaginary-time slices, while the solid black line is computed
using the exact diagonalization. The estimated statistical error of the FPQMC data
is in all cases smaller than the symbol size.
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FIG. 3. Double occupancy of the Nc = 20-site Hubbard chain at half-filling
(μ = U/2, ρe = 1) as a function of the number Nτ of imaginary-time slices. The
remaining parameters are U/J = 3 and T/J = 1. The dotted line connecting full
symbols (FPQMC results) serves as a guide to the eye. The reference result is
taken from Ref. 113. The relative deviation of the FPQMC result with Nτ = 6 from
the reference result is around 2%. The statistical error bars of the FPQMC results
are smaller than the symbol size.

used to benchmark methods and understand experimental data.9,10

Again, we keep U/J = 4, but we take T/J = 1.0408 to be able to
compare results to the data of Ref. 41. Figure 4(a) reveals that the
FPQMC results with only Nτ = 2 imaginary-time slices agree very
well (within a couple of percent) with the NLCE results over a wide
range of chemical potentials. This is a highly striking observation,
especially keeping in mind that the FPQMC method with Nτ = 2 is
sign-problem-free, see Fig. 4(b). It is unclear whether other STD-
based methods would reach here the same level of accuracy with
only two imaginary-time slices (and without the sign problem). This
may be a specific property of the FPQMC method. Finer imaginary-
time discretization introduces the sign problem, see Fig. 4(b), which
becomes more pronounced as the density is increased and reaches
a plateau for ρe ≳ 0.8. Still, the sign problem remains manageable.
Increasing Nτ for 2 to 6 somewhat improves the agreement of the
density ρe [the inset of Fig. 4(a)] and considerably improves the
agreement of the double occupancy [Fig. 4(c)] with the referent
NLCE results. Still, comparing the insets of Figs. 4(a) and 4(c), we
observe that the agreement between FPQMC (Nτ = 6) and NLCE
results for ρe is significantly better than for the double occupancy.
The systematic error in FPQMC comes from the time-discretization
and the finite size of the system. At Nτ = 6, it is not a priori clear
which error contributes more, but it appears most likely that the
time-discretization error is dominant. In any case, the reason why
systematic error is greater for the double occupancy than for the
average density could be that the double occupancy contains more
detailed information about the correlations in the system. This
might be an indication that measurement of multipoint density cor-
relations will generally be more difficult—it may require a finer time
resolution and/or greater lattice size.

The average sign above the half-filling, ρe = 1, mirrors that
below the half-filling. The particle–hole symmetry ensures that
ρe(μ) = 2 − ρe(U − μ), but that it also governs the average sign is not
immediately obvious from the construction of the method. A formal
demonstration of the electron-doping–hole-doping symmetry of the
average sign is, however, possible (see Appendix E). Note that we
restrict our density calculations to ρe < 1 because, in this case, the
numerical effort to manipulate the determinants [Eqs. (7) and (10)]

FIG. 4. (a) Equation of state ρe(μ) for the Hubbard model on a 4 × 4 cluster
with the following values of model parameters: U/J = 4, T/J = 1.0408. (b) The
average sign as a function of the FPQMC estimate ρe,FPQMC of the electron density
for different values of Nτ . The dashed lines are guides for the eye. (c) The double
occupancy ∑r⟨nr↑ nr↓⟩/Nc as a function of the FPQMC estimate ρe,FPQMC of the
electron density for different values of Nτ . In (a) and (c), full symbols represent
FPQMC results, the solid line shows the NLCE data taken from Ref. 41, while
the insets show the relative deviation of FPQMC results from the reference NLCE
results. The estimated statistical error of the FPQMC data is in all cases smaller
than the symbol size.

is lower (size of the corresponding matrices is given by the num-
ber of particles of a given spin). The performance of the FPQMC
algorithm to compute ρe(μ) (average time needed to propose/accept
an MC update and acceptance rates of individual MC updates) is
discussed in Sec. SIII of the supplementary material.

We further benchmark our method in the case of very strong
coupling, U/J = 24 and, again, T/J = 1.0408. Figure 5(a) com-
pares the FPQMC results on a 4 × 4 cluster using Nτ = 2, 4, and 6
imaginary-time slices with the NLCE results. At extremely low fill-
ings ρe ≲ 0.1, the relative importance of the interaction term with
respect to the kinetic term is quite small, and taking only Nτ = 2 suf-
fices to reach a very good agreement between the FPQMC and NLCE
results, see the inset of Fig. 5(a). As the filling is increased, the inter-
action effects become increasingly important, and it is necessary to
increase Nτ in order to accurately describe the competition between
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FIG. 5. (a) Equation of state ρe(μ) for the Hubbard model on a 4 × 4 cluster
with the following values of model parameters: U/J = 24, T/J = 1.0408. (b) The
average sign as a function of the FPQMC estimate ρe,FPQMC of the electron density
for different values of Nτ . (c) Nearest-neighbor spin correlations∑rδ⟨Sz

rSz
r+δ⟩/Nc

as a function of the FPQMC estimate ρe,FPQMC of the electron density for Nτ = 4
and 6. In (a) and (c), full symbols represent FPQMC results, the solid line shows
the NLCE data taken from Ref. 41, while the insets show the relative deviation of
FPQMC results from the reference NLCE results. The dashed or dashed-dotted
lines connecting the symbols serve as guides to the eye. The estimated statistical
error of the FPQMC data are in all cases smaller than the symbol size.

the kinetic and interaction terms. In the inset of Fig. 5(a), we see that
Nτ = 6 is sufficient to reach an excellent (within a couple of percent)
agreement between FPQMC and NLCE results over a broad range of
fillings. At very high fillings ρe ≳ 0.9 and for Nτ = 6, our MC updates
that insert/remove particles have very low acceptance rates, which
may lead to a slow sampling of the configuration space. It is for this
reason that FPQMC results with Nτ = 6 do not significantly improve
over Nτ = 4 in this parameter regime. For Nτ = 6, an inefficient sam-
pling near the half-filling also renders the corresponding results for
the nearest-neighbor spin correlations ∑rδ⟨S

z
rSz

r+δ⟩/Nc inaccurate,
so that they are not displayed in Fig. 5(c). Here, vector δ connects
nearest-neighboring sites, while Sz

r = (nr↑ − nr↓)/2 is the operator of
z projection of the local spin. At lower fillings, ρe ≲ 0.8, the agree-
ment between our FPQMC results with Nτ = 6 and the NLCE results
is good, while decreasing Nτ from 6 to 4 severely deteriorates the
quality of the FPQMC results.

At this strong coupling, the dependence of the average sign on
the density is somewhat modified, see Fig. 5(b). The minimal sign is
no longer reached around half-filling but at quarter-filling, ρe ∼ 0.5,
around which ∣⟨sgn⟩∣ appears to be symmetric. Comparing Fig. 5(b)
to Fig. 4(b), we see that the average sign does not become smaller
with increasing interaction, in sharp contrast with interaction-
expansion-based methods, such as CT-INT32,33 or configuration
PIMC.89

To better understand the relation between the average sign and
the interaction, in Fig. 6(a) we plot ∣⟨sgn⟩∣ as a function of the
ratio U/(4J) of the typical interaction and kinetic energy. We
take Nτ = 6 and adjust the chemical potential using the data from
Ref. 41 so that ρe ≈ 0.5. We see that ∣⟨sgn⟩∣ monotonically increases
with the interaction and reaches a plateau at very strong interactions.
This is different from interaction-expansion-based QMC methods,
whose sign problem becomes more pronounced as the interaction is

FIG. 6. (a) The average sign as a function of the ratio between the typical interac-
tion and kinetic energies. Full symbols are results of FPQMC computations on a
4 × 4 cluster with Nτ = 6, the temperature is fixed to T/J = 1.0408, and the chem-
ical potential at each U is chosen such that ρe ≈ 0.5. (b) The average sign as a
function of the cluster size Nc for the values of model parameters summarized in
the figure. The FPQMC results (full symbols) are obtained using Nτ = 4 and 6. (c)
Average sign as a function of Nτ . The FPQMC results (full symbols) are obtained
on a 4 × 4 cluster for the values of model parameters summarized in the main
part of the figure. The inset shows how the FPQMC result for double occupancy
approaches the referent NLCE result as the imaginary-time discretization becomes
finer.
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increased. Moreover, for weak interactions, the performance of the
FPQMC method deteriorates at high densities, see Fig. 4(b), while
methods such as CT-INT become problematic at low densities. The
FPQMC method could thus become a method of choice to study the
regimes of moderate coupling and temperature, which are highly rel-
evant for optical lattice experiments. Figure 6(b) shows the decrease
of the average sign with the cluster size Nc in the weak-coupling and
moderate-temperature regime at filling ρe ≈ 0.8. We observe that for
both Nτ = 4 and Nτ = 6, the average sign decreases linearly with Nc.
For Nτ = 6, we observe that the decrease for Nc ≲ 40 is somewhat
faster than the decrease for Nc ≳ 40. We, however, note that the
acceptance rates of our MC updates strongly decrease with Nc and
that this decrease is more pronounced for finer imaginary-time dis-
cretizations. That is why we were not able to obtain any meaningful
result for the 10 × 10 cluster with Nτ = 6. At fixed cluster size and
filling, the average sign decreases linearly with Nτ , see the main part
of Fig. 6(c), while the double occupancy tends to the referent NLCE
value, see the inset of Fig. 6(c).

In Sec. SIV of the supplementary material, we provide an
implementation of the ABQMC method in the equilibrium setup.
Figures 7(a) and 7(b), which deal with the same parameter regimes
as Figs. 4 and 5, respectively, clearly illustrate the advantages of the
fermionic-propagator approach with respect to the alternating-basis
approach in equilibrium. The average sign of ABQMC simula-
tions with only two imaginary-time slices is orders of magnitude
smaller than the sign of FPQMC simulations with three times
finer imaginary-time discretization. Since the FPQMC and ABQMC
methods are related by an exact transformation, they should produce

FIG. 7. Average sign as a function of the electron density in ABQMC simulations
with Nτ = 2 (open circles) and FPQMC simulations with Nτ = 6 (full squares) for
T/J = 1.0408 and (a) U/J = 4 and (b) U/J = 24. The inset in panel (a) compares
ABQMC (open circles) and FPQMC (full circles) results for the double occupancy
as a function of ρe (both methods employ Nτ = 2). The inset in panel (b) shows
the average sign of ABQMC simulations with Nτ = 2 as a function of cluster size
Nc at low density (ρe ≈ 0.06, μ/J = −5).

the same results for thermodynamic quantities (assuming that Nτ is
the same in both methods). This is shown in the inset of Fig. 7(a) on
the example of the double occupancy. The inset of Fig. 7(b) suggests
that the average sign decreases exponentially with the cluster size
Nc. Overall, our current implementation of the ABQMC method in
equilibrium cannot be used to simulate larger clusters with a finer
imaginary-time discretization.

B. Time-dependent results using FPQMC method:
Local charge and spin densities
1. Benchmarks on small clusters

In Figs. 8(a) and 8(b), we benchmark our FPQMC method for
time-dependent local densities on the example of the CDW state of
the Hubbard tetramer, see the inset of Fig. 8(b). We follow the evolu-
tion of local charge densities on initially occupied sites for different
ratios U/D, where D is the half-bandwidth of the free-electron band
(D = 2J for the tetramer). For all the interaction strengths consid-
ered, taking Nt = 2 real-time slices on each branch (four slices in
total) is sufficient to accurately describe the evolution of local densi-
ties up to times Dt ∼ 2, see full symbols in Fig. 8(a). At longer times,
2 < Dt ≤ 4, taking Nt = 3 improves results obtained using Nt = 2,
compare empty to full symbols in Fig. 8(a). Nevertheless, for the
strongest interaction considered (U/D = 1), 6 real-time slices are
not sufficient to bring the FPQMC result closer to the exact result
at times 3 ≤ Dt ≤ 4. The average sign strongly depends on time, and
it drops by an order of magnitude upon increasing Nt from 2 to 3,
see Fig. 8(b). Despite this, the discrepancy between the Nt = 3 result

FIG. 8. (a) Time-dependent population of sites occupied in the initial CDW state
of a tetramer for different interaction strengths. Solid lines represent exact results,
full symbols connected by dashed lines are FPQMC results using Nt = 2 real-time
slices, while empty symbols connected by dotted lines are FPQMC results using
Nt = 3 real-time slices. The initial CDW state is schematically depicted in panel
(b). (b) Time-dependent average sign of the FPQMC simulation using Nt = 2 (full
symbols connected by dashed lines) and Nt = 3 (empty symbols connected by
dotted lines) for different interaction strengths. In (a) and (b), FPQMC simulations
using Nt = 3 real-time slices are carried out only for 2 < Dt ≤ 4.
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and the exact result for U/D = 1 cannot be ascribed to statistical
errors but rather to the systematic error of the FPQMC method (the
minimum Nt needed to obtain results with certain systematic error
increases with both time and interaction strength).

2. Results on larger clusters
Figure 9(a) summarizes the evolution of local charge den-

sities on initially occupied sites of a half-filled 4 × 4 cluster, on
which the electrons are initially arranged as depicted in the inset of
Fig. 9(b). This state is representative of a CDW pattern formed by
applying strong external density-modulating fields with wave vec-
tor q = (π, 0). The FPQMC method employs four real-time slices
in total, i.e., the forward and backward branches are divided into
Nt = 2 identical slices each. On the basis of the Nt = 2 results in
Fig. 8(a), we present the FPQMC dynamics up to the maximum
time Dtmax = 2. The extent of the dynamical sign problem is shown
in Fig. 9(b).

At the shortest times, Dt ≲ 1, the results for all the interactions
considered do not significantly differ from the noninteracting result.
The same also holds for the average sign. As expected, the decrease
of ∣⟨sgn⟩∣ with time becomes more rapid as the interaction U and
time discretization Δt = t/Nt are increased. The oscillatory nature of
⟨sgn⟩ as a function of time [see Eq. (22)] is correlated with the dis-
continuities in time-dependent populations observed in Fig. 9(a) for
U/D ≥ 0.5. Namely, at the shortest times and for all the interactions
considered, ⟨sgn⟩ is positive, while for sufficiently strong interac-
tions, it becomes negative at longer times. This change is indicated
in Fig. 9(b) by placing the symbols “+” and “−” next to each relevant
point. We now see that the discontinuities in populations occur pre-
cisely around instants at which ⟨sgn⟩ turns from positive to negative
values. Focusing on U/D = 1, in Figs. 9(c1)–9(c3) we show the MC
series for the population of initially occupied sites at instants before

TABLE I. Schematic representations of the initial states of small systems on which
the ABQMC method for P(t) is benchmarked.

system ∣ψCDW⟩ ∣ψSDW⟩

Dimer

Tetramer

[(c1)] and after [(c2), (c3)] ⟨sgn⟩ passes through zero. The corre-
sponding series for ⟨sgn⟩ are presented in Figs. 9(d1)–9(d3). Well
before [Figs. 9(c1) and 9(d1)] and after [Figs. 9(c3) and 9(d3)] ⟨sgn⟩
changes sign, the convergence with the number of MC steps is excel-
lent, while it is somewhat slower close to the positive-to-negative
transition point, see Figs. 9(c2) and 9(d2). Still, the convergence at
Dt = 1.4 cannot be denied, albeit the statistical error of the popu-
lation is larger than at Dt = 1.2 and 1.6. At longer times Dt ≥ 1.5,
when ⟨sgn⟩ is negative and of appreciable magnitude, the popula-
tion again falls in the physical range [0, 2]. Nevertheless, at such long
times, the systematic error may be large due to the coarse real-time
discretization.

In Sec. SV of the supplementary material, we discuss FPQMC
results for the dynamics of local charge densities starting from some
other initial states.

C. Time-dependent results using ABQMC method:
Survival probability
1. Benchmarks on small clusters

We first benchmark our ABQMC method for the survival
probability on Hubbard dimers and tetramers. The initial states

FIG. 9. (a) Time-dependent population of
sites occupied in the initial CDW state
of a 4 × 4 cluster, which is schemati-
cally depicted in the inset of panel (b).
FPQMC results using Nt = 2 real-time
slices (four slices in total) are shown for
five different interaction strengths (sym-
bols) and compared with the noninter-
acting result (solid line). (b) Magnitude
of the average sign as a function of
time for different interaction strengths.
The color code is the same as in panel
(a). For U/D = 0.5, 0.75, and 1 and Dt
≥ 1.2, symbols “+” and “−” next to each
point specify whether ⟨sgn⟩ is positive
or negative. (c) MC series for the pop-
ulation of initially occupied sites for U/D
= 1 and (c1) Dt = 1.2, (c2) Dt = 1.4, and
(c3) Dt = 1.6. (d) MC series for ⟨sgn⟩
for U/D = 1 and (d1) Dt = 1.2, (d2)
Dt = 1.4, and (d3) Dt = 1.6. Note the
logarithmic scale on the abscissa in (c)
and (d).
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are schematically summarized in Table I. In both cases, we are at
half-filling.

Figures 10(a1)–10(e2) present the time evolution of the survival
probability of the initial CDW-like and SDW-like states depicted in
Table I for the dimer (left panels, D = J) and tetramer (right pan-
els, D = 2J) for different values of U/D starting from the limit of a
weakly nonideal gas (U/D = 0.05) and approaching the atomic limit
(U/D = 20). The results are obtained using Nt = 2 (full red circles)
and Nt = 4 (blue stars) real-time slices and contrasted with the exact
result (solid black lines). The ABQMC results with Nt = 2 agree
both qualitatively (oscillatory behavior) and quantitatively with the
exact result up to tmax ∼ 1/U. Increasing Nt from 2 to 4 may help
decrease the deviation of the ABQMC data from the exact result
at later times. Even when finer real-time discretization does not
lead to better quantitative agreement, it may still help the ABQMC
method qualitatively reproduce the gross features of the exact
result. The converged values of ∣⟨sgn⟩∣ for the dimer and tetramer

TABLE II. Modulus of the average sign for ABQMC simulations of P(t) on dimer and
tetramer with Nt = 2, 3, and 4.

System Nt = 2 Nt = 3 Nt = 4

Dimer 1/2 1/4 1/8
Tetramer 1/8 2.4 × 10−2 3 × 10−3

for Nt = 2, 3, and 4 are summarized in Table II. For the dimer,
increasing Nt by one reduces ∣⟨sgn⟩∣ by a factor of 2. In contrast,
in the case of the tetramer, increasing Nt by one reduces ∣⟨sgn⟩∣ by
almost an order of magnitude.

2. Results on larger clusters
We move on to discuss the survival probability dynam-

ics of different 16-electron and eight-electron states on a 4 × 4

FIG. 10. Time dependence of the sur-
vival probability of the initial state ∣ψCDW⟩
or ∣ψSDW⟩ (see Table I) for the dimer
[(a1)–(e1)] and tetramer [(a2)–(e2)] for
five different interaction strengths start-
ing from the noninteracting limit and
approaching the atomic limit: U/D
= 0.05 [(a1) and (a2)], U/D = 0.25 [(b1)
and (b2)], U/D = 1 [(c1) and (c2)],
U/D = 5 [(d1) and (d2)], and U/D
= 20 [(e1) and (e2)]. The ABQMC results
with Nt = 2 (red full circles) and Nt
= 4 (blue stars) are compared with
the exact result (black solid lines). The
dotted/dashed lines connecting subse-
quent circles/stars are guides to the
eye. In most cases, the MC error bars
are smaller than the linear size of the
symbols.
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cluster. Figures 11(a) and 11(b) present P(t) for 16-electron states
schematically depicted in their respective insets. These states are rep-
resentative of CDW patterns formed by applying strong external
density-modulating fields with wave vectors q = (π, 0) in Figs. 11(a)
and q = (π,π) in Fig. 11(b). Figures 11(c) and 11(d) present P(t) for
eight-electron states schematically depicted in their respective insets.
The ABQMC method employs Nt = 2 real-time slices. The results
are shown up to the maximum time Dtmax = 2.5, which we chose on
the basis of the results presented in Fig. 10(c2).

As a sensibility check of our ABQMC results, we first com-
pare the exact result in the noninteracting limit, see solid lines
in Figs. 11(a)–11(d), with the corresponding ABQMC prediction,
see full circles in Figs. 11(a)–11(d). While the exact and ABQMC
results agree quite well in Figs. 11(b) and 11(c), the agreement in
Figs. 11(a) and 11(d) is not perfect. Since no systematic errors are
expected in ABQMC at U = 0, the discrepancy must be due to sta-
tistical error. We confirm this expectation in Fig. 12 where we see
that the obtained curve tends to the exact one with the increasing
number of MC steps. The average sign cited in Fig. 11(d) suggests
that more MC steps are needed to obtain fully converged results.
Even though the converged average sign in Figs. 11(a)–11(c) is
of the same order of magnitude, we find that the rate of conver-
gence depends on both the number and the initial configuration of
electrons.

In Figs. 11(a)–11(d), we observe that weak interactions (U/D
≲ 0.5) do not cause any significant departure of P(t) from the cor-
responding noninteracting result. On the other hand, the effect of
somewhat stronger interactions on P(t) depends crucially on the
filling. In the 16-electron case, the increasing interactions speed up
the initial decay of P, see Figs. 11(a) and 11(b), while in the eight-
electron case interactions have little effect at Dt < 1, see Figs. 11(c)
and 11(d). This we attribute to the essential difference in the over-
all electron density and the relative role of the interaction term
in the Hamiltonian. In the 16-electron case, starting from the
moderate coupling U/D ∼ 1, there is a clear revival of the initial

FIG. 12. (a) Average sign as a function of the number of MC steps in the
ABQMC simulation of P(t) for the 16-electron initial state schematically depicted
in Fig. 11(a). (b) Time dependence of the survival probability for U = 0 extracted
using the first 1/30 of the total number of MC steps completed (1.29 × 109

steps, full red circles), the first 1/3 of the total number of MC steps completed
(1.29 × 1010 steps, full blue squares), and all the MC steps completed (3.87 × 1010

steps, full green up-triangles). These results are compared to the exact result in
the noninteracting limit, which is represented by the solid line. The vertical lines in
(a), whose colors match the colors of the symbols in (b), denote the ending points
of the simulations.

state in Fig. 11(a), while no such a revival is observed in Fig. 11(b).
Furthermore, the memory loss of the initial density-wave pattern is
more rapid in Fig. 11(a) than in Fig. 11(b), even at U = 0. The revival
of the initial state is observed in the eight-electron case as well: at

FIG. 11. Survival-probability dynamics of
the 16-electron states [in (a) and (b)]
and 8-electron states [in (c) and (d)]
that are schematically depicted in the
respective insets. The ABQMC results
are shown for five different interaction
strengths (symbols) and compared with
the noninteracting result (solid line). We
cite the converged value of the average
sign ∣⟨sgn⟩∣, as well as the total number
NMC of MC steps completed.
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t < 1/D there is barely any effect of the interaction, yet at longer
times it boosts P. However, in contrast to the 16-electron case, the
results in Figs. 11(c) and 11(d) exhibit a weaker dependence of the
survival-probability dynamics on the initial density-wave pattern.
Indeed, the exact results in the noninteracting case are identical for
both patterns in Figs. 11(c) and 11(d). Except in the case of the (π,π)
wave, the interactions lead to a persistence of the initial pattern at
longer times, t > 1/D. The precise form of temporal correlations that
develop due to interactions apparently depends on the initial spatial
arrangement of the electrons.

Section SVI of the supplementary material presents additional
ABQMC results for the time-dependent survival probability.

IV. RELATION TO OTHER ALGORITHMS
As mentioned in the introduction, a variant of the FPQMC

method was first proposed by De Raedt and Lagendijk in the
1980s.78–80 They, however, explicitly retain permutation operators
appearing in Eq. (A5) in their final expression for Z, see, e.g., Eq. (3)
in Ref. 78 or Eqs. (4.13) and (4.14) in Ref. 80. On the other hand,
we analytically perform summation over permutation operators,
thus grouping individual contributions into determinants. This is
much more efficient [as the factorial number of terms is captured in
only O(N3

) steps, or even faster] and greatly improves the average
sign (cancellations between different permutations are already con-
tained in the determinant, see Fig. 7). The approach followed by De
Raedt and Lagendijk later became known as permutation-sampling
QMC, and the route followed by us is known as antisymmetric-
propagator QMC,85,86 permutation-blocking QMC,90 or fermionic-
propagator QMC.96 The analytical summation over permutation
operators entering Eq. (A5) was first performed by Takahashi and
Imada.85

Our FPQMC method employs the lowest-order STD [Eq. (4)],
which was also used in the permutation-sampling QMC method of
De Raedt and Lagendijk.78–80 The maximum number of imaginary-
time slices Nτ they could use was limited by the acceptance rates
of MC updates, which decrease quickly with increasing Nτ and
the cluster size Nc. In our present implementation of FPQMC,
we encounter the same issue, and our sampling becomes pro-
hibitively inefficient when the total number of time slices is greater
than 6–8, depending on the cluster size. To circumvent this issue,
the fermionic-propagator idea was combined with higher-order
STDs98,114–116 and more advanced sampling techniques117,118 to sim-
ulate the equilibrium properties of continuum models of interacting
fermions in the canonical90,92 and grand-canonical96 ensembles.
More recent algorithmic developments enabled simulations with as
much as 2000 imaginary-time slices,119 which is a great improve-
ment. Whether similar ideas can be applied to lattice systems to
improve the efficiency of sampling is currently unclear. Generally,
more sophisticated STD schemes have been regarded as not use-
ful in lattice-model applications.120 It is important to note that
the success of the antisymmetric-propagator algorithms in con-
tinuous systems relies on weak degeneracy. This corresponds to
an extremely low occupancy regime in lattice models, and it is
precisely in this regime that our FPQMC method has an aver-
age sign close to 1 [see Figs. 4(b) and 5(b)], and the sampling is
most efficient [see Sec. SIII of the supplementary material]. Near
half-filling, lattice models present a fundamentally different physics,

which may ultimately require a substantially different algorithmic
approach.

We further emphasize that the low acceptance rates and the
resulting inefficiency of sampling that we encounter are directly
related to the discrete nature of space in our model. Some strategies
for treating the analogous problem in continuous-space models may
not be applicable here. For example, in continuous-space models,
acceptance rates of individual updates can be adjusted by mov-
ing electrons over shorter distances, so that the new configuration
weight is less likely to be substantially different from the old one.
In contrast, in lattice models, electronic coordinates are discrete,
and the minimum distance the electrons may cover is set by the
lattice constant; in most cases, moving a single electron by a sin-
gle lattice spacing in a single time slice is sufficient to drastically
reduce the configuration weight. There is no general rule on how
electrons should be moved to ensure that the new configuration
weight is close to the original one. This is particularly true for the
updates that insert/remove a particle, and the problem becomes
more pronounced with increasing Nτ . When each of the Nτ states
∣Ψi,l⟩ [see Eq. (9)] is changed to ∣Ψ′i,l⟩, the chances that at least one
of ⟨Ψ′i,l⊕1∣e

−ΔτH0 ∣Ψ′i,l⟩ is much smaller than ⟨Ψi,l⊕1∣e−ΔτH0 ∣Ψi,l⟩ [see
Eq. (10)] increase with Nτ . Our configuration weight is appreciable
only in small, mutually disconnected regions of the configuration
space, the movement between which is difficult. In Sec. V, we touch
upon possible strategies to improve sampling of such a structured
configuration space.

It is also important to compare our methods to the HF QMC
method,24,49 which is a well-established STD-based method for the
treatment of the Hubbard model. The HF method is manifestly sign-
problem-free but only at particle–hole symmetry. The sign problem
can become severe away from half-filling, or on lattices other than
the simple square lattice with no longer-range hoppings. On the
other hand, our FPQMC method is nearly sign-problem-free at
low occupancy, but also near half-filling, albeit only at strong cou-
pling [see Figs. 4(b) and 5(b)]. The other important difference is
that matrices manipulated in HF are of the size NcNτ , while in
FPQMC, the matrices are of the size <2Nc, i.e., given by the num-
ber of particles. Algorithmic complexity of the individual MC step
in FPQMC scales only linearly with Nτ , while in HF, the MC step
may go as O(N2

τ ) [determinant is O(N3
), but fast updates O(N2

)

are possible when the determinant is not calculated from scratch49].
Low cost of individual steps in FPQMC has allowed us to perform
as many as ∼1010 MC steps in some calculations. This advantage,
however, weighs against an increased configuration space to be sam-
pled. In HF the number of possible configurations is 2Nc Nτ (space is
spanned by NcNτ auxiliary Ising spins), while in FPQMC it is 4Nc Nτ

(although, symmetries can be used to significantly reduce the num-
ber of possible configurations). The ABQMC method manipulates
matrices of the same size as does FPQMC, but with twice the num-
ber, and the configuration space is a priori even bigger (16Nc Nτ). Our
methods also have the technical advantage that the measurements
of multipoint charge and spin correlation functions are algorithmi-
cally trivial and cheap. Especially in ABQMC, the densities in both
coordinate and momentum space can be simply read off the configu-
ration. This is not possible in HF, where the auxiliary Ising spin only
distinguishes between singly occupied and doubly-occupied/empty
sites. Most importantly, the ABQMC/FPQMC methods can be
readily applied to canonical ensembles and pure states, which may
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not be possible with the HF method. However, the HF is commonly
used with tens of time slices for lattice sizes of order Nc = 100–200; in
FPQMC, algorithmic developments related to configuration updates
are necessary before it can become a viable alternative to the HF in a
wide range of applications.

Finally, we are unaware of any numerically exact method for
large lattice systems, which can treat the full Kadanoff–Baym–
Keldysh contour, and yield real-time correlation functions. Our
ABQMC method represents an interesting example of a real-time
QMC method with manifestly no dynamical sign problem. How-
ever, the average sign is generally poor. To push ABQMC to larger
number of time slices (as needed for calculation of the time-
dependence of observables) and lattices larger than 4 × 4 will require
further work, and most likely, conceptually new ideas.

V. SUMMARY AND OUTLOOK
We revisit one of the earliest proposals for a QMC treat-

ment of the Hubbard model, namely the permutation-sampling
QMC method developed in Refs. 78–80. Motivated by recent
progress in the analogous approach to continuous space models, we
group all permutations into a determinant, which is known as the
antisymmetric-propagator,85 permutation-blocking,90 or fermionic-
propagator96 idea. We devise and implement two slightly different
QMC methods. Depending on the details of the STD scheme, we
distinguish between (1) the FPQMC method, where snapshots are
given by real-space Fock states and determinants represent anti-
symmetric propagators between those states, and (2) the ABQMC
method, where slices alternate between real and reciprocal space rep-
resentation and determinants are simple Slater determinants. We
thoroughly benchmark both methods against the available numer-
ically exact data and then use ABQMC to obtain some new results in
the real-time domain.

The FPQMC method exhibits several promising properties.
The average sign can be close to 1 and does not drop off rapidly with
either the size of the system or the number of time slices. In 1D,
the method appears to be sign-problem-free. At present, the lim-
iting factor is not the average sign but rather the ability to sample
the large configuration space. At discretizations finer than Nτ = 6–8,
further algorithmic developments are necessary. Nevertheless, our
calculations show that excellent results for instantaneous correlators
can be obtained with very few time slices and efficiently. Average
density, double occupancy, and antiferromagnetic correlations can
already be computed with high accuracy at temperatures and cou-
pling strengths relevant for optical-lattice experiments. The FPQMC
method is promising for further applications in equilibrium setups.
In real-time applications, however, the sign problem in FPQMC is
severe.

On the other hand, the ABQMC method has a significant
sign problem in equilibrium applications but has some advantages
in real-time applications. In ABQMC, the sign problem is manifestly
time-independent, and calculations can be performed for multiple
times and coupling strengths with a single Markov chain. We use
this method to compute time-dependent survival probabilities of
different density-modulated states and identify several trends. The
relevant transient regime is short, and based on benchmarks, we esti-
mate the systematic error due to the time discretization here to be
small. Our results reveal that interactions speed up the initial decay

of the survival probability but facilitate the persistence of the initial
charge pattern at longer times. Additionally, we observe a charac-
teristic value of the coupling constant, U ∼ 0.5D, below which the
interaction has no visible effect on time evolution. These findings
bare qualitative predictions for future ultracold-atom experiments,
but are limited to dynamics at the shortest wave-lengths, as dictated
by the maximal size of the lattice that we can treat. We finally note
that, within the ABQMC method, uniform currents, which are diag-
onal in the momentum representation, may be straightforwardly
treated.

There is room for improvement in both the ABQMC and
FPQMC methods. We already utilize several symmetries of the
Hubbard model to improve efficiency and enforce some physi-
cal properties of solutions, but more symmetries can certainly be
uncovered in the configuration spaces. Further grouping of con-
figurations connected by symmetries can be used to alleviate some
of the sign problem or improve efficiency. Also, sampling schemes
may be improved along the lines of the recently proposed many-
configuration Markov chain MC, which visits an arbitrary number
of configurations at every MC step.121 Moreover, a better insight into
the symmetries of the configuration space may make deterministic,
structured sampling (along the lines of quasi-MC methods122–124)
superior to the standard pseudo-random sampling.

SUPPLEMENTARY MATERIAL

See the supplementary material for (i) a detailed description
of MC updates within the FPQMC method, (ii) a detailed descrip-
tion of MC updates within the ABQMC method for time-dependent
survival probability, (iii) details on the performance of the FPQMC
method in equilibrium calculations, (iv) discussion on the applica-
bility of the ABQMC method in equilibrium calculations, (v) addi-
tional FPQMC calculations of time-dependent local densities, (vi)
additional ABQMC calculations of time-dependent survival prob-
ability, and (vii) formulation and benchmarks of ABQMC method
in quench setups (on the full three-piece Kadanoff–Baym–Keldysh
contour).
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APPENDIX A: MANY-BODY PROPAGATOR
AS A DETERMINANT OF SINGLE-PARTICLE
PROPAGATORS

The demonstration of Eqs. (6) and (7) can be conducted for
each spin component separately. We thus fix the spin index σ and
further omit it from the definition of the many-fermion state ∣Ψi⟩

[Eq. (5)]. Since H0 is diagonal in the momentum representation, we
express the state ∣Ψi⟩ in the momentum representation

∣Ψi⟩ = ∑
{kj}

(
N

∏
l=1
⟨kl∣rl⟩c

†
kl
)∣∅⟩ (A1)

and similarly for ∣Ψ′i⟩. While the positions r1, . . . , rN are ordered
according to a certain rule, the wave vectors k1, . . . , kN entering
Eq. (A1) are not ordered, and there is no restriction on the sum over
them. We have

⟨Ψ′i ∣e
−ΔαH0 ∣Ψi⟩ =∑

{k′l}
∑
{kl}

e−Δαεk1 . . . e−ΔαεkN

× ⟨r′N ∣k
′

N⟩ . . . ⟨r
′

1∣k
′

1⟩⟨k1∣r1⟩⟨kN ∣rN⟩

× ⟨∅∣ck′N . . . ck′1 c†k1
. . . c†kN

∣∅⟩. (A2)

The sums over {k′l} are eliminated by employing the identity80

⟨∅∣ck′N . . . ck′1 c†k1
. . . c†kN

∣∅⟩
= ∑

P
sgn(P) δ(k′1, kP(1)) . . . δ(k

′

N , kP(N)), (A3)

where the permutation operator P acts on the set of indices
{1, . . . , N}, while sgn(P) = ±1 is the permutation parity. We then
observe that

N

∏
l=1
⟨r′l ∣kP(l)⟩ =

N

∏
l=1
⟨r′P −1(l)∣kl⟩, (A4)

which permits us to perform the sums over individual kls indepen-
dently. Combining Eqs. (A2)–(A4) and changing the permutation
variable P ′ = P −1 we eventually obtain

⟨Ψ′i ∣e
−ΔαH0 ∣Ψi⟩ = ∑

P ′
sgn(P ′)

N

∏
l=1
⟨r′P ′(l)∣e

−ΔαH0 ∣rl⟩

= det S(Ψ′i ,Ψi,Δα), (A5)

where matrix S(Ψ′i ,Ψi,Δα) (here without the spin index) is defined
in Eq. (7).

APPENDIX B: PROPAGATOR OF A FREE PARTICLE
ON THE SQUARE LATTICE

Here, we provide the expressions for the propagator of a free
particle on the square lattice in imaginary [Δα = Δτ in Eq. (7)] and
real [Δα = iΔt in Eq. (7)] time. In imaginary time,

⟨r′∣e−ΔτH0 ∣r⟩ = I(2JΔτ, r′x − rx)I(2JΔτ, r′y − ry), (B1)

where the one-dimensional imaginary-time propagator (l is an
integer)

I(z, l) =
1
N

N−1

∑
j=0

cos(
2πjl
N
) exp(z cos(

2πj
N
)) (B2)

is related to the modified Bessel function of the first kind Il(z) via

lim
N→∞

I(z, l) =
1
π∫

π

0
dθ cos(lθ) ez cos θ

= Il(z). (B3)

In real time,

⟨r′∣e−iΔtH0 ∣r⟩ = J (2JΔt, r′x − rx)J (2JΔt, r′y − ry), (B4)

where the one-dimensional real-time propagator (l is an integer)

J (z, l) =
1
N

N−1

∑
j=0

cos(
2πjl
N
) exp(iz cos(

2πj
N
)) (B5)

is related to the Bessel function of the first kind J l(z) via

lim
N→∞

J (z, l) =
1
π∫

π

0
dθ cos(lθ) eiz cos θ

= ilJl(z). (B6)

For finite N, J (z, 2l) is purely real, while J (z, 2l + 1) is purely
imaginary.

APPENDIX C: DERIVATION OF THE FPQMC
FORMULAE THAT MANIFESTLY RESPECT
THE DYNAMICAL SYMMETRY
OF THE HUBBARD MODEL

Here, we derive the FPQMC expression for the time-dependent
expectation value of a local observable [Eq. (18)] that manifestly
respects the dynamical symmetry of the Hubbard model.

We start by defining the operation of the bipartite lattice sym-
metry, which is represented by a unitary, hermitean, and involutive
operator B (B†

= B = B−1
) whose action on electron creation and

annihilation operators in the real space is given as
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Bc(†)rσ B = (−1)rx+ry c(†)rσ . (C1)

In the momentum space, B is actually the so-called π-boost15

Bc(†)kσ B = c(†)k+Q,σ (C2)

that increases the electronic momentum by Q = (π,π). The time
reversal operator T is an antiunitary (unitary and antilinear), involu-
tive, and hermitean operator whose action on electron creation and
annihilation operators in the real space is given as

Tc(†)r↑ T = c(†)r↓ , Tc(†)r↓ T = −c(†)r↑ , (C3)

while the corresponding relations in the momentum space read as

Tc(†)k↑ T = c(†)
−k↓, Tc(†)k↓ T = −c(†)

−k↑. (C4)

Using Eqs. (C1)–(C4), consequently

BH0B = −H0, BHintB = Hint, TH0T = H0,
THintT = Hint.

(C5)

In Sec. II B 2, we assumed that the initial state ∣ψ(0)⟩ is an eigen-
state of local density operators nrσ , which means that B∣ψ(0)⟩
= eiχB ∣ψ(0)⟩, see Eq. (C1).

The denominator of Eq. (18)

Aden(t) = ⟨ψ(0)∣e
iHt e−iHt

∣ψ(0)⟩ (C6)

is purely real, Aden(t) = Aden(t)∗, so that

Aden(t) ≈
1
2
⟨ψ(0)∣(eiH0ΔteiHintΔt

)
Nt
(e−iH0Δte−iHintΔt

)
Nt
∣ψ(0)⟩

+
1
2
⟨ψ(0)∣(eiHintΔteiH0Δt

)
Nt
(e−iHintΔte−iH0Δt

)
Nt
∣ψ(0)⟩.

(C7)

We thus obtain

Aden(t) ≈ ∑
C
{Re{D2t(C,Δt)} cos[Δεint(C)Δt]

− Im{D2t(C,Δt)} sin[Δεint(C)Δt]}, (C8)

where configuration C consists of 2Nt − 1 independent states
∣Ψi,2⟩, . . . , ∣Ψi,2Nt ⟩, ∣Ψi,1⟩ ≡ ∣ψ(0)⟩, while D2t(C,Δt) and Δεint(C) are
defined in Eqs. (21) and (20), respectively. The denominator is also
invariant under time reversal, Aden(t) = Aden(−t), which is not a
consequence of a specific behavior of the initial state under time
reversal but rather follows from Aden(t) ≡ ⟨ψ(0)∣ψ(0)⟩. In other
words, Eq. (C8) should contain only contributions invariant under
the transformation Δt → −Δt. Using the bipartite lattice symmetry,
under which B∣Ψi,l⟩ = eiχl ∣Ψi,l⟩, we obtain

D2t(C,−Δt) =
2Nt

∏
l=Nt+1

⟨Ψi,l⊕1∣BBe−iH0ΔtBB∣Ψi,l⟩

×

Nt

∏
l=1
⟨Ψi,l⊕1∣BBeiH0ΔtBB∣Ψi,l⟩

=

2Nt

∏
l=Nt+1

⟨Ψi,l⊕1∣e
iH0Δt
∣Ψi,l⟩

Nt

∏
l=1
⟨Ψi,l⊕1∣e

−iH0Δt
∣Ψi,l⟩

= D2t(C,Δt). (C9)

Equation (C8) then reduces to

Aden(t) = ∑
C

Re{D2t(C,Δt)} cos[Δεint(C)Δt]. (C10)

We now turn to the numerator of Eq. (18)

Anum(t) = ⟨ψ(0)∣eiHt Ai e−iHt
∣ψ(0)⟩, (C11)

which is also purely real, Anum(t) = Anum(t)∗, so that

Anum(t) ≈ ∑
C
Ai(Ψi,Nt+1){Re{D2t(C,Δt)} cos[Δεint(C)Δt]

− Im{D2t(C,Δt)} sin[Δεint(C)Δt]}. (C12)

In the following discussion, we assume that the time reversal oper-
ation changes ∣ψ(0)⟩ by a phase factor, T∣ψ(0)⟩ = eiχT ∣ψ(0)⟩. This,
combined with B∣ψ(0)⟩ = eiχB ∣ψ(0)⟩, gives the assumption on ∣ψ(0)⟩
that is mentioned before Eq. (19). We further assume that TBAiBT
= Ai. Under these assumptions, the numerator is invariant under
time reversal, Anum(−t) = Anum(t), meaning that Eq. (C12) should
contain only contributions invariant under the transformation
Δt → −Δt. Using Eq. (C9), Eq. (C12) reduces to

Anum(t) ≈ ∑
C
Ai(Ψi,Nt+1) Re{D2t(C,Δt)} cos[Δεint(C)Δt], (C13)

and Eq. (22) follows immediately.
An example of the initial state ∣ψ(0)⟩ and the observable Ai that

satisfy TB∣ψ(0)⟩ = eiχ
∣ψ(0)⟩ and TBAiBT = Ai are the CDW state

∣ψCDW⟩ [Eq. (24)] and the local charge density Ai = ∑σ nrσ . While the
time-reversal operation may change a general SDW state [Eq. (23)]
by more than a phase factor, Eq. (C13) is still applicable when the
observable of interest is the local spin density Ai = nr↑ − nr↓. This fol-
lows from the transformation law T(nr↑ − nr↓)T = nr↓ − nr↑ and the
fact that the roles of spin-up and spin-down electrons in the state
T∣ψSDW⟩ are exchanged with respect to the state ∣ψSDW⟩.

We now explain how we use Eq. (26) to enlarge statistics
in computations of time-dependent local spin (charge) den-
sities when the evolution starts from state ∣ψSDW⟩ in Eq. (23)
[∣ψCDW⟩ in Eq. (24)]. Let us limit the discussion to the spin
(charge) density at fixed position r. Suppose that we obtained
Markov chains (of length NCDW) {N CDW

1 (t), . . . , N CDW
NCDW
(t)}

and {DCDW
1 , . . . ,DCDW

NCDW
} for the numerator and denominator.

Suppose also that we obtained Markov chains (of length NSDW)
{N SDW

1 (t), . . . , N SDW
NSDW
(t)} and {D SDW

1 , . . . ,D SDW
NSDW
} for the

numerator and denominator. Using these Markov chains, we
found that the best result for the time-dependent local spin
(charge) density is obtained by joining them into one Markov
chain {N SDW

1 (t), . . . , N SDW
NSDW
(t), N CDW

1 (t), . . . , N CDW
NCDW
(t)} of

length NSDW +NCDW for the numerator, and another Markov chain
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{D SDW
1 , . . . ,D SDW

NSDW
,DCDW

1 , . . . ,DCDW
NCDW
} of length NSDW +NCDW

for the denominator. If individual chain lengths NCDW and NSDW
are sufficiently large, the manner in which the chains are joined is
immaterial; here, we append the CDW chain to the SDW chain, and
we note that other joining possibilities lead to the same final result
(within the statistical error bars). To further reduce statistical error
bars, we also combine SDW + CDW chains at all positions r that
have the same spin (charge) density by the symmetry of the initial
state.

APPENDIX D: DERIVATION OF THE ABQMC FORMULA
FOR THE SURVIVAL PROBABILITY

We start from the survival-probability amplitude

AP(t) =
⟨ψ(0)∣e−iHt

∣ψ(0)⟩
⟨ψ(0)∣ψ(0)⟩

, (D1)

whose numerator can be expressed as

⟨ψ(0)∣e−iHt
∣ψ(0)⟩ ≈

1
2
⟨ψ(0)∣(e−iH0Δte−iHintΔt

)
Nt
∣ψ(0)⟩ +

1
2
⟨ψ(0)∣(e−iHintΔte−iH0Δt

)
Nt
∣ψ(0)⟩

= ∑
Ψi,2...Ψi,Nt

Re{
Nt

∏
l=1
⟨Ψi,l⊕1∣e

−iH0Δt
∣Ψi,l⟩}e−iεint(C )Δt

= ∑
Ψi,2...Ψi,Nt

∑
Ψk,1...Ψk,Nt

Re{
Nt

∏
l=1
⟨Ψi,l⊕1∣Ψk,l⟩⟨Ψk,l∣Ψi,l⟩e

−iε0(C )Δt
}e−iεint(C )Δt

= ∑
C
{Re{D(C)} cos[ε0(C)Δt] + Im{D(C)} sin[ε0(C)Δt]}e−iεint(C )Δt. (D2)

In going from the second to the third line of Eq. (D2), we
introduced spectral decompositions of Nt factors e−iH0Δt . The con-
figuration C entering the last line of Eq. (D2) consists of Nt − 1
independent states ∣Ψi,2⟩, . . . , ∣Ψi,Nt ⟩ in the coordinate representa-
tion and Nt independent states ∣Ψk,1⟩, . . . , ∣Ψk,Nt ⟩ in the momentum
representation, while ∣Ψi,1⟩ ≡ ∣ψ(0)⟩. D(C) and ε0(C) are defined in
Eqs. (31) and (34), respectively. By virtue of the bipartite lattice sym-
metry, under which D(C) remains invariant, while ε0(C) changes
sign, the summand containing sin[ε0(C)Δt] in Eq. (D2) vanishes, so
that

⟨ψ(0)∣e−iHt
∣ψ(0)⟩ ≈ ∑

C
Re{D(C)} cos[ε0(C)Δt] e−iεint(C )Δt. (D3)

This form should be used, e.g., when ∣ψ(0)⟩ is the SDW state defined
in Eq. (23). When the initial state is the CDW state defined in
Eq. (24), T∣ψ(0)⟩ = eiχT ∣ψ(0)⟩, ⟨ψ(0)∣e−iHt

∣ψ(0)⟩ is purely real, so
that

⟨ψ(0)∣e−iHt
∣ψ(0)⟩ ≈ ∑

C
Re{D(C)} cos[ε0(C)Δt] cos[εint(C)Δt].

(D4)

Equation (30) then follows by combining Eq. (D4) with
⟨ψ(0)∣ψ(0)⟩ = ∑C Re{D(C)}.

We now provide a formal demonstration of Eq. (36). The
partial particle–hole transformation is represented by a unitary, her-
mitean, and involutive operator P (P†

= P = P−1
), whose action

on electron creation and annihilation operators in real space is
given as109,110

Pcr↑P = cr↑, Pc†r↑P = c†r↑, (D5)

Pcr↓P = (−1)rx+ry c†r↓, Pc†r↓P = (−1)rx+ry cr↓. (D6)

The interaction Hamiltonian Hint thus transforms under the par-
tial particle–hole transformation as PHintP = UN̂↑ −Hint. The action
of the partial particle–hole transformation in the momentum space
reads as [Q = (π,π)]

Pck↑P = ck↑, Pc†k↑P = c†k↑, (D7)

Pck↓P = c†Q−k,↓, Pc†k↓P = cQ−k,↓. (D8)

The kinetic energy, therefore, remains invariant under the par-
tial particle–hole transformation, i.e., PH0P = H0. Equations (D5)
and (D6) imply that P∣∅⟩ = ∏r∈ Uc†r↓∣∅⟩. We then find that P∣ψCDW⟩

= ∣ψSDW⟩, i.e., the partial particle–hole transformation transforms
the CDW state defined in Eq. (24) into the SDW state defined
in Eq. (23) and vice versa.108 The states ∣ψCDW⟩ and ∣ψSDW⟩

have the same number of spin-up electrons, while their num-
bers of spin-down electrons add to Nc. Using the combination of
the partial particle–hole transformation P and the bipartite lattice
transformation B defined in Appendix C, one obtains

⟨ψCDW∣e−iHt
∣ψCDW⟩ = e−iN↑(ψ)Ut

⟨ψSDW∣e−iHt
∣ψSDW⟩

∗, (D9)

where N↑(ψ) = ⟨ψCDW∣N̂↑∣ψCDW⟩ = ⟨ψSDW∣N̂↑∣ψSDW⟩ is the total
number of spin-up electrons in CDW and SDW states. Equation (36)
then follows immediately from Eq. (D9).

A similar procedure to that described in Appendix C is used
to combine Markov chains for the survival probabilities of the
CDW and SDW states related by the dynamical symmetry in
Eq. (D9).
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APPENDIX E: USING THE PARTICLE–HOLE SYMMETRY
TO DISCUSS THE AVERAGE SIGN OF THE FPQMC
METHOD FOR CHEMICAL POTENTIALS μ AND U − μ

The (full) particle–hole transformation is represented by a uni-
tary, hermitean, and involutive operator P f (P

†
f = P f = P−1

f ) whose
action on electron creation and annihilation operators in real space
is defined as109,110

P f crσ P f = (−1)rx+ry c†rσ. (E1)

The corresponding formula in the momentum space reads as

P f ckσ P f = c†Q−k,σ. (E2)

Let us fix J, U, T, and Nτ and compute the equation of state ρe(μ)
using Eq. (13) in which Ai(Ψi,l) = [N↑(C) +N↓(C)]/Nc. It is con-
venient to make the μ-dependence in εint(C,μ) explicit. In the sums
entering Eq. (13) we make the substitution

C→ C ′ = {∣Φi,l⟩ = P f ∣Ψi,l⟩∣l = 1, . . . , Nτ} (E3)

under which

Dβ(C,Δτ) = Dβ(C ′,Δτ), (E4)

εint(C,μ) = εint(C ′, U − μ) + (U − 2 μ)Nτ Nc, (E5)

Nσ(C ′) = Nc −Nσ(C). (E6)

It then follows that

∑C Dβ(C,Δτ) e−Δτεint(C,μ)
[N↑(C) +N↓(C)]/Nc

∑C Dβ(C,Δτ) e−Δτεint(C,μ)

= 2 − ∑C′ Dβ(C′,Δτ) e−Δτεint(C
′ ,U−μ)

[N↑(C′) +N↓(C′)]/Nc

∑C′ Dβ(C′,Δτ) e−Δτεint(C′ ,U−μ)
.

(E7)

The FPQMC simulations of the ratios in the last equation are
performed for chemical potentials μ and U − μ, which are symmet-
ric with respect to the chemical potential U/2 at the half-filling. Since
εint(C,μ) and εint(C ′, U − μ) differ by a constant additive factor, the
corresponding configuration weights differ by a constant multiplica-
tive factor, and the average signs of the two FPQMC simulations are
thus mutually equal.
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