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ABSTRACT
We present a rigorous theoretical description of excitonic dynamics in molecular light-harvesting aggregates photoexcited by weak-intensity
radiation of arbitrary properties. While the interaction with light is included up to the second order, the treatment of the excitation–
environment coupling is exact and results in an exact expression for the reduced excitonic density matrix that is manifestly related to the
spectroscopic picture of the photoexcitation process. This expression takes fully into account the environmental reorganization processes
triggered by the two interactions with light. This is particularly important for slow environments and/or strong excitation–environment cou-
pling. Within the exponential decomposition scheme, we demonstrate how our result can be recast as the hierarchy of equations of motion
(HEOM) that explicitly and consistently includes the photoexcitation step. We analytically describe the environmental reorganization dynam-
ics triggered by a delta-like excitation of a single chromophore and demonstrate how our HEOM, in appropriate limits, reduces to the Redfield
equations comprising a pulsed photoexcitation and the nonequilibrium Förster theory. We also discuss the relation of our formalism to the
combined Born–Markov–HEOM approaches in the case of excitation by thermal light.
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I. INTRODUCTION

Recent years have seen vigorous interest in unveiling the basic
physical mechanisms governing the electronic solar energy conver-
sion in photosynthetic systems.1–4 The developments in this field are
expected to provide new ways of improving the light-to-charge con-
version in artificial systems, e.g., organic photovoltaics (OPVs).5 A
thorough understanding of the solar energy conversion in molecu-
lar light-harvesting systems calls for a detailed description of light
absorption, excitation energy transfer (EET), charge separation, and
charge transport.6,7 Our current understanding of these steps has
been shaped by ultrafast spectroscopy experiments, which can pro-
vide insights into the dynamics of electronic excitations on time
scales as short as a couple of femtoseconds.8–11 Such experiments,
therefore, can also temporally resolve nuclear motions induced by
photoexcitation, i.e., nuclear reorganization processes, which take
place on ∼10 fs–100 fs time scales. Moreover, photosynthetic EET
falls into the so-called intermediate coupling regime,2,3,12 in which

the energy scales representative of electronic couplings, excitation–
environment couplings, and static disorder in local transition
energies are comparable to one another. Correspondingly, a proper
interpretation of ultrafast experimental signatures necessitates
development of explicitly time-dependent theoretical approaches
that can accurately capture the non-Markovian dynamical inter-
play between temporal evolution of electronic excitations and their
environment.3,12 Examples of such methods include hierarchical
equations of motion (HEOM)13 and some wavefunction-based
methods.14

Apart from the nonperturbative treatment of the interaction
with the environment, a comprehensive theoretical analysis of the
dynamics of electronic excitations created during ultrafast spec-
troscopy experiments should explicitly consider the exciting radi-
ation field. However, the explicit inclusion of the photoexcitation
process has received only a limited attention so far. The photoex-
citation is commonly assumed to be infinitely short, i.e., delta-
like, so that it instantaneously produces excited-state populations,
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whose further evolution on ultrashort time scales is followed.15,16

On the other hand, theoretical methods of nonlinear spectroscopy,17

which explicitly keep track of the interaction with exciting pulses,
have been employed in conjunction with HEOM to examine cer-
tain features of spectroscopic signals.18 However, there has not
been much discussion on how to explicitly include the photoexci-
tation and respect the nonperturbative treatment of the excitation–
environment coupling.19 The importance of the photoexcitation
step is typically discussed within the debate on the relevance of
the results of ultrafast experiments for the photosynthetic operation
in vivo.20–24 It is argued that due to different properties of natural
sunlight compared to laser pulses employed in experiments, pho-
toexcitation of photosynthetic complexes under natural conditions
triggers different dynamics from the one observed in ultrafast exper-
iments. Nevertheless, under the common assumption that the elec-
tronic system is initially unexcited, any nontrivial dynamics under
both excitation conditions is ultimately induced by the interaction
with the radiation. In a nonlinear spectroscopy experiment, the sig-
nal depends on the appropriate power of the exciting field, i.e., the
perturbation expansion in the interaction with radiation is appro-
priate.17,25 Similarly, the weakness of the excitation of photosyn-
thetic complexes under natural conditions makes the second-order
treatment of the interaction with light plausible.20–22,24

Indeed, it has been shown20 that the excited-state dynamics of
a molecular system weakly driven by light of arbitrary properties is
completely determined by the first-order radiation correlation func-
tion and the reduced evolution superoperator. It can be said that the
information required for constructing the dynamics under arbitrary
(weak) driving can only be obtained by ultrafast spectroscopy,21

which provides access to the reduced evolution superoperator. How-
ever, the analysis conducted in Ref. 20 is quite general and does not
provide any details on the form and properties of this superoper-
ator. Certainly, it should contain information about the nonequi-
librium evolution of the environment taking place between con-
secutive interactions with light.26 Along these lines, attempts have
been made to examine the importance of these dynamical environ-
mental effects for the second-order light-induced dynamics by aug-
menting the usual quantum master equation by terms that depend
on the delay between the two interactions.27 The analysis of the
second-order photoinduced dynamics in Ref. 28 suggested that the
nonequilibrium bath evolution between the two interactions with
light is reflected in the so-called photoinduced correlation term. Let
us note that the analyses conducted in Refs. 26–28 are essentially
perturbative in the excitation–environment coupling.

On the other hand, in the field of ultrafast semiconduc-
tor optics,29–31 the photoexcitation step and the nonequilibrium
dynamics of thus induced electronic excitations are typically stud-
ied within the density matrix (DM) theory complemented with the
so-called dynamics controlled truncation (DCT) scheme.29,32 The
DCT scheme classifies DMs according to the lowest power with
which they scale in the exciting field and, therefore, provides a
recipe to analyze the dynamics up to any given order in the exciting
field in terms of a finite number of electronic DMs. A DCT-based
approach has been recently applied by one of us to study exci-
ton generation and subsequent charge separation in photoexcited
OPVs.33,34 However, the truncation of the environment-assisted
branch of the hierarchy within the DCT scheme still has to be per-
formed separately,31 and it is commonly done in a low order in the

excitation–environment coupling.29,33,35 In a similar vein, the
explicit consideration of the excitation by incoherent light is
also combined with a Redfield-like treatment of the excitation–
environment coupling.36–38 The individual excitation and de-
excitation events may be treated within the Born–Markov quantum
optical approximation39,40 or by constructing the Bloch–Redfield
quantum master equation.37,41 Adopting the standpoint of the the-
ory of open quantum systems, the effects of incoherent radiation
may be taken into account by introducing an appropriate spectral
density of the light–matter coupling.36,38,42

While the explicit inclusion of the light–matter coupling is typ-
ically accompanied by a perturbative treatment of the excitation–
environment coupling, there are also studies concentrating on a
(numerically) exact treatment of the latter, at the expense of a
less transparent inclusion of the former.43–45 When the semiclassi-
cal description of light–matter interaction is appropriate, the time-
dependent electric field can be straightforwardly incorporated in the
HEOM formalism,45,46 whose relation to the spectroscopic picture of
sequential interactions with light is not manifest. When the quantum
description of light–matter interaction is in place,43,44 the interaction
with the radiation is treated from the standpoint of quantum optics
using the so-called hybrid master-equation–HEOM approach.47 In
essence, the interaction with radiation appears in the form of Marko-
vian corrections to HEOM. In the end, there are also studies that
propose a numerically exact treatment of both the couplings to envi-
ronment and radiation,48 which, however, comes with a complex
formalism and huge computational costs.

In this work, we build on the results of Ref. 20. Our approach is
based on the two cornerstones of the theory of photosynthetic exci-
tons.49 Section II introduces the Frenkel exciton model of a molec-
ular light-harvesting aggregate. In Sec. III, we shed new light on the
existing approaches45,46 to include the interaction with pulsed laser
fields into the HEOM formalism. We realize that there is a close
connection between the space on which the EET dynamics has to
be formulated and the maximum order up to which the interac-
tion with the exciting field has to be included. This is very similar to
the situation in the nonlinear response-function theory.17 We obtain
a new form of HEOM that explicitly includes the interaction with
pulsed laser fields up to the second order in the field, which is fully
consistent with the single-exciton Frenkel Hamiltonian commonly
employed in the study of light-induced coherent EET. The analysis
of Sec. III is actually not limited to the second-order response, and
we provide a prescription for treating laser-induced nonlinearities
of arbitrary order in conjunction with a numerically exact treatment
of the interaction of photoinduced electronic excitations with the
environment. Section IV presents the central result of our analysis,
which is valid for weak light of arbitrary properties. There, we per-
form a second-order treatment of the light–matter coupling and a
nonperturbative treatment of the excitation–environment coupling
to obtain an expression for weak light-induced excitonic dynam-
ics that is manifestly related to the spectroscopic picture and fully
includes the dynamical interplay between nonequilibrium electronic
dynamics and environmental reorganization processes. The exact
result that we obtain does not allow easy analytical manipulations,
and we demonstrate how it can be recast as HEOM, both in the
case of semiclassical (Sec. V, which actually rederives the second-
order results of Sec. III) and quantum (Sec. VI) treatments of the
interaction with light. In addition, we analytically solve for the
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environmental reorganization dynamics triggered by a delta-like
excitation of a single molecule (Sec. V A) and relate our results to
existing approaches, such as the Redfield theory with photoexcita-
tion (Sec. V B), the nonequilibrium Förster theory (Sec. V C), and
hybrid Born–Markov–HEOM approaches (Sec. VI). These discus-
sions further emphasize the advantages of our method, which are
once again summarized in Sec. VII.

II. MODEL HAMILTONIAN
The system of interest consists of a molecular aggregate M that

is in contact with the thermal bath B representing its environment
and with the radiation R. The total Hamiltonian reads as

H = HM + HB + HR + HM−B + HM−R. (1)

The electronic excitations of the aggregate are described within
the Frenkel exciton model49–52

HM = ∑
j
εjB†

j Bj +∑
jk
JjkB

†
j Bk. (2)

In Eq. (2), εj are the so-called site energies, while Jjk are resonance
couplings (we take Jkk = 0). The operators Bj and B†

j describe the
destruction and creation of an excitation on site j, respectively, and
they obey Paulion commutation relations.29,50,52

The environment is assumed to be composed of sets of inde-
pendent harmonic oscillators associated with each site

HB = ∑
jξ
h̵ωξb

†
jξbjξ . (3)

The oscillators are labeled by site index j and mode index ξ, and
phonon creation and annihilation operators b†

jξ and bjξ satisfy Bose
commutation relations. The interaction of aggregate excitations and
the environment is taken to be linear in mode displacements and
local to each chromophore (Holstein-like coupling53),

HM−B = ∑
jξ
B†
j Bjgjξ(b

†
jξ + bjξ) ≡ ∑

j
B†
j Bjuj, (4)

where uj is the collective environment coordinate associated with
chromophore j. The coupling constants g jξ may be related to the dis-
placement of the equilibrium configuration of mode ξ between the
ground and excited electronic states of chromophore j.50,51

The coupling between aggregate excitations and the radiation
is taken in the dipole and rotating-wave approximations

HM−R = −μeg ⋅ E
(+)
− μge ⋅ E

(−). (5)

The dipole-moment operator μ is assumed to be a purely elec-
tronic operator μ = ∑j dj(B

†
j + Bj) = μeg + μge, where transition

dipole moment dj of chromophore j does not depend on environ-
mental coordinates (Condon approximation), part μeg contains only
operators B†, while μge contains only operators B. E(±) denotes the
positive- and negative-frequency parts of the (time-independent)
operator of the (transversal) electric field so that we treat both elec-
tronic excitations and the radiation generating them on the quantum
level.

We assume that at the initial instant t0 of our dynamics, the
total statistical operator W(t0) representing the state of the com-
bined system of aggregate excitations, environment, and radiation
can be factorized as follows:

W(t0) = ∣g⟩⟨g∣ ⊗ ρgB ⊗ ρR. (6)

In Eq. (6), the aggregate is taken to be initially unexcited, the state
of the environment ρgB is adapted to the collective electronic ground
state |g⟩ of the aggregate [T = (kBβ)−1 is the temperature],

ρgB =
exp(−βHB)

TrB exp(−βHB)
, (7)

while ρR describes the state of the radiation.

III. EQUATIONS OF MOTION: SEMICLASSICAL
TREATMENT OF LIGHT–MATTER INTERACTION

The excitation by an arbitrary time-dependent (classical) elec-
tric field E(t) can be incorporated into the HEOM formalism
by taking that the total purely electronic Hamiltonian is HM
+ HM−R(t).45,46 Here, HM−R(t) is obtained from HM−R in Eq. (5)
by replacing electric-field operators E(±) by the corresponding time-
dependent quantities E(±)(t). Indeed, all the steps in the deriva-
tion conducted in Ref. 54 can be repeated to obtain equations of
motion for the reduced DM (RDM) ρ(t) ≡ σ0(t) and auxiliary DMs
(ADMs) σn(t). ADMs are fully specified by vector n of non-negative
integers nj ,m,

n =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(n0,0,n0,1, . . .)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n0

, . . . , (nN−1,0,nN−1,1, . . .)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nN−1

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

. (8)

The index j = 0, . . ., N − 1 enumerates chromophores, while index
m, in principle, does not have an upper limit and is related to the
following expansion of the bath correlation function in terms of
exponentially decaying factors (t > 0):

Cj(t) = TrB{u(I)j (t)uj(0)ρ
g
B} = ∑

m
cj,m e−μj,mt . (9)

The time dependence of the collective coordinate u(I)j (t) in Eq. (9)
is with respect to the free-phonon Hamiltonian [Eq. (3)]. While
expansion coefficients cj ,m may be complex, the decay rates μj ,m are
assumed to be real and positive. We note that apart from the expo-
nential decomposition scheme [Eq. (9)] adopted in this work, there
are other decompositions of Cj(t) from which a HEOM approach
may be derived.55 The bath correlation function is commonly
expressed in terms of the so-called spectral density Jj(ω),

Cj(t) =
h̵
π ∫

+∞

−∞

dω Jj(ω)
eiωt

eβ̵hω − 1
, (10)

which conveniently combines information on the density of
environmental-mode states and the respective coupling strengths to
electronic excitations.50,51
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The equation of motion for ADM σn(t) reads as54

∂tσn(t) = −
i
h̵
[HM , σn(t)] +

i
h̵
[μegE

(+)
(t) + μgeE

(−)
(t), σn(t)]

−
⎛

⎝
∑
j
∑
m
nj,mμj,m

⎞

⎠
σn(t) + i∑

j
∑
m
[Vj, σn+

j,m
(t)]

+ i∑
j
∑
m
nj,m(

cj,m
h̵2 Vjσn−j,m(t) −

c∗j,m
h̵2 σn−j,m(t)Vj), (11)

where Vj = B†
j Bj. Since the coupling to the radiation is explicitly

included in the electronic Hamiltonian, the HEOM in Eq. (11) treats
nonperturbatively not only the interaction with the bath, as usu-
ally, but also that with light. Keeping in mind that our formulation
of the model Hamiltonian supports states with an arbitrary num-
ber of excitations, the result embodied in Eq. (11) is quite general.
In principle, it can describe in great detail various nonlinear effects
(nonlinear with respect to the exciting electric field). However, once
we fix the highest order in the electric field we are interested in,
there will be many elements of the DMs that do not contribute to
the optical response up to that order. In other words, solving cou-
pled equation (11) as it stands, we obtain much more information
than necessary to reconstruct the optical response up to a given
order. Moreover, we lack the intuitive physical picture characteristic
of nonlinear spectroscopy, which is in terms of Liouville pathways,
block structure of the statistical operator and evolution superopera-
tor, etc.17,25 In order to circumvent these deficiencies, it is enough to
make a projection of the dynamics on relevant excitonic subspaces.
The second-order response is fully characterized by the reduction
to the subspace that can accommodate at most one excitation. This
is discussed in greater detail further in this section and in Sec. SI
of the supplementary material. Practically, the appropriate reduc-
tion to obtain the second-order response consists in the following
replacements in the model Hamiltonian:

Bj → ∣g⟩⟨ j∣, B†
j → ∣ j⟩⟨g∣, B†

j Bk → ∣ j⟩⟨k∣. (12)

In Eq. (12), | j⟩ is the collective singly excited state featuring a
selective excitation of site j.

Therefore, to obtain the second-order response, we should
calculate the expectation values ng ,n(t) ≡ ⟨g|σn(t)|g⟩, ye ,n(t)
≡ ⟨e|σn(t)|g⟩, and nēe,n(t) ≡ ⟨e∣σn(t)∣ē⟩, where {|e⟩} is an arbi-
trary basis of singly excited states (the notation is similar to that in
Ref. 29). If n = 0, these three expectation values, respectively, rep-
resent the ground-state population, optical coherences, and singly
excited-state populations and intraband coherences. Since the elec-
tronic subsystem starts from |g⟩⟨g| and since the light–matter cou-
pling HM−R is the only part of the Hamiltonian that can cause tran-
sitions from the ground state to singly excited states, the following
scaling relations hold:56

ng,n(t) = δn,0 +
+∞

∑
k=1

n(2k)g,n (t), n
(2k)
g,n (t) ∝ E2k, (13a)

ye,n(t) =
+∞

∑
k=0

y(2k+1)
e,n (t), y(2k+1)

e,n (t) ∝ E2k+1, (13b)

nēe,n(t) =
+∞

∑
k=1

n(2k)ēe,n (t), n
(2k)
ēe,n (t) ∝ E2k. (13c)

In other words, optical coherences are dominantly linear in the
applied field, while excited-state populations are at least quadratic
in the applied field. The environmental assistance, which actually
enters through vector n,57 does not affect the scaling laws (13).32

Formulating equations of motion for ye ,n(t) and nēe,n(t) actu-
ally enables us to formulate operator equations for sectors eg and ee
of σn(t). Namely, using Eqs. (13) and keeping only terms that are at
most of the second order in the applied field, we form the following
equations for the eg sector σeg ,n(t) and for the ee sector σee ,n(t):

∂tσeg,n(t) = −
i
h̵
[HM , σeg,n(t)] −

⎛

⎝
∑
j
∑
m
nj,mμj,m

⎞

⎠
σeg,n(t)

+ δn,0
i
h̵
E(+)(t)μeg + i∑

j
∑
m
Vjσeg,n+

j,m
(t)

+ i∑
j
∑
m
nj,m

cj,m
h̵2 Vjσeg,n−j,m(t), (14)

∂tσee,n(t) = −
i
h̵
[HM , σee,n(t)] −

⎛

⎝
∑
j
∑
m
nj,mμj,m

⎞

⎠
σee,n(t)

+
i
h̵
E(+)(t)μegσ

†
eg,n(t) −

i
h̵
σeg,n(t)μgeE

(−)
(t)

+ i∑
j
∑
m
[Vj, σee,n+

j,m
(t)]

+ i∑
j
∑
m
nj,m

cj,m
h̵2 Vjσee,n−j,m(t)

− i∑
j
∑
m
nj,m

c∗j,m
h̵2 σee,n−j,m(t)Vj, (15)

where now V j → | j⟩⟨j|. By reducing our dynamics to the sub-
space containing at most one excitation, we transform Eq. (11) into
coupled equations describing the evolution of optical coherences
[Eq. (14)] and excited-state populations and intraband coherences
[Eq. (15)]. The crucial step in the transformation is the applica-
tion of scaling laws in Eqs. (13), which ensure that our dynamics
is consistently up to the second order in the exciting field.

Instead of the path we have taken, one could have started from
the model Hamiltonian in which the low-density replacements of
Eq. (12) are performed and solved Eq. (11) without ever consider-
ing the scaling laws in Eqs. (13). In that case, one would in prin-
ciple obtain the solution that is exact to all orders in the exciting
field. However, this exactness is only apparent because the proper
treatment of higher orders in the exciting field requires enlarging
the space on which the Hamiltonian is formulated, as we discuss
in more detail in Sec. SI of the supplementary material. Temporal
evolutions of higher-order sectors of the DM (which are not taken
into account) would then influence evolutions of optical coherences,
excited-state populations, and intraband coherences. For example,
as demonstrated in Ref. 29, already in the third order in the elec-
tric field, equations of motion for optical coherences are coupled to
equations of motion for biexcitonic amplitudes (coherences between
the ground state and doubly excited states), meaning that a sepa-
rate equation governing the evolution of | jk⟩⟨g| block of σn(t) has
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to be formulated. This discussion emphasizes that once we treat the
photogeneration step explicitly, we should be aware of the close con-
nection between the largest order in the exciting field we include
and the space on which the dynamics has to be formulated. Should
we limit ourselves to the Frenkel Hamiltonian for the singly excited
states and, at the same time, explicitly describe the excitation gener-
ation by light, we should do that only up to the second order in the
applied field.

The presented framework can be considered as a DM equiv-
alent of the response-function approach adopted in the theory of
nonlinear spectroscopy.17 Our focus is on obtaining temporal evo-
lution of various DM elements for a given waveform of the exciting
electric field. This is different from the computation of nonlinear
response functions, which represent the response of the system to
a series of delta-like excitations. Nevertheless, there are two com-
mon assumptions underlying both our DM and response-function
computations: (1) the electronic system is initially unexcited and (2)
the number of interactions with the exciting field completely deter-
mines the excitonic subspace on which the computations have to be
performed. Previous computations of coherent EET dynamics under
the influence of laser fields58 were practically limited to pulses of
certain shapes due to the complications brought about by the time-
dependent driving. On the other hand, our approach is valid for arbi-
trarily shaped laser pulses, and its treatment of the time-dependent
driving is intuitive and consistently keeps track of interactions up to
the second order.

The presented framework can be generalized to include pro-
cesses that are of higher orders in the laser field. To that end, we
recall that the central theorem of the DCT scheme mentioned in the
Introduction (for more details, see Ref. 29 and references therein)
guarantees that the expectation value of the normal-ordered prod-
uct of nB excitonic operators B†, B with respect to any σn(t) entering
Eq. (11) is at least of the order nB in the applied laser field, i.e.,

TrM

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

B†
j1 . . .BjnB
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nB

σn(t)

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

= O(EnB). The scaling relations [Eq. (13)],

which are valid for the second-order dynamics, thus represent a
particular instance of the more general DCT scaling relations. This
formulation of the central theorem of the DCT scheme is some-
what different from the original one in that an arbitrary-order envi-
ronmental assistance of the original formulation is replaced by the
expectation value with respect to an arbitrary ADM σn(t). The for-
mulation presented in this paragraph relies on the results of Ref. 57,
which provide a formal correspondence between the environmental
assistance of order 2nE and the HEOM’s ADMs on level nE. There-
fore, while the DCT scheme has been typically used to study optical
field-induced processes in conjunction with a perturbative treatment
of the interaction with the environment,29–35 the results presented in
this section open up the possibility to simultaneously study arbitrary
nonlinear effects induced by arbitrarily time-varying optical fields
and yet treat the interaction with the environment in a numerically
exact manner. The practical procedure may be summarized as fol-
lows. For a given order nB in the exciting field, one formulates equa-
tions of motion for all possible expectation values of nB normally
ordered excitonic operators starting from Eq. (11). It may happen
that some of these expectation values actually do not contribute to
the optical response up to order nB. For example, the central the-

orem of the DCT scheme predicts that the biexcitonic amplitudes
TrM{Bj1Bj2σn(t)} should contribute to the second-order response.
However, on closer inspection, these quantities are completely
decoupled from equations of motion for the expectation values of
Bj (optical coherences) and B†

j1Bj2 (excited-state populations and
intraband coherences) and it turns out that they contribute to the
third-order optical response. The details of the model Hamiltonian
combined with the specific Paulion statistics of excitonic creation
and annihilation operators may thus lower the number of expecta-
tion values that contribute to the optical response up to any given
order. Using the ideas presented in Sec. SI of the supplementary
material, one can then determine the subspace on which the laser-
induced excited-state dynamics has to be formulated. Further anal-
ysis is beyond the scope of this work, in which we concentrate on
the weak-light second-order treatment. For the generalization of
our approach to the third-order dynamics, we refer the reader to
Sec. VII of Ref. 29.

Let us conclude this section by noting that the results we have
presented so far rely heavily on the form of the light–matter interac-
tion Hamiltonian in the semiclassical approximation. If we want to
treat light quantum mechanically, too, the results of Ref. 20 suggest
that, up to the second order in the exciting field, the only information
we need about light is its first-order (two-point) correlation function
(indices i, j label Cartesian components of a vector),

G(1)ij (τ2, τ1) = TrR{{E(−)(τ2)}
i
{E(+)(τ1)}

j
ρR}. (16)

In the developments presented up to now, such a quantity does
not directly enter Eqs. (11), (14), and (15). However, for (classi-
cal, transform-limited) pulses, this correlation function factorizes
into products of expectation values of single electric-field operators,
which define classical values of the electric field,59–61

G(1)ij (τ2, τ1) = E(−)i (τ2)E(+)j (τ1), (17a)

E(±)i (τ) = TrR{{E(±)(τ)}
i
ρR}. (17b)

As will be demonstrated in more detail in Sec. V, it is precisely this
factorization that enables us to formulate Eqs. (14) and (15) as they
stand.

IV. GENERAL THEORY OF WEAK LIGHT-INDUCED
DYNAMICS

This section presents the central result of our exact descrip-
tion of the dynamics triggered by weak light of arbitrary properties.
While the derivation is elementary in all its steps, it is cumbersome
and thus presented in Sec. SII of the supplementary material. Here,
we only analyze the final result for the reduced excited-state density
matrix

ρ(I)ee (t) = ∫
t

t0
dτ2 ∫

τ2

t0
dτ1
Ð→
U
(I)
red(t, τ2, τ1)A(I)(τ2, τ1)

+ ∫
t

t0
dτ2 ∫

τ2

t0
dτ1 A(I)†(τ2, τ1)

←Ð
U
(I)
red(t, τ2, τ1). (18)

In Eq. (18), superscript (I) denotes the interaction picture with
respect toHM , τ1 and τ2 are the instants at which the interaction with
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the radiation occurs, and the purely electronic operator A(I )(τ2, τ1)
reads as

A(I)(τ2, τ1) =
1
h̵2 ∑

i,j
G(1)ij (τ2, τ1){μ(I)eg (τ1)}

j
∣g⟩⟨g∣{μ(I)ge (τ2)}

i
. (19)

The arrow above the reduced propagator sign indicates the direction
of its action on the corresponding operator. The reduced propagator
acting on the right reads as (T is the chronological time-ordering
sign)

Ð→
U
(I)
red(t, τ2, τ1) =T exp[

Ð→
Wc(τ2, τ1) +

Ð→
Wp(t, τ2) +

Ð→
Wc−p(t, τ2, τ1)],

(20a)

Ð→
Wc(τ2, τ1) = −

1
h̵2 ∑

j
∫

τ2

τ1

ds2 ∫

s2

τ1

ds1 V(I)j (s2)
C

× Cj(s2 − s1) V(I)j (s1)
C, (20b)

Ð→
Wp(t, τ2) = −

1
h̵2 ∑

j
∫

t

τ2

ds2 ∫

s2

τ2

ds1 V(I)j (s2)
×

× (Cr
j (s2 − s1) V(I)j (s1)

× + i Ci
j(s2 − s1) V(I)j (s1)

○
),
(20c)

Ð→
Wc−p(t, τ2, τ1) = −

1
h̵2 ∑

j
∫

t

τ2

ds2 ∫

τ2

τ1

ds1 V(I)j (s2)
×

× Cj(s2 − s1) V(I)j (s1)
C. (20d)

In Eq. (20c), Cr/i
j denote the real and imaginary parts of the bath cor-

relation function Cj [Eq. (9)], whereas the action of hyperoperators
V×,○,C
j on an operator O is defined as V×j O = [Vj,O], V j

○O = {V j, O},
VC
j O = VjO. A similar expression holds for the propagator acting on

the left, as detailed in Sec. SII of the supplementary material.
Equations (18)–(20) present an exact solution (with respect to

the aggregate–environment coupling) of the dynamics of an exci-
tonic system weakly driven by light of arbitrary properties. The prin-
cipal novelty compared to a similar analysis conducted in Refs. 20
and 21 is that, here, we provide an exact expression for the reduced
evolution superoperator that is compatible with the interaction with
light, i.e., it explicitly depends on the interaction instants τ1 and τ2
with the radiation and the observation instant t. The two summands
on the right-hand side of Eq. (18) are Hermitian adjoints of one
another, and they represent the two Liouville pathways from |g⟩⟨g|
to |e⟩⟨e| that differ by the time order of the radiation interactions
with the bra and ket.17

The RDM evolution can be conveniently represented in terms
of diagrams showing how the state of electronic excitations changes
due to interactions with radiation and due to absorptions and emis-
sions of elementary environmental excitations.62,63 In this discus-
sion, we assume that the instants τ1 and τ2 are fixed. We further
focus on the first-order term of the reduced evolution superoperator
[Eq. (20a)] and we also fix instants s1 and s2 [Eqs. (20b)–(20d)] that
describe a single environmentally assisted process. In Figs. 1(a)–1(c),
we present the three primitive diagrams corresponding to the hyper-
operators in Eqs. (20b)–(20d), respectively. The diagram in Fig. 1(a)

FIG. 1. Primitive diagrams describing the changes that the state of the electronic
system undergoes due to the interaction with the radiation and environment-
assisted processes. Only the diagrams characteristic for the first-order approxima-
tion to the reduced propagator [Eq. (20a)] in the first term of Eq. (18) are presented.
The instants τ1 and τ2 at which the electronic system interacts with light, as well
as the instants s1 and s2 determining the environmental assistance, are fixed. The
arrows at τ1 and τ2 depict interactions with light, which are reflected in changes
in the ket and bra of RDM. Circumferences represent the bath correlation func-
tion Cj (s2 − s1). The observation time t satisfies t ≥ τ2 ≥ τ1 ≥ t0. Diagram (a)
corresponds to Eq. (20b), diagram (b) corresponds to Eq. (20c), and diagram (c)
corresponds to Eq. (20d).

describes a single-phonon-assisted process during which the elec-
tronic subsystem is in a state of optical coherence. The diagram in
Fig. 1(b) describes a single-phonon-assisted process during which
the electronic subsystem is entirely in the excited-state manifold.
The single-phonon-assisted process represented by the primitive
diagram in Fig. 1(c) starts when the electronic subsystem is in a state
of optical coherence and ends when it is entirely in the excited-state
manifold. There, the phonon propagator straddles two temporal sec-
tors defined by the interactions with the radiation. These so-called
straddling evolutions62,63 fully capture the nonequilibrium dynam-
ics of the bath during different periods of photoinduced evolution.26

They are intimately connected to the quantum coherence between
electronic excitations and environment, and their presence is crucial
to accurately describe photoinduced electronic dynamics.

Let us point out another viewpoint on the result embodied in
Eq. (18). Due to the assumption of the initially unexcited system, any
nontrivial dynamics is ultimately induced by the interaction with
the radiation because the environment alone cannot cause transi-
tions from the ground- to the excited-state manifold. This is reflected
by the fact that the hyperoperator VC in Eqs. (20b) and (20d) acts
after the first and before the second interaction with the radiation,
while hyperoperators V×/○j in Eqs. (20c) and (20d) act only after
both interactions with radiation; see also Figs. 1(a)–1(c). Therefore,
Eq. (18) can be reformulated by introducing a global time-ordering
sign as follows:

ρ(I)ee (t) = ∫
t

t0
dτ2 ∫

τ2

t0
dτ1

1
h̵2 ∑

i,j
G(1)ij (τ2, τ1)

× T{ exp[
Ð→
Wc(τ2, τ1) +

Ð→
Wp(t, τ2) +

Ð→
Wc−p(t, τ2, τ1)]

×
C
{μ(I)ge (τ2)}

i
{μ(I)eg (τ1)}

C

j
}∣g⟩⟨g∣ + H.c. (21)
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In Eq. (21), we introduced hyperoperator CV as CVO = OV for any
operators V and O. This viewpoint will be useful in our discussion in
Sec. V C, where we emphasize the similarities between the descrip-
tions of the second-order photoexcitation process starting from the
ground state and the Förster energy transfer from an excited donor
to an unexcited acceptor.

Even though the result embodied in Eqs. (18)–(20) is remark-
able, it is not very useful for actual computations, principally due to
the time-ordering sign that renders analytical manipulations diffi-
cult. Nevertheless, whenever the bath correlation function Cj(t) can
be represented in the form given in Eq. (9), Eq. (18) can be recast
as an infinite hierarchy of equations of motion for the RDM and
ADMs.54 However, the details of this procedure now depend on the
form of operator A(I )(τ2, τ1) [Eq. (19)], i.e., on the temporal and
statistical properties of the radiation.

V. EXCITATION BY WEAK (COHERENT) LASER PULSES
As has been recently discussed in Refs. 60 and 61, a pulse of light

may be understood as a classical-like state of the electromagnetic
field, whose energy density is localized and which can be specified by
the spatial position around which it is localized, propagation direc-
tion, polarization, and spectral distribution. In essence, the quantum
state representing the classical pulse whose bandwidth is determined
by its spectral distribution is a coherent state that, as first realized by
Glauber,59 factorizes the 2n-point radiation correlation function into
the product of 2n expectation values of the electric-field operator. In
particular, G(1)ij (τ2, τ1) is then factorized as predicted by Eq. (17) so
that A(I )(τ2, τ1) [Eq. (19)] assumes the form

A(I)(τ2, τ1) =
1
h̵2 [μ

(I)
eg (τ1) ⋅ E(+)(τ1)]∣g⟩⟨g∣[μ(I)ge (τ2) ⋅ E(−)(τ2)].

(22)

In other words, the result is the same as if we used the semiclas-
sical form of the light–matter coupling from the very beginning,
without any reference to electric-field operators. Therefore, further
developments toward the HEOM have to result in Eqs. (14) and (15)
that govern time evolution of optical coherences and excited-state
populations and intraband coherences, respectively.

While the hierarchy counterpart of Eq. (18) for the RDM in the
excited-state sector is Eq. (15), our previous discussion has not dealt
with the RDM counterpart of the hierarchy for optical coherences
[Eq. (14)]. In Sec. SII of the supplementary material, we demonstrate
that the exact solution (with respect to the excitation–environment
coupling) in the eg sector reads as

ρ(I)eg (t) = ∫
t

t0
dτ U(I)red (t, τ)

i
h̵
μ(I)eg (τ)E

(+)
(τ)∣g⟩⟨g∣, (23)

where the reduced propagator for optical coherences reads as [see
Eqs. (20a) and (20b)]

U(I)red (t, τ) =
Ð→
U
(I)
red(t, t, τ) = T exp[

Ð→
Wc(t, τ)]. (24)

The manipulations that are necessary to recast Eqs. (23) and
(18) as the HEOM presented in Eqs. (14) and (15), respectively,

proceed as usually.54 For the sake of completeness, here, we only
present the definitions of ADMs (in the interaction picture) for
optical coherences,

σ(I)eg,n(t) = ∫
t

t0
dτ T
⎧⎪⎪
⎨
⎪⎪⎩

∏
j
∏
m
[∫

t

τ
ds e−μj,m(t−s)i

×
cj,m
h̵2 V(I)j (s)

C
]
nj,m

U(I)red (t, τ)
⎫⎪⎪
⎬
⎪⎪⎭

×
i
h̵
μ(I)eg (τ)E

(+)
(τ)∣g⟩⟨g∣, (25)

and for excited-state populations and intraband coherences (cr/ij,m
denote the real/imaginary part of complex coefficients cj ,m),

σ(I)ee,n(t) = ∫
t

t0
dτ2 ∫

τ2

t0
dτ1 T

⎧⎪⎪
⎨
⎪⎪⎩

∏
j
∏
m
[∫

t

τ2

ds e−μj,m(t−s)

×
⎛

⎝
i
crj,m
h̵2 V(I)j (s)

×
−
cij,m
h̵2 V(I)j (s)

○
⎞

⎠

+∫
τ2

τ1

ds e−μj,m(t−s) i
cj,m
h̵2 V(I)j (s)

C
]
nj,m

×
Ð→
U
(I)
red(t, τ2, τ1)

⎫⎪⎪
⎬
⎪⎪⎭

A(I)(τ2, τ1) + H.c. (26)

Before discussing the relation of the HEOM embodied in
Eqs. (14) and (15) to existing theories of the dynamics of electronic
excitations induced by weak laser pulses, let us briefly comment on
the way in which the photoexcitation enters the HEOM. The elec-
tric field explicitly enters the hierarchy for optical coherences only
on the level of RDM; see Eq. (14). Environmentally assisted opti-
cal coherences then act as source terms for environmentally assisted
excited-state populations and intraband coherences; see Eq. (15).
Moreover, the source term for the ee sector of ADM characterized
by vector n comprises only the eg sector of ADM characterized by
the same vector n. The hierarchy is schematically presented in Fig. 2
for N = 2 chromophores and K = 1 terms in the decomposition of
the bath correlation function Cj(t) in Eq. (9).

A. Impulsive photoexcitation of pure-dephasing
spin–boson model: Analytical results

Let us now concentrate on the case of only one chromophore.
The Hamiltonian [Eq. (1)] then reads as

H = εe∣e⟩⟨e∣ +∑
ξ
h̵ωξb

†
ξbξ +∑

ξ
gξ ∣e⟩⟨e∣(b

†
ξ + bξ)

− deg ⋅ (E(+)(t)∣e⟩⟨g∣ + E(−)(t)∣g⟩⟨e∣). (27)

Equation (27) is actually the pure-dephasing spin–boson Hamilto-
nian (or the independent-boson Hamiltonian, see Ref. 64), in which
εe is the energy splitting between the two local energy levels (the
ground state |g⟩ and the singly excited state |e⟩), and there is no tun-
neling between the two levels. The hyperoperators appearing in the
reduced evolution superoperator [Eqs. (20)] are time-independent,
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FIG. 2. Schematic representation of the HEOM for optical coherences and excited-
state populations and intraband coherences in the case of excitation by a weak
laser pulse. For the sake of simplicity, the aggregate comprises N = 2 chro-
mophores and only K = 1 term in the exponential decomposition of the bath
correlation function Cj (t) is taken into account. Individual DMs are represented
by circles, while the driving by the electric field E(+)(t), which directly affects
only the optical-coherence RDM, is presented by the straight horizontal arrow. D
denotes the level of the hierarchy, and each DM is accompanied by the corre-
sponding vector n; see Eq. (8). Curved dashed arrows represent hierarchical links
between optical-coherence DMs, while curved solid arrows represent hierarchi-
cal links between excited-state DMs. The fact that DM σeg ,n(t) acts as the source
term in the EOM for σee ,n(t) is reflected in the diagram by the presence of curved
dashed-dotted arrows pointing from σeg ,n(t) toward σee ,n(t).

meaning that the time-ordering signs are not effective. This circum-
stance enables us to obtain analytical insights into the photoexci-
tation dynamics of the pure-dephasing spin–boson model in the
impulsive limit.

The waveform of the positive-frequency part of the electric field
is taken to be

E(+)(t) = e E0δ(t)e−iΩpt , (28)
where vector e defines the polarization of the pulse, Ωp is its central
frequency, and E0 is its amplitude. If the initial instant is t0 < 0, the
excited-state RDM for t > 0 reads as50

ρee(t) =
1
h̵2 ∣(deg ⋅ e)E0∣

2
∣e⟩⟨e∣ ≡ Pe∣e⟩⟨e∣. (29)

At the same time, the optical-coherence RDM

ρeg(t) =
i
h̵
(deg ⋅ e)E0 e−iεet/̵h e−g(t)∣e⟩⟨g∣ (30)

exponentially decays to zero25 on a time scale determined by the
temporal behavior of the lineshape function

g(t) =
1
h̵2 ∫

t

0
ds2 ∫

s2

0
ds1 C(s1). (31)

In a certain sense, Eqs. (29) and (30) formally demonstrate that the
propagation scheme adopted in, e.g., Ref. 54, is physically sensible.
Namely, optical coherences generated upon impulsive photoexcita-
tion quickly decay to zero, and more importantly, they do not act as
sources for excited-state populations and intraband coherences for
t > 0; see Eqs. (14), (15), and (28). Therefore, upon a delta-like pho-
toexcitation, it is justified to propagate only the excited-state dynam-
ics. The reduced propagator for the excited-state sector [Eq. (20a)]
then becomes the reduced propagator used in Ref. 54.

Although the excited-state RDM does not evolve in time, the
impulsive photoexcitation triggers environmental reorganization

processes, whose dynamics is encoded in ADMs. Using the defi-
nition of the first-tier excited-state ADM in Eq. (26) and special-
izing to the single-chromophore case and impulsive excitation, we
obtain

σee,0+
m
(t) = −2

cim
h̵2

1 − e−μmt

μm
Pe∣e⟩⟨e∣. (32)

In essence, the only nontrivial contribution comes from the anti-
commutator with |e⟩⟨e|, which produces a factor of 2. A similar
analysis can be conducted for dth-tier (d ≥ 1) excited-state ADM
with the final result

σee,0+
m1...md

(t) = (−2)d
d

∏
p=1

⎛

⎝

cimp

h̵2
1 − e−μmp t

μmp

⎞

⎠
Pe∣e⟩⟨e∣. (33)

Therefore, within the pure-dephasing spin–boson model, we can
analytically compute the nonequilibrium environmental dynamics
initiated by a delta-like photoexcitation. The result embodied in
Eq. (33) becomes particularly interesting in the archetypal case of
overdamped Brownian oscillator spectral density

J(ω) = 2λ
ωγ

ω2 + γ2 , (34)

when only the coefficient c0 connected to the Drude pole μ0 = γ has
an imaginary part [see also Eq. (10)]

c0 = λ ⋅ h̵γ[cot(
βh̵γ

2
) − i]. (35)

In this case, the only excited-state ADMs that exhibit a nontrivial
temporal evolution are the ones featuring an exclusive excitation of
the Drude pole. After performing suitable rescalings, which ensure
that ADMs are dimensionless and indeed decay to zero in high
enough hierarchical orders,65 we finally obtain for d ≥ 0

⟨e∣σresc
ee,0+

m1...md
(t)∣e⟩/Pe = δm1 ,0 . . . δmd ,0

2d
√
d!
(
λ
h̵γ
)

d/2

× [1 + cot2
(
βh̵γ

2
)]

−d/4

(1 − e−γt)
d
. (36)

In Fig. 3, we present the time evolution of the RDM and first
four nontrivial ADMs that is predicted by Eq. (36). The numerical
computations of the dynamics of impulsively photoexcited spin–
boson model performed in Ref. 54 (see Fig. 1 and the correspond-
ing discussion) employed the high-temperature approximation, in
which the expansion of the bath correlation function [Eq. (9)] con-
tains only the Drude contribution (term with m = 0). Interest-
ingly, our analytical result [Eq. (36)] demonstrates that, in that
case, the high-temperature approximation actually gives an exact
solution.

Let us also note that the procedure outlined can be repeated
to obtain optical-coherence ADMs. However, judging by Eq. (25),
there will be no restrictions on ms that can be excited. This is not at
variance with constraints present in Eq. (36) because, in the impul-
sive limit, optical coherences are not sources for purely excited-state
dynamics.
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FIG. 3. Time evolution of the RDM and first four nontrivial ADMs following the
impulsive excitation of the pure-dephasing spin–boson model. The spectral density
of the excitation–environment interaction is assumed to be of the Drude–Lorentz
type; see Eq. (34). The results are obtained using Eq. (36) with the following values
of model parameters: reorganization energy λ = 100 cm−1, bath relaxation time
γ−1 = 100 fs, and temperature T = 300 K.

B. Redfield theory with photoexcitation
Here, we discuss how, in the limit of weak excitation–

environment interaction, our results for ρ(I)ee (t) and ρ(I)eg (t) reduce
to the results of Refs. 29 and 35, where the photoexcitation is treated
up to the second order in the optical field, while the environment-
induced relaxation processes are described within the Redfield the-
ory. Our strategy is similar to the one used in Ref. 54 to accomplish
a similar goal.

If we assume that the characteristic decay time of the bath cor-
relation function Cj(t) is short compared to the time scales of the
dynamics we are interested in, we can employ the Markov approxi-
mation to reduce Eqs. (18) and (23) to a system of coupled second-
order equations for the excited-state and optical-coherence sectors
of the RDM.50,51 The final result is commonly written in the exci-
ton basis {|x⟩}, defined by HM |x⟩ = h̵ωx|x⟩, and assumes the form of
Redfield equations with photoexcitation. The optical coherence yx(t)
= ⟨x|ρeg(t)|g⟩ evolves according to

∂tyx(t) = −iωxyx(t) +
i
h̵
μx ⋅ E

(+)
(t) −∑

x′
(∑

x̃
Γxx̃x̃x′)yx′(t), (37)

while exciton populations and interexciton coherences nx̄x(t)
= ⟨x∣ρee(t)∣x̄⟩ obey

∂tnx̄x(t) = −i(ωx − ωx̄)nx̄x(t) −
i
h̵
μ∗x̄ ⋅ E

(−)
(t) yx(t)

+
i
h̵
y∗x̄ (t)μx ⋅ E

(+)
(t) −∑

x̄′x′
Rx̄xx̄′x′nx̄′x′(t). (38)

In Eq. (37), the damping matrix Γxx′ x̄x̄′ is defined as

Γxx′ x̄x̄′ = ∑
j
⟨x∣ j⟩⟨ j∣x′⟩⟨x̄∣ j⟩⟨ j∣x̄′⟩∫

+∞

0
ds

Cj(s)
h̵2 ei(ωx̄′−ωx̄)s, (39)

while the Redfield tensor Rx̄xx̄′x′ appearing in Eq. (38) assumes the
standard form

Rx̄xx̄′x′ = −Γx̄′ x̄xx′ − Γ∗x′xx̄x̄′ + δx̄′ x̄∑
x̃
Γxx̃x̃x′ + δx′x∑

x̃
Γ∗x̄x̃x̃x̄′ . (40)

We have also introduced elements of the dipole-moment operator
in the excitonic basis μx = ⟨x|μeg |g⟩. Although quite standard, the
derivation of Eqs. (37) and (38) from Eqs. (18) and (23) deserves
attention, and we present it in Sec. SIII of the supplementary
material.

In applications, it is common to neglect the imaginary parts
of the Redfield tensor,29,50 which give rise to renormalizations of
transition frequencies. However, as discussed in Ref. 66, this is not
correct, especially when we discuss the Redfield equation without
the secular approximation. Moreover, as the following discussion
demonstrates, the application of Eqs. (37) and (38) to describe laser-
induced dynamics of electronic excitations that are strongly coupled
to relatively slow nuclear motions runs into more serious difficul-
ties than those caused by neglecting renormalizations of transition
frequencies or applying the secular approximation.

In Figs. 5(a1)–5(d2), we compare the photoinduced electronic
dynamics of a dimer (see Fig. 4) treated by our HEOM formalism
incorporating the photoexcitation [Eqs. (14) and (15)] and the Red-
field formalism incorporating the photoexcitation [Eqs. (37) and
(38)]. Relevant parameters of the model dimer are summarized in
the caption of Fig. 4.

For the weakest excitation–environment coupling [see
Figs. 5(a1) and 5(a2)], the results predicted by the two approaches
are quite similar, as expected. However, as the excitation–
environment coupling is increased, the dynamics predicted by the

FIG. 4. Scheme of the model dimer. The difference between local energy levels is
Δε01 = ε0 − ε1 = 100 cm−1, and the electronic coupling is J01 = 100 cm−1. The
transition dipole moment of site 1 is assumed to be perpendicular to the polar-
ization vector of the exciting field, whereas the magnitude of the projection of
the transition dipole moment of site 0 onto the polarization vector is deg. Each
chromophore is in contact with its thermal bath (schematically represented by
the motion lines below chromophore numbers), and the spectral density of the
excitation–environment interaction is assumed to be the Drude–Lorentz spectral
density [see Eq. (34)] whose parameters γ and λ are identical on both sites. The
bath relaxation time is γ−1 = 100 fs, while the temperature is T = 300 K. The ini-
tially unexcited dimer is excited by a weak laser pulse (characterized by the pulse
central frequency Ωp and duration τp, see Fig. 5) or by weak incoherent light
(characterized by the central frequency ωc and correlation time τc , see Figs. 6
and 7).
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FIG. 5. Time evolution of the optical
coherence modulus [(a1)–(d1)] and
population [(b2)–(d2)] of site 0 following
a pulsed photoexcitation of the model
dimer (see Fig. 4). The computation
is performed using the HEOM formal-
ism incorporating the photoexcitation
[Eqs. (14) and (15), solid curves]
and the Redfield theory incorporating
the photoexcitation [Eqs. (37) and
(38), dashed-dotted curves], while
the envelope of the photoexcitation
is represented by shaded areas. The
waveform of the excitation is E(+)(t) =
E0 exp(−iΩpt − t2/(2τ2

p))/(τp
√

2π),
where the duration of the pulse is
τp = 20 fs, while the central frequency
Ωp is tuned to the vertical transition
frequency of site 0. The reorganization
energy assumes the following values:
λ = 2 cm−1 in (a1) and (a2), λ = 20
cm−1 in (b1) and (b2), λ = 100 cm−1 is
(c1) and (c2), and λ = 500 cm−1 in (d1)
and (d2).

Redfield theory deviates both qualitatively (e.g., absence of oscilla-
tory features) and quantitatively from the numerically exact results
[see Figs. 5(b1)–5(d2)]. The reasons for such deviations are summa-
rized in the following.

First, the relaxation tensor employed in Eqs. (37) and (38)
is time-independent, i.e., it cannot accurately capture the very
first steps of the nuclear reorganization dynamics initiated by

photoexcitation. In the derivation of Eqs. (37) and (38), we obtained
time-local equations because we ceased to keep track of the exact
instants of the interaction with light by formally setting the differ-
ence between the observation instant t and the last instant of the
interaction with light τ to infinity. Such an approximation is rea-
sonable whenever the bath correlation time and/or the excitation–
environment coupling are small enough. These conditions are
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typically satisfied in ultrafast semiconductor optics,30,31 which
explains the success of methods relying on equations such as
Eqs. (37) and (38) to describe ultrafast semiconductor dynamics.
On the other hand, in view of the intermediate regime to which
photosynthetic EET belongs,2,3,12 transient features of light-triggered
nuclear reorganization dynamics become crucial to properly char-
acterize electronic dynamics in photosynthetic aggregates. In other
words, one has to keep track of the exact instants τ1 and τ2 of the
interaction with light, which our formalism manifestly does. One
may hope to partially cure the deficiencies of the dynamics predicted
by Eqs. (37) and (38) by replacing the time-independent Redfield
tensor by its time-dependent counterpart; see, e.g., Ref. 27. However,
as argued in the supplementary material of Ref. 28, such a replace-
ment in a time-local equation for RDM would have to rely on the
rather arbitrary instant t0 in which we prescribe the initial condition
[Eq. (6)], which would give a reasonable description only in the limit
of impulsive excitation at t0. For pulses of finite duration, the cor-
rect description of ultrafast dynamics has to be on the time-nonlocal
level.

Second, the derivation presented in the supplementary material
suggests that Eqs. (37) and (38) neglect the nonequilibrium dynam-
ics of the bath in the period between the two interactions with light.
Again, our formalism manifestly includes such dynamics through
the HEOM for optical coherences. On the other hand, the change
in the bath state in the period between the two interactions with the
light can be partially taken into account, even on the time-local level,
through the so-called photoinduced correlation term that was iden-
tified in Ref. 28 (and also, in a more specialized setting, in Ref. 27).
In the language of the standard density matrix theory, the pho-
toinduced correlation term arises from the combined action of the
environmental assistance and the interaction with the exciting field.
While the neglect of such a term can be justified in semiconductor
optics,30,31 its effect on the dynamics may be nontrivial in the case of
slow bath and/or strong excitation–environment coupling.

C. Nonequilibrium generalization of Förster theory
As pointed out in Ref. 54, the Förster limit67 cannot be directly

obtained from the analytical results presented there, simply because
the initial environmental density matrix ρgB is assumed to describe
the equilibrium of environmental modes when there are no elec-
tronic excitations in the system. However, in the following, we
demonstrate how, under appropriate approximations, the results of
Ref. 54, i.e., our results in the limit of ultrashort excitation, lead to
the nonequilibrium generalization of the Förster theory proposed in
Refs. 68 and 69.

Let us limit our discussion to an aggregate containing two chro-
mophores [see Fig. 4], one acting as the excitation donor (D, chro-
mophore 0 in Fig. 4) and the other acting as the excitation acceptor
(A, chromophore 1 in Fig. 4). Let an impulsive excitation selec-
tively excite D at t = 0. Disregarding the dynamics of thus induced
optical coherences, the reduced excited-state dynamics for t > 0 is
described by

ρ(I)ee (t) = T exp[
Ð→
Wp(t, 0)]∣D⟩⟨D∣, (41)

where we have dropped out the normalization constant similar
to Pe in Eq. (29). We are interested in the rate at which the
population of A,

PA(t) = ⟨A∣ŨDA(t, 0)ρ(I)ee (t)Ũ
†
DA(t, 0)∣A⟩, (42)

changes. In the last equation, a tilde over the operator denotes the
interaction picture with respect to the electronic Hamiltonian of the
noninteracting chromophores (εD|D⟩⟨D| + εA|A⟩⟨A|) and

ŨDA(t, 0) = T exp[−
i
h̵ ∫

t

0
ds H̃DA(s)] (43)

with HDA = JDA(|A⟩⟨D| + |D⟩⟨A|) being the DA electronic coupling.
Within the Förster theory, the population transfer from D to A

is induced by two actions of HDA on opposite sides of |D⟩⟨D|, while
environmental degrees of freedom are mere spectators in that pro-
cess. Nevertheless, they do adapt to the change in the electronic state
induced by the transfer, but they alone cannot induce it if we assume
(as is usual) that no environmental mode couples to both D and
A.68 The situation is somehow similar to the photoexcitation pro-
cess (see Sec. IV), where the excited-state sector ee is reached from
the ground-state sector gg by applying two HM−R from the oppo-
site sides of |g⟩⟨g|. The phonons just adapt to the new electronic
configuration, but they alone cannot bring about to the ground-
to-excited state transition. Having all these things considered, it
seems reasonable to attempt to replace all time-dependent opera-
tors V(I)j (t) in Eq. (41) by time-independent operators V j and to
transform Eq. (42) by expanding ŨDA(t, 0) and keeping only contri-
butions in which two H̃DA(τ) act from the opposite sides of ρ(I)ee (t).
The above-described analogy with the photoexcitation process is
most conveniently exploited from the standpoint of Eq. (21). The
analogy then suggests that the Förster limit be obtained by enforcing
the global chronological order in the hyperoperator product acting
on |D⟩⟨D|, which results in the following expression for the rate of
population transfer from D to A:

kFAD(t) =
2
h̵2 ∫

t

0
dτ Re{⟨A∣T[H̃DA(t)C exp[

Ð→
Wp(t, 0)]

×
CH̃DA(τ)]∣D⟩⟨D∣∣A⟩}. (44)

We then partition the integration domain in
Ð→
Wp(t, 0) as fol-

lows [
Ð→
F p(s2, s1) denotes the hyperoperator under integral signs in

Eq. (20c)]:

Ð→
Wp(t, 0) = ∫

τ

0
ds2 ∫

s2

0
ds1
Ð→
F p(s2, s1) + ∫

t

τ
ds2 ∫

s2

τ
ds1

×
Ð→
F p(s2, s1) + ∫

t

τ
ds2 ∫

τ

0
ds1
Ð→
F p(s2, s1). (45)

Let us now analyze Eq. (44) order by order in
Ð→
Wp(t, 0). This anal-

ysis bears certain resemblance to that conducted in Refs. 70 and
71. The approximation V(I)j (s) ≈ Vj is performed only after the
global time-ordering prescription has been applied. Let us focus on
the first-order term. The first summand on the right-hand side of
Eq. (45) describes the single-phonon assistance before the first inter-
action HDA takes place at instant τ. Upon making the approximation
V(I)j (s) ≈ Vj, we conclude that the corresponding contribution is
equal to zero (cf. Sec. V A). The second summand in Eq. (45) is
effective after the first interaction HDA, when the electronic state is
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that of D/A coherence, |D⟩⟨A|. It is then easily checked that [see also
Eq. (31)]

T[H̃DA(t)C ∫
t

τ
ds2 ∫

s2

τ
ds1
Ð→
F p(s2, s1)

CH̃DA(τ)]∣D⟩⟨D∣

≈ −J2
DA e−i(εD−εA)(t−τ)[gD(t − τ) + g∗A(t − τ)]∣A⟩⟨A∣. (46)

We may anticipate that after the resummation, this term produces
the well-known factors characteristic of donor emission [e−g

∗
D(t−τ)]

and acceptor absorption [e−gA(t−τ)]. In the third summand in
Eq. (45), one superoperator acts before, and the other after, the first
interactionHDA. This summand is expected to take into account cor-
rections to the aforementioned donor emission factor due to the fact
that the donor environment has not yet adapted to the electronic
excited state. In greater detail,

T[H̃DA(t)C ∫
t

τ
ds2 ∫

τ

0
ds1
Ð→
F p(s2, s1)

CH̃DA(τ)]∣D⟩⟨D∣

≈ −J2
DA e−i(εD−εA)(t−τ) 2i

h̵2 ∫

t

τ
ds2 ∫

τ

0
ds1 Ci

D(s2 − s1)∣A⟩⟨A∣.

(47)

One can convince themselves that the final result for the excitation
transfer rate kFAD(t) in this limit reads as

kFAD(t) =
2J2

DA

h̵2 ∫

t

0
dτ Re{ exp(i(εD − εA)(t − τ) − g∗D(t − τ)

− gA(t − τ) +
2i
h̵2 ∫

t

τ
ds2 ∫

τ

0
ds1 Ci

D(s2 − s1))}. (48)

To enable a direct comparison with Eq. (20) or Eq. (24) of Ref. 68,
one should perform change of variables t − τ = τ′ and calculate all
bath correlation functions by definition, starting from the general
expression for uj [Eq. (3)].

VI. EXCITATION BY WEAK INCOHERENT LIGHT
Here, we study in more detail the excitation by (weak) inco-

herent light, for which the factorized part [Eq. (17)] of the first-
order light correlation function [Eq. (16)] identically vanishes. The
HEOM, as formulated here, leans on the exponential decomposition
of the environmental correlation function Cj(t) [see Eq. (9)]. There-
fore, it may be expected that if we can expand G(1)ij (τ2 − τ1) as a
weighted sum of exponential factors, we can proceed to formulate
HEOM in the usual manner. We concentrate on thermal (chaotic)
light whose propagation direction and polarization are well defined.
It is known that quantum and classical theory predict the same form
of the first-order light correlation function for such light,72

G(1)(τ) = I0 exp(iωcτ − τ/τc). (49)

In Eq. (49), I0 is the intensity, ωc is the central frequency, while τc
is the coherence time of the radiation. In view of the well-defined
polarization, we omit subscripts i, j labeling Cartesian coordinates
of the electric field. This form of the first-order radiation correlation
function has been used to gain insight into the dynamics of open20

and closed73 quantum systems weakly driven by light. Here, moti-
vated by the aforementioned exponential decomposition, we show
how the following light correlation function

G(1)(τ) = ∑
l
I0,l exp(iωc,lτ − τ/τc,l) (50)

can be used to recast Eq. (18) as the HEOM.
For incoherent light, the optical coherences defined in Eq. (23)

are exactly equal to zero. Nevertheless, the general scheme of the
hierarchy is still analogous to that we outlined in the case of clas-
sical excitation (see Fig. 2). One can introduce the following objects
that act in the eg sector and are thus analogous to optical coherences,
cf. Eq. (23),

ρ(I)eg,l(t) = ∫
t

t0
dτ U(I)red (t, τ)

i
h̵
μ(I)eg (τ)∣g⟩⟨g∣

× I0,l exp[iωc,l(t − τ) − (t − τ)/τc,l], (51)

where the dipole-moment operator μeg is the projection of μeg on
the polarization direction. These optical coherence-like objects are
counted by index l appearing in Eq. (50). In other words, each
term in the exponential decomposition of the first-order radiation
correlation function adds a new layer to the HEOM for “optical
coherences,” which reads as

∂tσeg,l,n(t) = −
i
h̵
[HM , σeg,l,n(t)] + (iωc,l − τ

−1
c,l )σeg,l,n(t)

−
⎛

⎝
∑
j
∑
m
nj,mμj,m

⎞

⎠
σeg,l,n(t) + δn,0

i
h̵
I0,lμeg

+ i∑
j
∑
m
Vjσeg,l,n+

j,m
(t)

+ i∑
j
∑
m
nj,m

cj,m
h̵2 Vjσeg,l,n−j,m(t). (52)

Nevertheless, the HEOM for singly excited-state populations and
intraband coherences does not feature any additional layers stem-
ming from the decomposition in Eq. (50) and it reads as

∂tσee,n(t) = −
i
h̵
[HM , σee,n(t)] −

⎛

⎝
∑
j
∑
m
nj,mμj,m

⎞

⎠
σee,n(t)

+
i
h̵
μeg(∑

l
σ†
eg,l,n(t)) −

i
h̵
(∑

l
σeg,l,n(t))μge

+ i∑
j
∑
m
[Vj, σee,n+

j,m
(t)] + i∑

j
∑
m
nj,m

cj,m
h̵2 Vj

× σee,n−j,m(t) − i∑
j
∑
m
nj,m

c∗j,m
h̵2 σee,n−j,m(t)Vj. (53)

Our results embodied in Eqs. (52) and (53) are significant
because they provide a viable route toward a description of exci-
tonic dynamics triggered by thermal light. This description consis-
tently combines both specific temporal and statistical properties of
the radiation and a nonperturbative treatment of the excitation–
environment coupling. It is well known that, in principle, the only
sensible representation of thermal light is statistical, in terms of a
set of all possible realizations. The recently suggested representa-
tion of natural incoherent light as an ensemble of transform-limited
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pulses74 would suggest that the dynamics it induces be computed by
propagating the HEOM embodied in Eqs. (14) and (15) for indi-
vidual ensemble realizations and then averaging over them. This
would present a formidable task since propagating Eqs. (14) and (15)
for one ensemble member is already numerically expensive.
Equations (52) and (53) demonstrate how such complications can be
circumvented within the second-order treatment of the interaction
with light. The fact that the exponential decomposition of the first-
order radiation correlation function does not affect the complexity
of the HEOM in the excited-state sector is numerically advanta-
geous. Namely, propagating the HEOM for “optical coherences”
[Eq. (52)] is significantly less numerically demanding than propa-
gating the HEOM in the excited-state sector [Eq. (53)]. Since the
dynamics of “optical coherences” in our second-order treatment is
not affected by the dynamics in the excited-state sector, we con-
clude that the overall numerical complexity of the problem as we
formulate it is not significantly greater than in the case of pulsed
photoexcitation [Eqs. (14) and (15)].

The proposed theory is valid in the limit of weak light–matter
interaction. To provide a more quantitative criterion of this weak-
ness, we recall that the maximum normal surface solar irradiance
at sea level on a clear day is Imax ≈ 1 kW/m2.75 The electric field
amplitude corresponding to this irradiance can be estimated by
E0 =

√
2Imax
cε0

(c is the speed of light, while ε0 is the vacuum per-
mittivity), and we obtain E0 ≈ 870 V/m. Keeping in mind that the
magnitude of the transition dipole moment of the bacteriochloro-
phyll molecule is deg ≈ 6 D,49 we can estimate the magnitude of the
interaction energy of electronic excitations and radiation by E0deg ∼
10−3 cm−1. We see that this interaction energy is orders of magni-
tude smaller than the energies characteristic for excitonic couplings,
exciton–environment interactions, and static disorder in transition
energies (∼10 cm−1–100 cm−1).2 Keeping in mind that the lunar
irradiance or the solar irradiance in habitats of some photosynthetic
bacteria are even smaller than the maximum solar irradiance upon
which the above estimates were based, we conclude that the weak-
light assumption is well satisfied in various photosynthetically rele-
vant situations. The same conclusion may be reached by estimating
the rate of solar photons incident on a photosynthetic complex. To
that end, we start from the fact that the normal surface solar irradi-
ance of the photosynthetically available radiation (400 nm–700 nm)
of the solar spectrum is IPAR ≈ 540 W/m2.75 In typical photo-
synthetic complexes, bacteriochlorophyll molecules most strongly
absorb at wavelengths around λ ≈ 700 nm–800 nm.49 Taking that
the typical linear dimension of a photosynthetic complex is a ∼ 10
Å,2 we may estimate that the number of solar photons incident on a
complex per unit time is dN

dt = IPAR
λa2

2π̵hc ≃ 2000s−1, which agrees well
with the estimate provided in Ref. 36. The actual photon absorption
rate, which also depends on the effective absorption cross section
and the degree of radiation attenuation due to the specific habi-
tat conditions, may be even smaller. The corresponding temporal
scale is thus orders of magnitude longer than time scales typical for
EET, excitation recombination, or extraction, which corroborates
the plausibility of our weak-light assumption.

In the following, we compare our Eqs. (52) and (53)
with the existing descriptions of photoexcitation by incoherent
light.43,44,47 We concentrate on the light correlation function in
Eq. (49). The aforementioned approaches exploit the fact that the

coherence time of natural sunlight τc ∼ 1 fs76,77 is at least an order
of magnitude shorter than the time scales typical for electronic cou-
plings and nuclear reorganization processes (which assume values
of ∼10 cm−1–100 cm−1).2 We may then argue that we can disregard
the nonequilibrium environmental dynamics taking place between
the two interactions with the radiation, which was crucial to cor-
rectly describe excitonic dynamics induced by a pulsed photoexcita-
tion; see the discussion accompanying Figs. 1(c) and 5(a1)–5(d2). In
other words, we may assume that both interactions with the radia-
tion occur essentially at the same instant, which means that Eq. (49)
should be replaced by

G(1)(τ) = 2I0τc δ(τ). (54)

This is the so-called white-noise model (WNM) of the radiation.48

In this case, one has to propagate only the HEOM for excited-
state populations and interband coherences and Eq. (53) should be
replaced by

∂tσee,n(t) = −
i
h̵
[HM , σee,n(t)] −

⎛

⎝
∑
j
∑
m
nj,mμj,m

⎞

⎠
σee,n(t)

+ δn,0
2I0τc
h̵2 μeg ∣g⟩⟨g∣μge + i∑

j
∑
m
[Vj, σee,n+

j,m
(t)]

+ i∑
j
∑
m
nj,m

cj,m
h̵2 Vjσee,n−j,m(t)

− i∑
j
∑
m
nj,m

c∗j,m
h̵2 σee,n−j,m(t)Vj. (55)

In Figs. 6(a) and 6(b), we confront the dynamics of the dimer
described in Fig. 4 that is triggered by suddenly turned on inco-
herent light and governed by Eqs. (52) and (53) (label “full”) and
Eq. (55) (label “WNM”) for different values of light coherence times
τc. Figure 6(a) presents the dimensionless source term for the total
excited-state population for G(1)(τ) given in Eq. (49) (curves labeled
as “full”),

Sfull(t) =
i
h̵

TrM{μegσ†
eg,0(t) − σeg,0(t)μge}, (56)

and for G(1)(τ) given in Eq. (54) (the curve labeled as “WNM”),

SWNM =
2I0τc
h̵2 TrM{μeg ∣g⟩⟨g∣μge}. (57)

Instead of presenting the data in absolute units, the dimensionless
source term in Fig. 6(a) and the total population in Fig. 6(b) are
given in units of γτcI0d2

eg/(h̵γ)2. The reason for choosing this unit
is our second-order treatment of exciton–light interaction, which
ensures that the excited-state populations and intraband coherences
scale linearly in the light intensity I0 [Eqs. (49), (50), and (54)] and
quadratically in the transition dipole moment deg (see Fig. 4). On the
formal side, one can convince themselves that γτcI0d2

eg/(h̵γ)2 is the
appropriate unit for our purposes by analyzing Eqs. (52), (53), and
(55). The presence of the factor γτc in the unit enables us to com-
pare on the same plot the data for different light coherence times.
The value of this unit is estimated by recalling that the energy scale
of the exciton–light interaction is E0deg ∼ 10−3 cm−1 and that we
use γ−1 = 100 fs (see the caption of Fig. 4). Therefore, for τc = 1.3
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FIG. 6. (a) Source term [in units of γτcI0d2
eg/(h̵γ)2] in the equation for the total

excited-state population of the model dimer (see Fig. 4) when the dynamics is
governed by Eq. (55) (WNM, dashed line) and when the dynamics is governed by
Eqs. (52) and (53) for τc = 1.30 fs (solid line), τc = 13.0 fs (dashed-dotted line),
and τc = 130 fs (double dashed-dotted line). (b) Total excited-state population [in
units of γτcI0d2

eg/(h̵γ)2] after a sudden turn-on of incoherent light with τc = 1.30 fs
(solid line), τc = 13.0 fs (dashed-dotted line), τc = 130 fs (double dashed-dotted
line), and τc → 0 (WNM, dashed line).

fs, γτcI0d2
eg/(h̵γ)2

≃ 4 × 10−12 and for τc = 13 fs, γτcI0d2
eg/(h̵γ)2

≃ 4×10−11, while for τc = 130 fs, γτcI0d2
eg/(h̵γ)2

≃ 4×10−10. The value
of τc determines the time scale on which the source term for the total
excited-state population Sfull(t) reaches a constant value upon a sud-
den turn-on of incoherent radiation [see Fig. 6(a)]. For the shortest
τc examined, the source term Sfull(t) saturates within the initial ∼10 fs
of the dynamics and the value it reaches excellently agrees with the
source term SWNM predicted by the WNM of the radiation. This is
also reflected in Fig. 6(b), in which the total exciton populations pre-
dicted by the two models display a perfect agreement for the shortest
τc. As τc is increased so that it becomes comparable to time scales of
nuclear reorganization processes, the agreement between the results
predicted by Eqs. (52), (53), and (55) deteriorates [see Figs. 6(a) and
6(b)] because the WNM cannot capture the nonequilibrium bath
dynamics between the two interactions with the radiation. The larger
is the coherence time τc, the more pronounced are the deviations of
the exact dynamics from the WNM results.

We now turn our attention to the dynamics of interexciton
coherences, which is displayed in Figs. 7(a)–7(d) for different values
of the reorganization energy λ.

The initial (sub-picosecond) oscillatory dynamics of the
interexciton coherence that is clearly observed for lower values

of λ [see Figs. 7(a) and 7(b)] is directly related to the oscilla-
tions displayed by the populations in the site basis upon an ultra-
fast excitation [see Figs. 5(a2) and 5(b2)].66 As the reorganization
energy is increased, the oscillatory features gradually disappear, cf.
Figs. 5(b1)–5(d2), and certain steady behavior of the interexciton
coherence, similar to a steady increase in the total exciton population
observed in Fig. 6, sets in. In Figs. 7(b)–7(d), we see that the imag-
inary part of the interexciton coherence saturates in ∼1 ps after the
excitation starts. On the other hand, the real part of the interexciton
coherence in Fig. 7(b) exhibits a steady increase for t ≳ 1.25 ps, while
the corresponding start of the steady increased is shifted to ∼0.75 ps
and ∼1.5 ps in Figs. 7(c) and 7(d), respectively. The time scale on
which the steady increase in the interexciton coherence sets in is inti-
mately related to the time scale on which the populations in the site
basis [see Figs. 5(b2)–5(d2)] reach their limiting values following a
very short photoexcitation. By virtue of basis transformation,66 the
latter is closely connected to the time scale of the dephasing of the
interexciton coherence generated by a very short photoexcitation.
Therefore, the oscillatory features under incoherent illumination
originate from the sudden turn-on of the excitation at t = 024,78 and
they disappear on the time scale on which the interexciton coher-
ence dephases after a short photoexcitation.48 We note, in passing,
that the magnitude of the interexciton coherence becomes much
larger than populations, which is also in line with previous stud-
ies.24,48,74,78 The light-induced coherences observed in Figs. 7(a) and
7(b) are not expected to be directly relevant to excitation harvesting
under natural conditions, which proceeds via nonequilibrium steady
states.24 Such states arise from a combination of the steady increase
in populations and coherences [see Figs. 6(b) and 7(a)–7(d)] due to
continuous generation and the steady excitation decay by trapping at
the reaction center and recombination. What may be relevant for the
efficiency of light harvesting driven by incoherent light are the rela-
tions among the RDM elements that establish themselves on time
scales typical for excitation trapping and recombination, which are
generally much longer than the time scales covered in this study.
Further development of this idea is the topic of the accompanying
paper.79

This section explicitly deals with incoherent light whose first-
order correlation function is of the form given in Eqs. (49) and (50).
In the literature,43,44,47 it is common to formulate equations simi-
lar to Eq. (55), which tacitly lean on the WNM in which the source
term describing the generation of state |e⟩ (from the ground state)
by incoherent sunlight is given in terms of the number of photons
of energy εe at the temperature of the Sun’s photosphere (∼6000 K).
In Sec. SIV of the supplementary material, we demonstrate how our
description reduces to the above-described quantum-optical limit by
virtue of the Weisskopf–Wigner approximation,80 which has to be
performed in the exciton basis.39 In essence, exploiting the weakness
of the excitation–light coupling, the quantum-optical approaches
tacitly assume that the effects of this coupling can be simply added to
the dynamics in the absence of radiation in the form of Markovian
corrections that do not feature any modifications due to the pres-
ence of the environment.43,44,47 While such approaches do include a
radiative recombination term, our approach does not contain such
a term. As demonstrated in greater detail in Sec. SIV of the supple-
mentary material, the reason for the absence of the radiative recom-
bination term in Eqs. (52) and (53) or in Eq. (55) is the fact that
our dynamics starts from the initially unexcited system and that it
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FIG. 7. Dynamics of the real (solid lines) and imaginary (dashed lines) parts of the
interexciton coherence [in units of γτcI0d2

eg/(h̵γ)2] in the model dimer (see Fig. 4)

for different values of the reorganization energy: (a) λ = 2 cm−1, (b) λ = 20 cm−1,
(c) λ = 100 cm−1, and (d) λ = 500 cm−1. Light coherence time is τc = 1.3 fs.

consistently keeps track of interactions with light up to the sec-
ond order. To describe nonequilibrium stationary states under inco-
herent light, our theoretical framework has to be augmented by
additional drain terms that should take into account excitation
recombination and possibly some other mechanisms by which the
excitations may be lost (e.g., trapping at the reaction center). In
our opinion, this feature of our formalism does not render it less
suitable for steady-state calculations under incoherent light; see the
accompanying paper.79 However, a fully self-consistent approach to
obtain the steady-state under incoherent light is still out of our reach
because it asks for a solution to the fundamental problem of the
nonadditivity of the excitation–light and excitation–environment
coupling.19

VII. CONCLUSION
We have conducted a detailed theoretical investigation of the

dynamics of electronic excitations in molecular aggregates induced
by weak radiation of arbitrary properties. Starting from initially
unexcited aggregate, our approach combines a perturbative treat-
ment of the coupling to radiation with an exact treatment of the
excitation–environment coupling in a manner that is manifestly
compatible with the spectroscopic view of the photoexcitation. We
express the reduced excited-state dynamics entirely in terms of the
first-order radiation correlation function and the reduced evolution
superoperator, for which we provide an exact expression within the
Frenkel exciton model. The changes that the state of electronic exci-
tations undergoes due to the photoexcitation and the interaction
with the environment can be conveniently represented diagrammat-
ically, in terms of elementary processes assisted by single quanta of
environmental excitations. The fact that our general expression for
the excited-state dynamics explicitly keeps track of the instants at

which the two interactions with light occur means that the corre-
sponding differential equation is time-nonlocal. Within the expo-
nential decomposition scheme, we outline how this temporal non-
locality can be circumvented by setting up a suitable HEOM scheme
that explicitly takes into account the photoexcitation step. Such
developments, however, turn out to heavily depend on radiation
properties.

In the case of excitation by transform-limited pulses, when
the radiation correlation function factorizes into the product of
(classical) electric fields at two interaction instants, we relate the
HEOM arising from our results to the HEOM obtained by con-
sidering the (semiclassical) light–matter coupling as a part of the
aggregate Hamiltonian. The insights from nonlinear spectroscopy
and semiconductor optics analyzed using the DCT scheme turn out
to be crucial in establishing that relationship. Namely, the order in
which the light–matter coupling is taken into account determines
the subspace of the excitation Fock space on which the photoin-
duced dynamics should be formulated and vice versa. We demon-
strate that the second-order response to light should be formulated
on the subspace containing at most one excitation. The second-order
results [Eqs. (14) and (15)] presented in Sec. III may be extended to
treat laser-induced nonlinear effects of an arbitrary order and yet
retain the numerically exact treatment of the interaction of photoin-
duced excitations with the environment. We believe that this result
may be of relevance for future treatments of laser-induced coherent
EET.

We analyze in detail the dynamics triggered by an impul-
sive excitation of a single chromophore, where we provide analyt-
ical results for environmental reorganization dynamics, which is
encoded in ADMs. We further identify the approximations under
which our general result reduces to the widely employed Redfield
theory with photoexcitation and nonequilibrium Förster theory.
Our comparison between the dynamics predicted by the HEOM
and Redfield theory with photoexcitation further corroborates the
advantages of our approach, which exactly describes light-induced
environmental reorganization processes and fully takes into account
the nonequilibrium evolution of the bath between the two interac-
tions with light.

In the case of excitation by thermal light, we compare
our approach to the widely used hybrid Born–Markov–HEOM
approach, which treats the light–matter coupling within quantum-
optical approximations. Since we employ the exponential decom-
position scheme, the formulation of the HEOM relies on an
exponential decomposition of the radiation correlation function.
We find that the HEOM thus obtained is not significantly more
numerically expensive than the HEOM as it is usually formulated.
This is because additional layers stemming from the decompo-
sition of radiation correlation function exist only in its optical-
coherence-like part, which may be solved completely indepen-
dently from its excited-state part. This paves the way toward viable
simulations of the dynamics triggered by natural incoherent light
that respect both the specific properties of the radiation and the
need for a nonperturbative treatment of excitation–environment
coupling.

We believe that despite its unfavorable numerical cost, the
approach outlined here can be useful in further investigations of
light–induced dynamics in both photosynthetic light-harvesting
aggregates and OPVs. In particular, in both types of systems, the
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relation of the insights gained in ultrafast spectroscopies to the actual
operation under natural sunlight illumination has provoked long-
standing debates. Our method promises to bridge these two stand-
points and establish a new more suitable common viewpoint on
energy conversion in these systems. Further work on bridging the
two standpoints is under way in our respective research groups.

SUPPLEMENTARY MATERIAL

See the supplementary material for (a) a more detailed discus-
sion of the second-order response to excitation by coherent light, (b)
a detailed derivation of the exact evolution superoperator, (c) deriva-
tion of the Redfield equation comprising photoexcitation, and (d) a
discussion of the quantum-optical limit in the case of excitation by
incoherent light.
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26T. Mančal and F. Šanda, “Quantum master equations for non-linear optical
response of molecular systems,” Chem. Phys. Lett. 530, 140–144 (2012).
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