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Ab-initio calculations of temperature dependent
electronic structures of inorganic halide
perovskite materials†

Milan Jocić and Nenad Vukmirović *

Despite wide interest in halide perovskite materials, it is still challenging to accurately calculate their

electronic structure and its temperature dependence. In this work, we present ab-initio calculations of the

temperature dependence of the electronic structure of CsPbX3 materials (X = Cl, Br or I) in the cubic form

and of the zero temperature electronic structure of the orthorhombic phase of these materials. Phonon-

induced temperature dependent band energy renormalization was calculated within the framework of

Allen–Heine–Cardona theory, where we exploited the self-consistent procedure to determine both the

energy level shifts and their broadenings. The phonon spectrum of the materials was obtained using the

self-consistent phonon method since standard density functional perturbation theory calculations in

harmonic approximation yield phonon modes with imaginary frequencies due to the fact that the cubic

structure is not stable at zero temperature. Our results suggest that low energy phonon modes mostly

contribute to phonon-induced band energy renormalization. The calculated values of the band gaps at

lowest temperature where the material exhibits a cubic structure are in good agreement with experimental

results from the literature. The same is the case for the slope of the temperature dependence of the band

gap for the CsPbI3 material where reliable experimental data are available in the literature. We also found

that phonon-induced temperature dependence of the band gap is most pronounced for the conduction

band minimum and valence band maximum, while other bands exhibit a weaker dependence.

1 Introduction

Halide perovskite materials emerged in the last decade as
revolutionary materials for applications in solar cells,1–4

lasers,5 light-emitting diodes,6,7 photodetectors,8,9 detectors of
ionizing radiation,10,11 thermoelectric12 and other devices.13 To
understand the characteristics of these devices and to design
improved materials and devices, it is essential to be able to
predict the electronic structure of the material. Despite great
interest in understanding the electronic structure of halide
perovskites and numerous developments of the methods for
electronic structure calculations and the software for performing
such calculations, it is still rather challenging to accurately
determine the electronic structure of halide perovskites.

It is currently well understood that in electronic structure
calculations of halide perovskites one has to take into account
the effects of spin–orbit interactions due to the presence of

heavy atoms such as lead.14–16 As in the case for many other
semiconductors, standard local or semilocal approximations to
density functional theory (DFT) underestimate the material band
gap14–16 and more sophisticated approaches, such as the use of
GW approximation17–19 or hybrid functionals,20,21 are necessary.

A group of challenges arises when it comes to predicting the
electronic structures of halide perovskites at room or higher
temperatures which are relevant for application in the men-
tioned devices. Temperature effects on the band gap and the
overall electronic structure of perovskites are rather
pronounced22–28 and one cannot simply consider the electronic
structure calculated for fixed atoms in a crystal lattice as the
electronic structure at higher temperatures.

The most successful theory for determining the temperature
effects on the electronic structure of semiconductors is the
Allen–Heine–Cardona theory.29–31 Within this theory, one
expands the Hamiltonian up to second order terms in atomic
displacements from the equilibrium position and perturbatively
evaluates the change in band energies. In conjunction with the
methods for the electronic structure calculation for fixed atomic
positions, this theory was used to study the temperature depen-
dence of the band gap and zero temperature band gap renormaliza-
tion in a variety of semiconductors.31–36 However, this theory can be
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straightforwardly applied to a particular material only if its crystal
structure at a given temperature is the same as at zero temperature.

The last condition is not fulfilled in halide perovskite materials.
Inorganic halide perovskite materials CsPbX3 (X = Cl, Br or I) that
are of main interest in this work exhibit a cubic structure at high
temperatures only.37–42 As the temperature is lowered, they trans-
form into a tetragonal structure and finally to an orthorhombic
structure.37–40 Therefore, the cubic structure is not a stable struc-
ture at zero temperature. When one attempts to calculate the
phonon dispersion in the material by assuming a cubic structure
at zero temperature, phonon modes of imaginary frequencies are
obtained40,43–45 and it is not clear how to treat such phonons
within the Allen–Heine–Cardona theory.

Previous studies on the effects of temperature on halide
perovskite semiconductors have not addressed other bands than
the conduction band minimum (CBM) and the valence band
maximum (VBM). While these two bands are most relevant for
the determination of the band gap of the material, there is
significant interest in knowing the energies of the other bands.
These are important, for example, to understand the optical
response of the material in the ultraviolet spectral range relevant
for ultraviolet detectors.9 On the theoretical side, the knowledge
of band energies at characteristic points in the Brillouin zone is
necessary to construct multiband Hamiltonians46–49 that can
further be used to predict the electronic states in halide per-
ovskite nanostructures. While the renormalization of energies of
the other bands can in principle be obtained in the same way as
for CBM and VBM within Allen–Heine–Cardona theory, certain
issues, related to the energy level broadening parameter d, arise.
On the one hand, band renormalization for other bands con-
verges linearly with respect to d when d - 0 in contrast to
Lorentzian convergence of CBM and VBM,32 which makes it
more challenging to obtain the convergence of other bands. On
the other hand, other bands typically exhibit larger broadening
of energy levels compared with the CBM and VBM. Conse-
quently, it is questionable if one should evaluate the d - 0
limit for other bands at all. Preferably, the broadening of the
energy levels should be evaluated simultaneously with the band
energy renormalization.

In this work, we perform electronic structure calculations of
the temperature dependence of the band gap and band energies
for halide perovskite materials CsPbX3 (X = Cl, Br or I) in a cubic
crystal structure. Electronic structure calculations (without the
effects of phonon-induced band renormalization) are performed
using a hybrid functional that satisfies the Koopmans condition.
The challenge of treating phonons within the Allen–Heine–
Cardona theory is overcome by performing phonon band struc-
ture calculations at a finite temperature within the framework
of self-consistent phonon (SCPH) theory, where all phonon
modes remain stable. The challenge of the choice of energy
level broadening is overcome by performing the calculation in
which energy levels and their broadening are determined self-
consistently. We compare the obtained temperature dependence
of the band gap for the cubic structure to experimental results
from the literature. We also perform calculations of the ortho-
rhombic structure at zero temperature and comment on the

overall temperature dependence of the band gap of CsPbX3

materials from zero to high temperatures.
This paper is organized as follows. In Section 2, we present

the main methods that were used in this work. Allen–Heine–
Cardona theory is briefly reviewed in Section 2.1 along with the
description of the two approaches that were used to calculate
phonon-induced band energy renormalization within this theory.
The SCPH method is reviewed in Section 2.2. In Section 3 we
present the results obtained and the details of the calculations.
We start with the results obtained using standard density func-
tional theory (DFT) calculations with semilocal functionals that
are presented in Section 3.1. In Section 3.2 we present the results
obtained using a hybrid functional that gives improved values of
the material band gap. Density functional perturbation theory
(DFPT) based calculations of the phonon spectrum are reported in
Section 3.3, while SCPH calculations of the phonon spectrum are
presented in Section 3.4. In Sections 3.5 and 3.6 we present the
main results of this work for the temperature dependence of
renormalization of band energies, while we compare the results
obtained with experiments in Section 3.7. We close the paper with
a discussion and conclusions in Section 4.

2 Methods
2.1. Allen–Heine–Cardona theory

In this section, we briefly review the Allen–Heine–Cardona theory
that describes phonon-induced band gap renormalization in semi-
conductor materials and present the procedure for self-consistent
calculation of phonon-induced renormalization of band energies
and their broadenings. The Hamiltonian of the system is given as

H = Hel + Hph + Hel–ph. (1)

The first term

Hel ¼
X
kn

eknĉ
y
knĉkn; (2)

describes the electrons, where ĉ
y
kn and ĉkn are creation and annihi-

lation operators, respectively, of an electron with wave vector k and
electronic band n whose energy is ekn. The second term

Hph ¼
X
qn

�hoqn âyqn âqn þ
1

2

� �
(3)

describes the phonons, where âyqn and âqn are phonon creation and

annihilation operators, respectively, of a phonon with wave vector q
and phonon mode n whose angular frequency is oqn. The third
term Hel–ph is the Hamiltonian of the electron–phonon interaction.
By including the terms up to second order with respect to atomic
displacements, it takes the form

Hel-ph ¼
1

N
1=2
q

X
knm

X
qn

gFannm;nðk; qÞĉ
y
kþqmĉknðâ

y
�qn þ âqnÞ

þ 1

Nq

X
knm

X
qq0nn0

gDW
nm;nn0 ðk; q; q0Þĉ

y
kþqþq0mĉkn

� ðây�qn þ âqnÞðây�q0n0 þ âq0n0 Þ;

(4)
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where gFan
nm,n(k,q) and gDW

nm;nn0 ðk; q; q
0Þ are first order Fan and second

order Debye–Waller matrix elements of electron–phonon inter-
actions and Nq is the number of points in reciprocal space. The
first order Fan matrix element is given as:

gFannm;nðk; qÞ ¼
X
ka

�h

2Mkoqn

� �1=2

� kþ qnh j @VSCF

@RkaðqÞ
kmj ixka;nðqÞeiq�Rk

(5)

where
@VSCF

@RkaðqÞ
and xka,n(q) are the perturbation of the Kohn–Sham

potential due to nuclear displacement and the phonon eigenvector,
respectively, describing the displacement of atom k with mass Mk

at position Rk in Cartesian direction a corresponding to phonon
vector (mode) q (n). The self-energy stemming from the first term in
eqn (4) reads

SFan
kn ðo;TÞ ¼

1

Nq

X
m;qn

gFannm;nðk;qÞ
��� ���2

� nqnðTÞþ1� fkþqm
o�ekþqm�oqnþ id

þ nqnðTÞþ fkþqm
o�ekþqmþoqnþ id

� �

(6)

where nqn(T) is the Bose–Einstein occupation factor at a tempera-
ture T, fk+qm is the Fermi–Dirac occupation factor and d is a positive
infinitesimal. The self-energy from the second term in eqn (4) takes
the form

SDW
knmðTÞ¼

1

Nq

X
qn

gDW
nm;nnðk;q;�qÞð2nqnðTÞþ1Þ; (7)

where the second order electron–phonon matrix elements gDW
nm,nn

(k, q, �q) from eqn (7) can be expressed in terms of first order
electron–phonon matrix elements by making use of translational
invariance and rigid-ion approximation.29,50

The renormalization of energy levels can be calculated from
the self-energies. Within the so-called on-the-mass-shell
(OTMS) approximation,51 the renormalized energy of band n
at point k in the Brillouin zone is

Ekn(T) = ekn + ReSFan
kn (ekn,T) + ReSDW

kn (T). (8)

As discussed in the Introduction, there are challenges in
obtaining converged results for band energy renormalization
for bands other than VBM and CBM using eqn (6), (7) and (8).
The convergence with respect to energy level broadening para-
meter d as d - 0 is a slow linear convergence32 and hence one
needs to use rather small d, which in turn requires a large
number of q-points in the summation. The broadening of the
energy levels obtained from the imaginary part of the self-energy
is on the order of 100 meV or more. It is therefore questionable if
the d - 0 limit is relevant at all. It is certainly more appropriate
to self-consistently determine the renormalization and broad-
ening of the energy levels. This can be achieved as follows. We

note first that the terms
1

o� ekþqm � oqn þ id
in eqn (6) repre-

sent the retarded Green’s function of a bare electron G(0)
k+qm(o �

oqn), while eqn (6) is the self-energy in the so-called Migdal
approximation. A more accurate approximation is the self-
consistent Migdal approximation where the bare Green’s func-
tion G(0) is replaced with the dressed Green’s function G. Eqn (6)
then takes the form

SFan
kn ðoÞ ¼

1

Nq

X
m;qn

gFannm;nðk; qÞ
��� ���2

� ðnqnðTÞ þ 1� fkþqmÞGkþqmðo� oqnÞ
�
þ ðnqnðTÞ þ fkþqmÞGkþqmðoþ oqnÞ

�
:

(9)

One can in principle determine the Green’s function, the self-
energy, the spectral function and hence the energy level renor-
malization and broadening by self-consistently solving eqn (9)
and the Dyson equation. However, this requires evaluation of all
these quantities at wave vectors throughout the whole Brillouin
zone in each step of the self-consistent procedure, which is a
highly demanding computational task. A significant simplifica-
tion that decouples different kn states can be made as follows.
We first note that the Green’s function in eqn (9) is given as

GkþqmðoÞ ¼
1

o� ekþqm � SkþqmðoÞ
: (10)

We then make a replacement Sk+qm(o) - Skn(o) in the
previous equation (where Skn(o) = SFan

kn (o) + Skn
DW). This replace-

ment is justified by the fact that the dominant contribution to
the sum in eqn (9) comes from the terms in the sum that have
m = n and a small value of q. For such terms Sk+qm(o) E Skn(o).
It is therefore appropriate to replace the self-energy for all
terms in the sum with the self-energy of the dominant terms.
The expression for SFan

kn then reads

SFan
kn ðoÞ ¼

1

Nq

X
m;qn

gFannm;nðk; qÞ
��� ���2

� nqnðTÞ þ 1� fkþqm
o� ekþqm � oqn � Sknðo� oqnÞ

�

þ nqnðTÞ þ fkþqm
o� ekþqm þ oqn � Sknðoþ oqnÞ

�
:

(11)

It is important to note that eqn (11) does not contain the
self-energies of the states other than kn, which is a conse-
quence of the approximation used for Sk+qm(o). The self-energy
SFan

kn (o) can now be obtained using a self-consistent procedure
as follows. One starts with an initial guess for Skn(o) and
evaluates SFan

kn (o) using eqn (11) and the total self-energy as
the sum of the Fan and the Debye–Waller term. A new value of
SFan

kn (o) is then calculated again using eqn (11) and the proce-
dure is repeated until the convergence of SFan

kn (o) is reached.
The spectral function is then obtained as

AknðoÞ ¼ �
1

p
Im

1

o� ekn � SknðoÞ
(12)

and the renormalized energy Ekn is obtained as the energy omax

at which the spectral function reaches a maximum. The spec-
tral function Akn(o) represents the probability density that an
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electron of momentum k in band n has the energy o. We note
that our procedure for evaluation of renormalized energies is
similar in spirit to the procedure suggested in ref. 50 (Eq. 166
therein), where approximations that also lead to decoupling of
different kn states were used. The difference between these
procedures is that we consider the full frequency dependence of
self-energies rather than the energy of the renormalized state
and its broadening only.

In Section 3, we will present the results obtained using both
of the mentioned approaches. The results obtained from
eqn (8) with self-energies given by eqn (6) and (7) will be
referred to as OTMS results, while the results obtained using
eqn (12) and self-consistent solution of eqn (11) will be referred
to as the self-consistent procedure (SCP) results.

We note that it is rather challenging to treat the electron–
phonon interaction in real materials beyond the approximations
mentioned. These approximations all contain the assumption
that the electron–phonon interaction is not too strong. Full
nonperturbative treatment of electron–phonon interactions has
so far only been performed for model Hamiltonians, such as the
Holstein or Fröhlich model. In a recent study of the Holstein
model52 it was shown that for relatively weak electron–phonon
coupling the spectral functions in the Migdal and self-consistent
Migdal approximation are similar to the spectral functions
obtained using more advanced approaches, such as the cumu-
lant expansion method and the dynamical mean field theory.
Moreover, self-consistent Migdal approximation performs over-
all only somewhat worse than the cumulant expansion method,
which is not the case for the Migdal approximation that gives
inaccurate results starting from moderate values of electron–
phonon coupling. Based on the knowledge gained from the
Holstein model, we can infer about the accuracy of the OTMS
and SCP results for real perovskite materials. It is expected that
the SCP results which are based on the self-consistent Migdal
approximation should in principle be more accurate than the
OTMS results which are based on the Migdal approximation. On
the other hand, it will be shown in Section 3 that OTMS and SCP
results are not too different. This suggests that we are in the
regime where electron–phonon coupling is relatively weak,
where it is appropriate to apply either the Migdal or the self-
consistent Migdal approximation.

We also note that in both the OTMS and SCP approach,
as typically done in the literature,50 we were evaluating only
the diagonal (intraband) self-energies Skn(o) and not the off-
diagonal (interband) self-energies Sknm(o) (with n a m). In the
case of the OTMS approach one is actually interested in diagonal
self-energies only because they directly determine the band
energy renormalization, see eqn (8). On the other hand, intro-
duction of off-diagonal self-energies in the SCP approach would
strongly increase the computational burden of the whole proce-
dure. On physical grounds, it should be noted that band energy
renormalization due to interband electron–phonon scattering
processes is already described by the diagonal self-energies
[via the man terms in the sum in eqn (6)]. Hence, inclusion
of non-diagonal self-energies would represent only a higher
order effect.

2.2. The self-consistent phonon method

Since the standard approach based on the use of harmonic
approximation and DFPT is not sufficient to describe phonons
in cubic CsPbX3 materials, a more sophisticated approach is
needed. We therefore use the self-consistent phonon method
following the methodology and the implementation of ref. 53.
In this section, we briefly review the main ideas of the method
and its implementation.

In the Born–Oppenheimer approximation, the dynamics of
lattice ions is described by the Hamiltonian H = T + U, where T is
their kinetic energy, while U is the potential energy which is a
function of the displacements from the equilibrium position.
The potential energy can be expanded as U = U0 + U2 + U3 + U4+
. . ., where the term Un is of n-th order with respect to atomic
displacements and the term U1 is missing because it contains
forces which are zero in equilibrium. Keeping the terms U0 and
U2 only is the standard harmonic approximation. In this case,
phonon frequencies are obtained from diagonalization of the
corresponding dynamical matrix.

To obtain the phonon frequencies in a general case when
the terms beyond U2 are included, one can make use of many
body Green’s function theory. The Hamiltonian is divided into
H = H0 + H1 where H0 = T + U0 + U2 is the harmonic part of the
Hamiltonian whose solution is known, while the anharmonic
terms H1 = U3 + U4 + . . . constitute the interaction part. The
phonon Green’s function G0 for the Hamiltonian H0 is known,
while the Dyson equation relates G0, the phonon Green’s func-
tion G of the Hamiltonian H and the self-energy S. The Dyson
equation has to be complemented with the equation for self-
energy. The self-energy is in principle given by a diagrammatic
expansion involving an infinite number of Feynman diagrams.

Fig. 1 Comparison of experimental and theoretical results for the elec-
tronic gap for CsPbX3 (X = Cl, Br or I) calculated without taking tempera-
ture effects into account. The line x = y represents the experimental results
for the lowest temperature of the cubic structure. The symbols denote
calculated values for the cubic structure using the PBE (PBEsol) functional
for CsPbI3 (CsPbCl3 and CsPbBr3) (inverted triangles) and PBE0 functional
modified to satisfy the Koopmans condition (diamonds).
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In practice one selects only the most relevant diagrams for the
problem at hand. To obtain the renormalized phonon frequen-
cies, it turns out that the most relevant diagram is the loop
diagram originating from the quartic term U4 (shown in Fig. 1(a)
in ref. 53). The Green’s function and the self-energy can then be
found self-consistently and the renormalized phonon frequency
is determined from the pole of the Green’s function.

To perform the calculation within the SCPH method, one also
has to obtain all relevant force constants that appear in the Un

terms in the expansion of U. The second order force constants are
obtained from supercell density functional theory calculations
and the finite displacement method. While the finite displace-
ment method can in principle be used to obtain higher order
force constants, a different strategy yields more stable results
for the force constants. Namely, finite-temperature ab-initio
molecular dynamics calculations are performed to obtain various
atomic configurations and the corresponding total energy and
forces in these configurations. The force constants that appear in
anharmonic terms in U are then fitted to the data obtained, where
great care has to be taken to avoid overfitting the data. Details of
the full calculation protocol are reported in Section 3.4.

3. Results and calculation details
3.1. Density functional theory calculations with semilocal
functionals

As a first step, we performed density functional theory calcula-
tions of the electronic structure of the CsPbX3 materials using
the semilocal PBEsol54 functional in the case of CsPbCl3 and
CsPbBr3, while the PBE functional55 was used in the case of
CsPbI3. Calculations were performed using the plane-wave code
Quantum Espresso.56,57 Norm-conserving fully relativistic
pseudopotentials58,59 were used to treat the effect of core elec-
trons. The effects of spin–orbit interaction were included. The
wave functions were represented on a 4 � 4 � 4 reciprocal space
k- point grid with a kinetic energy cutoff of 50 Ry for CsPbCl3 and
CsPbBr3 and a cutoff of 40 Ry for CsPbI3. We note that a different
functional was used for CsPbI3 because the gap obtained using
the PBEsol functional at the optimized lattice constant obtained
from this functional is nearly zero, which prevents the use of this
functional in further DFPT calculations.

The optimized lattice constants for the cubic structure
obtained from the calculations are respectively 10.6 a0, 11.1 a0

and 12.1 a0 (in units of first Bohr radius a0 for CsPbCl3, CsPbBr3

and CsPbI3). We note that the lattice constants obtained for
CsPbCl3 and CsPbBr3 are in excellent agreement with the
experimental lattice constant at the lowest temperature where
the material exhibits a cubic structure (which are 10.59 a0 at
320 K for CsPbCl3 and 11.10 a0 at 403 K for CsPbBr3, see ref. 42).
This agreement is reasonable in the case of CsPbI3 (experimental
lattice constant is 11.67 a0 at 300 K, see ref. 60) and would be
better if the PBEsol functional, which gives the lattice constant of
11.8 a0, was used. However, as noted before, the use of PBEsol
functional for CsPbI3 closes the gap of the material and hence
this functional was not used for CsPbI3. While the agreements

obtained are somewhat fortuitous because standard DFT calcu-
lations are performed at zero temperature, the lattice constants
obtained were used in further calculations because they are in
good agreement with experimental lattice constants. The direct
band gaps at the R-point obtained for CsPbCl3, CsPbBr3 and
CsPbI3 are respectively 0.59 eV, 0.22 eV and 0.21 eV. These gaps
are well below the experimental band gaps, see Fig. 1. This is
expected because it is well known that semilocal functionals
underestimate the band gap.61

We also performed calculations for the orthorhombic structure
of the CsPbX3 material that is stable at zero temperature. The
coordinates of the initial structure were taken from The Materials
Project website62 as structures numbered 675 524, 567 629, and
1 120 768 for CsPbCl3, CsPbBr3 and CsPbI3, respectively, and were
further relaxed (cif files for the initial and relaxed structures are
included in the ESI†). The CsPbCl3 orthorhombic structure corre-
sponds to space group number 38 (Amm2) with 10 atoms per
primitive cell, while CsPbBr3 and CsPbI3 orthorhombic structures
both correspond to space group number 62 (Pmna) with 20 atoms
per primitive cell. The same density functionals, k-point grid
dimension, and the plane wave kinetic energy cutoff were used
as in the case of the cubic structure. We used the PBEsol
functional for optimization of atomic coordinates and dimen-
sions of the unit cell for all three materials (since the gap of
orthorhombic CsPbI3 does not close when the PBEsol functional
is used in the calculation). The calculations were performed using
the Quantum Espresso code56,57 with variable cell relaxation
option. The band gaps obtained for orthorhombic CsPbCl3,
CsPbBr3 and CsPbI3 are respectively 1.1 eV, 0.83 eV and 0.62 eV.

3.2. Hybrid functional calculations

To overcome the band gap problem of semilocal functionals, we
performed the electronic structure calculation using a hybrid
functional. In particular, we make use of the PBE0 functional63,64

whose parameter a is chosen to satisfy the Koopmans condition.
We used the values of a for CsPbX3 materials that were calcu-
lated in ref. 65. Hybrid functional calculations were also per-
formed using the Quantum Espresso code.56,57,66 The calculation
parameters common to standard semilocal DFT calculation were
set to the same values. In addition, for cubic structures a 4� 4 �
4 reciprocal q- points grid was used to sample the Fock operator
and the Gygi-Baldereschi method67 was used to treat the singu-
larity at q - 0. For orthorhombic structures that have a larger
unit cell than cubic structures, 3 � 3 � 2 k- and q-points grids
were used in the case of CsPbBr3 and CsPbI3, while we used 4 �
4 � 4 k- and q-points grids for CsPbCl3.

In hybrid functional calculations, we obtain the values of
2.4 eV, 1.5 eV and 0.96 eV for the band gap of cubic CsPbCl3,
CsPbBr3 and CsPbI3. These values are closer to experimental
values than the values obtained from semilocal functionals.
However, these values are still smaller than the experimental
band gaps, see Fig. 1. This result indicates that temperature
effects might play a significant role and that it is important to
investigate them.

In the case of orthorhombic structures, we obtain band gaps
of 3.0 eV, 2.4 eV and 1.5 eV, respectively for CsPbCl3, CsPbBr3
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and CsPbI3. These results are in good agreement with experi-
mental gaps of the low-temperature orthorhombic structures,
which are 3.056 eV for CsPbCl3 (ref. 68), 2.25 eV for CsPbBr3

(ref. 69) and 1.72 eV for CsPbI3 (ref. 70).

3.3. Density functional perturbation theory calculations of the
phonon band structure

To take into account the effect of temperature on the electronic
band structure, it is necessary to calculate the phonon frequencies
and eigenvectors and the electron–phonon coupling constants.
For this reason, we perform DFPT calculations of phonons in
harmonic approximation. The same density functional, kinetic
energy cutoff and the reciprocal space k-point grid were used as in
DFT calculations. The calculations were performed using the
ABINIT code.71–74

The phonon band structures obtained from calculations for
cubic CsPbX3 materials are presented in Fig. 2 (dashed line), where
phonons with imaginary frequencies are presented using negative
values. Since the cubic structure is not stable at zero temperature,
there is a significant number of phonon modes with imaginary
frequencies. It is therefore a challenge to include such modes in
the calculation of phonon-induced band renormalization.

3.4. Calculation of phonon band structure within the
self-consistent phonon method

Standard DFPT calculations of the phonon band structure
assume zero temperature and the harmonic approximation.
As discussed in Section 3.3, this leads to phonon modes with
imaginary frequencies for the cubic structure. To overcome this
issue, one has to take into account the anharmonic effects and
the effects of temperature. This can be naturally accomplished
using the self-consistent phonon method.53,75

The calculations based on the SCPH method were per-
formed using the following protocol. The calculations were
performed using the ALAMODE code,53,76 while DFT calcula-
tions and ab-initio molecular dynamics simulations were per-
formed using the Quantum Espresso code.56,57 One first has to
obtain all relevant force constants. (i) Harmonic force constants
were obtained by performing the DFT calculation of 2 � 2 � 2
cubic supercells, where a shifted 4 � 4 � 4 k-point grid was
employed. Other parameters of the DFT calculation are the
same as in Section 3.1. An atom is displaced by 0.01 Å in a
certain direction and new atomic forces are calculated. The
harmonic force constants are then obtained from these forces
using a least squares fit implemented in the ALAMODE code.
(ii) To obtain anharmonic force constants, we first generate
representative atomic structures which will be used for evalua-
tion of forces and subsequent force constant fitting. We per-
form 2000 steps of NVT ab-initio molecular dynamics at a
temperature of 500 K with a timestep of 2 fs for a 2 � 2 � 2
cubic supercell. To gain computational speed in this calculation
we reduce the kinetic energy cut-off to 30 Ry and we use the
k-point grid consisting of the G point only. This is justified in
this place, since the goal is only to obtain configurations where
atoms are displaced from their equilibrium positions, rather
than to extract physical quantities from the molecular dynamics

simulation. We then select 30 snapshots from the simulation
which are equally spaced from timestep 500 to timestep 2000.
(iii) For the snapshots obtained, we additionally displace each
atom by up to 0.1 Å in each direction. For these 30 snapshots, we
accurately compute the atomic forces from DFT by using 50 Ry
kinetic energy cutoff and a shifted 4 � 4 � 4 k-point grid. (iv)
With the forces obtained we perform fitting of the force con-
stants using the adaptive LASSO method, following ref. 53 and
77. In the fitting, we put a restriction that fourth order force
constants are zero beyond third neighbor atoms, that the fifth
and sixth order constants are nonzero for nearest neighbors only
and that higher order constants are equal to zero. (v) The force
constants obtained in the previous step are used as an input for
the SCPH method calculation. In the SCPH method calculation,
we neglect the off-diagonal elements of the self-energy and use a
4 � 4 � 4 grid to represent the self-energy in reciprocal space.

The phonon band structure obtained from the SCPH method
is presented in Fig. 2. We obtain phonon frequencies that are
non-negative throughout the whole Brillouin zone. We also find
that with an increase of temperature, a small but non negligible
shift in frequencies is present. These shifts are negative for the
three highest bands and positive for the rest. We will see in
Section 3.5 that these shifts are large enough to have a signifi-
cant contribution to the renormalization of electronic bands.

3.5. Band energy renormalization calculations using the
OTMS approach

In this section, we present the results for band energy renor-
malization calculations of cubic CsPbX3 materials obtained
using the OTMS approach. The calculations, in this and in
the following section, were performed using our own code
which takes DFPT results from the ABINIT code.71 These results
include variations of the Kohn–Sham potential with respect to
ionic displacements and the interatomic force constants, that
are then used to calculate first and second order matrix
elements of electron–phonon interaction. In all band energy
renormalization calculations bare band energies that appear in
eqn (6) and (7) were taken from DFT calculations reported in
Section 3.1.

To make sure that the results obtained are reliable one has
to take enough q-points in the summations in eqn (6) and (7)
and one has to check the sensitivity of the results to the value of
the parameter d in eqn (6). It has been shown in ref. 32 that the
band energy renormalization for polar materials converges as
1

Nq
with the number of points Nq and that a Lorentzian type

convergence for CBM and VBM energies of polar materials is
obtained while decreasing d.

In ref. 22 phonon modes obtained within the harmonic
approximation were used, however, the phonon modes with
imaginary frequencies were simply disregarded. In this
approach it remains unclear whether one should disregard
only the phonons at certain q-points where their frequency
becomes imaginary or one should disregard the whole phonon
mode that produces an imaginary frequency in at least one
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point in the Brillouin zone. To understand whether the approach
where imaginary phonon frequencies are discarded can provide
reasonably good results, we performed the convergence tests
with respect to Nq and d in three cases: (i) assuming phonon
frequencies from DFPT and disregarding the contribution from
phonons with imaginary frequencies; (ii) assuming phonon
frequencies from DFPT and disregarding the contribution from
the whole phonon bands that exhibit imaginary frequencies at
any q-point; (iii) assuming phonon frequencies obtained from
the SCPH method. These three cases will be referred to as cases
(i), (ii) and (iii) in what follows.

In Fig. 3 we present the results for band gap renormalization
obtained using the OTMS approach in each of these cases.
We see that in case (i) the behavior with respect to Nq is not
convergent and one obtains unphysically large band gap renor-
malizations. In this case several phonon bands cross zero energy
at several different points in the Brillouin zone (see the left
column in Fig. 2), which leads to divergence of Fan matrix
elements due to the oqn term in the denominator, see eqn (5).
The convergence is better in case (ii) when such phonon bands
are simply disregarded, however one obtains band gap renorma-
lization which is underestimated with respect to case (iii). In case
(iii), we obtain convergence with respect to d and Nq.

In Fig. 4 we decompose the CBM and VBM renormalization
into contributions from phonons of different energies. Most of the
contributions come from the region where the density of phonon
states is the highest and these contributions come mostly from
lower bands. Lower energy phonons also tend to have larger
electron–phonon coupling matrix elements due to the oqn term
in the denominator in eqn (5). This fact also contributes to
prevalent contribution of lower energy phonons to band energy
renormalization. Since most of these lower energy phonons turn

into imaginary frequency phonons within the DFPT calculation,
the results obtained in case (ii) are underestimated in comparison
to the results in case (iii). We also analyzed the contributions of the
first order Fan and second order Debye–Waller terms in eqn (8) to
band energy renormalization. In line with previous literature
results for other materials,29,78 we find that these two terms have
opposite signs and that both of these terms have significant
absolute values, see Fig. S22 in the ESI.† For these reasons,
accurate calculation of each of these terms is necessary to obtain
reliable final results for band energy renormalization.

Next, we discuss the linearity of the temperature dependence
of the band gap renormalization. One can notice from eqn (8)
[with self-energies given by eqn (6) and (7)] that the temperature
dependence originates only from the Bose term in these equa-
tions. When phonon energies are small the temperature depen-
dence of the Bose term is linear. As a consequence, the
temperature dependence of band energy renormalization is also
linear in case (ii), as can be seen in Fig. 4. On the other hand, in
case (iii) the phonon frequencies also depend on temperature
and the temperature dependence of the band gap is determined
by the ratio of the Bose term (which contains temperature
dependent phonon frequency) and the phonon frequency [which
comes from the Fan matrix element, see eqn (5) and (6)]. The
Bose term increases the gap with temperature as in case (ii),
however, most of the temperature dependent frequencies (espe-
cially the ones where the density of phonon states is the largest)
increase with temperature. They then tend to decrease the
renormalization, which leads to nonlinear dependence in case
(iii), as seen in Fig. 4.

Our final result for temperature dependence of the band gap
of the investigated materials using the OTMS approach is
among the results presented in Fig. 5. For the reasons

Fig. 2 Phonon dispersion (left column) and phonon density of states (in arbitrary units) for CsPbX3 (X = Cl, Br or I, in rows from top to bottom) obtained
using the SCPH method at T = 400 K (solid line) and T = 700 K (dot-dashed line), as well as using DFPT with harmonic approximation (dashed line).
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Fig. 3 Dependence of band gap renormalization obtained using the OTMS approach on the number of q-points Nq and on the small parameter d
(whose value is specified in the legend) for CsPbX3 (X = Cl, Br or I, in rows from top to bottom) materials at T = 400 K. The column labeled as PHCUT0
denotes the result obtained assuming phonon frequencies from DFPT and disregarding the contribution from phonons with imaginary frequencies [case
(i) discussed in the text], while the column labeled as PHCUT6 denotes the results obtained assuming phonon frequencies from DFPT and disregarding
the contribution from the whole bands that exhibit imaginary frequencies at any q-point [case (ii) in the text]. The column labeled as SCPH denotes the
result obtained by taking phonon frequencies from the SCPH method [case (iii) in the text].

Fig. 4 Contributions from phonons of different frequencies to VBM (left column) and CBM (middle column) renormalization at T = 400 K and
temperature dependent gap renormalization (right column) for CsPbX3 (X = Cl, Br or I, in rows from top to bottom) obtained using the OTMS approach.
The results in case (ii) are shown as filled bins, while the results in case (iii) are shown as transparent bins. The value of each bin b(oi) represents the
contribution of all phonons with frequencies from the range (oi� Do/2, oi + Do/2) to band energy renormalization, so that DEkn = Sib(oi). Filled circles in
the right column correspond to case (ii), while empty deltoids correspond to case (iii).

Paper PCCP

Pu
bl

is
he

d 
on

 2
6 

Se
pt

em
be

r 
20

23
. D

ow
nl

oa
de

d 
by

 N
at

io
na

l L
ib

ra
ry

 o
f 

Se
rb

ia
 o

n 
11

/2
/2

02
3 

10
:2

8:
25

 A
M

. 
View Article Online

https://doi.org/10.1039/d3cp02054a


This journal is © the Owner Societies 2023 Phys. Chem. Chem. Phys., 2023, 25, 29017–29031 |  29025

previously discussed, these results and all subsequent results
were obtained by taking the phonon frequencies obtained from
the calculation based on the SCPH method. In all calculations
reported in this and the next section renormalized band energies
were obtained by adding the phonon-induced renormalization to
the band energies calculated using the hybrid functional as
described in Section 3.2. The results at temperatures lower than
the temperatures where the cubic structure exists are blurred.

The OTMS approach can be used in principle to determine
the renormalization of bands other than the CBM and the VBM.
As discussed in the introduction and Section 2.1, band renor-
malization for other bands exhibits a slow linear convergence
with respect to d when d - 0 in contrast to Lorentzian
convergence of CBM and VBM. As a consequence, one has to
go to rather small values of d to reach convergence. However, for
small values of d, large values of Nq are needed, which introduces
a large computational burden. We illustrate this behavior in
Fig. S1, Fig. S9 and Fig. S14 in the ESI,† for the cases of
CsPbCl3, CsPbBr3, and CsPbI3, respectively. For larger values of
d (100 meV and 50 meV in the figure) good convergence with
respect to Nq is achieved but the result still depends on d and one
therefore needs to go to smaller d to achieve convergence with
respect to d. However, for smaller values of d (10 meV and
1 meV), convergence with respect to Nq could not be achieved
with grids up to 20 � 20 � 20. As also discussed in the
introduction and Section 2.1, it is questionable whether the
limit d - 0 of the energy level broadening parameter gives
accurate results given the fact that the energy levels of higher
bands can exhibit significant broadening. For all these reasons,
it is more desirable to self-consistently determine the energy
level broadening. These results are the subject of Section 3.6.

3.6. Band energy renormalization calculations using the SCP
approach

We now present the results for band energy renormalization
obtained using the SCP approach. The frequency dependence of
the self-energy and the spectral function for several bands at the
R point in the case of the CsPbBr3 material at T = 400 K is
presented in Fig. 6 (the same results for CsPbCl3 and CsPbI3 are
presented respectively in Fig. S4 and S17 in the ESI†). We denote
the bands in ascending order of energies at the R point as VBM4
(2�), VBM3 (4�), VBM2 (2�), VBM1 (4�), VBM (2�), CBM (2�),
CBM1 (4�), CBM2 (2�), CBM3 (2�), and CBM4 (4�), where the
numbers in brackets denote their degeneracy. The spectral
functions of the CBM and VBM are relatively narrow and
symmetric, while the spectral functions of other bands (CBM1
and VBM1 in Fig. 6 and CBM2-4 and VBM2-4 in Fig. S10 and S12
in the ESI† in the case of CsPbBr3, see also Fig. S2, S4 and S6
(ESI†) for CsPbCl3, as well as Fig. S15, S17 and S19 (ESI†) for the
CsPbI3 material) are wider and somewhat asymmetric. This
result confirms that it was necessary to go beyond the OTMS
approach in the d - 0 limit to obtain accurate results for bands
other than the CBM and VBM. There is even a difference between
the OTMS and SCP result for CBM and VBM which leads to a
band gap difference between the two approaches on the order of
100 meV at T = 400 K (see Section 3.7 for more details).

In Fig. 7 we demonstrate that convergence with respect to Nq

was achieved with a 20 � 20 � 20 grid. Convergence is achieved
both for the real part of self-energy that corresponds to band
energy renormalization and for the imaginary part of the self-
energy that is related to energy level broadening. As expected, it
is easier to reach convergence for energy levels that exhibit
larger broadening, that is, for states other than the CBM and
VBM (Fig. 7 and Fig. S11 and S13 in the ESI,† see also Fig. S3, S5
and S7 (ESI†) for the CsPbCl3 material, as well as Fig. S16, S18
and S20 (ESI†) for the CsPbI3 material). The CBM and VBM
states exhibit the lowest broadening due to the fact that single
phonon emission processes from these states are not possible.
Hence the total scattering rate from these states, which is
related to energy level broadening, is determined by phonon
absorption processes only. On the other hand, for bands higher
than the CBM (lower than the VBM), there is always a nearby
other band below (above) it to which phonon emission is also
possible. Hence, these states exhibit higher electron–phonon
scattering rates than the CBM and VBM, which leads to larger
broadening of these states.

The final results for temperature dependence of band energies
and the imaginary part of self-energies (that are related to energy
level broadening) at the R point for the CsPbBr3 material are
presented in Fig. 8. The same results for CsPbCl3 and CsPbI3 are
presented in Fig. S8 and S21, respectively, in the ESI.† The results
indicate that the temperature dependence of band energies is
most pronounced for the CBM and the VBM and that it is much
weaker for the other bands. The energy level broadenings increase
as the temperature increases and this dependence is nearly linear
for most bands.

The temperature dependence of the band gap calculated
within the SCP approach is presented in Fig. 5. The results

Fig. 5 Temperature dependence of the calculated band gap of CsPbX3

materials (X = Cl, Br or I, from top to bottom). The calculated band gap of
orthorhombic structures at zero temperature is represented by hexagons,
while the band gaps of the cubic structure calculated using the SCP
(OTMS) approach are represented by full (dotted) lines and two color
squares (circles). Experimental results are represented by single color
squares with the values of 2.85 eV (ref. 79), 2.36 eV (ref. 80), and 1.67 eV
(ref. 81) respectively, at temperatures of 320 K, 403 K and 300 K,
respectively, for CsPbCl3, CsPbBr3 and CsPbI3, respectively. Dashed lines
are used as a guide to the eye to connect the zero temperature result for
the band gap of the orthorhombic structure with the result at the lowest
temperature where the material exhibits a cubic structure.
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suggest that the gap renormalization and the band gap are
somewhat smaller in the SCP approach than in the case of the
OTMS approach. The largest difference between the two
approaches is at the highest temperatures. This difference
originates from the fact that the spectral function within the
SCP approach takes a relatively broad asymmetric shape at these
temperatures, while the OTMS approach inherently assumes a
narrow symmetric Lorentzian spectral function. A comparison of
the temperature dependence of the band gap within the SCP
approach with experiments will be discussed in Section 3.7.

To gain insight into the effect of temperature on band
energies throughout the Brillouin zone, we also performed
SCP calculations of the spectral function and band energy
renormalization at points G, X and M in the Brillouin zone
for the three investigated materials. The results are presented
in Fig. S23–S85 in the ESI.† All energy levels at X and M points
are twofold degenerate, while the degeneracy of the bands at G
is as follows: VBM4 (4�), VBM3 (2�), VBM2 (4�), VBM1 (2�),
VBM (4�), CBM (2�), CBM1 (4�), CBM2 (2�), CBM3 (2�), and
CBM4 (4�). We can see (Fig. S29, S36, S43, S50, S57, S64, S71,
S78, and S85 in the ESI†) that in most cases the real and the
imaginary part of the self-energy are smooth and continuous
when the temperature changes. The exceptions are VBM2 for
CsPbCl3 between T = 50 K and T = 100 K, and VBM1 for CsPbBr3

and CsPbI3 between T = 550 K and T = 600 K, all three at the X
point (Fig. S50, S57, and S64 in the ESI,† respectively). In these
cases, the spectral function has two competing maxima (see
Fig. S87–S89 in the ESI†) that are well inside the range of its
half-width and the change in temperature changes the domi-
nant maximum. It should be noted that for all of the examined
points, the changes in state energies are such that the band gap
remains determined by the R point VBM and CBM. However, an
increase in the temperature can change the ordering of the
bands: at certain points in the Brillouin zone some neighbour-
ing bands below (above) the VBM1 (CBM1) will swap places
with respect to their order obtained from the PBE0 functional
calculations. Nevertheless, for simplicity, we label the bands
based on their ordering obtained from zero temperature PBE0
functional calculations. When it comes to energy level broad-
ening, it turns out that it is lowest for the VBM and CBM bands
(with the imaginary part of the self-energy well below 100 meV
for these states and significantly above 100 meV for the other
states), as in the case of the R point. The CBM and VBM states
at these points are well separated in energy from the other
bands (see the material band structures in Fig. S86 in the ESI†)
which restricts the phase space for electron scattering. The
exception to this behaviour is the VBM state at the G point
which is rather broad. In this case, there are several bands that

Fig. 6 The frequency dependence of the self-energy and the spectral function for bands VBM1, VBM, CBM and CBM1 at the R point in the case of the
CsPbBr3 material at T = 400 K.

Fig. 7 The dependence of the real and imaginary part of self-energy at the renormalized energy on the size of the q-points grid. The results are
presented for the CsPbBr3 material at T = 400 K for bands VBM1, VBM, CBM and CBM1 at the R point.
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are close in energy to the VBM state at G. The hole can scatter to
these bands which contributes to the increase of energy level
broadening.

3.7. Comparison of temperature dependence of the band gap
with experiments

In this section, we compare the results for the band gap and its
temperature dependence with available experimental results
from the literature.

In the case of CsPbBr3 we obtain the band gap of 2.08 eV and
2.20 eV from SCP and OTMS, respectively, at a temperature of
400 K. This result is close to the experimental value of 2.36 eV
from ref. 80, obtained at 403 K. Our calculation gives the band
gap of CsPbCl3 of 3.01 eV and 3.07 eV from SCP and OTMS,
respectively, at a temperature of 320 K. This result is in good
agreement with experimental value of 2.85 eV from ref. 79.
For the CsPbI3 material we obtain the band gaps of 1.35 eV and
1.45 eV from SCP and OTMS, respectively, at a temperature of
300 K, which is in reasonable agreement with experimental
values of 1.67 eV (ref. 81) and 1.73 eV (ref. 82).

Next, we discuss the slope of the temperature dependence of
the band gap. In the range of temperatures where the material
is in the cubic form, the calculated temperature dependence
is nearly linear. Therefore, for the purpose of comparison with
experiments, it is sufficient to discuss its slope. In the case of

CsPbBr3, we obtain the slope
dEg

dT

� �
ph

of 0.50 meV K�1 and

0.80 meV K�1 from SCP and OTMS, respectively, in the tempera-
ture range from 400 K to 700 K. For CsPbCl3, the calculation
yields the slope of 0.68 meV K�1 and 0.96 meV K�1 from SCP and

OTMS, respectively, in the temperature range from 320 K to

700 K. Finally, for CsPbI3 we obtain the slope
dEg

dT

� �
ph

of

0.41 meV K�1 and 0.77 meV K�1 from SCP and OTMS, respec-
tively, in the temperature range from 300 K to 700 K.

To compare the slope of the temperature dependence to
experiments, one also has to take into account the effect of
thermal expansion, which is not included in the calculation
with a fixed lattice constant. The slope of the temperature
dependence of the band gap from the effect of thermal expan-
sion is given as

dEg

dT

� �
TE

¼ dEg

da

� �
da

dT

� �
; (13)

where
dEg

da
is the slope of the dependence of the band gap on

the lattice constant and
da

dT
is the slope of the temperature

dependence of the lattice constant, which is related to linear
thermal expansion coefficient as

a ¼ 1

a

da

dT
: (14)

We estimate
dEg

da
by calculating the gap dependence of the

lattice constant using DFT with the same semilocal functional
used in Section 3.1. We obtain respectively the values of 2.1, 2.4
and 1.1 eV Å�1 for CsPbBr3, CsPbCl3 and CsPbI3. Literature
values of linear thermal expansion coefficients are respectively
0.26 � 10�4 K�1, (0.22–0.30) � 10�4 K�1 and (0.39–0.40) �
10�4 K�1 for CsPbBr3, CsPbCl3 and CsPbI3 (ref. 83). From
eqn (13) and (14) we then obtain that (dEg/dT)TE is respectively

Fig. 8 Temperature dependence of the band energy and the imaginary part of the self-energy for VBM and VBMx (CBM and CBMx) bands (where x = 1,
2, 3, 4) calculated using the SCP approach. The results are shown for CsPbBr3 at the R point. Vertical and horizontal dotted lines represent the
temperature of the phase transition to cubic structure Tc = 403 K and band energy from PBE0 calculations, respectively.
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equal to 0.32 meV K�1, 0.35 meV K�1 and 0.29 meV K�1 for
CsPbBr3, CsPbCl3 and CsPbI3. The results suggest that the
contribution from thermal expansion is smaller than the con-
tribution from phonon-induced band gap renormalization for
all the materials studied.

The total slope of the temperature dependence of the band
gap can be estimated by adding contributions from phonon-
induced band gap renormalization and from thermal expansion

dEg

dT
¼ dEg

dT

� �
TE

þ dEg

dT

� �
ph

: (15)

We then obtain
dEg

dT
of 0.81 meV K�1 (1.12 meV K�1),

1.02 meV K�1 (1.31 meV K�1), and 0.70 meV K�1 (1.06 meV K�1)
from SCP (OTMS) results, respectively, for CsPbBr3, CsPbCl3 and
CsPbI3.

Experimental data for the temperature dependence of the
band gap of the cubic structure and its slope are relatively
scarce. In ref. 84 the slope of (0.85 � 0.05) meV K�1 was
reported for CsPbI3 based on the measurements in the tem-
perature range from 570 K to 620 K. This value is in the range
between our results from SCP and OTMS for the same material.
The slope of 0.341 meV K�1 was reported for CsPbBr3 in ref. 27
in the temperature range from 380 K to 435 K where the
material exhibits a phase transition from tetragonal to cubic
structure. This slope is significantly smaller than our estimated
slope. It is however questionable if the comparison of these
slopes is meaningful given the fact that experimental data cover
only a very small initial part of the temperature range where the
material is cubic. For the CsPbCl3 material, we are not aware of
any literature data with temperature dependence of the band
gap in the cubic phase. Overall, further experimental measure-
ments of the temperature dependence of the band gap in a
broader temperature range in the cubic phase are certainly
desirable.

Finally, we briefly discuss the temperature dependence of
the band gap at lower temperatures when the materials exhibit
an orthorhombic or a tetragonal structure. Experimental results
at these temperatures generally indicate that temperature
dependence of the band gap is rather weak. For example, it
was reported in ref. 70 that the band gap of CsPbBr3 (CsPbI3)
increases by about 60 meV (80 meV) from 0 K to 300 K. In ref. 79
a similar result was obtained for CsPbBr3, while in the case of
CsPbCl3 the changes in the band gap in this temperature range
were smaller than 20 meV. In ref. 85–87, a comparably weak
temperature dependence of the gap was observed for nanocrys-
tals based on CsPbX3 materials in the same temperature range.
For all three materials, the band gap at zero temperature is only
slightly (by less than 100 meV) lower or even slightly larger than
at the lowest temperature where the materials exhibit a cubic
structure, see the reference to the values of experimental band
gaps at the end of Section 3.2 for the orthorhombic structure
and the beginning of this section for the cubic structure. Our
calculations of the band gap of the orthorhombic structure
at zero temperature and of the cubic structure are in line
with such behavior (see the dashed lines in Fig. 5). Since the

orthorhombic and tetragonal structure have a larger unit cell
than the cubic structure, we did not perform temperature
dependent electronic structure calculations of these structures
due to larger computational cost and the fact that experimental
results indicate a rather weak temperature dependence in this
range of temperatures.

4 Discussion and conclusions

Next, we discuss previous computational studies where the
effects of temperature on the electronic structure of halide
perovskites were investigated. In ref. 23, the effects of tempera-
ture were included by performing finite temperature ab-initio
molecular dynamics with a sufficiently large supercell and by
calculating the average band gap change from many molecular
dynamics snapshots. Excellent agreement with experimental
band gaps of cubic inorganic halide perovskites at the lowest
temperature where the material exhibits a cubic structure was
obtained. On the computational side, this approach is rather
demanding as it would require a separate molecular dynamics
simulation at each temperature to obtain the temperature
dependence of the band gap. This approach inherently
assumes classical phonons which is likely good approximation
at room temperature because the dominant phonon modes
that determine electronic structure renormalization have ener-
gies which are significantly smaller than thermal energy kBT at
room temperature. In ref. 45 and 88 the effects of temperature
were also included by taking an average over many different
configurations with atoms displaced from their equilibrium
positions. In ref. 24 and 25 the authors exploited the special
displacements method89,90 which enables calculation of the
band gap at a given temperature from a single calculation of a
large supercell with atoms displaced from their equilibrium
positions in accordance with a particular pattern. In ref. 22,
Allen–Heine–Cardona theory, the finite difference approach, as
well as the approach with an average over many different
atomic configurations sampled using a Monte Carlo approach
were used to study the temperature dependence of the band gap
of cubic methylammonium lead iodide perovskite. However, the
Allen–Heine–Cardona theory was applied by simply excluding
imaginary phonon modes, while we find that this procedure
does not give reliable results in the case of the inorganic halide
perovskites that we investigated.

We finally note several advantages, as well as shortcomings,
of the approach based on the Allen–Heine–Cardona theory over
other approaches. To obtain temperature dependence of the
electronic structure, the most demanding steps of the procedure
– DFPT calculations and extraction of force constants for appli-
cation of the SCPH method – need to be performed only once,
that is, they do not have to be repeated for each temperature. On
the other hand, in all approaches based on atomic displace-
ments (sampled either from molecular dynamics, Monte Carlo
or using the special displacements) the whole computational
procedure has to be repeated at each temperature. Within the
Allen–Heine–Cardona approach it is straightforward to obtain
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renormalization of states other than the CBM or VBM, while in
the methods based on supercell calculations this is either impos-
sible or one has to exploit a certain type of unfolding procedure,
such as the one used in ref. 89. It should be mentioned that the
approach based on the Allen–Heine–Cardona theory certainly has
its limitations. Being based on expansion up to second order
terms with respect to atomic displacements, it is not expected to
be highly accurate in conditions when this expansion is not
sufficient. On the other hand, the approaches based on atomic
displacements usually do not have such a limitation.

In conclusion, we performed ab-initio calculations of the
temperature dependent electronic structure of inorganic halide
perovskite materials CsPbX3. The challenge that comes from the
fact that cubic structure is not stable at zero temperature and that
one obtains phonon modes with imaginary frequencies in a
standard DFPT calculation was overcome by using the SCPH
method that gives the phonon spectrum with real non-negative
frequencies. The challenge of obtaining the energies of bands
other than the CBM and the VBM in the calculations based on the
Allen–Heine–Cardona theory was addressed by exploiting a self-
consistent procedure for evaluation of relevant self-energies and
spectral functions. We obtain the band gaps at the lowest
temperature where the materials exhibit a cubic structure in good
agreement with experiments. We also find good agreement of
calculated and experimental temperature dependence of the band
gap for the CsPbI3 material where reliable experimental data are
available in the literature. Our results also suggest that the band
gaps at the lowest temperature where the materials exhibit a cubic
structure are similar to the band gaps at zero temperature where
the materials exhibit an orthorhombic structure. This finding is
consistent with experimental data that suggest a rather weak
temperature dependence at lower temperatures where the materi-
als exhibit an orthorhombic or a tetragonal structure. Finally, we
find that the temperature dependence of band energies at the R
point is most pronounced for the CBM and the VBM, while it is
less pronounced for higher and lower bands.
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