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SI. HEOM

For the sake of completeness, here, we present the equations that we solve to obtain numerically exact and bubble-
approximation results for the current–current correlation function and the dynamical-mobility profile.

A. Dynamical equations of the HEOM for Cjj(t)

As we have discussed in Ref. 1, the totally symmetric (q = 0) phonon mode does not affect the dynamics of
Cjj = Tre{jι(t)}, which follows from the evolution of the purely electronic operator

ι(t) = Z−1Trph{e−iHtje−βHeiHt} (S1)

The operator ι(t) is at the root of the hierarchy of dynamical equations, whose higher-order members ι
(n)
n (t) describe

the dynamics of n−phonon assisted processes determined by the vector n = {nqm|q ̸= 0;m = 0, 1} of non-negative

integers nqm that obey
∑′

qm
nqm = n. The total momentum exchanged between the electron and phonons in the

phonon-assisted process described by n is kn =
∑′

qm
qnqm. In the following, primed sums over q exclude the q = 0

term. By virtue of the translational symmetry, the only non-zero matrix elements of ι
(n)
n (t) are ⟨k|ι(n)n (t)|k+ kn⟩, and

their time evolution is governed by

∂t⟨k|ι(n)n (t)|k + kn⟩ =
− i(εk − εk+kn + µn)⟨k|ι(n)n (t)|k + kn⟩

+ i
∑′

qm

√
(1 + nqm)cm ⟨k − q|ι(n+1)

n+
qm

(t)|k + kn⟩

− i
∑′

qm

√
(1 + nqm)cm ⟨k|ι(n+1)

n+
qm

(t)|k + kn + q⟩

+ i
∑′

qm

√
nqmcm ⟨k + q|ι(n−1)

n−
qm

(t)|k + kn⟩

− i
∑′

qm

√
nqm

cm√
cm

⟨k|ι(n−1)

n−
qm

(t)|k + kn − q⟩

+
[
∂t⟨k|ι(n)n (t)|k + kn⟩

]
close

.

(S2)

In Eq. (S2), µn = ω0

∑′
q(nq0 − nq1). The operator ι

(n)
n (t) couples to analogous operators at depths n± 1, which are

characterized by vectors n±
qm whose components are

[
n±
qm

]
q′m′ = nq′m′ ± δq′qδm′m. The coefficients cm are defined

in Eqs. (A8) and (A9) of Appendix A. The last term on the right-hand side of Eq. (S2) represents the closing term,
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which renders the HEOM truncated at the maximum depth D numerically stable. In Ref. 1, we have checked that
the following closing term [

∂t⟨k|ι(n)n (t)|k + kn⟩
]
close

=

− δn,D
1

2

(
τ−1
k + τ−1

k+kn

)
⟨k|ι(n)n (t)|k + kn⟩

(S3)

stabilizes the HEOM in Eq. (S2) without compromising final results for the dynamical-mobility profile. The closing
term comprises the rates at which the electron is scattered out of the free-electron state |k⟩

τ−1
k = 2π

g2

N

∑′

q

[(1 + nph)δ(εk − εk−q − ω0)

+nphδ(εk − εk−q + ω0)] ,

(S4)

which can be computed analytically in the limit N → ∞.

B. Dynamical equations of the HEOM for G≷(k, t)

The dynamics of the current–current correlation function in the bubble approximation follows from the dynamics
of G>(k, t) and G<(k, t) as defined in Eqs. (A13) and (A14) of Appendix A. Both quantities can be computed by
solving the same set of dynamical equations that have been presented in Ref. 2 and read as

∂tG
(≷,n)
n (k − kn, t) =

− i(εk−kn + µn)G
(≷,n)
n (k − kn, t)

+ i
∑′

qm

√
1 + nqm

√
cm G

(≷,n+1)

n+
qm

(k − kn − q, t)

+ i
∑′

qm

√
nqm

√
cm G

(≷,n−1)

n−
qm

(k − kn + q, t)

+ [∂tG
(≷,n)
n (k − kn, t)]close.

(S5)

To ensure that G≷ decays to zero at sufficiently long times, we use the closing term [∂tG
(≷,n)
n (k − kn, t)]close. Its

form after truncation of Eq. (S5) at the maximum depth D can be derived along the lines presented in Ref. 1. The
final expression for the closing term is analogous to that presented in Eq. (S3) and reads as

[∂tG
(≷,n)
n (k − kn, t)]close =

− δn,D
1

2
τ−1
k−kn

G(≷,n)
n (k − kn, t) ,

(S6)

where τk is defined in Eq. (S4).
The propagation of Eq. (S5) is additionally stabilized by transferring to the rotating-wave frame and solving

equations for the envelope G̃
(≷,n)
n (t) defined as

G(≷,n)
n (k − kn, t) = exp [−i(εk−kn + µn)t]×

G̃(≷,n)
n (k − kn, t).

(S7)

We note that the HEOM in Eq. (S5) has a smaller number of equations than the HEOM we solved in Ref. 2. This
reduction in HEOM size is possible because the part of the dynamics governed by the zero-momentum phonon mode

can be solved analytically. Additionally, this implies G≷(k, t) ̸= G
(≷,0)
0 (k, t), and we now establish the relationship

between the quantity of our interest G≷(k, t) and the quantity at the root of the hierarchy G
(≷,0)
0 (k, t). The q = 0

phonon mode couples to the unit operator in the subspace containing a single electron, i.e., Vq=0 = 11e, meaning
that the action of the corresponding q = 0 components of the influence phases φ1(t) and φ3(t, β) [see Eqs. (A16) and
(A18) of Appendix A] can be evaluated analytically. The analytical procedure is, up to prefactors N−1, identical to
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that presented in Sec. SII, and produces the following final results for G≷(k, t):

G>(k, t) = G̃
(>,0)
0 (k, t)e−iεkt

× exp

[
−
∑
m

cm
e−µmt + µmt− 1

µ2
m

]

= G̃
(>,0)
0 (k, t)e−iεkt exp

[
− g2

ω2
0N

(1 + 2nph)

]
× exp

[
g2

ω2
0N

(
(1 + nph)e

−iω0t + nphe
iω0t + iω0t

)]
,

(S8)

G<(k, t) = G̃
(<,0)
0 (k, t)e−iεkt

× exp

[
−
∑
m

cm
µ2
m

(
e−µmt + µmt− 1

)]

× exp

[∑
m

cm
µ2
m

(e−µmt − 1)(1− eiβµm)

]

= G̃
(<,0)
0 (k, t)e−iεkt exp

[
− g2

ω2
0N

(1 + 2nph)

]
× exp

[
g2

ω2
0N

(
nphe

−iω0t + (1 + nph)e
iω0t + iω0t

)]
.

(S9)

C. Initial conditions

The initial condition under which the HEOM for G> [Eq. (S5)] is solved reads as [2]

G(>,n)
n (k − kn, 0) = −iδn,0. (S10)

The initial conditions under which the HEOM for ι(t) [Eq. (S2)] and G< [Eq. (S5)] is solved is determined by
the equilibrium state of the interacting electron–phonon system [1, 2]. In Ref. 2, we derived that the hierarchical
representation of this state is obtained by propagating the following imaginary-time HEOM:

∂τ ⟨k|σ(n)
n (τ)|k + kn⟩ =

− (εk + µn)⟨k|σ(n)
n (τ)|k + kn⟩

+
∑′

qm

√
(1 + nqm)cm⟨k − q|σ(n+1)

n+
qm

(τ)|k + kn⟩

+
∑′

qm

√
nqmcm⟨k + q|σ(n−1)

n−
qm

(τ)|k + kn⟩.

(S11)

Equations (S11) are propagated from τ = 0 to τ = β with the initial condition ⟨k|σ(n)
n (τ)|k + kn⟩ = δn,0, which is

representative of the electron–phonon system at infinite temperature. The initial condition for the propagation of
Eq. (S2) then reads as

⟨k|ι(n)n (0)|k + kn⟩ = Z−1
e ×

(−2J) sin(k)⟨k|σ(n)
n (β)|k + kn⟩,

(S12)

while the initial condition for the propagation of Eq. (S5) governing the dynamics of G< is

G(<,n)
n (k − kn, 0) = Z−1

e × i
〈
k
∣∣∣σ(n)

n (β)
∣∣∣ k + kn

〉
. (S13)

The so-called electronic partition sum Ze = Z/Zph entering Eqs. (S12) and (S13) reads as

Ze =
∑
p

⟨p|σ(0)
0 (β)|p⟩. (S14)
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D. Propagation algorithm

The HEOM embodied in Eq. (S2) is propagated using the scheme originally proposed in Ref. 3. We use the
fourth-order Wilkins–Dattani scheme with the time step ω0∆t = (1 − 2) × 10−2, depending on the values of model
parameters.

When the HEOM embodied in Eq. (S5) is recast as the HEOM for the envelope G̃≷ [Eq. (S7)], it becomes a system
of first-order linear differential equations with time-dependent coefficients. Because of its non-constant coefficients,
the resulting HEOM for the envelope is propagated using the fourth-order Runge–Kutta algorithm [4] with the time
step ω0∆t = (1− 2)× 10−2, depending on the values of model parameters.

SII. VANISHING VERTEX CORRECTIONS IN THE LIMIT t0 → 0: INSIGHTS FROM FORMALLY
EXACT EXPRESSIONS

Starting from the formally exact expressions of Appendix A, this section presents the proof of the equality Cjj(t) =
Cbbl

jj (t) in the limit t0 → 0.

As argued in the main text, the dominant term in the expansion of Cjj(t) and Cbbl
jj (t) in powers of small t0 is

proportional to t20. This term can be obtained from the formally exact expressions by replacing all operators e−αHe

by the unit operator 11e in the subspace containing a single electron. In particular, this means that all the real-
time/imaginary-time hyperoperators entering the expressions for influence phases become time-independent, which
makes the time-ordering sign ineffective and permits us to perform the real-time and/or imaginary-time integrals and
sums over q analytically.

Let us first consider how these simplifications are reflected in the influence phases φ1(t), φ2(β), and φ3(t, β) governing
the single-particle dynamics. The phase φ1(t) [Eq. (A16) of Appendix A] simplifies to

φ1(t) =

[∑
q

V C
q V C

−q

][∑
m

cm
µ2
m

(
e−µmt + µmt− 1

)]
. (S15)

Because of VqV−q = 11e, we can replace sum over q by N , meaning that φ1(t) acts as a scalar that reads as

φ1(t) = − g2

ω2
0

×[
(1 + nph)e

−iω0t + nphe
iω0t + iω0t− (1 + 2nph)

]
.

(S16)

In the same vein,

φ2(t) = β
g2

ω0
, (S17)

while

Ze = Ne−βg2/ω0 , (S18)

where the factor N comes from the trace of the unit matrix that replaces the operator e−βHe in Eq. (A12) of
Appendix A. We thus see that the action of φ2(β) is cancelled by the normalization Ze. The result for φ3(t, β) reads
as

φ3(t, β) =

[∑
q

V C
q

CV−q

][∑
m

cm
µ2
m

(e−µmt − 1)(eiβµm − 1)

]
. (S19)

Since φ3(t, β) acts on the unit operator in Eq. (A14) of Appendix A, it effectively acts as a scalar (Vq11eV−q =
VqV−q = 11e) whose value reads as

φ3(t, β) =
g2

ω2
0

(
e−iω0t − eiω0t

)
. (S20)

We finally obtain

Cbbl
jj (t) =

1

N

∑
k

j2k e−φ1(t)−φ1(t)
∗−φ3(t,β)

∗
. (S21)
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Since the terms in the exponent do not depend on k, one uses

N−1
∑
k

j2k = N−1Tr1e{j2} = 2t20 (S22)

to finally arrive at

Cbbl
jj (t) = 2t20 e

−φ1(t)−φ1(t)
∗−φ3(t,β)

∗
. (S23)

We now turn to Cjj(t), starting from

Φ1(t) =
g2

ω2
0

coth

(
βω0

2

)
[1− cos(ω0t)]

(
1

N

∑
q

V ×
q V ×

−q

)
+

g2

ω2
0

[sin(ω0t)− iω0t]

(
1

N

∑
q

V ×
q V ◦

−q

)
.

(S24)

The action of the hyperoperator 1
N

∑
q V

×
q V ×

−q on the current operator j reduces to

1

N

∑
q

V ×
q V ×

−qj = 2j (S25)

because of

1

N

∑
q

VqjV−q =
1

N

∑
qp

jp−q|p⟩⟨p| = 0, (S26)

which follows from N−1
∑

q e
iq = 0 (under PBCs). In other words, one can replace 1

N

∑
q V

×
q V ×

−q by 2 in Eq. (S24).

Along the same line, we conclude that 1
N

∑
q V

×
q V ◦

−q can be replaced by 0 in Eq. (S24). We can thus replace the

original Φ1(t) by the scalar that reads as

Φ1(t) =
g2

ω2
0

(2nph + 1)
[
2− eiω0t − e−iω0t

]
. (S27)

In a similar manner,

Φ3(t, β) = −2
g2

ω2
0

i sin(ω0t)

(
1

N

∑
q

V ×
q

CV−q

)
. (S28)

Using the same reasoning as above, we find that

1

N

∑
q

V ×
q

CV−qj = −j, (S29)

so that the influence phase Φ3(t, β) effectively acts as the following scalar:

Φ3(t, β) =
g2

ω2
0

(
eiω0t − e−iω0t

)
. (S30)

Collecting all pieces together, we remain with

Cjj(t) =
1

N
Tre{j2}e−Φ1(t)−Φ3(t,β). (S31)

The equality Cjj(t) = Cbbl
jj (t) then follows from Eqs. (S16), (S20), (S27), and (S30).
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SIII. SUMMARY OF THE PARAMETER REGIMES EXAMINED

(ω0/t0, λ)
Method

HEOM QMC
HEOM
bubble

QMC
bubble DMFT(

1, 1
100

)
[1, 10] [1, 10] [1, 10] [1, 10] [1, 10](

1, 1
8

)
[1, 10] [1, 10] [1, 10] [1, 10] [1, 10](

1, 1
2

)
[0.4, 10] [0.2, 10] [0.4, 10] [0.2, 10] [0.2, 10]

(1, 1) [2, 10] [1, 10] [2, 10] [1, 10] [1, 10]
(1, 2) × [1, 10] × [1, 10] [1, 10](
1
3
, 1
100

)
[1, 10] [1, 10] [1, 10] [1, 10] [1, 10](

1
3
, 1
8

)
[1, 10] [1, 10] [1, 10] [1, 10] [1, 10](

1
3
, 1
2

)
[1, 10] [0.1, 10] [1, 10] [0.1, 10] [0.1, 10](

1
3
, 1
)

[1, 5] [1, 10] [1, 5] [1, 10] [1, 10](
1
3
, 2
)

× [1, 10] × [1, 10] [1, 10](
3, 1

8

)
[5, 10] [2, 10] [5, 10] [2, 10] [2, 10](

3, 1
2

)
[2, 10] [1, 10] [2, 10] [1, 10] [1, 10]

(3, 1) [2, 10] [1, 10] [2, 10] [1, 10] [1, 10]
(3, 2) × [1, 10] × [1, 10] [1, 10]

TABLE S1. Summary of parameter regimes [determined by pairs (ω0/t0, λ)] and numerical methods that are used to assess
the importance of vertex corrections. For each parameter regime and each method, we provide the minimum (Tmin/t0) and
maximum (Tmax/t0) temperature at which we performed computations. The choice of parameter values is largely dictated by
the feasibility of HEOM and HEOM bubble computations. We emphasize that the DMFT results for the dynamical mobility
are available for all values of ω0/t0, λ, and T , and the same applies to QMC and QMC bubble results for short-time dynamics
of Cjj . For λ = 2, HEOM and HEOM bubble computations could be performed only on short time scales [comparable to those
accessible by QMC (bubble), see also Sec. III.F of Ref. 1], which is indicated by ”×”.
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SIV. EXTENSIVE COMPARISONS OF HEOM AND DMFT RESULTS

A. Intermediate-frequency phonons (ω0/t0 = 1)
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FIG. S1. Comparison of HEOM (solid lines) and DMFT (dashed lines) results for (a)–(d) the dynamical-mobility profile,
(e)–(h) the real part of the current–current correlation function Cjj(t), and (i)–(l) the diffusion constant D(t). In all panels,
t0 = ω0 = 1. The strength of the electron–phonon interaction is determined by the cited values of λ, while the temperatures
are T = 1, 2, 5, and 10. The insets in panels (a)–(d) zoom in the dynamical-mobility profiles for the highest temperatures
considered (T = 5 and 10).
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B. Slow phonons (ω0/t0 = 1/3)
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FIG. S2. Comparison of HEOM (solid lines) and DMFT (dashed lines) results for (a)–(d) the dynamical-mobility profile,
(e)–(h) the real part of the current–current correlation function Cjj(t), and (i)–(l) the diffusion constant D(t). In all panels,
t0 = 1, ω0 = 1/3. The strength of the electron–phonon interaction is determined by the cited values of λ, while the temperatures
are T = 1, 2, 5, and 10. The insets in panels (a)–(d) zoom in the dynamical-mobility profiles for the highest temperatures
considered (T = 5 and 10).
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C. Fast phonons (ω0/t0 = 3)
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FIG. S3. Comparison of HEOM (solid lines) and DMFT (dashed lines) results for (a) and (b) the dynamical-mobility profile,
(c) and (d) the real part of the current–current correlation function Cjj(t), and (e) and (f) the diffusion constant D(t). In
all panels, t0 = 1, ω0 = 3. The strength of the electron–phonon interaction is determined by the cited values of λ, while the
temperatures are T = 2, 5, and 10. The inset in panel (a) zooms in the dynamical-mobility profile for the highest temperatures
considered (T = 5 and 10).
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SV. REAL-TIME QMC IN THE LIMIT ω0 → 0

Phonon momentum can be neglected in the adiabatic limit. For this reason QMC methodology becomes much
simpler in this case and can be efficiently performed to obtain the relevant quantities in real time. In this section, we
first derive the relevant equations and then present selected results for Cjj(t) and D(t) in the adiabatic limit.
The Holstein Hamiltonian in this limit takes the form

H =
∑
ij

hij({q})c†i cj +
∑
i

1

2
mω2

0q
2
i , (S32)

where

hij({q}) = −t0(δi,j+1 + δi,j−1) + g
√
2mω0qiδij . (S33)

The operator ci is the electron annihilation operator at site i, qi is the coordinate of the phonon at site i, m is the
oscillator mass, the symbol {q} denotes all phonon coordinates, while phonon momenta pi and the corresponding

kinetic energy
p2
i

2m were neglected. With the substitution of variables xi = qiω0
√
m, the Hamiltonian reduces to

H =
∑
ij

hij({x})c†i cj +
∑
i

1

2
q2i , (S34)

with

hij({x}) = −t0(δi,j+1 + δi,j−1) + 2
√
λt0qiδij . (S35)

We evaluate the correlation function [see Eq. (10) of the main paper]

Cjj(t) =
Tr
(
e−z1Hje−z2Hj

)
Tr e−βH

(S36)

(with z1 = β − it, z2 = it) by expressing the trace in the basis
∣∣{x}n{x}

〉
, where

∣∣n{x}
〉
are the eigenstates of h({x})

with phonon coordinates {x} treated as classical variables. The matrix element of the Hamiltonian in this basis reads

〈
{x}n{x}

∣∣H∣∣{y}m{y}
〉
= δ({x} − {y})δmn

[
εm({x}) +

∑
i

1

2
x2
i

]
, (S37)

where εm({x}) are the eigenvalues of h({x}). Consequently, we find〈
{x}n{x}

∣∣e−zH
∣∣{y}m{y}

〉
= δ({x} − {y})δmne

−z[εm({x})+
∑

i
1
2x

2
i ]. (S38)

The trace in the numerator in Eq. (S36) reads

Tr
(
e−z1Hje−z2Hj

)
=

∫
d{x}

∑
m{x}

〈
{x}m{x}

∣∣e−z1Hje−z2Hj
∣∣{x}m{x}

〉
(S39)

which leads to

Tr
(
e−z1Hje−z2Hj

)
=

∫
d{x}

∑
m{x}n{x}

〈
{x}m{x}

∣∣e−z1Hj
∣∣{x}n{x}

〉 〈
{x}n{x}

∣∣e−z2Hj
∣∣{x}m{x}

〉
(S40)

and eventually

Tr
(
e−z1Hje−z2Hj

)
=

∫
d{x}e−β

∑
i

1
2x

2
i

∑
m{x}n{x}

e
−βεm{x} e

it
(
εm{x}−εn{x}

)
×

〈
m{x}

∣∣j∣∣n{x}
〉 〈

n{x}
∣∣j∣∣m{x}

〉
,

(S41)

as well as

Tr
(
e−βH

)
=

∫
d{x}e−β

∑
i

1
2x

2
i

∑
m{x}

e
−βεm{x} . (S42)
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The correlation function given in Eq. (S36) can then be evaluated by sampling the phonon coordinates as Gaussians
with standard deviation σ2 = 1

β and performing the summation of the terms in the numerator and denominator. These

summations are much less demanding than the summations in full Monte Carlo simulations because the number of
phonon coordinates in this case is equal to the number of sites, while in full Monte Carlo simulations it is equal to
the number of sites times the number of timesteps. The summations in Eqs. (S41) and (S42) can be interpreted as
averages over classical phonon coordinates {x}. One should, however, note that the assumption of classical phonons
was not introduced in the derivation. It is the neglect of phonon momentum that led to the expression which can be
interpreted this way.

Next, we also give expression for the quantities ⟨Ne⟩K, G<(k, t) and G>(k, t) which are needed to evaluate Cbbl
jj (t)

in accordance with Eq. (17) of the main paper. We obtain

G>(k, t) = −ieiµFt

∫
d{x}e−β

∑
i

1
2x

2
i
∑

m{x}
e
−iεm{x} t|cmk({x})|2∫

d{x}e−β
∑

i
1
2x

2
i

, (S43)

G<(k, t) = ie(β+it)µF

∫
d{x}e−β

∑
i

1
2x

2
i
∑

m{x}
e
−(β+it)εm{x} |cmk({x})|2∫

d{x}e−β
∑

i
1
2mω2

0x
2
i

, (S44)

⟨Ne⟩K = eβµF

∫
d{x}e−β

∑
i

1
2x

2
i
∑

m{x}
e
−βεm{x}∫

d{x}e−β
∑

i
1
2x

2
i

, (S45)

where cmk({x}) is the overlap of the electronic state of momentum |k⟩ and the electronic state
∣∣m{x}

〉
given as

cmk({x}) =
〈
k
∣∣m{x}

〉
.

In Fig. S4 we present Cjj(t) and D(t) for two parameters sets
(
λ = 1

2 , T = 1, t0 = 1
)
and (λ = 1, T = 2, t0 = 1).

The numerically exact results obtained using HEOM are presented, as well as the results in the adiabatic limit obtained
as described in this section. As expected, the exact results for ω0 = 1/3 are closer to the adiabatic limit results than
the exact results for ω0 = 1. Nevertheless, both of these sets of results are still quite far from the adiabatic limit
results. As discussed in the main paper, this is consistent with the fact that vertex corrections for these parameter
sets are not very strong. We also present the bubble approximation results in the adiabatic limit. These results
which yield a non-zero mobility strongly differ from the exact results which give a zero mobility, in accordance with
expectations.
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FIG. S4. The current-current correlation function Cjj(t) and the diffusion constant D(t) for two parameters sets
(
λ = 1

2
, T = 1

)
and (λ = 1, T = 2) (t0 = 1 in both cases). The results labeled as ’HEOM’ denote the numerically exact results obtained using
the hierarchical equations of motion method for two values of phonon frequncies ω0 = 1 and ω0 = 1/3, the results labeled as
’adiabatic limit’ denoted the results obtained in the adiabatic limit using the methodology described in this section, while the
results labeled as ’adiabatic bubble’ are the results obtained with the bubble approximation in the adiabatic limit.

SVI. COMPARISON OF THE RESULTS FOR DC MOBILITY OBTAINED FROM REAL-TIME AND
IMAGINARY-TIME COMPUTATIONS

Figure S5 compares some of our HEOM and DMFT results for µdc, both of which follow from real-axis computations,
with the corresponding results of Ref. 5, which were extracted from imaginary-axis data using numerical analytical
continuation. While all the results are virtually the same in the weak-interaction regime λ = 1/100, the results of
Ref. 5 seem to severely underestimate µdc (by approximately an order of magnitude) in the intermediate-interaction
regime λ = 1/2.
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FIG. S5. Comparison of HEOM (full symbols), DMFT (empty symbols), and imaginary-axis QMC (crosses) results of Ref. 5
for the temperature dependent dc mobility. The model parameters are t0 = ω0 = 1 and λ = 1/100 and 1/2.
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