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With edge computing, real-time inference of deep neu-
ral networks (DNNs) on custom hardware has become 
increasingly relevant. Smartphone companies are 

incorporating artificial intelligence (AI) chips in their design 
for on-device inference to improve user experience and tighten 
data security, and the autonomous vehicle industry is turning to 
application-specific integrated circuits (ASICs) to keep the latency 
low. Although the typical acceptable latency for real-time infer-
ence in applications like those above is O(1)ms (refs. 1,2), other 
applications may require submicrosecond inference. For example, 
high-frequency trading machine learning (ML) algorithms are  
running on field-programmable gate arrays (FPGAs) to make  
decisions within nanoseconds3. At the extreme inference spectrum 
end of both the low latency (as in high-frequency trading) and  
limited area (as in smartphone applications) is the processing  
of data from proton–proton collisions at the Large Hadron Collider 
(LHC) at CERN4. In the particle detectors around the LHC  
ring, tens of terabytes of data per second are produced from  
collisions occurring every 25 ns. This extremely large data rate is 
reduced by a real-time event filter processing system—the trig-
ger—which decides whether each discrete collision event should be 
kept for further analysis or be discarded. Data are buffered close to 
the detector while the processing occurs, with a maximum latency 
of O(1) μs to make the trigger decision. High selection accuracy  
in the trigger is crucial to keep only the most interesting events 
while keeping the output bandwidth low, reducing the event rate 
from 40 MHz to 100 kHz. In 2027, the LHC will be upgraded  
from its current state, capable of producing up to one billion  
proton–proton collisions per second, to the so-called High 
Luminosity-LHC (HL-LHC)5. This will involve increasing the  
number of proton collisions occurring every second by a factor of 

five to seven, ultimately resulting in a total amount of accumulated 
data one order of magnitude higher than what is possible with the 
current collider. With this extreme increase, ML solutions are being 
explored as fast approximations of the algorithms currently in use 
to minimize the latency and maximize the precision of tasks that 
can be performed.

Hardware used for real-time inference in particle detec-
tors usually has limited computational capacity due to size con-
straints. Incorporating resource-intensive models without a loss in  
performance poses a great challenge. In recent years, many devel-
opments have aimed at providing efficient inference from an algo-
rithmic point of view. This includes compact network design6–10, 
weight and filter pruning11,12 or quantization. In post-training 
quantization13–17, the pre-trained model parameters are trans-
lated into lower-precision equivalents. However, this process 
is, by definition, lossy, and it sacrifices model performance. 
Therefore, solutions to do quantization-aware training have 
been suggested18–27. In these, a fixed numerical representation is  
adopted for the whole model, and the model training is performed 
enforcing this constraint during weight optimization. More 
recently28–31, it has been argued that some layers may be more 
accommodating for aggressive quantization, whereas others may 
require more expensive arithmetic. This suggests that per-layer 
heterogeneous quantization is the optimal way to achieve higher 
accuracy at low resource cost, but it may require further specializa-
tion of hardware resources.

In this Article, we introduce a novel workflow for finding  
the optimal heterogeneous quantization per layer and per  
parameter type for a given model, and deploy that model on 
FPGA hardware. Through minimal code changes, the model  
footprint is minimized while retaining high accuracy, and then 
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translated into low-latency firmware. This Article makes the follow-
ing contributions:

•	 We implement a range of quantization methods in a common 
library, providing a broad base from which optimal quantiza-
tions can easily be sampled.

•	 We introduce a novel method for finding the optimal hetero
geneous quantization for a given model, resulting in minimum 
area or minimum power DNNs while maintaining high accuracy.

•	 We have made these methods available online in easy-to-use 
libraries, called QKeras and AutoQKeras60, where simple drop-in 
replacement of Keras32 layers makes it straightforward for users 
to transform Keras models to their equivalent deep heterogene-
ously quantized versions, which are trained quantization-aware. 
Using AutoQKeras, a user can trade off accuracy by model size 
reduction (for example, area or energy).

•	 We have added support for quantized QKeras models in the 
library, hls4ml13, which converts these pre-trained quantized 
models into highly parallel FPGA firmware for ultralow-latency 
inference.

To demonstrate the substantial practical advantages of these tools  
for high-energy physics and other inference on the edge applications:

•	 We conduct an experiment consisting of classifying events in an 
extreme environment, namely the triggering of proton–proton 
collisions at the CERN LHC, where resources are limited and a 
maximum latency of O(1)μs is imposed.

•	 We show that inference within 60 ns and a reduction of the model 
resource consumption by a factor of 50 can be achieved through 
automatic heterogeneous quantization, while maintaining simi-
lar accuracy (within 3% of the floating-point model accuracy).

•	 We show that the original floating-point model accuracy can 
be maintained for homogeneously quantized DNNs down to a 
bit-width of six while reducing resource consumption by up to 
75% through quantization-aware training with QKeras.

The proposed pipeline provides a novel, automatic end-to-end 
flow for deploying ultralow-latency, low-area DNNs on chip. This 
will be crucial for the deployment of ML models on FPGAs in parti-
cle detectors and other fields with extreme inference and low-power 
requirements.

In the remainder of the Article we discuss previous work related 
to model quantization and model compression with a focus on work 
related to triggering in particle detectors, we uncover the novel 
library for training ultralow-latency optimally heterogeneously 
quantized DNNs (QKeras), we describe the procedure of auto-
matic quantization for optimizing model size and accuracy simul-
taneously and, finally, we deploy these optimally quantized QKeras 
models on an FPGA and evaluate their performance.

Motivation
The hardware triggering system in a particle detector at the CERN 
LHC is one of the most extreme environments in which one can 
imagine deploying DNNs. Latency is restricted to O(1) μs, gov-
erned by the frequency of particle collisions and the number of 
on-detector buffers. The system consists of a limited amount of 
FPGA resources, all of which are located in underground caverns 
50–100 m below the ground surface, where they work on thousands 
of different tasks in parallel. Because of the high number of tasks 
being performed, limited cooling capabilities, limited space in the 
cavern and the limited number of processors, algorithms must be 
kept as resource-economic as possible. To minimize the latency and 
maximize the precision of tasks that can be performed in the hard-
ware trigger, ML solutions are being explored as fast approximations 
of the algorithms currently in use. To simplify the implementation 

of these, a general library for converting pre-trained ML models 
into FPGA or ASIC firmware has been developed—hls4ml13. The 
package comprises a library of optimized C++ code for common 
network layers, which can be synthesized through a high-level syn-
thesis (HLS) tool. Converters are provided for multiple model for-
mats, like TensorFlow33, Keras32, PyTorch34 and ONNX35.

Although there are other libraries for the translation of ML mod-
els to FPGA firmware, as summarized in refs. 36–39, hls4ml targets 
extreme low-latency inference to stay within the strict constraints 
of O(1) μs imposed by the hardware trigger systems. In addition, 
the unique aspect of hls4ml is the support for multiple HLS-vendor 
backends like Xilinx Vivado HLS, Intel Quartus HLS40 and Mentor 
Catapult HLS41, all of which are in use at the LHC experiments. The 
Vivado HLS backend is the most advanced and therefore the one 
used in this Article.

The hls4ml inference architecture is introduced in ref. 13. A 
model-specific, layer-unrolled architecture is used to produce 
ultralow-latency, resource-efficient inference engines for particle 
physics. The computation for each NN layer is carried out in dis-
tinct hardware elements of the target device, which allows for high 
computational throughput through the layer pipeline, as well as a 
fine-grained configuration of each layer (including quantization). 
A simple handle, named ‘Reuse Factor’ enables users to control 
the parallelization of the computation, again at a per-layer level. In 
the fully parallel model, using a Reuse Factor of 1, each individual 
multiplication of the NN layers is carried out on different resources 
(whether FPGA digital signal processors (DSPs) or lookup tables 
(LUTs)). With a Reuse Factor greater than 1, multiplication elements 
are reused sequentially to reduce the resource cost, at the expense 
of latency and throughput. This simple handle enables rapid design 
space exploration as well as configurability to target-specific con-
straints in the available resources, latency and throughput.

In addition, data access at the NN input and output, as well as data 
movement between NN layers, can be configured to be fully parallel 
or fully serial. The former option is used to target ultralow-latency, 
high-throughput inference in the real-time processing of particle 
physics experiments, while the latter can be used to fit larger NN 
models within the available FPGA resources when ultralow latency 
is not as much of a constraint.

The hls4ml library is implemented as a Python package to facili-
tate ease of use for non-experts, as well as consistency with other 
popular deep learning libraries. The first step in the conversion 
into FPGA firmware consists of translating a given model into an 
internal representation of the network graph. During this conver-
sion, user-specified optimization configurations are attached to the 
model, such as the choice of quantization and parallelization. The 
internal representation is written out into an HLS project, assign-
ing the appropriate layers of the target NN and the user configu-
ration. This HLS project can then be synthesized with the FPGA 
vendor tools, generating an IP core that can be used in the target 
application. Many commonly used NN layers are supported: Dense, 
Convolution, BatchNormalization and several Activation layers. In 
addition, domain-specific layers can be easily added, one example 
being compressed distance-weighted graph networks42.

In hls4ml, the precision used to represent weights, biases, activa-
tions and other components is configurable through post-training 
quantization, replacing the floating-point values by lower-precision 
fixed-point ones. This allows compression of the model size, but to 
some extent sacrifices accuracy. Recently, support for binary and 
ternary precision DNNs43 trained quantization-aware has been 
included in the library. This greatly reduces the model size, but 
requiring such an extremely low precision of each parameter type 
sacrifices accuracy and generalization.

As demonstrated in refs. 28–31, mixed-precision quantization (that 
is, keeping some layers at higher precision and some at lower preci-
sion) is a promising approach to achieve smaller models with high 
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accuracy. However, finding the optimal heterogeneous quantiza-
tion per layer and per parameter type, here referred to as ‘quantiza-
tion configuration’, is extremely challenging, with the search space 
increasing exponentially with the number of layers in a model30. 
A solution for finding the mixed quantization configuration that 
yields the best generalization and accuracy using the Hessian spec-
trum is proposed in ref. 30. For ML applications in hardware trig-
gering systems, the resources one has at disposal, as well as the 
minimum tolerable model accuracy, are usually known. Finding 
the best model for a given task is therefore a fine compromise 
between the desired model compression and accuracy with respect 
to the floating-point-based model. Both factors must be considered 
when tuning quantization. The goal of this work is thus to provide a 
method for finding the optimal mixed-precision configuration for a 
given model, accounting for both the desired model size and accu-
racy when optimizing the architecture, and to transform these into 
highly parallel firmware for ultralow-latency inference on chip.

Related work
Closely related to the work presented here are the FINN44 and 
FINN-R45 frameworks from Xilinx Research Labs, which aim to 
deploy quantized neural networks on Xilinx FPGAs. The same 
group have also developed a library for quantization-aware train-
ing, Brevitas46, based on PyTorch model formats. The LogicNets 
design flow47, also from Xilinx Research Labs, allows for the train-
ing of quantized DNNs that map to highly efficient Xilinx FPGA 
implementations. A comparison between the approach presented 
here and LogicNets is provided in the section ‘Ultralow-latency, 
quantized model on FPGA hardware’. The FP-DNN48 framework 
takes TensorFlow33-described DNNs as input and maps them onto 
FPGAs. The open-source alternative, DNNWeaver49, automati-
cally generates accelerator Verilog code using optimized templates. 
Other frameworks focusing on the mapping of convolutional 
architectures onto efficient hardware design include Snowflake50, 
fpgaConvNet51–53 and ref. 54. For other work on FPGA DNN infer-
ence, we refer to refs. 36–39,55. TensorFlow Lite56 is a set of tools for 
on-device inference with low latency and small binary sizes, tar-
geting mobile, embedded and Internet of Things (IoT) devices. 
Currently, TensorFlow Lite supports deployment on Android and 
iOS devices, embedded Linux and microcontrollers.

Our approach differs from those above with its emphasis on 
being a multi-backend tool, embracing a fully on-chip design to 
target the microsecond latency imposed in physics experiments. 
The hls4ml library is completely open-source, and aims to provide 
domain scientists with easy-to-use software for deploying highly 
efficient ML algorithms on hardware.

In HAQ28, a hardware-aware automated framework for quanti-
zation is introduced. The automization procedure consists of com-
puting the curvature of the weight space of a layer, assuming a low 
curvature will require a lower bit precision for the weights. Our 
approach differs from HAQ by combining reduced bit precision 
with filter or neuron unit tuning, where the number of filters or 
neurons can be automatically tuned during the scan. In this case, the 
problem becomes highly nonlinear, and we therefore take advan-
tage of an AutoML-type of approach. A Bayesian optimization or  

randomized search is performed to find a solution that encompasses 
the precision used for the weights and activations, and the number 
of units or filters of the layer.

Particle identification in the hardware trigger
A crucial task performed by the trigger system that could be greatly 
improved by a ML algorithm, both in terms of latency and accu-
racy, is the identification and classification of particles coming from 
each proton–proton collision. In this Article, we analyse the pub-
licly available dataset introduced in refs. 13,57. Here, a dataset58 for 
the discrimination of jets, a collimated spray of particles, stemming 
from the decay and/or hadronization of five different particles was 
presented. This consists of quark (q), gluon (g), W boson, Z boson 
and top (t) jets, each represented by 16 physics-motivated high-level 
features. In ref. 13, this dataset was used to train a DNN for deploy-
ment on a Xilinx FPGA. This model was compressed through 
post-training quantization to further reduce the FPGA resource 
consumption and provides a baseline to measure the benefits of 
quantization-aware training with heterogeneous quantization, over 
post-training quantization.

Adopting the same architecture as in ref. 13, we use a fully con-
nected neural network consisting of three hidden layers (64, 32 and 
32 nodes, respectively) with rectified linear unit (ReLU) activation 
functions. The architecture is shown in Extended Data Fig. 1. The 
output layer has five nodes, yielding a probability for each of the five 
classes through a softmax activation function. The model definition 
in TensorFlow Keras is given in Listing 1.

As in ref. 13, the weights of this network are homogeneously 
quantized post-training to a fixed-point precision yielding the best 
compromise between accuracy, latency and resource consump-
tion. This is found to be a fixed-point precision, or bit-width, of 
14 bits with 6 integer bits, in the following referred to as 〈14, 6〉. 
We refer to this configuration as the baseline full model (BF). We 
then train a second pruned version of the BF model, here referred 
to as baseline pruned (BP). This model has 70% of its weights set to 
zero through an iterative process where small weights are removed 
using the TensorFlow Pruning application programming inter-
face59, following ref. 13. This reduces the model size and resource 
consumption considerably, as all zero-multiplications are excluded 
during the firmware implementation. We then create one hetero-
geneously quantized version of the BP model, where each layer is 
quantized independently post-training to yield the highest accu-
racy possible at the lowest resource cost. We start with an initial 
configuration of the model quantization using a wide bit-width, 
then iteratively reduce the bit-width until reaching a threshold in 
accuracy loss relative to the initial floating-point model, evaluated 
on the training set. We iterate over the model in layer order, finding 
the appropriate precision for weights, biases and output of a given 
layer, before moving to the next. We apply a more strict thresh-
old in accuracy for earlier layers, because each round of precision 
reduction only degrades the accuracy. In this case we restrict to a 
1% accuracy difference in the first layer, loosening to 2% for the 
final layer. This model is referred to as the baseline heterogeneous 
(BH) model. A summary of the per-layer quantizations for the 
baselines is provided in Table 1.

Table 1 | Per-layer quantization for post-training quantized models

Model Precision

Dense ReLU Dense ReLU Dense ReLU Dense Softmax

BF/BP 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉

BHa w:〈8, 3〉 b:〈4, 2〉 〈13, 7〉 〈7, 2〉 〈10, 5〉 〈5, 2〉 〈8, 4〉 w:〈7, 3〉 b:〈4, 1〉 〈16, 6〉

When different precision is used for weights and biases, the quantization is listed as w and b, respectively.
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From ref. 13, we know that a post-training quantization of this 
model results in a degradation in model accuracy. The smaller the 
model footprint is made through post-training quantization, the 
larger the accuracy degradation becomes. To overcome this, we 
develop a novel library that, through minimal code changes, allows 
us to create deep heterogeneously quantized versions of the Keras 
model, trained quantization-aware.

In addition, as the amount of available resources on chip  
is known in advance, we want to find the optimal model for a  
given use-case allowing a trade-off between model accuracy  
and resource consumption. We therefore design a method for  
performing automatic quantization, minimizing the model area 
while maximizing accuracy simultaneously through a novel loss 
function. These solutions, simple heterogeneous quantization- 
aware training and automatic quantization are explained in the  
following sections.

Keras32 is a high-level application programming interface 
designed for building and training deep learning models. It is used 
for fast prototyping, advanced research and production. To simplify 
the procedure of quantizing Keras models, we introduce QKeras60: 
a quantization extension to Keras that provides a drop-in replace-
ment for layers performing arithmetic operations. This allows for 
efficient training of quantized versions of Keras models.

QKeras is designed using the design principle of Keras—that 
is, being user-friendly, modular, extensible and minimally intru-
sive to Keras native functionality. The code is based on the work 
of refs. 18,22, but provides a substantial extension to these. This 
includes providing a richer set of layers (for instance, including 
ternary and stochastic ternary quantization), extending the func-
tionality by providing functions to aid the estimation of model area 
and energy consumption, allowing for simple conversion between 
non-quantized and quantized networks, and providing a method 
for performing automatic quantization. Importantly, the library 
is written in such a way that all the QKeras layers maintain a true 
drop-in replacement for Keras ones so that minimal code changes 
are necessary, greatly simplifying the quantization process. During 
quantization, QKeras uses the straight-through estimator19, where 
the forward pass applies the quantization functions and the back-
ward pass assumes the quantization as the identity function to make 
the gradient differentiable.

For the model in Listing 1, creating a deep quantized version 
requires just a few code changes. An example conversion is shown 
in Listing 2.

Listing 1. Defining a model in Keras: TensorFlow Keras model 
definition

from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.layers import BatchNormalization
x = Input((16))
x = Dense(64)(x)
x = BatchNormalization()(x)
x = Activation(‘relu’)(x)
x = Dense(32)(x)
x = BatchNormalization()(x)
x = Activation(‘relu’)(x)
x = Dense(32)(x)
x = BatchNormalization()(x)
x = Activation(‘relu’)(x)
x = Dense(5)(x)
x = Activation(‘softmax’)(x)

Obtaining optimal heterogeneous quantization
The necessary code modifications consist of typing Q in front of 
the original Keras data manipulation layer name and specifying the 
appropriate quantization type, for instance, the kernel_quantizer 
and bias_quantizer parameters in a QDense layer. We change only 
data manipulation layers that perform some form of computation 
that may change the data input type and create variables (trainable 
or not). Data transport layers, namely layers performing some form 
of change of data ordering, without modifying the data itself, remain 
the same, for example Flatten. When quantizers are not specified, 
no quantization is applied to the layer and it behaves as the unquan-
tized Keras layer. The only exception is the QBatchNormalization 
layer. Here, when no quantizers are specified, a power-of-2 quan-
tizer is used for the trainable parameters of the batch normaliza-
tion layer, γ and β, as well as for the emperical variance σ, while 
the emperical mean μ remains unquantized. This has worked best 
when attempting to implement quantization efficiently in hardware 
and software (γ and σ become shift registers and β maintains the 
dynamic range aspect of the centre parameter)

Listing 2. Defining a model in QKeras: quantized QKeras 
model example.

from tensorflow.keras.layers import Input, Activation
from qkeras import quantized_bits
from qkeras import QDense, QActivation
from qkeras import QBatchNormalization
x = Input((16))
�x = QDense(64, kernel_quantizer = quantized_bits(6,0,alpha=1),   
bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x = QBatchNormalization()(x)
x = QActivation(‘quantized_relu(6,0)’)(x)
�x = QDense(32, kernel_quantizer = quantized_bits(6,0,alpha=1), 
bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x = QBatchNormalization()(x)
x = QActivation(‘quantized_relu(6,0)’)(x)
�x = QDense(32, kernel_quantizer = quantized_bits(6,0,alpha=1), 
bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x = QBatchNormalization()(x)
x = QActivation(‘quantized_relu(6,0)’)(x)
�x = QDense(5, kernel_quantizer = quantized_bits(6,0,alpha=1), 
bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x = Activation(‘softmax’)(x)
The second code change is to pass appropriate quantizers, for 

example quantized_bits. In the example above, QKeras is instructed 
to quantize the kernel and bias to a bit-width of 6 and 0 integer 
bits. The parameter alpha can be used to change the absolute scale 
of the weights while keeping them discretized within the chosen 
bit-width. For example, in a binary network, rather than using 
the representations ±1, one can use ±alpha. In QKeras, by setting 
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Fig. 1 | Quantized ReLU function in QKeras. The quantized_relu function 
as implemented in QKeras for 2-bit (purple), 3-bit (green and blue) and 
6-bit (yellow) precision and for 0 or 1 integer bits. The unquantized ReLU 
function is shown for comparison (orange).
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alpha=‘auto’, we also allow for the value of alpha to be computed 
during training from the absolute scale of the weights in ques-
tion. Further details are provided in the Methods and illustrated in 
Extended Data Fig. 2.

QKeras works by tagging all variables, weights and biases created  
by Keras, as well as the output of arithmetic layers, with quantized 
functions. Quantized functions are specified directly as layer para
meters and then passed to QActivation, which acts as a merged 
quantization and activation function. Quantizers and activation 
layers are treated interchangeably. To minimize code changes, 
the quantizers’ parameters have carefully crafted and pre-defined 
defaults or are computed internally for optimal set-up.

The quantized_bits quantizer used above performs mantissa 
quantization:

2int−b+1clip(round(x× 2b−int−1),−2b−1, 2b−1
− 1), (1)

where x is the input, b specifies the number of bits for the quantiza-
tion, and ‘int’ specifies how many bits of bits are to the left of the 
decimal point.

The quantizer used for the activation functions in Listing 2, quan-
tized_relu, is a quantized version of ReLU61. Two input parameters 
are passed, namely the precision, in this case 6 bits, and number of 
integer bits, in this case zero, respectively. The class has further attri-
butes, for instance allowing for stochastic rounding of the activation 
function, all of which are described in detail in ref. 60. Figure 1 shows 
the quantized ReLU function for three different bit-widths and two 
different numbers of integer bits.

Through simple code changes like those above, a large variety of 
quantized models can be created. A full list of quantizers and layers 
is provided in the Methods and listed in Extended Data Fig. 3 or in 
the QKeras code repository60.

We use QKeras to create a range of deep homogeneously quan-
tized models, trained quantization-aware and based on the same 
architecture as the baseline model, which will provide a direct com-
parison between post-training quantization and models trained 
using QKeras. The model in Listing 2 is an example of such a homo-
geneously quantized model. Finally, we want to create an optimally 
heterogeneously quantized QKeras model with a considerably 
reduced resource consumption, without compromising the model 
accuracy. The search space for finding such a configuration is large 
and exponential in layers. We therefore attempt to automatize the 
process by allowing users to scan through all the available quantiz-
ers in QKeras to find the configuration that fits the available chip 
area while maintaining high accuracy.

Resource-aware automatic quantization
As described in the section ‘Motivation’, there are several meth-
ods for finding the optimal quantization configuration for a given 
model. These usually proceed by calculating the sensitivity of a 
given layer to quantization through evaluation of how small distur-
bances within that layer influence the loss function.

Often, as for example in refs. 29,30, only maximization of the model’s 
accuracy and ability to generalize is considered. However, when doing 
inference on the edge, resources are often limited and shared between 
multiple applications. This is the case in particle detectors, where a 
single FPGA is used to perform multiple different tasks. The desired 
accuracy and size constraints of the model in question are known 
in advance, and it is desirable to optimize the precision configura-
tion considering both model accuracy and size. Some methods, like 
HAQ28, do perform such a hardware-aware optimization. However, 
only the weight precision per layer is considered. When models are 
strongly quantized, it is often the case that more or fewer filters in con-
volutional layers, or neurons in densely connected layers, are neces-
sary. A fine-tuning of the number of units per layer is therefore crucial 
to achieve the highest possible accuracy at the lowest resource cost.

In this Article, we introduce a method for performing automatic 
quantization where the user can trade off model area or energy con-
sumption by accuracy in an application-specific way. The per-layer 
weight precision as well as the number of neurons or filters per layer 
are optimized simultaneously. By defining a forgiving factor based 
on the tolerated drop in accuracy for a given reduction in resource 
cost, the best quantization configuration and number of units per 
layer, for a set of given size or energy constraints, can be found. We 
consider both energy minimization and bit-size minimization as a 
goal in the optimization.

Approximating relative model energy consumption. To target a 
reduction in model energy consumption, a high-level estimate of 
the model energy is needed. Here, we only concern ourselves with 
the difference in energy consumption when comparing models 
using different quantizations, and not the absolute energy, as this is 
highly hardware-specific. To this end, we assume an energy model 
where the energy consumption of a given layer is defined as

Elayer = Einput + Eparameters + EMAC + Eoutput.

These correspond to the energy cost of reading inputs (Einput), 
parameters (Eparameters) and output (Eoutput) and the energy required 
to perform multiply-and-accumulate (MAC) operations (EMAC). 
For the first three, in a similar way to compulsory accesses in cache 
analysis62, we only consider the first access to the data, as only com-
pulsory accesses are independent of the hardware architecture and 
memory hierarchy of an accelerator, when comparing models using 
the same architecture. We also assume a fully unrolled implemen-
tation on the hardware (as is the case with hls4ml). For the MAC 
energy estimation, we only consider the energy needed to compute 
the MAC. We do not include the energy usage of registers, or glue 
and pipeline logic that will affect the overall energy profile of the 
device. For a given architecture, this energy consumption is known, 
and here we assume a 45 nanometre processor and follow the energy 
table given in ref. 63.

Although this model provides a good initial estimate, it has 
high variance concerning the actual energy consumption one finds 
in practice, especially for different architectural implementations. 
However, when comparing the energy of two different models, 
or models of different quantizations, both implemented in the 
same technology, this simple energy model is sufficient. The rea-
son for this is that one can assume that the real energy of a layer 
is some linear combination of the high-level energy model, that is, 
EReallayer = k1 × Elayer + k2, where k1 and k2 are constants that depend 
on the architecture of the accelerator and the implementation pro-
cess technology. The slope can be considered as a factor account-
ing for the additional storage needed to keep the model running, 
and the offset corresponds to logic that is required to perform the 
operations. When comparing the energy consumption of two lay-
ers with different quantizations, L1 and L2, for the same model 
architecture, we have that ERealL1 > ERealL2  if, and only if, the estimated 
energy EL1 > EL2.

For these reasons, only relative energy estimates are considered 
during the automatic quantization, and users cannot target a spe-
cific energy value.

To facilitate easy estimation of the relative energy consumption 
or model bit size when comparing different QKeras models, we have 
implemented a tool in the QKeras library, QTools, which performs 
both data type map generation and energy consumption estimation. 
A data type map for weights, biases, multipliers and so on, is gen-
erated for each layer, and includes operation types, variable sizes, 
quantizer types and bits. The output is an estimate of the per-layer 
energy consumption in picojoules, as well as a dictionary of data 
types per layer. Included in the energy calculation is a set of other 
tunable specifications, such as whether parameters and activations 
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are stored on static random-access memory (SRAM) or dynamic 
random-access memory (DRAM), or whether data are loaded from 
DRAM to SRAM. The precision of the input can also be defined for 
a better energy estimate. A full list of options is available in ref. 60. 
The QTools library provides an additional metric for model tuning 
when both accuracy and energy consumption, or model size, need 
to be considered.

Defining a forgiving factor. With the high-level estimate of a  
given layer’s energy consumption provided by QTools, we define a 
forgiving factor (FF) to be targeted during automatic quantization 
of the model, providing a total loss function that combines energy 
cost and accuracy. The FF allows one to tolerate a degradation in a 
given metric, such as model accuracy, if the model gain in terms of 
some other metric, like model size, is considerably larger. Here, we 
allow the forgiving metric to be either minimization of the model 
bit size or minimization of the model energy consumption. The FF 
is defined as

FF = 1+∆acc × logR
(

S× Cref
Ctrial

)

, (2)

where Δacc is the tolerated reduction in accuracy in percent, R is the 
factor stating how much smaller energy the optimized model must 
have compared to the original model (as a multiplicative factor to 
the FF metric) and S is a parameter to reduce the reference size, 
effectively forcing the tuner to choose smaller models. Parameters 
Cref and Ctrial refer to the cost (energy or bits) of the reference model 
and the quantization trial model being tested, respectively. The FF 
can be interpreted in the following way: if we have a linear tolerance 
for model accuracy degradation (or any other performance metric), 
we should be able to find a multiple of that degradation in terms of 
the cost reduction of the implementation. This enables an automatic 
quantization procedure to compensate for the loss in accuracy when 
comparing two models, by acting as a multiplicative factor.

Automatic quantization and rebalancing are then performed by 
treating quantization and rebalancing of an existing DNN as a hyper 
parameter search in Keras Tuner64 using random search, hyper-
band65 or Gaussian processes. We design an extension to Keras 
Tuner called AutoQKeras, which integrates the FF defined in equa-
tion (2) and the energy estimation provided by QTools. This allows 
for simultaneously tuning of the model quantization configura-
tion and the model architecture. For example, AutoQKeras allows 
for tuning of the number of filters in convolutional layers and the 
number of neurons in densely connected layers. This fine-tuning is 
critical, as when models are strongly quantized, more or fewer filters 
might be needed. Fewer filters might be necessary in cases where a 
set of filter coefficients are quantized to the same value.

Consider the example of quantizing two sets of filter coeffi
cients, [−0.3, 0.2, 0.5, 0.15] and [−0.5, 0.4, 0.1, 0.65]. If we apply a  
binary quantizer with scale = ⌈log2(

∑
|w|
N )⌉, where w are the filter  

coefficients and N is the number of coefficients, we will end up with 
the same filter binary([−0.3, 0.2, 0.5, 0.15]) = binary([−0.5, 0.4, 0.1, 
0.65]) = [−1, 1, 1, 1] × 0.5. In this case, we are assuming a scale is a 
power-of-2 number so that it can be efficiently implemented as a 
shift operation. On the other hand, more filters might be needed 
as deep quantization drops information. To recover some of the 
boundary regions in layers that perform feature extraction, more 
filters might be needed when the layer is quantized. Finally, certain 
layers are undesirable to quantize, often the last layer of a network. 
In principle, we do not know if by quantizing a layer we need more 
or fewer filters or neurons and, as a result, there are advantages to 
treating these problems as co-dependent problems, as we may be 
able to achieve a lower number of resources. Note that AutoQKeras 
does not completely remove model layers.

In AutoQKeras, one can specify which layers to quantize by spec-
ifying the index of the corresponding layer in Keras. If attempting 
to quantize the full model in a single shot, the search space becomes 
very large. In AutoQKeras, there are two methods to cope with this: 
grouping layers to use the same choice of quantization or quantiza-
tion by blocks. For the former, regular expressions can be provided 
to specify layer names that should be grouped to use the same quan-
tization. In the latter case, blocks are quantized sequentially, either 
from inputs to outputs or by quantizing higher energy blocks first. If 
blocks are quantized one by one, assuming each block has N choices 
and the model consists of B blocks, one only needs to try N × B, 
rather than NB options. Although this is an approximation, it is a 
reasonable trade-off considering the explosion of the search space 
for individual filter selections, weight and activation quantization.

Whether to quantize sequentially from inputs to outputs or start-
ing from the block that has the highest energy impact depends on 
the model. For example, for a network like ResNet66, and if filter 
tuning is desirable, one needs to group the layers by the ResNet 
block definition and quantize the model sequentially to preserve the 
number of channels for the residual block. A few optimizations are 
performed automatically during model training. First, we dynami-
cally reduce the learning rate for the blocks that have already been 
quantized so that they are still allowed to train, but at a slower pace. 
Also, we dynamically adjust the learning rate for the layer we are 
trying to quantize as opposed to the learning rate of the unquan-
tized layers. Finally, we transfer the weights of the model blocks we 
have already quantized, whenever possible (when shapes remain the 
same).

We then use AutoQKeras to find the optimal quantization configu
rations for the baseline model for extremely resource-constrained 
situations, one targeting a minimization of the model’s footprint in 
terms of model energy (QE) and one minimizing the footprint in 
terms of model bit size (QB), using the different available targets  
in AutoQKeras. We want to reduce the resource footprint by at 
least a factor of four while allowing the accuracy to drop by at most 
5%. We also allow for tuning of the number of neurons for each 
dense layer, for the same reason given above for model filter tuning.  

Table 2 | Per-layer quantization and relative energy consumption for automatically quantized QKeras models, showing per-layer 
quantization configuration and the relative model energy consumption for the AutoQKeras energy optimized (QE) and AutoQKeras 
bits optimized (QB) models, compared to the simple homogeneously quantized model, Q6

Model Accuracy (%) Precision E
EQ6

Bits
BitsQ6

Dense ReLU Dense ReLU Dense ReLU Dense Softmax

QE 72.3 〈4, 0〉 〈4, 2〉 Ternary 〈3, 1〉 〈2, 1〉 〈4, 2〉 w: Stoc. bin. b: 
〈8, 3〉

〈16, 6〉 0.27 0.18

QB 72.8 〈4, 0〉 〈4, 2〉 Stoc. bin. 〈4, 2〉 Ternary 〈3, 1〉 Stoc. bin. 〈16, 6〉 0.25 0.17

Q6 74.8 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 1.00 1.00

When different precision is used for weights and biases, the quantization is listed as w and b, respectively. Stoc. bin., stochastic binary quantization.
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The model is quantized sequentially per block, where one block 
consists of a Dense layer and a ReLU layer. The resulting quanti-
zation configuration is listed in Table 2. A very aggressive quanti-
zation configuration is obtained for both optimizations, with both 
binary and ternary quantizers and a bit-width of four at maximum 
for kernels. Despite the large search space, the obtained configura-
tions are very similar, as is to be expected due to the strong cor-
relation between model energy and bit size. Whenever an input or 
the kernel has one (binary) or two (ternary) bits, we can completely 
eliminate multiplication operations in an implementation, saving 
valuable multiplier resources.

The preferred number of neurons per layer is half that of the 
original (32, 16, 16 rather than 64, 32, 32).

We then compare the relative energy consumption and bit size 
of the QE and QB models as computed with QTools with respect to 
the simple homogeneously quantized model using a 6-bit precision 
in Listing 2, hereby referred to as Q6.

The QE and QB model energy consumption is reduced by 75% 
when compared to the Q6 model and, despite the aggressive quan-
tization and reduction in neurons per layer, only a ~3% degrada-
tion in accuracy is observed for both. The total bit size is reduced 
by 80%. The QB model obtains a slightly smaller energy footprint 
than the QE model, alluding to some degree of randomness when 
scanning such a large search space. The relative power consump-
tion when implemented on FPGA hardware will be discussed in the  
section ‘Ultralow-latency, quantized model on FPGA hardware’.

All the models presented so far are trained minimizing the cat-
egorical cross-entropy loss67 using the Adam optimizer68. A learn-
ing rate of 0.0001 is set as the starting learning rate. If there is no 
improvement in the loss for ten epochs, the learning rate is reduced 
by 50% until a minimum learning rate of 10−6 is reached. The batch 
size is 1,024 and the training proceeds for 100 epochs. The train-
ing time for the models trained quantization-aware with QKeras is 
increased by ×1.5 with respect to the Keras equivalent.

For particle detector trigger applications, it is often desirable to 
operate the algorithm at very low false positive rates (FPRs), ensur-
ing that only the most interesting events are kept while staying 
within the available trigger bandwidth. In Extended Data Fig. 4, 
the classification performances of the BF, Q6, QE and QB models 
for two different target classes, top (t) and gluon (g), are compared. 
These classes were chosen as the ones where the original network, 
introduced in ref. 13, had the highest and lowest area under the curve 
(AUC) scores, respectively. Specifically, the receiver operating char-
acteristic (ROC) curves of FPR versus true positive rate (TPR), and 
the corresponding AUC, are shown. The classification performance 
of the Q6 model is almost identical to that of the BF model for FPRs 
down to 0.1%. The QE and QB models perform slightly worse, with 

AUC scores 0.02 points lower than for Q6 and BF. For a fixed FPR 
of 1%, the TPR for BF/Q6 is 60% and is 55% for QE/QB. No nota-
ble degradation at very low FPR, where typical trigger algorithms 
would be operated, is observed.

With AutoQKeras, we give the user full flexibility to optimize 
the quantization configuration for a given use-case. An estimate 
of the model size and energy consumption can be computed using 
QTools and the user can then proceed by instructing AutoQKeras 
as to how much energy or bits it is desirable to save, given a certain 
accuracy-drop tolerance. Going from a pre-defined Keras model to 
an optimally quantized version (based on available resources) that 
is ready for chip implementation is made extremely simple through 
these libraries.

The final, crucial step in this process is to take these quantized 
models and make it simple to deploy them in the trigger system 
FPGAs (or any hardware) while making sure the circuit layout is 
optimal for the ultralow-latency constraint. We will address this in 
the following section.

Ultralow-latency, quantized model on FPGA hardware
To achieve ultralow-latency inference of QKeras models on FPGA 
firmware, we introduce full integration of QKeras layers in the 
hls4ml library. The libraries, together, provide a streamlined pro-
cess for bringing quantized Keras models into particle detector trig-
gering systems, while staying within the strict latency and resource 
constraints and performing high-accuracy inference.

When converting a QKeras model to an HLS project, the model 
quantization configuration is passed to hls4ml and enforced on 
the FPGA firmware. This ensures that the use of specific, arbitrary 
precision in the QKeras model is maintained during inference. For 
example, when using a quantizer with a given alpha parameter (that 
is, scaled weights), hls4ml inserts an operation to rescale the layer 
output. For binary and ternary weights and activations, the same 
strategies as in ref. 43 are used. With binary layers, the arithmetical 
value of −1 is encoded as 0, allowing the product to be expressed 
as an XNOR operation. The full workflow starting from a baseline 
TensorFlow Keras model and up until FPGA firmware generation 
is shown in Fig. 2. This illustrates how, through two simple steps, 
Keras models can be translated into ultra-compressed, highly paral-
lel FPGA firmware.

We now compare the accuracy, latency and resource consump-
tion of the different models derived so far: the BF, BP and BH mod-
els derived without using QKeras, two models optimized using 
AutoQKeras minimizing the model energy consumption (QE) 
and model bit consumption (QB), as well as a range of homoge-
neously quantized QKeras models scanning bit-widths from 3 to 16. 
Each model is trained using QKeras version 0.7.4, translated into  

TensorFlow Keras model
Accuracy 

requirement
Resource 

constraints

AutoQKeras
optimization

QKeras
quantizers

QTools
estimates

Quantization 
configuration hls4ml

Fixed-point translation 
Parallelization 

Firmware generation

KTuner
API

QKeras
model

HLS project

Fig. 2 | The QKeras and hls4ml workflow. The full workflow starting from a baseline TensorFlow Keras Model, which is then converted into an optimally 
quantized equivalent through QKeras and AutoQKeras. This model is then translated into highly parallel firmware with hls4ml.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell


Articles NATuRE MACHinE InTELLigEnCE

firmware using hls4ml version 0.2.1, and then synthesized with 
Vivado HLS (2019.2), targeting a Xilinx Virtex Ultrascale 9+ FPGA 
with a clock frequency of 200 MHz. We compare the resource con-
sumption and latency on chip for each model, to the model accuracy. 
The resources at disposal on the FPGA are DSPs, LUTs, block ran-
dom access memory (BRAM) and flip-flops. In this case, the BRAM 
is only used as a LUT read-only memory for calculating the final 
softmax function and is the same for all models, namely 1.5 units, 
corresponding to a total of 54 kb. For larger NNs using a higher reuse 
factor and longer latency, BRAM may also be used to store model 
weights. The estimated resource consumption and latency from logic 
synthesis, together with the model accuracy, are listed in Table 3. A 
fully parallel implementation is used, with an initiation interval—the 
number of clock cycles between new data inputs—of 1 in all cases. 
Resource utilization is quoted in the percentage of total available 
resources, with absolute numbers quoted in parentheses.

The most resource-efficient model is the AutoQKeras QE model, 
reducing the DSP usage by ~98%, LUT usage by ~80% and flip-flop 
usage by ~90%. The accuracy drop is less than 3%, despite using half 
the number of neurons per layer and the overall lower precision. 
The extreme reduction of DSP utilization is especially interesting 
as, on the FPGA, DSPs are scarce and usually become the critical 
resource for ML applications. DSPs are used for all MAC operations, 
but, if the precision of the incoming numbers is much lower than 
the DSP precision (which, in this case, is 18 bits) MAC operations 
are moved to LUTs. This is an advantage, as a representative FPGA 
for the LHC trigger system has O(103) DSPs compared to O(106) 
LUTs. If the bulk of multiplication operations is moved to LUTs, this 
allows for deeper and more complex models to be implemented. In 
our case, the critical resource reduces from 56% of DSPs for the 
baseline to 3.4% of LUTs for the 6-bit QKeras trained model with 
the same accuracy. The latency is O(10) ns for all models.

In the final two columns of Table 3, we compare the relative 
energy estimation from QTools with the post place-and-route power 
report from Vivado for the three QKeras models, in both cases rela-
tive to the Q6 model. Because the target clock frequency and model 
initiation interval are identical across these models, the inference 
rate is the same and taking the ratio of the power is equivalent to 
taking the ratio of the energy. Very good agreement between the 
QTools relative energy estimates and the Vivado relative power esti-
mates is observed for the QE and QB models, and the energy order-
ing is the same for all models.

We compare the results obtained using the QKeras and hls4ml 
workflow to LogicNets47, another work on extreme low-latency, 
low-resource, fully unfolded (initiation interval = 1) FPGA imple-
mentations. The metrics are those quoted in Table 3. Two LogicNets 

models have been evaluated: one using the same architecture as in 
this Article, JSC-M and another using a larger architecture (32, 64, 
192, 192, 16 numbers of neurons), JSC-L. For JSC-M, an accuracy 
of 70.6% is quoted, 1.7 points lower than the most resource-efficient 
model using QKeras and hls4ml, QE. In addition, QE uses 1.2× 
fewer LUTs than JSC-M. No DSPs are used in LogicNets, compared 
to the 66 DSPs in use by the QE model.

The latency has only been evaluated for JSC-L and is quoted to 
be 13 ns, using a clock frequency of 384 MHz. The final softmax 
function has been removed from this estimate. In high-energy phys-
ics experiments, the final softmax layer is crucial because trigger 
thresholds are usually set based on an algorithm’s FPR. The thresh-
old on the FPR is usually set as high as the trigger bandwidth allows, 
maximizing the TPR while staying within the bandwith-budget.

For a clock period of 5 ns, the QE model has a latency of 55 ns, 
reduced to 45 ns when ignoring the final softmax layer. The JSC-L 
model has a latency of 13 ns for a clock period of 2.6 ns.

Finally, we compare the accuracy and resource consumption 
of a range of homogeneously quantized QKeras models, scanning 
bit-widths from 3 to 16. In Fig. 3 (left) the accuracy relative to the 
baseline model evaluated with floating-point precision is shown as 
a function of bit-width. This is shown for the accuracy as evalu-
ated offline using TensorFlow QKeras (green line) and the accuracy 
as evaluated on the FPGA (orange line). We compare this to the 
performance achievable using the baseline model and post-training 
quantization (purple dashed line). The markers represent the 
accuracy of the baseline, baseline pruned, baseline heterogeneous 
and AutoQKeras optimized models (again emphasizing that the 
AutoQKeras models use half as many neurons per layer as the base-
line Keras model). Models trained with QKeras retain performance 
very close to the baseline using as few as 6 bits for all weights, biases 
and activations. Accuracy degrades slightly down to 98% of the 
baseline accuracy at a precision of 3 bits.

Post-training homogeneous quantization of the baseline model 
shows a much more notable accuracy loss, with accuracy rapidly 
falling away below 14 bits. The model resource utilization as a func-
tion of bit-width for homogeneously quantized QKeras models is 
shown in the right plot in Fig. 3. The switch from DSPs to LUTs 
mentioned above is clearly visible: below a bit-width of ~10, MAC 
operations are moved from the DSPs to the LUTs and the critical 
resource consumption is considerably reduced. For example, in this 
case, using a model quantized to 6-bit precision will maintain the 
same accuracy while reducing resource consumption by ~70%. The 
symbols in Fig. 3 show the resource consumption of the heteroge-
neously quantized models. The only model comparable in accuracy 
and resource consumption to the AutoQKeras optimized models, 

Table 3 | Performance on a Xilinx VU9P FPGA (2), showing model accuracy, latency, resource utilization and relative energy estimate 
for six different models

Model Accuracy (%) Latencyc 
(ns)

Latency (clock 
cycles)

DSP (%) LUT (%) FF (%) EQK
EQK( Q6 )

PHLS
PHLS( Q6 )

BF 74.4 45 9 56.0 (1,826) 5.2 (48,321) 0.8 (20,132) – –

BP 74.8 70 14 7.7 (526) 1.5 (17,577) 0.4 (10,548) – –

BH 73.2 70 14 1.3 (88) 1.3 (15,802) 0.3 (8,108) – –

Q6 74.8 55 11 1.8 (124) 3.4 (39,782) 0.3 (8,128) 1.00 1.00

QE 72.3 55 11 1.0 (66) 0.8 (9,149) 0.1 (1,781) 0.27 0.30

QB 71.9 70 14 1.0 (69) 0.9 (11,193) 0.1 (1,771) 0.25 0.25

LogicNets JSC-M47 70.6 NAa NA 0 (0) 1.2 (14,428) 0.02 (440) – –

LogicNets JSC-L47 71.8 13b 5 0 (0) 3.2 (37,931) 0.03 (810) – –
aNot evaluated. bUsing a clock frequency of 384 MHz. cThe latency is evaluated for a clock cycle of 200 MHz. Resources are listed as percentage of total, with absolute numbers quoted in parentheses. The 
energy is estimated relative to the Q6 model and correspond to the relative energy computed using QTools (second to last column) and the relative power estimate from the post place-and-route report 
from Vivado (last column).

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell


ArticlesNATuRE MACHinE InTELLigEnCE

QE and QB, is the baseline heterogeneous (BH). However, in con-
trast to the QKeras models, BH has been pruned to a weight sparsity 
of 70%, which further reduces the resource consumption (all zero 
multiplications are removed). In addition, the process of manually 
quantizing a model post-training is time-consuming and cumber-
some, and not guaranteed to always succeed due to its lossy nature. 
AutoQKeras and hls4ml allow us to quantize automatically through 
quantization-aware training, with specific tolerances in terms of 
accuracy and area, greatly simplifying the process.

In ref. 69, the QKeras and hls4ml workflow has been dem-
onstrated on convolutional architectures benchmarked on the 
Streetview House Numbers dataset70, both on large FPGAs and small 
system-on-chip FPGAs. High accuracy matching the floating-point 
model accuracy can be maintained down to 6-bit precision with 
QKeras, executed with a latency of 5 μs. For larger convolutional 
architectures like ResNet66, hls4ml does not scale due to the very 
low latency target and the fully on-chip implementation used to 
obtain this. Our main application is the efficient implementation of 
smaller, custom models targeting latencies of O(10) ns to O(1) μs.

Conclusion and future work
We have introduced a novel library, QKeras, providing a simple 
method for uncovering optimally heterogeneously quantized DNNs 
for a set of given resource or accuracy constraints. Through simple 
replacement of Keras layers, models with heterogeneous per-layer, 
per-parameter type precision, chosen from a wide range of novel 
quantizers, can be defined and trained quantization-aware. A model 
optimization algorithm that considers both model area and accuracy 
is presented, allowing users to maximize the model performance 
given a set of resource constraints, crucial for high-performance 
inference on edge. Support for these quantized models has been 
implemented in hls4ml, providing the necessary chip layout instruc-
tion components to enable ultrafast inference of these tiny-footprint 
models on a chip. We have demonstrated how on-chip resource 
consumption can be reduced by a factor of 50 without much loss in 
model accuracy while performing inference within O(10) ns. The 
methods presented here provide crucial tools for inference on the 
extreme low-area and low-latency edge, like that in particle detec-
tors where a latency of O(1) μs is enforced. Taking a pre-trained 
model and making it suitable for hardware implementation on the 
edge, both in terms of latency and size, is one of the bottlenecks 
for bringing ML applications into extremely constrained computing 

environments (for example, a detector at a particle collider), and 
the workflow presented here will allow for a streamlined and simple 
process, ultimately resulting in a great improvement in the quality 
of physics data collected in the future.

The generality and flexibility of the QKeras+hls4ml work-
flow opens up a wide array of possible future work. This includes 
integration with other quantization libraries targeting non-FPGA 
hardware, such as TensorFlow Lite, as well as those targeting FPGA 
synthesis, such as FINN (and the quantization library Brevitas) and 
HAQ. In addition, while the energy estimator provides a good base-
line for relative energy consumption, as demonstrated, we hope to 
extend the library to provide more device-specific absolute energy 
estimates. We also plan to explore using a combination of block 
energy and the curvature of the weight space, as done in HAQ, when 
quantizing a network one block at a time. Finally, work is ongoing to 
use the QKeras+hls4ml workflow to deploy ML algorithms for the 
next data-taking period at CERN LHC both on FPGAs and ASICs.

Methods
Additional layers, quantizers and methods in QKeras. In this section, we will 
give an overview of the available layers, quantizers and methods in QKeras. A 
summary of available layers in QKeras is listed in Extended Data Fig. 3.

For several quantizers (including quantized_bits), a parameter called  
keep_negative can be set.

If keep_negative is true, negative numbers are not clipped. With a lower 
number of bits, the rounding adds more bias to the number system. Reference 71 
suggested using stochastic rounding, which uses the fractional part of the number 
as a probability to round the number up or down.

Stochastic rounding for quantized_bits quantizers can be turned on by setting 
use_stochastic_rounding = True. However, when an efficient hardware or software 
implementation is considered, this flag should be avoided in activation functions as 
it may affect the implementation efficiency.

Activations have been migrated to QActivation, but activation parameters 
passed directly in convolutional and dense layers will be recognized as well.

The bernoulli and stochastic functions rely on stochastic versions of the 
activation functions, so they are best suited for weights and biases. They draw a 
random number with uniform distribution from sigmoid of the input x, adding 
additional regularization. The result is based on the expected value of the 
activation function. The temperature parameter determines the steepness of the 
sigmoid function.

The quantizers quantized_relu and quantized_tanh are quantized versions of 
ReLU61 and tanh functions, respectively.

The quantized_po2 and quantized_relu_po2 quantizers perform exponent 
quantization, as defined in ref. 72. The main advantage of this quantizer is that it 
provides a representation that is very efficient for multiplication. The parameter 
max_value defines maximum value.
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It should also be noted that the QSeparableConv2D layer is implemented as a 
depthwise, followed by pointwise quantized expansions, which is an extended form 
of the SeparableConv2D implementation of MobileNet73. The reason we chose to 
use this version is that MobileNet’s SeparableConv2D has an activation between 
the depthwise convolution and the pointwise convolution, where we need to at 
least apply some form of quantization.

Besides the drop-in replacement of Keras layers, we have written a few utility 
functions.

The model_quantize function converts a non-quantized model into a quantized 
version, by applying a specified configuration for layers and activations. The 
method model_save_quantized_weights saves the quantized weights in the model 
compatible with an inference or writes the quantized weights in the file filename 
for production. The method load_qmodel loads and compiles the quantized Keras 
model. The methods print_model_sparsity and print_qstats print sparsity for the 
pruned layers in the model and statistics of the number of operations per operation 
type and layer. Meanwhile, quantized_model_debug allows for debugging and 
plotting model weights and activations. Finally, extract_model_operations 
estimates which operations are required for each layer of the quantized model, for 
example xor, mult, adder and so on.

Variance shift handling in QKeras. A critical aspect when training quantized 
versions of tensors and trainable parameters is the variance shift. During training 
with very few bits, the variance may shift a lot from its initialization. With popular 
initialization methods, such as glorot_normal, during the initial steps of the 
training, all of the output tensors will become zero. Consequently, the network will 
not be trained. For example, in a VGG network74, the fully connected layers have 
4,096 elements, and any quantized representation with fewer than 6 bits will turn 
the output of these layers to 0, as log2(

√

(4, 096)) = 6. For layer i and minimum 
quantization threshold Δ, the weights wi are quantized by quantizer(wi) operation. 
When the gradient is computed, the quantized weights will appear as a result of 
the chain rule computation, as depicted in Extended Data Fig. 2. With the absolute 
values of all weights below Δ, the gradient will vanish in all layers that transitively 
generate the inputs to layer i. This applies to any large DNN.

QKeras mitigates this challenge by rescaling the initialized weights 
appropriately. The parameter alpha is used as a scaling factor. It can be considered 
as a way to compute a shared exponent when used in weights75. It can be set 
to a given value manually, or overridden by setting it to auto or auto_po2. 
With alpha = ‘auto’, we compute the scale as ∑q(x)x/∑q(x)q(x) as in ref. 24 for 
the quantization function q, with a different value for each output channel or 
output dimension of tensor x. This provides a learned scaling factor that can be 
used during training. With alpha = ‘auto_po2’19, the scaling factor is set to be a 
power-of-2 number.

For the ternary and stochastic_ternary quantizers, we iterate between scale 
computation and threshold computation, as presented in ref. 76, which searches for 
the threshold and scale tolerant to different input distributions. This is especially 
important when we need to consider that the threshold shifts depending on 
the input distribution, affecting the scale as well, as pointed out by ref. 77. When 
computing the scale in these quantizers with alpha = ‘auto’, we compute the scale 
as a floating-point number. With alpha = ‘auto_po2’, we enforce the scale to be a 
power of 2, meaning that an actual hardware or software implementation can be 
performed by just shifting the result of the convolution or dense layer to the right 
or left by checking the sign of the scale (positive shifts left, negative shifts right), 
and taking the log2 of the scale. This behaviour is compatible with shared exponent 
approaches, as it performs a shift adjustment to the channel.

Data availability
The data used in this study are openly available at Zenodo58 from https://doi.
org/10.5281/zenodo.3602260.

Code availability
The QKeras library, which also includes AutoQKeras and QTools, is available 
from https://github.com/google/qkeras (the work presented here uses 
QKeras version 0.7.4). Examples on how to run the library are available in the 
notebook subdirectory. The hls4ml library is available at https://github.com/
fastmachinelearning/hls4ml and all versions ≥0.2.1 support QKeras models 
(the work presented here is based on version 0.2.1). For examples on how to use 
QKeras models in hls4ml, the notebook part4_quantization at https://github.com/
fastmachinelearning/hls4ml-tutorial serves as a general introduction.
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Extended Data Fig. 1 | Model architecture and quantization. Model architecture for the fully-connected NN architecture under study. The numbers in 
brackets are the precisions used for each layer, quoted as 〈B, I〉, where B is the precision in bits and I the number of integer bits. When different precision 
is used for weights and biases, the quantization is listed as w and b, respectively. These have been obtained using the per-layer, per-parameter type 
automatic quantization procedure described in Section VI.
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Extended Data Fig. 2 | Variance shift. Variance shift and the effect of initialization in gradient descent.
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Extended Data Fig. 3 | Layers and quantisers in QKeras. List of available layers and quantizers in QKeras.
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Extended Data Fig. 4 | ROC curves for the models under study. ROC curves of false positive rate (FPR) versus true positive rate (TPR) for the Baseline Full 
(BF), quantized 6-bit (Q6), AutoQKeras Energy Optimized (QE) and AutoQKeras Bits Optimized (QB) models.
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