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a b s t r a c t

Charge carriermobility for a class of latticemodelswith long-range
electron–phonon interaction was investigated. The approach for
mobility calculation is based on a suitably chosen unitary transfor-
mation of themodel Hamiltonianwhich transforms it into the form
where the remaining interaction part can be treated as a pertur-
bation. Relevant spectral functions were then obtained using Mat-
subaraGreen’s functions technique and charge carriermobilitywas
evaluated using Kubo’s linear response formula. Numerical results
were presented for a wide range of electron–phonon interaction
strengths and temperatures in the case of one-dimensional version
of the model. The results indicate that the mobility decreases
with increasing temperature for all electron–phonon interaction
strengths in the investigated range, while longer interaction range
leads to more mobile carriers.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

There is a strong interest to understand the effects of electron–phonon interaction on electrical
transport properties of semiconductors since it is the interaction mechanism that is present in every
material being in most cases the dominant mechanism that limits the charge carrier mobility. In the
case of semiconductors with wide bands and weak electron–phonon interaction (such as for example
conventional inorganic semiconductors GaAs or Si), charge carrier mobility can be described using
Bloch–Boltzmann theory [1–3] and it can be evaluated from electron–phonon scattering time and the
effectivemass of the carrier. Significant research efforts are currently devoted towards developing ab-
initio methods for calculation of mobility in this regime [4–10] which is a non-trivial task due to the
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necessity of taking a large number of points in the Brillouin zone to obtain accurate values of scattering
times [11,12] and due to the difficulties of including long-range interactionwith polar optical phonons
within such approach [13,14]. In the opposite limit of narrow bands and strong electron–phonon
interaction (which can be valid in some organic semiconductors based on small molecules) charge
carrier transport is typically modeled using hopping theories [15], with hopping rates between the
molecules evaluated usingMarcus formula [16,17] or its generalizations [18–20], which consider only
local electron–phonon interaction.

It is of significant importance to develop methods that can be used to evaluate charge car-
rier mobility beyond these two limiting regimes [21–24]. Due to difficulties in treating electron–
phonon interaction of intermediate strength, the efforts to develop such methods are more scarce.
These methods are usually based on a unitary transformation of the model Hamiltonian [25,26]
and in practice these are applied to Hamiltonians with local electron–phonon interaction (Holstein
model) [26,25] or short-range non-local interaction [27–29] (Peierls model). More recently, Quantum
Monte Carlo techniques were also applied to evaluate the mobility in the Holstein and the Peierls
model [30,31].

Themain aim of this work is to develop amethod for evaluating themobility in systemswith long-
range electron–phonon interaction for a wide range of interaction strengths and temperatures. We
consider a lattice model with long-range electron–phonon interaction of Fröhlich type and evaluate
the mobility using an approach that combines unitary transformation of the Hamiltonian, Matsubara
Green’s function technique for evaluation of relevant spectral functions and Kubo’s formula for
calculation of mobility. The manuscript is organized as follows. In Section 2 we introduce the model
Hamiltonian that is the subject of this work. In Section 3 we present the unitary transformation that
is used to transform the Hamiltonian to the form where the remaining interaction can be treated
using perturbative techniques, we derive the equations for optimal parameters of the unitary trans-
formation and present numerical results for bandwidth renormalization. Equations for self-energies
obtained using Matsubara Green’s function technique are presented in Section 4 along with the
numerical results for polaronic spectral functions. In Section 5 we present the derivation of mobility
based on Kubo’s linear response theory and numerical results for a wide range of temperatures and
electron–phonon coupling strengths. Concluding remarks are given in Section 6.

2. Model Hamiltonian

We consider the following Hamiltonian that describes a periodic system of electrons and phonons
that interact via long-range interaction:

H = −

∑
m,n

tm−nc†
mcn +

∑
n

h̄ω0b†
nbn−

−

∑
m,n

h̄ω0fm−nc†
ncn(b

†
m + bm).

(1)

In Eq. (1) the vectors m and n label the sites of an infinite lattice, cm, c†
m, bm, and b†

m are respectively
annihilation and creation operators for electrons and phonons, tm−n is the electronic transfer integral
that quantifies the electronic coupling between sites m and n, h̄ω0 is the energy of a phonon, while
fm−n are dimensionless electron–phonon coupling parameters.

The Hamiltonian H considers a single electronic state per period of the system and a single
dispersionless phononband.While accuratemodeling of realmaterialswould certainly require amore
elaborate Hamiltonian, we believe that it is essential first to address the properties of this relatively
simple Hamiltonian. In the case when coupling parameters fm−n are zero except for m = n the
Hamiltonian reduces to a widely studied Holstein Hamiltonian [32]. In this work, we address a rather
different scenario when fm−n is long-ranged.

Long-ranged electron–phonon interaction occurs as a consequence of interaction of electrons with
a polarization field created from optical phonons in a polar material. To be more specific, an optical
phonon at site m creates a dipole moment pm = pmem, where pm is its intensity and em the unit
vector in the direction of the dipole. Classical electrical potential at site n created by this dipole
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is Vn,m =
pm
4πε0

em·(n−m)
|n−m|3

. Since the dipole moment is proportional to phonon mode displacement
pm ∝ ξm, we obtain Vn,m ∝

em·(n−m)
|n−m|3

ξm. In the representation of second quantization this potential

yields the term in the Hamiltonian of the form −
∑

m,n
em·(n−m)
|n−m|3

c†
ncn

(
bm + b†

m

)
and consequently

fm−n ∝
em·(n−m)
|n−m|3

. In the case of one dimensional model that will be the focus of our numerical study,
the vectors em and n − m are collinear and the last expression reduces to fm−n ∝

1
|n−m|2

.
Previous derivation of the electron–phonon interaction parameter fm−n is meaningful for m ̸= n.

To include local electron–phonon interaction, one has to introduce an additional parameter describing
its strength. Thus, the final form of the interaction coefficients that will be used in our study is:

fm−n = α1δm,n +
α2C2

|m − n|
2 (1 − δm,n), (2)

where C is the lattice constant, while α1 and α2 are dimensionless electron–phonon coupling
constants arising respectively from local and long-range non-local electron–phonon interaction.

It is useful to redefine the couplings to have one coupling constant that determines overall inter-
action strength and the other that describes the relative strength of interaction with the central atom
and all the other atoms, i.e. the electron–phonon interaction range. It can be done in multiple ways,
but here the procedure which was used in Ref. [33] for a different 1D lattice Fröhlich Hamiltonian will
be loosely followed. As a measure of the interaction strength, the binding energy of the polaron in the
strong-coupling limit is used. This binding energy is given as

Eb
h̄ω0

=

∑
m

f 2m = α2
1 + κα2

2, (3)

where κ = 2
∑

∞

j=1
1
j4

=
π4

45 . We then redefine the coupling constants as α1 = α cosψ and α2 =

1
√
κ
α sinψ . The binding energy in the strong-coupling limit then becomes Eb

h̄ω0
= α2 and therefore the

parameter α is a measure of electron–phonon interaction strength. On the other hand, the parameter
ψ is a measure of electron–phonon interaction range. The case of ψ = 0 corresponds to the purely
local Holstein Hamiltonian, while in the opposite extreme, ψ =

π
2 , the interaction with the central

molecule is nonexistent. However, it is not expected that interaction of an electron with a phonon on
theneighboring site could be stronger than its interactionwith the phononon the same site. Therefore,
the upper limit on the sensible values of ψ is ψ ≈

π
3 when the coefficients f0 and f1 become equal.

3. Unitary transformation of the Hamiltonian

Our general strategy used to address the carrier transport properties in the model studied is based
on unitary transformation of the Hamiltonian to the form where it consists of noninteracting polaron
part, noninteracting phonon part and the part describing residual polaron–phonon interaction.
Parameters of the transformation will be chosen to make the residual polaron–phonon interaction
as small as possible, so that it can be treated using perturbative techniques.

In the case of strong coupling when electron–phonon interaction is much stronger than the
electronic coupling, the Hamiltonian can be exactly diagonalized using the Lang–Firsov [34] trans-
formation

H̃ = e−SHeS (4)

with

S =
1

√
N

∑
m,n

fm−nc†
ncn(b

†
m − bm). (5)

On the other hand, in the case of weak coupling, no unitary transformation is needed since the per-
turbation techniques are directly applicable. To include this fact in a single transformation that aims
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to describe polarons in various coupling regimes, wemake Lang–Firsov transformation dependent on
a set of variational parameters (Dm−n), so that it takes the form:

S =
1

√
N

∑
m,n

Dm−nc†
ncn(b

†
m − bm). (6)

We will further assume for simplicity that the system exhibits inversion symmetry. In addition, since
we are interested to obtain the mobility in the limit of low carrier concentration we will project
the transformed Hamiltonian to the part of Hilbert space spanned by single particle excitations. The
transformed Hamiltonian then takes the form

H̃ (D) = H0 (D)+ V1 (D)+ V2 (D) , (7)

where its noninteracting part H0 is given as

H0 =

∑
k

c†
kckEk +

∑
q

h̄ω0b†
qbq (8)

with

Ek = −

∑
R+

JR(D) cos kR +

∑
q

h̄ω0(D2
q − 2fqDq) (9)

and

JR(D) = 2tRe−
∑

q D2
q(1−cos qR)(2n0+1), (10)

while interacting parts V1 and V2 read

V1 = −

∑
k,q

h̄ω0(fq − Dq)c
†
k−qck(b

†
q + b−q) (11)

and

V2 = −

∑
k1,k2

[
1
N

∑
m,n

tm−n(θ†
mθn − ⟨θ†

mθn⟩0)×

× ei(k1m−k2n)

]
c†
k1
ck2 .

(12)

In Eqs. (8)–(12) the summations over k and qwave vectors are performed over the first Brillouin zone.
The operators ck and bq and the numbers fq and Dq denote respectively Fourier transforms of cn, bn,
fn and Dn defined as

ck =
1

√
N

∑
n

cneikn, (13)

and similarly for bq, fq andDq.N is the number of lattice sites, while the symbol
∑

R+ in Eq. (9) denotes
the summation over one half of the crystal lattice vectors (the other half are space-inversion images of
the selected ones). The mean number of phonons in equilibrium at a temperature T in phonon mode

of energy h̄ω0 is denoted as n0 =

(
e

h̄ω0
kBT − 1

)−1

. The operators θm are defined as

θm = e
∑

q Dq(b
†
q−b−q)eiqm (14)

and ⟨θ
†
mθn⟩0 denotes the average over the noninteracting phonon part of the Hamiltonianwhich reads

θ0m−n = ⟨θ†
mθn⟩0 = e−

1
2

∑
q D2

q

⏐⏐⏐eiqn−eiqm
⏐⏐⏐2(2n0+1)

. (15)
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To find the optimal variational parameters D, we exploit Bogoliubov inequality [35] for free
energy F

F
(
H̃

)
= −

1
β

ln Tr
(
e−βH̃

)
≤ −

1
β

ln Tr
(
e−βH0

)
+ ⟨H̃ − H0⟩H0 ,

(16)

where ⟨. . .⟩H0 denotes averaging with respect to the Hamiltonian H0 and β =
1

kBT
. Since in our case

thermodynamical averages over phononic degrees of freedom yield ⟨V1 + V2⟩H0 = 0, Eq. (16) reduces
to

F
(
H̃

)
≤ −

1
β

ln Tr
(
e−βH0

)
. (17)

Evaluation of the expression on the right hand side of Eq. (17) is straightforward because H0 is
diagonal. To obtain the optimal unitary transformation, we minimize the value of this expression
with respect to variational parameters Dq. When this expression is minimized, upper bound on free
energy of the system is closest to true free energy. It is therefore expected that at the same time, the
effect of nondiagonal terms V1 + V2 will be smallest so that these can be treated using perturbative
techniques.

To minimize the expression on the right hand side of Eq. (17), phononic part of the trace will be
omitted since it does not depend on variational coefficients. The expression for polaronic part is:

Fpl(D) = −
1
β

ln
∑
k

e−βEk , (18)

Parameters of the optimal unitary transformation are obtained by solving the system of equations
obtained from the condition ∂Fpl

∂Dq
= 0.

This system of equations can be reduced to a single nonlinear equation in the case of three
dimensional cubic lattice with nearest neighbor coupling. Namely, by exploiting the cubic symmetry
one obtains

JCx (D) = JCy (D) = JCz (D) = JC(D), (19)

where Cx, Cy and Cz are lattice vectors of three nearest neighbors in positive directions of x, y and z
axes, respectively. The equations for variational parameters then read

Dq =
fq

1 +
I1(βJC(D))
I0(βJC(D))

JC(D)
h̄ω0

(2n0 + 1)
∑

i=x,y,z (1 − cos qCi)
, (20)

where In denotes modified Bessel function of the first kind of order n. After performing a substitution
of the expression (20) into the expression (10) that reads in this case

JC(D) = 2tCe−
∑

q D2
q(1−cos qC)(2n0+1), (21)

we obtain the nonlinear equation with a single unknown variable JC(D). In the case of an one
dimensional model, the expressions (20) and (21) still hold, with a difference that the sum

∑
i=x,y,z

in Eq. (20) should be replaced by
∑

i=x. It was checked that the solution of Eqs. (20)–(21) exhibits
expected behavior for weak and strong coupling. Namely, for weak interaction when fq → 0, we
obtain Dq → 0, so that the unitary transformation is close to unity. For strong interaction, JC(D) → 0,
implying Dq → fq, which corresponds to usual Lang–Firsov transformation.

Next, we discuss the features of the numerical solution of Eqs. (20)–(21). The dependence of band
narrowing factor JC

2tC
on coupling strength and temperature for several values of transfer integral and

for two different values of electron–phonon interaction range is presented in Fig. 1. Depending on the
values of tC

h̄ω0
andψ two distinct cases emerge when we solve Eqs. (20)–(21). In the first case, a single

solution exists for all values of temperature and coupling constant. Then, the values of renormalized
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Fig. 1. Dependence of bandwidth narrowing factor JC
2tC

on coupling strength α and temperature kBT . The dependence is shown

for (a) tC
h̄ω0

= 3,ψ = 0; (b) tC
h̄ω0

= 3,ψ = π/4; (c) tC
h̄ω0

= 1,ψ = 0; (d) tC
h̄ω0

= 1,ψ = π/4; (e) tC
h̄ω0

= 0.2,ψ = 0; (f) tC
h̄ω0

= 0.2,
ψ = π/4.

bandwidth vary smoothly in the whole parameter range, see for example parts (d)–(f) of Fig. 1. In the
second case there are two solutions of Eqs. (20)–(21). One of these solution exists only for relatively
weak interaction strength and the other for relatively strong, while there is a range of interaction
strengths where these solutions coexist. In this case, we choose the solution with lower free energy.
As a consequence of presence of multiple solutions, calculated renormalized bandwidth does not vary
smoothly with the change of coupling strength and temperature. It exhibits a sharp transition at some
point, see for example parts (a)–(c) of Fig. 1. We find generally that the first case occurs for tC

h̄ω0
< 1

regardless of interaction range. The second case exists often when tC
h̄ω0

> 1 but the sharpness and
existence of the transition depend on the temperature and nature of the Hamiltonian. For short-range
interaction (ψ = 0) the transition is sharp, while for larger ψ the transition becomes less sharp and
even vanishes for lower temperatures. It must be emphasized that the apparent sharp transition is
the consequence of the method used, since the free energy functional is only the upper bound to the
real free energy of the system. It has been rigorously proven that free energy is a smooth function of
coupling constant for a wide class of Hamiltonians with electron–phonon interaction [36–38].

From Fig. 1 we also see that short-range interaction is more efficient in narrowing the band. This
effect was previously reported in Quantum Monte Carlo calculations for a different one dimensional
lattice polaron Hamiltonian class [39]. In our case, it can be understood from Eq. (21). For stronger
interaction Dq → fq and the bandwidth is determined by the factor in the exponent

∑
qf

2
q (1 −

cos qC)(2n0 + 1). This factor is smaller for long-range interaction because of the different momentum
dependence of interaction coefficients fq. This dependence is shown in Fig. 2 for several values of
interaction rangeψ . Longer range interaction is the strongest for small momenta, however, the factor
1−cos qC suppresses its effect for small momenta. As a consequence, momentum independent short-
range interaction becomesmore effective. We also note that in addition to the maximum at q = 0 the
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Fig. 2. Momentum dependence of the square of interaction coefficients fq for α = 1 and several values of electron–phonon
interaction range ψ in the case of an one dimensional model.

function f 2q exhibits another less pronounced maximum at qC = ±π for ψ = π/3. This maximum
is even more pronounced when ψ > π/3 and occurs due to the fact that interaction with first
neighbor is comparable or stronger than local interaction. Since such a situation is not physical, we
have restricted our analysis to the cases when ψ ≤ π/3.

We note that qualitatively the same behavior of variational parameters and bandwidth narrowing
factor would be obtained also in higher dimensional models.

4. Spectral properties

In this section we present the results of the calculation of relevant Green’s functions, self-energies
and corresponding spectral functions which will be needed for evaluation of mobility. In Hamiltonian
H̃ we treat the term V = V1 + V2 as a perturbation. We employ the Matsubara Green’s function
technique [40] and expand the Green’s function up to terms of second order in interaction V . After
obtaining the analytical expressions for Matsubara Green’s functions on imaginary frequency axis,
we perform analytical continuation to real frequency axis and obtain the expressions that relate the
retardedGreen’s function and corresponding retarded self-energy.We also employ the self-consistent
Born approximation [40,41] by replacing the bare Green’s functions with a dressed one in these
expressions. The expressions for retarded self-energy then read:

ΣR
k (ω) = Σ

(0)
k (ω) +Σ

(1)
k (ω) +Σ

(2)
k (ω), (22)

where

Σ
(0)
k (ω) =

∑
q

ω2
0(fq − Dq)2 [ (n0 + 1)GR

k−q (ω − ω0)+

+ n0GR
k−q(ω + ω0)

]
,

(23)

Σ
(1)
k (ω) = −

1
h̄

∑
q

ω0
(
fq − Dq

)
Dq×

×
[
(n0 + 1)GR

k−q (ω − ω0)− n0GR
k−q(ω + ω0)

]
×

×

∑
X

tXθ0X
(
eikX − e−i(k−q)X) (

1 − e−iqX) ,
(24)

Σ
(2)
k (ω) =

i
Nh̄2

∑
q

∫
∞

−∞

dt eiωtD>(2)
k−q,k,−q(t)G

R
k−q(t). (25)
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Thequantities that appear in Eqs. (23)–(25) have the followingmeaning. The retardedGreen’s function
in the time domain is defined as

GR
k(t) = −iΘ(t)⟨ck(t)c

†
k + c†

kck(t)⟩, (26)

where Θ(t) denotes the Heaviside step function and ⟨. . .⟩ denotes the grand canonical ensemble
average with respect to H̃ , while ck(t) are electron annihilation operators in Heisenberg picture.
Green’s function in frequency domain is related to Green’s function in time domain via GR

k(ω) =∫
∞

−∞
dt eiωtGR

k(t). The function D>(2)
k′,k′′,q′ (t) reads

D>(2)
k′,k′′,q′ (t) = −i

∑
X,Y,Z

tXtYθ0Xθ
0
Ye

i(k′X+k′′Y−q′Z)
×

×
[
θX,Y,Z(t) − 1

]
,

(27)

where

θX,Y,Z(t) = exp
{
−

∑
q

D2
q
[
(n0 + 1)e−iω0t + n0eiω0t

]
×

(
1 − e−iqX) (

1 − eiqY
)
eiqZ

}
.

(28)

Eqs. (22)–(25) and the Dyson equation

GR
k(ω) =

GR(0)
k (ω)

1 −ΣR
k (ω)G

R(0)
k (ω)

, (29)

where GR(0)
k (ω) = limδ→0+

1
ω−

Ek−EF
h̄ +iδ

is the Green’s function of noninteracting system (where EF is

the chemical potential), form the system of equations that is solved self-consistently to obtain the
retarded Green’s function and the corresponding spectral functionΛk(ω) = −2 · Im[GR

k(ω)].
Numerical calculations were performed for an one dimensional model with N = 100 lattice sites.

It has been found that increasing the number of sites changes the mobility negligibly. The number
of points used for discretization in time, or equivalently, frequency domain was 213

= 8192. The
range of frequencies was tuned such that all the relevant energies are included in calculation. This
range is determined by the phononic factor D>(2) which is needed for self-energy and thus Green’s
function calculation. This factor contains Fourier components in multiples of h̄ω0. The strongest
Fourier component scales with interaction strength and temperature as α2n0. The frequencies four
times higher than that of the main Fourier component of D>(2) were included in the calculation. It
turns out that it is most challenging to perform the calculation for very weak coupling when spectral
lines are narrow. Fortunately, in these cases one can use analytical results for the weak coupling case.
Numerical results are shown only for parameters sets where spectral widths are wide enough that
the spectral functions can be reliably represented.

Spectral functions obtained from our calculations when ψ =
π
4 and kBT

h̄ω0
= 0.4 for two different

values of tC
h̄ω0

are presented in Figs. 3 and 4. In the tC
h̄ω0

= 0.2 case, the spectral function varies smoothly
and band narrowing is gradual, as could have been expected also from the results for band narrowing
factor in Section 3. For large interaction strength the band becomes almost flat. Upon closer inspection,
one can also notice the appearance of one or more bands separated by multiples of ω0 from the main
band. The bands are consequences of single-phonon and multi-phonon scatterings and as such their
spectral weight and number increases with increase of coupling strength.

In the case when bandwidth is significantly larger than the phonon energy, a richer behavior is
observed, see Fig. 4 for the case tC

h̄ω0
= 3. The first feature that arises is the band splitting at ω0

above the bandminimum.With increasing the coupling strength, additional splittings arise and thus a
sequence of bands each at the distanceω0 forms,with the lowest one beingmore andmore prominent.
These results complement a simplified picture that one might acquire from the interpretation of
results of Section 3, in which a single band of almost unrenormalized bandwidth exists until the
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Fig. 3. Polaronic spectral function for different coupling strengths and tC
h̄ω0

= 0.2, ψ =
π
4 and kBT

h̄ω0
= 0.4.

sharp transition after which one very narrow band arises. The change of spectrum in fact arises in
a smoother way — by splitting the initial band into a number of narrower ones which are at the end
each strongly narrowed. A similar picture was obtained in previous calculations of spectra for the
Holstein model [42].

In Fig. 4 one additional interesting feature may be seen. At coupling strengths close to the strength
at which the band strongly narrows, the band minimum appears at momentum different from zero.
Such a feature has been previously observed in the case of Peierls Hamiltonian with short-range non-
local electron–phonon interaction treated using self-consistent Born approximation and more exact
treatments [41]. As pointed out in Ref. [41], such an effect is expected to happen when non-locality
of electron–phonon interaction increases. We confirm such a behavior as we notice that the effect is
more prominent for larger ψ .

5. Carrier mobility

To evaluate DC charge carrier mobility in the limit of low electric fields and low carrier concentra-
tion we apply the Kubo’s linear response formula in the form [40,25]

µxx =
β

2Nce0

∫
∞

−∞

dt⟨jx(t)jx(0)⟩H . (30)
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Fig. 4. Polaronic spectral function for different coupling strengths and tC
h̄ω0

= 3.0, ψ =
π
4 and kBT

h̄ω0
= 0.4.

In Eq. (30) µxx denotes the xx-component of the mobility tensor, Nc is total number of charge carriers
in the system, e0 is the absolute value of electron charge, while jx is the x-component of the operator

j =
e0
ih̄

∑
m,n

(m − n)tm−nc†
mcn. (31)

The subscript H is introduced to denote both that ⟨. . .⟩H denotes averaging with respect to H and that
jx(t) is the operator in Heisenberg picture with respect to Hamiltonian H .

To evaluate the expression (30), it ismore convenient to transform it to the formwhich involves the
Hamiltonian H̃ and then perform the perturbative expansion. We therefore exploit the identity [27]

⟨ja(t)jb(0)⟩H =

⟨
j̃a(t)j̃b(0)

⟩
H̃
, (32)

where j̃ = e−S jeS and reads

j̃ =

∑
k,q,q′

Jkc†
qcq′θ

†
k−qθk−q′ , (33)

with

Jk =
e0
ih̄

∑
R

R tReikR (34)
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and

θk =
1
N

∑
R

θReikR. (35)

The mobility then reads:

µxx =
β

2Nce0

∑
k,q

∑
k′,q′

∑
k′′,q′′

∫
∞

−∞

dt(Jk)x(Jq)x×

× ⟨c†
k′ (t)cq′ (t)θ†

k−k′ (t)θk−q′ (t)c†
k′′cq′′θ

†
q−k′′θq−q′′⟩H̃ .

(36)

We have resorted to calculation ofµxx component of mobility tensor since this is the only component
in the case of one-dimensional system, while the mobility tensor is reduced to a scalar in principal
directions basis in the case of three dimensional cubic lattice. Next,we evaluate the first non-zero term
in the perturbative expansion ofµxx whereH0 is the noninteracting Hamiltonian and H̃−H0 = V1+V2
the interaction. It turns out that the zeroth term in the expansion gives a nontrivial contribution to
µxx. This term is obtained by replacing H̃ with H0 in Eq. (36). It is evaluated by performing the average
over the terms involving products of phononic operators using the identity⟨

θ†
m(t)θn(t)θ

†
l θj

⟩
H0

= θ0m−nθ
0
l−jθm−n,l−j,m−l(t) (37)

and exploiting the fact that⟨
c†
k′ (t)cq′ (t) c†

k′′cq′′

⟩
H0

=

= δk′,q′′δq′,k′′

⟨
c†
k′ (t)cq′′

⟩
H0

⟨
cq′ (t)c†

k′′

⟩
H0
,

(38)

where the term involving the square of the number of carriers was excluded in the last equation since
we are considering the case of low carrier concentration. Finally we obtain the following expression
for the mobility:

µxx = −
e0β

2Nc h̄2

1
N

∑
k,q

∫
∞

−∞

dt Γ x
k,q(t)×

×

⟨
c†
k(t)ck

⟩
H0

⟨
cq(t)c†

q
⟩
H0
,

(39)

where

Γ x
k,q(t) =

∑
X,Y,Z

tXtYXxYxei(qX+kY+kZ−qZ)
×

× θ0Xθ
0
YθX,Y,Z(t),

(40)

while
⟨
c†
k(t)ck

⟩
H0

and
⟨
cq(t)c

†
q

⟩
H0

are related to the spectral function as

⟨
c†
k(t)ck

⟩
H0

=
1
2π

∫
∞

−∞

dω eiωt
Λk(ω)

1 + eβh̄ω
(41)

and ⟨
cq(t)c†

q
⟩
H0

=
1
2π

∫
∞

−∞

dω e−iωtΛq(ω). (42)

In Eqs. (41)–(42) we have replaced the bare spectral function with a dressed one in the same spirit of
self-consistent approximation used to evaluate the Green’s functions.
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Fig. 5. Temperature dependence of mobility for electron–phonon interaction range ψ =
π
4 and different values of electron–

phonon coupling parameter α in the cases when the transfer integral is: (a) tC
h̄ω0

= 1; (b) tC
h̄ω0

= 0.2; (c) tC
h̄ω0

= 3.
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Numerical results obtained by evaluating the mobility using Eqs. (39)–(42) are presented in Fig. 5.
To gain better understanding of these results, we have also derived analytical or semianalytical
results for mobility in the limiting cases of weak and strong electron–phonon interaction for an one
dimensional model. These derivations are presented in Appendices A and B. In the case of weak
interaction, the mobility can be calculated using Eqs. (A.5) and (A.7), while in the case of strong
interaction it is given by Eqs. (B.15) and (B.8). The results in these limiting cases are also presented in
Fig. 5. As can be seen from Fig. 5(a), for intermediate adiabaticity ratio tC

h̄ω0
= 1, the results for smaller

values of α (say α ≤ 1) converge towards the weak coupling limit for small temperatures, while
the results for larger values of α converge towards the strong coupling limit at high temperatures.
For small adiabaticity ratio tC

h̄ω0
= 0.2, Eqs. (A.5) and (A.7) would yield infinite mobility because

bandwidth is narrower than the phonon energy and therefore we do not present the results for weak
coupling limit in Fig. 5(b). The high temperature limit results exhibit a reasonably good agreement
with numerical results. Slight discrepancy between them originates from the fact that the spectral
function contains small peaks at energies h̄ω0 below and above the main peak. Consequently, the
assumption of a single peaked spectral function given by Eq. (B.1) is not fully justified in this case. On
the other hand, for large adiabaticity ratio tC

h̄ω0
= 3, we do not present the results for strong coupling

limit and high temperatures in Fig. 5(c) because the assumption ImΣR( E−EF
h̄ ) ≪

1
β
that was used in

the derivation of Eqs. (B.15) and (B.8) is not satisfied then. Numerical results for small temperatures
converge nicely towards the weak coupling limit in this case.

In Fig. 6, we present the time dependence of the quantity C(t) proportional to the real part of
current–current correlation function ⟨jx(t)jx(0)⟩ for various coupling strengths and temperatures. The
shape of this function is also a signature of the transport regime. In the case of weak coupling, C(t)
exhibits a relatively slow exponential decay with decay time related to inverse of −ImΣR

k

(
E−EF

h̄

)
,

see Fig. 6(a), and the carriers are in the band transport regime. When the temperature or coupling
strength increase, phononic peaks originating from the Γ x

k,q(t) term start to appear. The appearance
of these peaks can already be seen in Fig. 6(a) and (c), while they entirely determine the C(t) graph
in Fig. 6(b), (d) and (f) where the carrier exhibits hopping transport. In these figures, the envelope
of the peaks exhibits an exponential decay with decay time related to inverse of imaginary part of
self-energy. At highest coupling strengths this decay is fast enough to lead to the presence of a single
peak in the graph.

We continue the analysis of mobility results with its temperature dependence. The results shown
in Fig. 5 demonstrate that the mobility exhibits a monotonous decrease with increasing temperature.

At low temperature this dependence is exponential because it is entirely determined by the 1
n0

≈ e
h̄ω0
kBT

term [as can be seen from the weak coupling limit result given in Eqs. (A.5) and (A.7)]. The decrease
of mobility becomes more gradual at high temperatures and is approximately described by a power
law 1

T δ with exponent δ between 1 and 2. The transition between the two regions of temperature
dependence is smooth for most values of model parameters. The calculated temperature dependence
is slightly discontinuous only in the case of large tC

h̄ω0
ratio and large α, see for example the results for

α ∈ (2.5 − 4) in Fig. 5(c). This occurs in the regionwhere calculated renormalized bandwidth exhibits
a sharp transition discussed in Section 3, which can be seen in Fig. 1(b). Slight discontinuity observed
in numerical results is therefore most likely a consequence of the fact that the unitary transformation
is less successful in this region of parameters.

The dependence of mobility on the value of transfer integral and on electron–phonon coupling
strength is in linewith expectations— it decreaseswith increasing the coupling strength and increases
with increasing the transfer integral. The details of these dependences can be understood better based
on the results for the limiting cases.

It can be seen in Fig. 5 that at low temperatures the dependence of mobility on electron–phonon
coupling strength α is more pronounced for smaller tC

h̄ω0
ratio. Namely, the curves at low temperature

for different α are separated between each other more for tC
h̄ω0

= 0.2 [Fig. 5(b)] than for tC
h̄ω0

= 1
[Fig. 5(a)] and tC

h̄ω0
= 3 [Fig. 5(c)]. For larger tC

h̄ω0
, the dependence ofmobility on α in theweak coupling

limit is of the 1
α2

form [as can be seen from Eqs. (A.5) and (A.7)]. However, for tC
h̄ω0

< 0.5, the energy
conservation laws imposed by the delta functions in Eq. (A.6) cannot be satisfied because bandwidth is
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Fig. 6. Time dependence of quantity C(t) proportional to the real part of current–current correlation ⟨jx(t)jx(0)⟩ for
tC
h̄ω0

= 1,

ψ =
π
4 and: (a) α = 1, kBT

h̄ω0
= 0.3; (b) α = 4, kBT

h̄ω0
= 0.3; (c) α = 1, kBT

h̄ω0
= 0.66; (d) α = 4, kBT

h̄ω0
= 0.66; (e) α = 1, kBT

h̄ω0
= 3; (f)

α = 4, kBT
h̄ω0

= 3.

smaller than the phonon energy. Onewould therefore need to evaluate higher terms to obtain nonzero
values of self-energy. These terms give 1

α4
rather than 1

α2
dependence of the mobility. Consequently,

the low temperature dependence of mobility on α is more pronounced for tC
h̄ω0

< 0.5. Concerning the
dependence on transfer integral, this dependence is roughly of the t2C form in strong coupling region,
as expected from Eq. (B.15), while in the weak coupling region it is closer to the tC dependence, as can
be shown from Eq. (A.5).

Next, we discuss the effect of electron–phonon interaction range on mobility. In Fig. 7 we present
the temperature dependence of themobility for different values of electron–phonon interaction range
ψ . The results indicate that mobility for the long-range electron–phonon interaction is significantly
higher than for a short range one. This result is in-line with the results for renormalized bandwidth
that indicate that for the same interaction strength α, short range interaction is more effective in
localizing the carrier. The results show that themobility between the Holstein case (ψ = 0) and long-
range case (ψ =

π
4 or ψ =

π
3 ) can vary even by an order of magnitude. This difference originates

from the fact that the low momentum electron–phonon coupling contribution is suppressed in the
expression for activation energy, Ea =

1
2 h̄ω0

∑
qD

2
q(1 − cos qC). Since long-range models have the
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Fig. 7. Temperature dependence ofmobility for different values of electron–phonon interaction rangeψ forα = 2 and tC
h̄ω0

= 1.

highest interaction contribution from the low momenta in sharp contrast with the Holstein model
which shows no momentum dependence of the coupling coefficients, the mobility is significantly
higher in the case of long-range models.

Interestingly, we do not observe thermally activated behavior in any range of investigated param-
eters. Such behavior also originates from the fact that activation energy Ea is relatively small due to
suppression of highest interaction contributions from low momenta by the (1 − cos qC) factor. We
note that the expression for strong coupling limit [Eq. (B.15)] leads to thermally activated behavior
in a certain temperature range, as can be seen in Fig. 5(a) and (b). However, this limit does not
match the full solution until high temperatures where kBT is larger than Ea and activation behavior
is not observed in the full calculation. As a consequence, in the model with long-range electron–
phonon interaction we obtain qualitatively different behavior than in the case of Holstein model
where thermally activated behavior sets in for strong electron–phonon coupling and intermediate
temperatures, as shown for example in Refs. [30,25].

6. Conclusion

In conclusion,we presented themethod for calculation ofmobilitywithin latticemodelswith long-
range electron–phonon interaction of Fröhlich type. Numerical results for a wide range of electron–
phonon coupling strengths and temperatures were presented, as well as analytical results for limiting
cases of weak and strong interaction. Our results indicate that mobility decreases with increasing
temperature both in the band transport regime and in the hopping regime, while thermally activated
behavior is not observed for any of themodel parameters. These results suggest that one cannotmake
conclusions about charge transport regime based solely on temperature dependence of mobility. We
also find that charge carrier mobility increases when the range of electron–phonon interaction is
increased.

The results of our study are relevant for qualitative understanding of themobility in strongly polar
inorganic semiconductors where Fröhlich interaction cannot be considered as a perturbation. In the
field of organic semiconductors, our model could be of interest in systems containing polar molecules
and can possibly be more relevant for description of the system than models with local electron–
phonon interaction that are usually applied. Our work opens the way for future studies that would
include atomistic details of the material structure and provide a quantitative description of mobility
in the materials mentioned.
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Appendix A. Analytical result in the case of weak electron–phonon coupling

In this Appendix, we derive the analytical result for the mobility in the case of weak electron–
phonon interaction for an one dimensional model. To obtain Γ x

k,q(t), we exploit the fact that in this
limit Dq → 0 and consequently θX,Y,Z(t) → 1. By replacing θX,Y,Z(t) = 1 in Eq. (40) and using the
identities 1

N

∑
Ze

i(k−q)Z = δk,q and JC = 2tCθ0C we obtain

Γ x
k,q(t) = −

J2CC
2N
2

(1 − cos 2qC)δk,q. (A.1)

In the limit of weak electron–phonon interaction, self-energy is small and consequently the spectral
function given as:

Λk(ω −
EF
h̄
) =

=
−2 · Im[ΣR

k (ω −
EF
h̄ )](

ω −
Ek
h̄ + ReΣR

k (ω −
EF
h̄ )

)2
+

(
ImΣR

k (ω −
EF
h̄ )

)2

(A.2)

takes the form of a delta function

Λk(ω −
EF
h̄
) → 2πδ

(
ω −

Ek
h̄

)
, (A.3)

while its square takes the form

Λk

(
ω −

EF
h̄

)2

→
−2π

ImΣR
k

(
Ek−EF

h̄

)δ(
ω −

Ek
h̄

)
. (A.4)

After replacing Eqs. (A.1), (41) and (42) into Eq. (39) we obtain

µxx =
e0C2βJ2C

4h̄2 ∑
k e−βEk

∑
k

(1 − cos 2kC) e−βEk×

×
−1

Im[ΣR
k (

Ek−EF
h̄ )]

.

(A.5)

In the limit of weak coupling Dq and fq are proportional to coupling constant α. By exploiting this fact
and keeping the lowest order terms (which are quadratic inα) in expression for self-energy, we obtain
that the imaginary part of the self-energy reads

Im
[
ΣR

k

(
Ek − EF

h̄

)]
= −π

∑
q

h̄ω2
0f

2
q ×

×
[
(n0 + 1)δ

(
Ek − Ek−q − h̄ω0

)
+

+ n0δ
(
Ek − Ek−q + h̄ω0

)]
.

(A.6)
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After transformation of the sums in Eq. (A.6) into integrals and evaluation of these integrals we obtain

Im
[
ΣR

k

(
Ek − EF

h̄

)]
=

= −
N
2
h̄ω2

0

∑
+,−

⎡⎣f 2q±

1

n0 + 1√
J2C − (JC cos kC + h̄ω0)2

+

+ f 2q±

2

n0√
J2C − (JC cos kC − h̄ω0)2

⎤⎦ ,
(A.7)

where q±

1 = k ∓
1
C arccos

(
cos kC +

h̄ω0
JC

)
and q±

2 = k ∓
1
C arccos

(
cos kC −

h̄ω0
JC

)
. The first term in

Eq. (A.7) should be included only when Ek > Emin + h̄ω0, while the second should be included when
Ek < Emax − h̄ω0, where Emin and Emax are respectively the minimum and maximum renormalized
band energy.

Appendix B. Semi-analytical result in the case of strong electron–phonon coupling

In the case of strong electron–phonon interaction, the band is strongly flattened and therefore
the relevant Green’s functions, self-energies and spectral function do not depend on the wave vector.
Therefore the Green’s function takes the form

GR
(
ω −

EF
h̄

)
=

1

ω −
E
h̄ − i · ImΣR( E−EF

h̄ )
, (B.1)

where E is the energy at which the spectral function has a maximum. We also assume that the width
of spectral function is rather small in this limit and therefore the value of self-energy at energy E is
used in Eq. (B.1). In the time domain Eq. (B.1) reads

GR (t) = −iΘ (t) eImΣ
R
(
E−EF

h̄

)
·te−i E−EF

h̄ t
. (B.2)

Since fq → Dq in the limit of strong coupling, the self-energy terms Σ (0)
k (ω) and Σ (1)

k (ω) in Eq. (22)
that contain the fq − Dq term vanish and the self-energy is determined by the Σ (2)

k (ω) term defined
in Eq. (25). From Eqs. (25) and (27) and the identity 1

N

∑
qe

iq(Z−X) = δZ,X we obtain

ΣR
(
ω −

EF
h̄

)
=

1
h̄2

∫
∞

−∞

dt ei
(
ω−

EF
h̄

)
tGR(t)×

×

∑
X,Y

tXtYeik(X+Y)e−2
∑

q D2
q(1−cos qX)(2n0+1)

×

×

(
e
∑

q D2
q

[
(n0+1)e−iω0t+n0eiω0t

][
1−eiqX−eiqY+eiq(X+Y)

]
− 1

)
.

(B.3)

Since Dq is large in this limit, the exponential term will determine the value of the term in the last
line of Eq. (B.3). The terms with X = −Y in Eq. (B.3) make a much larger contribution than the ones
having X = Y because of a larger factor in the exponent in the last line of Eq. (B.3). By keeping only
the terms with X = −Y we find

ΣR
(
ω −

EF
h̄

)
=

2t2C
h̄2

∫
∞

−∞

dt ei
(
ω−

EF
h̄

)
tGR(t)g(t), (B.4)

where

g(t) = e−4 Ea
h̄ω0

[
2n0+1−(n0+1)e−iω0t−n0eiω0t

]
, (B.5)
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with

Ea =
1
2
h̄ω0

∑
q

D2
q (1 − cos qC) . (B.6)

Eq. (B.4) can be further simplified by taking into account that the function g(t) is periodic and that in
the strong coupling limit it peaks prominently at t = mT0 (wherem is integer and T0 =

2π
ω0

), reaching

its maximum value of 1. In comparison to this, the retarded Green’s function decays as eImΣ
R
·t . This

decay is slow because self-energy is not large since the unitary transformation nearly diagonalizes the
Hamiltonian. Consequently, the Green’s function varies slowly on the timescales onwhich g varies, so
it can be approximated by its value in points t = mT0 for the application of the mean value theorem.
By exploiting this fact, as well as periodicity of the function g , one obtains:

ΣR
(
ω −

EF
h̄

)
=

2t2C
h̄2

[
γ1GR(0)+

+ γ2

∞∑
m=1

ei
(
ω−

EF
h̄

)
mT0GR(mT0)

] (B.7)

where γ1 =
∫ T0

2
0 dt g(t) and γ2 =

∫ T0
2

−
T0
2

dt g(t). By replacing ω =
E
h̄ in Eq. (B.7) we obtain

ImΣR
(
E − EF

h̄

)
= −

2t2C
h̄2

[
Reγ1 + Reγ2

eImΣ
R
(
E−EF

h̄

)
·T0

1 − eImΣ
R
(
E−EF

h̄

)
·T0

]
. (B.8)

Eq. (B.8) contains a single unknown ImΣR
(

E−EF
h̄

)
. Although it must be solved numerically, the value

of ImΣR
(

E−EF
h̄

)
can be found very accurately.

To obtain the mobility, we substitute the expression for the spectral function

Λ

(
ω −

EF
h̄

)
=

−2 · ImΣR
(

E−EF
h̄

)
(
ω −

E
h̄

)2
+

(
ImΣR

(
E−EF

h̄

))2 (B.9)

into Eqs. (41)–(42). In Eq. (41) we replace the Fermi–Dirac term 1 + eβ(h̄ω−EF ) with its value at ω =
E
h̄

since it varies much slower than the spectral function when the condition ImΣR( E−EF
h̄ ) ≪

1
β

is
satisfied. After performing the integration in Eqs. (41)–(42) we obtain

⟨
c†(t) c

⟩
·
⟨
c c†(t)

⟩
=

e2·ImΣ
R
(
E−EF

h̄

)
·|t|

1 + eβ(E−EF )
, (B.10)

where the momentum indices have been dropped because the momentum dependence is lost in this
limit.

Using the identity
1
N2

∑
k,q

eiq·(X−Z)eik·(Y+Z)
= δX,Z · δY,−Z (B.11)

and taking into account that from previous definition of g(t) the following identity holds when
X = −Y = Z:

g(t) = θ0Xθ
0
YθX,Y,Z(t) (B.12)

we find
1
N2

∑
k,q

Γ x
k,q(t) = −2t2CC

2g(t). (B.13)
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From Eqs. (39), (B.11), (B.13) one obtains the mobility

µxx =
e0βt2CC

2

h̄2

∫
∞

−∞

dt g(t) e2·ImΣ
R
(
E−EF

h̄

)
·|t|
. (B.14)

Using the same mean value approximation as for the self-energy in (B.7), we finally obtain:

µxx =
e0βt2CC

2

h̄2 γ2

[
1 + 2 ·

e2·ImΣ
R
(
E−EF

h̄

)
·T0

1 − e2·ImΣ
R
(
E−EF

h̄

)
·T0

]
. (B.15)

Expressions (B.15) and (B.8) completely determine themobility in the strong coupling approximation.
We note that well known Marcus formula is obtained by exploiting the short-time approxima-

tion [19] e±iω0t = 1 ± iω0t −
1
2ω

2
0t

2 and high temperature approximation kBT ≫ h̄ω0, i.e. n0 =
kBT
h̄ω0

.
Using the short-time approximation for g(t) in Eq. (B.14) and taking into account that for short times
the exponential term in that equation is 1, one obtains

µxx =
e0t2CC

2

2h̄(kBT )3/2

√
π

Ea
e−

Ea
kBT . (B.16)

References

[1] B.K. Ridley, Quantum Processes in Semiconductors, Clarendon Press, Oxford, 1999.
[2] M. Lundstrom, Fundamentals of Carrier Transport, Cambridge University Press, Cambridge, 2000.
[3] N.W. Ashcroft, N.D. Mermin, Solid State Physics, Harcourt, Orlando, 1976.
[4] F. Giustino, Rev. Modern Phys. 89 (2017) 015003.
[5] B. Liao, J. Zhou, B. Qiu, M.S. Dresselhaus, G. Chen, Phys. Rev. B 91 (2015) 235419.
[6] T. Gunst, T. Markussen, K. Stokbro, M. Brandbyge, Phys. Rev. B 93 (2016) 035414.
[7] J.-J. Zhou, M. Bernardi, Phys. Rev. B 94 (2016) 201201.
[8] C.-H. Park, N. Bonini, T. Sohier, G. Samsonidze, B. Kozinsky, M. Calandra, F. Mauri, N. Marzari, Nano Lett. 14 (2014) 1113.
[9] N. Sule, I. Knezevic, J. Appl. Phys. 112 (2012) 053702.

[10] W. Li, Phys. Rev. B 92 (2015) 075405.
[11] F. Giustino, M.L. Cohen, S.G. Louie, Phys. Rev. B 76 (2007) 165108.
[12] J. Noffsinger, F. Giustino, B.D. Malone, C.-H. Park, S.G. Louie, M.L. Cohen, Comput. Phys. Comm. 181 (2010) 2140.
[13] C. Verdi, F. Giustino, Phys. Rev. Lett. 115 (2015) 176401.
[14] J. Sjakste, N. Vast, M. Calandra, F. Mauri, Phys. Rev. B 92 (2015) 054307.
[15] V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Bredas, Chem. Rev. 107 (2007) 926.
[16] R.A. Marcus, Rev. Modern Phys. 65 (1993) 599.
[17] L. Wang, G. Nan, X. Yang, Q. Peng, Q. Li, Z. Shuai, Chem. Soc. Rev. 39 (2010) 423.
[18] S.H. Lin, C.H. Chang, K.K. Liang, R. Chang, Y.J. Shiu, J.M. Zhang, T.-S. Yang, M. Hayashi, F.C. Hsu, Ultrafast Dynamics and

Spectroscopy of Bacterial Photosynthetic Reaction Centers, in: Advances in Chemical Physics, John Wiley and Sons, Inc.,
2002, pp. 1–88.

[19] G. Nan, X. Yang, L. Wang, Z. Shuai, Y. Zhao, Phys. Rev. B 79 (2009) 115203.
[20] N. Prodanović, N. Vukmirović, Z. Ikonić, P. Harrison, D. Indjin, J. Phys. Chem. Lett. 5 (2014) 1335.
[21] J.T. Devreese, A.S. Alexandrov, Rep. Progr. Phys. 72 (2009) 066501.
[22] S.N. Klimin, J. Tempere, J.T. Devreese, Phys. Rev. B 94 (2016) 125206.
[23] J. Vlietinck, W. Casteels, K.V. Houcke, J. Tempere, J. Ryckebusch, J.T. Devreese, New J. Phys. 17 (2015) 033023.
[24] F. Ortmann, S. Roche, Phys. Rev. B 84 (2011) 180302(R).
[25] F. Ortmann, F. Bechstedt, K. Hannewald, Phys. Rev. B 79 (2009) 235206.
[26] Y.-C. Cheng, R.J. Silbey, J. Chem. Phys. 128 (2008) 114713.
[27] V.M. Stojanović, P.A. Bobbert, M.A.J. Michels, Phys. Rev. B 69 (2004) 144302.
[28] K. Hannewald, V.M. Stojanović, J.M.T. Schellekens, P.A. Bobbert, G. Kresse, J. Hafner, Phys. Rev. B 69 (2004) 075211.
[29] L.J. Wang, Q. Peng, Q.K. Li, Z. Shuai, J. Chem. Phys. 127 (2007) 044506.
[30] A.S. Mishchenko, N. Nagaosa, G. De Filippis, A. de Candia, V. Cataudella, Phys. Rev. Lett. 114 (2015) 146401.
[31] G. De Filippis, V. Cataudella, A.S. Mishchenko, N. Nagaosa, A. Fierro, A. de Candia, Phys. Rev. Lett. 114 (2015) 086601.
[32] T. Holstein, Ann. Phys. 8 (1959) 343.
[33] A.S. Alexandrov, P.E. Kornilovitch, Phys. Rev. Lett. 82 (1999) 807.
[34] I.G. Lang, Y.A. Firsov, Sov. Phys.—JETP 16 (1963) 1301.
[35] A. Isihara, J. Phys. A Gen. Phys. 1 (1968) 539.
[36] B. Gerlach, H. Löwen, Phys. Rev. B 35 (1987) 4291.

http://refhub.elsevier.com/S0003-4916(18)30022-8/sb1
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb2
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb3
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb4
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb5
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb6
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb7
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb8
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb9
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb10
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb11
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb12
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb13
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb14
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb15
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb16
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb17
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb18
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb18
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb18
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb18
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb18
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb19
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb20
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb21
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb22
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb23
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb24
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb25
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb26
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb27
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb28
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb29
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb30
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb31
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb32
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb33
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb34
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb35
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb36


202 M. Kornjača, N. Vukmirović / Annals of Physics 391 (2018) 183–202

[37] D.W. Brown, K. Lindenberg, Y. Zhao, J. Chem. Phys. 107 (1997) 3179.
[38] A.H. Romero, D.W. Brown, K. Lindenberg, Phys. Lett. A 266 (2000) 414.
[39] P.E. Spencer, J.H. Samson, P.E. Kornilovitch, A.S. Alexandrov, Phys. Rev. B 71 (2005) 184310.
[40] G. Mahan, Many-Particle Physics, Kluwer Academic, New York, 2000.
[41] Q. Liu, Phys. Lett. A 376 (2012) 1219.
[42] M. Berciu, G.A. Sawatzky, Europhys. Lett. 81 (2008) 57008.

http://refhub.elsevier.com/S0003-4916(18)30022-8/sb37
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb38
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb39
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb40
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb41
http://refhub.elsevier.com/S0003-4916(18)30022-8/sb42

	Polaron mobility obtained by a variational approach for lattice Frohlich models
	Introduction
	Model Hamiltonian
	Unitary transformation of the Hamiltonian
	Spectral properties
	Carrier mobility
	Conclusion
	Acknowledgments
	Analytical result in the case of weak electron–phonon coupling
	Semi-analytical result in the case of strong electron–phonon coupling
	References


