
Articles
https://doi.org/10.1038/s42256-021-00356-5

1Palo Alto Networks, Palo Alto, CA, USA. 2Google LLC, Mountain View, CA, USA. 3California Institute of Technology (Caltech), Pasadena, CA, USA.
4European Organization for Nuclear Research (CERN), Geneva, Switzerland. 5Institute of Physics, Belgrade, Serbia. ✉e-mail: thea.aarrestad@cern.ch

With edge computing, real-time inference of deep neu-
ral networks (DNNs) on custom hardware has become
increasingly relevant. Smartphone companies are

incorporating artificial intelligence (AI) chips in their design
for on-device inference to improve user experience and tighten
data security, and the autonomous vehicle industry is turning to
application-specific integrated circuits (ASICs) to keep the latency
low. Although the typical acceptable latency for real-time infer-
ence in applications like those above is O(1)ms (refs. 1,2), other
applications may require submicrosecond inference. For example,
high-frequency trading machine learning (ML) algorithms are
running on field-programmable gate arrays (FPGAs) to make
decisions within nanoseconds3. At the extreme inference spectrum
end of both the low latency (as in high-frequency trading) and
limited area (as in smartphone applications) is the processing
of data from proton–proton collisions at the Large Hadron Collider
(LHC) at CERN4. In the particle detectors around the LHC
ring, tens of terabytes of data per second are produced from
collisions occurring every 25 ns. This extremely large data rate is
reduced by a real-time event filter processing system—the trig-
ger—which decides whether each discrete collision event should be
kept for further analysis or be discarded. Data are buffered close to
the detector while the processing occurs, with a maximum latency
of O(1) μs to make the trigger decision. High selection accuracy
in the trigger is crucial to keep only the most interesting events
while keeping the output bandwidth low, reducing the event rate
from 40 MHz to 100 kHz. In 2027, the LHC will be upgraded
from its current state, capable of producing up to one billion
proton–proton collisions per second, to the so-called High
Luminosity-LHC (HL-LHC)5. This will involve increasing the
number of proton collisions occurring every second by a factor of

five to seven, ultimately resulting in a total amount of accumulated
data one order of magnitude higher than what is possible with the
current collider. With this extreme increase, ML solutions are being
explored as fast approximations of the algorithms currently in use
to minimize the latency and maximize the precision of tasks that
can be performed.

Hardware used for real-time inference in particle detec-
tors usually has limited computational capacity due to size con-
straints. Incorporating resource-intensive models without a loss in
performance poses a great challenge. In recent years, many devel-
opments have aimed at providing efficient inference from an algo-
rithmic point of view. This includes compact network design6–10,
weight and filter pruning11,12 or quantization. In post-training
quantization13–17, the pre-trained model parameters are trans-
lated into lower-precision equivalents. However, this process
is, by definition, lossy, and it sacrifices model performance.
Therefore, solutions to do quantization-aware training have
been suggested18–27. In these, a fixed numerical representation is
adopted for the whole model, and the model training is performed
enforcing this constraint during weight optimization. More
recently28–31, it has been argued that some layers may be more
accommodating for aggressive quantization, whereas others may
require more expensive arithmetic. This suggests that per-layer
heterogeneous quantization is the optimal way to achieve higher
accuracy at low resource cost, but it may require further specializa-
tion of hardware resources.

In this Article, we introduce a novel workflow for finding
the optimal heterogeneous quantization per layer and per
parameter type for a given model, and deploy that model on
FPGA hardware. Through minimal code changes, the model
footprint is minimized while retaining high accuracy, and then

Automatic heterogeneous quantization of deep
neural networks for low-latency inference on the
edge for particle detectors
Claudionor N. Coelho Jr1, Aki Kuusela2, Shan Li2, Hao Zhuang2, Jennifer Ngadiuba   3,
Thea Klaeboe Aarrestad   4 ✉, Vladimir Loncar4,5, Maurizio Pierini4, Adrian Alan Pol   4 and
Sioni Summers4

Although the quest for more accurate solutions is pushing deep learning research towards larger and more complex algorithms,
edge devices demand efficient inference and therefore reduction in model size, latency and energy consumption. One technique
to limit model size is quantization, which implies using fewer bits to represent weights and biases. Such an approach usually
results in a decline in performance. Here, we introduce a method for designing optimally heterogeneously quantized versions
of deep neural network models for minimum-energy, high-accuracy, nanosecond inference and fully automated deployment
on chip. With a per-layer, per-parameter type automatic quantization procedure, sampling from a wide range of quantizers,
model energy consumption and size are minimized while high accuracy is maintained. This is crucial for the event selection
procedure in proton–proton collisions at the CERN Large Hadron Collider, where resources are strictly limited and a latency
of O(1) μs is required. Nanosecond inference and a resource consumption reduced by a factor of 50 when implemented on
field-programmable gate array hardware are achieved.

Nature Machine Intelligence | www.nature.com/natmachintell

mailto:thea.aarrestad@cern.ch
http://orcid.org/0000-0002-0055-2935
http://orcid.org/0000-0002-7671-243X
http://orcid.org/0000-0002-9034-0230
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-021-00356-5&domain=pdf
http://www.nature.com/natmachintell

Articles NATuRE MACHinE InTELLigEnCE

translated into low-latency firmware. This Article makes the follow-
ing contributions:

•	 We implement a range of quantization methods in a common
library, providing a broad base from which optimal quantiza-
tions can easily be sampled.

•	 We introduce a novel method for finding the optimal hetero
geneous quantization for a given model, resulting in minimum
area or minimum power DNNs while maintaining high accuracy.

•	 We have made these methods available online in easy-to-use
libraries, called QKeras and AutoQKeras60, where simple drop-in
replacement of Keras32 layers makes it straightforward for users
to transform Keras models to their equivalent deep heterogene-
ously quantized versions, which are trained quantization-aware.
Using AutoQKeras, a user can trade off accuracy by model size
reduction (for example, area or energy).

•	 We have added support for quantized QKeras models in the
library, hls4ml13, which converts these pre-trained quantized
models into highly parallel FPGA firmware for ultralow-latency
inference.

To demonstrate the substantial practical advantages of these tools
for high-energy physics and other inference on the edge applications:

•	 We conduct an experiment consisting of classifying events in an
extreme environment, namely the triggering of proton–proton
collisions at the CERN LHC, where resources are limited and a
maximum latency of O(1)μs is imposed.

•	 We show that inference within 60 ns and a reduction of the model
resource consumption by a factor of 50 can be achieved through
automatic heterogeneous quantization, while maintaining simi-
lar accuracy (within 3% of the floating-point model accuracy).

•	 We show that the original floating-point model accuracy can
be maintained for homogeneously quantized DNNs down to a
bit-width of six while reducing resource consumption by up to
75% through quantization-aware training with QKeras.

The proposed pipeline provides a novel, automatic end-to-end
flow for deploying ultralow-latency, low-area DNNs on chip. This
will be crucial for the deployment of ML models on FPGAs in parti-
cle detectors and other fields with extreme inference and low-power
requirements.

In the remainder of the Article we discuss previous work related
to model quantization and model compression with a focus on work
related to triggering in particle detectors, we uncover the novel
library for training ultralow-latency optimally heterogeneously
quantized DNNs (QKeras), we describe the procedure of auto-
matic quantization for optimizing model size and accuracy simul-
taneously and, finally, we deploy these optimally quantized QKeras
models on an FPGA and evaluate their performance.

Motivation
The hardware triggering system in a particle detector at the CERN
LHC is one of the most extreme environments in which one can
imagine deploying DNNs. Latency is restricted to O(1) μs, gov-
erned by the frequency of particle collisions and the number of
on-detector buffers. The system consists of a limited amount of
FPGA resources, all of which are located in underground caverns
50–100 m below the ground surface, where they work on thousands
of different tasks in parallel. Because of the high number of tasks
being performed, limited cooling capabilities, limited space in the
cavern and the limited number of processors, algorithms must be
kept as resource-economic as possible. To minimize the latency and
maximize the precision of tasks that can be performed in the hard-
ware trigger, ML solutions are being explored as fast approximations
of the algorithms currently in use. To simplify the implementation

of these, a general library for converting pre-trained ML models
into FPGA or ASIC firmware has been developed—hls4ml13. The
package comprises a library of optimized C++ code for common
network layers, which can be synthesized through a high-level syn-
thesis (HLS) tool. Converters are provided for multiple model for-
mats, like TensorFlow33, Keras32, PyTorch34 and ONNX35.

Although there are other libraries for the translation of ML mod-
els to FPGA firmware, as summarized in refs. 36–39, hls4ml targets
extreme low-latency inference to stay within the strict constraints
of O(1) μs imposed by the hardware trigger systems. In addition,
the unique aspect of hls4ml is the support for multiple HLS-vendor
backends like Xilinx Vivado HLS, Intel Quartus HLS40 and Mentor
Catapult HLS41, all of which are in use at the LHC experiments. The
Vivado HLS backend is the most advanced and therefore the one
used in this Article.

The hls4ml inference architecture is introduced in ref. 13. A
model-specific, layer-unrolled architecture is used to produce
ultralow-latency, resource-efficient inference engines for particle
physics. The computation for each NN layer is carried out in dis-
tinct hardware elements of the target device, which allows for high
computational throughput through the layer pipeline, as well as a
fine-grained configuration of each layer (including quantization).
A simple handle, named ‘Reuse Factor’ enables users to control
the parallelization of the computation, again at a per-layer level. In
the fully parallel model, using a Reuse Factor of 1, each individual
multiplication of the NN layers is carried out on different resources
(whether FPGA digital signal processors (DSPs) or lookup tables
(LUTs)). With a Reuse Factor greater than 1, multiplication elements
are reused sequentially to reduce the resource cost, at the expense
of latency and throughput. This simple handle enables rapid design
space exploration as well as configurability to target-specific con-
straints in the available resources, latency and throughput.

In addition, data access at the NN input and output, as well as data
movement between NN layers, can be configured to be fully parallel
or fully serial. The former option is used to target ultralow-latency,
high-throughput inference in the real-time processing of particle
physics experiments, while the latter can be used to fit larger NN
models within the available FPGA resources when ultralow latency
is not as much of a constraint.

The hls4ml library is implemented as a Python package to facili-
tate ease of use for non-experts, as well as consistency with other
popular deep learning libraries. The first step in the conversion
into FPGA firmware consists of translating a given model into an
internal representation of the network graph. During this conver-
sion, user-specified optimization configurations are attached to the
model, such as the choice of quantization and parallelization. The
internal representation is written out into an HLS project, assign-
ing the appropriate layers of the target NN and the user configu-
ration. This HLS project can then be synthesized with the FPGA
vendor tools, generating an IP core that can be used in the target
application. Many commonly used NN layers are supported: Dense,
Convolution, BatchNormalization and several Activation layers. In
addition, domain-specific layers can be easily added, one example
being compressed distance-weighted graph networks42.

In hls4ml, the precision used to represent weights, biases, activa-
tions and other components is configurable through post-training
quantization, replacing the floating-point values by lower-precision
fixed-point ones. This allows compression of the model size, but to
some extent sacrifices accuracy. Recently, support for binary and
ternary precision DNNs43 trained quantization-aware has been
included in the library. This greatly reduces the model size, but
requiring such an extremely low precision of each parameter type
sacrifices accuracy and generalization.

As demonstrated in refs. 28–31, mixed-precision quantization (that
is, keeping some layers at higher precision and some at lower preci-
sion) is a promising approach to achieve smaller models with high

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

ArticlesNATuRE MACHinE InTELLigEnCE

accuracy. However, finding the optimal heterogeneous quantiza-
tion per layer and per parameter type, here referred to as ‘quantiza-
tion configuration’, is extremely challenging, with the search space
increasing exponentially with the number of layers in a model30.
A solution for finding the mixed quantization configuration that
yields the best generalization and accuracy using the Hessian spec-
trum is proposed in ref. 30. For ML applications in hardware trig-
gering systems, the resources one has at disposal, as well as the
minimum tolerable model accuracy, are usually known. Finding
the best model for a given task is therefore a fine compromise
between the desired model compression and accuracy with respect
to the floating-point-based model. Both factors must be considered
when tuning quantization. The goal of this work is thus to provide a
method for finding the optimal mixed-precision configuration for a
given model, accounting for both the desired model size and accu-
racy when optimizing the architecture, and to transform these into
highly parallel firmware for ultralow-latency inference on chip.

Related work
Closely related to the work presented here are the FINN44 and
FINN-R45 frameworks from Xilinx Research Labs, which aim to
deploy quantized neural networks on Xilinx FPGAs. The same
group have also developed a library for quantization-aware train-
ing, Brevitas46, based on PyTorch model formats. The LogicNets
design flow47, also from Xilinx Research Labs, allows for the train-
ing of quantized DNNs that map to highly efficient Xilinx FPGA
implementations. A comparison between the approach presented
here and LogicNets is provided in the section ‘Ultralow-latency,
quantized model on FPGA hardware’. The FP-DNN48 framework
takes TensorFlow33-described DNNs as input and maps them onto
FPGAs. The open-source alternative, DNNWeaver49, automati-
cally generates accelerator Verilog code using optimized templates.
Other frameworks focusing on the mapping of convolutional
architectures onto efficient hardware design include Snowflake50,
fpgaConvNet51–53 and ref. 54. For other work on FPGA DNN infer-
ence, we refer to refs. 36–39,55. TensorFlow Lite56 is a set of tools for
on-device inference with low latency and small binary sizes, tar-
geting mobile, embedded and Internet of Things (IoT) devices.
Currently, TensorFlow Lite supports deployment on Android and
iOS devices, embedded Linux and microcontrollers.

Our approach differs from those above with its emphasis on
being a multi-backend tool, embracing a fully on-chip design to
target the microsecond latency imposed in physics experiments.
The hls4ml library is completely open-source, and aims to provide
domain scientists with easy-to-use software for deploying highly
efficient ML algorithms on hardware.

In HAQ28, a hardware-aware automated framework for quanti-
zation is introduced. The automization procedure consists of com-
puting the curvature of the weight space of a layer, assuming a low
curvature will require a lower bit precision for the weights. Our
approach differs from HAQ by combining reduced bit precision
with filter or neuron unit tuning, where the number of filters or
neurons can be automatically tuned during the scan. In this case, the
problem becomes highly nonlinear, and we therefore take advan-
tage of an AutoML-type of approach. A Bayesian optimization or

randomized search is performed to find a solution that encompasses
the precision used for the weights and activations, and the number
of units or filters of the layer.

Particle identification in the hardware trigger
A crucial task performed by the trigger system that could be greatly
improved by a ML algorithm, both in terms of latency and accu-
racy, is the identification and classification of particles coming from
each proton–proton collision. In this Article, we analyse the pub-
licly available dataset introduced in refs. 13,57. Here, a dataset58 for
the discrimination of jets, a collimated spray of particles, stemming
from the decay and/or hadronization of five different particles was
presented. This consists of quark (q), gluon (g), W boson, Z boson
and top (t) jets, each represented by 16 physics-motivated high-level
features. In ref. 13, this dataset was used to train a DNN for deploy-
ment on a Xilinx FPGA. This model was compressed through
post-training quantization to further reduce the FPGA resource
consumption and provides a baseline to measure the benefits of
quantization-aware training with heterogeneous quantization, over
post-training quantization.

Adopting the same architecture as in ref. 13, we use a fully con-
nected neural network consisting of three hidden layers (64, 32 and
32 nodes, respectively) with rectified linear unit (ReLU) activation
functions. The architecture is shown in Extended Data Fig. 1. The
output layer has five nodes, yielding a probability for each of the five
classes through a softmax activation function. The model definition
in TensorFlow Keras is given in Listing 1.

As in ref. 13, the weights of this network are homogeneously
quantized post-training to a fixed-point precision yielding the best
compromise between accuracy, latency and resource consump-
tion. This is found to be a fixed-point precision, or bit-width, of
14 bits with 6 integer bits, in the following referred to as 〈14, 6〉.
We refer to this configuration as the baseline full model (BF). We
then train a second pruned version of the BF model, here referred
to as baseline pruned (BP). This model has 70% of its weights set to
zero through an iterative process where small weights are removed
using the TensorFlow Pruning application programming inter-
face59, following ref. 13. This reduces the model size and resource
consumption considerably, as all zero-multiplications are excluded
during the firmware implementation. We then create one hetero-
geneously quantized version of the BP model, where each layer is
quantized independently post-training to yield the highest accu-
racy possible at the lowest resource cost. We start with an initial
configuration of the model quantization using a wide bit-width,
then iteratively reduce the bit-width until reaching a threshold in
accuracy loss relative to the initial floating-point model, evaluated
on the training set. We iterate over the model in layer order, finding
the appropriate precision for weights, biases and output of a given
layer, before moving to the next. We apply a more strict thresh-
old in accuracy for earlier layers, because each round of precision
reduction only degrades the accuracy. In this case we restrict to a
1% accuracy difference in the first layer, loosening to 2% for the
final layer. This model is referred to as the baseline heterogeneous
(BH) model. A summary of the per-layer quantizations for the
baselines is provided in Table 1.

Table 1 | Per-layer quantization for post-training quantized models

Model Precision

Dense ReLU Dense ReLU Dense ReLU Dense Softmax

BF/BP 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉

BHa w:〈8, 3〉 b:〈4, 2〉 〈13, 7〉 〈7, 2〉 〈10, 5〉 〈5, 2〉 〈8, 4〉 w:〈7, 3〉 b:〈4, 1〉 〈16, 6〉

When different precision is used for weights and biases, the quantization is listed as w and b, respectively.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

Articles NATuRE MACHinE InTELLigEnCE

From ref. 13, we know that a post-training quantization of this
model results in a degradation in model accuracy. The smaller the
model footprint is made through post-training quantization, the
larger the accuracy degradation becomes. To overcome this, we
develop a novel library that, through minimal code changes, allows
us to create deep heterogeneously quantized versions of the Keras
model, trained quantization-aware.

In addition, as the amount of available resources on chip
is known in advance, we want to find the optimal model for a
given use-case allowing a trade-off between model accuracy
and resource consumption. We therefore design a method for
performing automatic quantization, minimizing the model area
while maximizing accuracy simultaneously through a novel loss
function. These solutions, simple heterogeneous quantization-
aware training and automatic quantization are explained in the
following sections.

Keras32 is a high-level application programming interface
designed for building and training deep learning models. It is used
for fast prototyping, advanced research and production. To simplify
the procedure of quantizing Keras models, we introduce QKeras60:
a quantization extension to Keras that provides a drop-in replace-
ment for layers performing arithmetic operations. This allows for
efficient training of quantized versions of Keras models.

QKeras is designed using the design principle of Keras—that
is, being user-friendly, modular, extensible and minimally intru-
sive to Keras native functionality. The code is based on the work
of refs. 18,22, but provides a substantial extension to these. This
includes providing a richer set of layers (for instance, including
ternary and stochastic ternary quantization), extending the func-
tionality by providing functions to aid the estimation of model area
and energy consumption, allowing for simple conversion between
non-quantized and quantized networks, and providing a method
for performing automatic quantization. Importantly, the library
is written in such a way that all the QKeras layers maintain a true
drop-in replacement for Keras ones so that minimal code changes
are necessary, greatly simplifying the quantization process. During
quantization, QKeras uses the straight-through estimator19, where
the forward pass applies the quantization functions and the back-
ward pass assumes the quantization as the identity function to make
the gradient differentiable.

For the model in Listing 1, creating a deep quantized version
requires just a few code changes. An example conversion is shown
in Listing 2.

Listing 1. Defining a model in Keras: TensorFlow Keras model
definition

from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.layers import BatchNormalization
x = Input((16))
x = Dense(64)(x)
x = BatchNormalization()(x)
x = Activation(‘relu’)(x)
x = Dense(32)(x)
x = BatchNormalization()(x)
x = Activation(‘relu’)(x)
x = Dense(32)(x)
x = BatchNormalization()(x)
x = Activation(‘relu’)(x)
x = Dense(5)(x)
x = Activation(‘softmax’)(x)

Obtaining optimal heterogeneous quantization
The necessary code modifications consist of typing Q in front of
the original Keras data manipulation layer name and specifying the
appropriate quantization type, for instance, the kernel_quantizer
and bias_quantizer parameters in a QDense layer. We change only
data manipulation layers that perform some form of computation
that may change the data input type and create variables (trainable
or not). Data transport layers, namely layers performing some form
of change of data ordering, without modifying the data itself, remain
the same, for example Flatten. When quantizers are not specified,
no quantization is applied to the layer and it behaves as the unquan-
tized Keras layer. The only exception is the QBatchNormalization
layer. Here, when no quantizers are specified, a power-of-2 quan-
tizer is used for the trainable parameters of the batch normaliza-
tion layer, γ and β, as well as for the emperical variance σ, while
the emperical mean μ remains unquantized. This has worked best
when attempting to implement quantization efficiently in hardware
and software (γ and σ become shift registers and β maintains the
dynamic range aspect of the centre parameter)

Listing 2. Defining a model in QKeras: quantized QKeras
model example.

from tensorflow.keras.layers import Input, Activation
from qkeras import quantized_bits
from qkeras import QDense, QActivation
from qkeras import QBatchNormalization
x = Input((16))
�x = QDense(64, kernel_quantizer = quantized_bits(6,0,alpha=1),  
bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x = QBatchNormalization()(x)
x = QActivation(‘quantized_relu(6,0)’)(x)
�x = QDense(32, kernel_quantizer = quantized_bits(6,0,alpha=1),
bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x = QBatchNormalization()(x)
x = QActivation(‘quantized_relu(6,0)’)(x)
�x = QDense(32, kernel_quantizer = quantized_bits(6,0,alpha=1),
bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x = QBatchNormalization()(x)
x = QActivation(‘quantized_relu(6,0)’)(x)
�x = QDense(5, kernel_quantizer = quantized_bits(6,0,alpha=1),
bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x = Activation(‘softmax’)(x)
The second code change is to pass appropriate quantizers, for

example quantized_bits. In the example above, QKeras is instructed
to quantize the kernel and bias to a bit-width of 6 and 0 integer
bits. The parameter alpha can be used to change the absolute scale
of the weights while keeping them discretized within the chosen
bit-width. For example, in a binary network, rather than using
the representations ±1, one can use ±alpha. In QKeras, by setting

–1.0 –0.5 0 0.5 1.0 1.5 2.0
x

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

ReLU
quantized_relu(bits=2, integer=0)
quantized_relu(bits=3, integer=0)
quantized_relu(bits=3, integer=1)
quantized_relu(bits=6, integer=0)

Fig. 1 | Quantized ReLU function in QKeras. The quantized_relu function
as implemented in QKeras for 2-bit (purple), 3-bit (green and blue) and
6-bit (yellow) precision and for 0 or 1 integer bits. The unquantized ReLU
function is shown for comparison (orange).

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

ArticlesNATuRE MACHinE InTELLigEnCE

alpha=‘auto’, we also allow for the value of alpha to be computed
during training from the absolute scale of the weights in ques-
tion. Further details are provided in the Methods and illustrated in
Extended Data Fig. 2.

QKeras works by tagging all variables, weights and biases created
by Keras, as well as the output of arithmetic layers, with quantized
functions. Quantized functions are specified directly as layer para
meters and then passed to QActivation, which acts as a merged
quantization and activation function. Quantizers and activation
layers are treated interchangeably. To minimize code changes,
the quantizers’ parameters have carefully crafted and pre-defined
defaults or are computed internally for optimal set-up.

The quantized_bits quantizer used above performs mantissa
quantization:

2int−b+1clip(round(x× 2b−int−1),−2b−1, 2b−1
− 1), (1)

where x is the input, b specifies the number of bits for the quantiza-
tion, and ‘int’ specifies how many bits of bits are to the left of the
decimal point.

The quantizer used for the activation functions in Listing 2, quan-
tized_relu, is a quantized version of ReLU61. Two input parameters
are passed, namely the precision, in this case 6 bits, and number of
integer bits, in this case zero, respectively. The class has further attri-
butes, for instance allowing for stochastic rounding of the activation
function, all of which are described in detail in ref. 60. Figure 1 shows
the quantized ReLU function for three different bit-widths and two
different numbers of integer bits.

Through simple code changes like those above, a large variety of
quantized models can be created. A full list of quantizers and layers
is provided in the Methods and listed in Extended Data Fig. 3 or in
the QKeras code repository60.

We use QKeras to create a range of deep homogeneously quan-
tized models, trained quantization-aware and based on the same
architecture as the baseline model, which will provide a direct com-
parison between post-training quantization and models trained
using QKeras. The model in Listing 2 is an example of such a homo-
geneously quantized model. Finally, we want to create an optimally
heterogeneously quantized QKeras model with a considerably
reduced resource consumption, without compromising the model
accuracy. The search space for finding such a configuration is large
and exponential in layers. We therefore attempt to automatize the
process by allowing users to scan through all the available quantiz-
ers in QKeras to find the configuration that fits the available chip
area while maintaining high accuracy.

Resource-aware automatic quantization
As described in the section ‘Motivation’, there are several meth-
ods for finding the optimal quantization configuration for a given
model. These usually proceed by calculating the sensitivity of a
given layer to quantization through evaluation of how small distur-
bances within that layer influence the loss function.

Often, as for example in refs. 29,30, only maximization of the model’s
accuracy and ability to generalize is considered. However, when doing
inference on the edge, resources are often limited and shared between
multiple applications. This is the case in particle detectors, where a
single FPGA is used to perform multiple different tasks. The desired
accuracy and size constraints of the model in question are known
in advance, and it is desirable to optimize the precision configura-
tion considering both model accuracy and size. Some methods, like
HAQ28, do perform such a hardware-aware optimization. However,
only the weight precision per layer is considered. When models are
strongly quantized, it is often the case that more or fewer filters in con-
volutional layers, or neurons in densely connected layers, are neces-
sary. A fine-tuning of the number of units per layer is therefore crucial
to achieve the highest possible accuracy at the lowest resource cost.

In this Article, we introduce a method for performing automatic
quantization where the user can trade off model area or energy con-
sumption by accuracy in an application-specific way. The per-layer
weight precision as well as the number of neurons or filters per layer
are optimized simultaneously. By defining a forgiving factor based
on the tolerated drop in accuracy for a given reduction in resource
cost, the best quantization configuration and number of units per
layer, for a set of given size or energy constraints, can be found. We
consider both energy minimization and bit-size minimization as a
goal in the optimization.

Approximating relative model energy consumption. To target a
reduction in model energy consumption, a high-level estimate of
the model energy is needed. Here, we only concern ourselves with
the difference in energy consumption when comparing models
using different quantizations, and not the absolute energy, as this is
highly hardware-specific. To this end, we assume an energy model
where the energy consumption of a given layer is defined as

Elayer = Einput + Eparameters + EMAC + Eoutput.

These correspond to the energy cost of reading inputs (Einput),
parameters (Eparameters) and output (Eoutput) and the energy required
to perform multiply-and-accumulate (MAC) operations (EMAC).
For the first three, in a similar way to compulsory accesses in cache
analysis62, we only consider the first access to the data, as only com-
pulsory accesses are independent of the hardware architecture and
memory hierarchy of an accelerator, when comparing models using
the same architecture. We also assume a fully unrolled implemen-
tation on the hardware (as is the case with hls4ml). For the MAC
energy estimation, we only consider the energy needed to compute
the MAC. We do not include the energy usage of registers, or glue
and pipeline logic that will affect the overall energy profile of the
device. For a given architecture, this energy consumption is known,
and here we assume a 45 nanometre processor and follow the energy
table given in ref. 63.

Although this model provides a good initial estimate, it has
high variance concerning the actual energy consumption one finds
in practice, especially for different architectural implementations.
However, when comparing the energy of two different models,
or models of different quantizations, both implemented in the
same technology, this simple energy model is sufficient. The rea-
son for this is that one can assume that the real energy of a layer
is some linear combination of the high-level energy model, that is,
EReallayer = k1 × Elayer + k2, where k1 and k2 are constants that depend
on the architecture of the accelerator and the implementation pro-
cess technology. The slope can be considered as a factor account-
ing for the additional storage needed to keep the model running,
and the offset corresponds to logic that is required to perform the
operations. When comparing the energy consumption of two lay-
ers with different quantizations, L1 and L2, for the same model
architecture, we have that ERealL1 > ERealL2 if, and only if, the estimated
energy EL1 > EL2.

For these reasons, only relative energy estimates are considered
during the automatic quantization, and users cannot target a spe-
cific energy value.

To facilitate easy estimation of the relative energy consumption
or model bit size when comparing different QKeras models, we have
implemented a tool in the QKeras library, QTools, which performs
both data type map generation and energy consumption estimation.
A data type map for weights, biases, multipliers and so on, is gen-
erated for each layer, and includes operation types, variable sizes,
quantizer types and bits. The output is an estimate of the per-layer
energy consumption in picojoules, as well as a dictionary of data
types per layer. Included in the energy calculation is a set of other
tunable specifications, such as whether parameters and activations

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

Articles NATuRE MACHinE InTELLigEnCE

are stored on static random-access memory (SRAM) or dynamic
random-access memory (DRAM), or whether data are loaded from
DRAM to SRAM. The precision of the input can also be defined for
a better energy estimate. A full list of options is available in ref. 60.
The QTools library provides an additional metric for model tuning
when both accuracy and energy consumption, or model size, need
to be considered.

Defining a forgiving factor. With the high-level estimate of a
given layer’s energy consumption provided by QTools, we define a
forgiving factor (FF) to be targeted during automatic quantization
of the model, providing a total loss function that combines energy
cost and accuracy. The FF allows one to tolerate a degradation in a
given metric, such as model accuracy, if the model gain in terms of
some other metric, like model size, is considerably larger. Here, we
allow the forgiving metric to be either minimization of the model
bit size or minimization of the model energy consumption. The FF
is defined as

FF = 1+∆acc × logR
(

S× Cref
Ctrial

)

, (2)

where Δacc is the tolerated reduction in accuracy in percent, R is the
factor stating how much smaller energy the optimized model must
have compared to the original model (as a multiplicative factor to
the FF metric) and S is a parameter to reduce the reference size,
effectively forcing the tuner to choose smaller models. Parameters
Cref and Ctrial refer to the cost (energy or bits) of the reference model
and the quantization trial model being tested, respectively. The FF
can be interpreted in the following way: if we have a linear tolerance
for model accuracy degradation (or any other performance metric),
we should be able to find a multiple of that degradation in terms of
the cost reduction of the implementation. This enables an automatic
quantization procedure to compensate for the loss in accuracy when
comparing two models, by acting as a multiplicative factor.

Automatic quantization and rebalancing are then performed by
treating quantization and rebalancing of an existing DNN as a hyper
parameter search in Keras Tuner64 using random search, hyper-
band65 or Gaussian processes. We design an extension to Keras
Tuner called AutoQKeras, which integrates the FF defined in equa-
tion (2) and the energy estimation provided by QTools. This allows
for simultaneously tuning of the model quantization configura-
tion and the model architecture. For example, AutoQKeras allows
for tuning of the number of filters in convolutional layers and the
number of neurons in densely connected layers. This fine-tuning is
critical, as when models are strongly quantized, more or fewer filters
might be needed. Fewer filters might be necessary in cases where a
set of filter coefficients are quantized to the same value.

Consider the example of quantizing two sets of filter coeffi
cients, [−0.3, 0.2, 0.5, 0.15] and [−0.5, 0.4, 0.1, 0.65]. If we apply a
binary quantizer with scale = ⌈log2(

∑
|w|
N)⌉, where w are the filter

coefficients and N is the number of coefficients, we will end up with
the same filter binary([−0.3, 0.2, 0.5, 0.15]) = binary([−0.5, 0.4, 0.1,
0.65]) = [−1, 1, 1, 1] × 0.5. In this case, we are assuming a scale is a
power-of-2 number so that it can be efficiently implemented as a
shift operation. On the other hand, more filters might be needed
as deep quantization drops information. To recover some of the
boundary regions in layers that perform feature extraction, more
filters might be needed when the layer is quantized. Finally, certain
layers are undesirable to quantize, often the last layer of a network.
In principle, we do not know if by quantizing a layer we need more
or fewer filters or neurons and, as a result, there are advantages to
treating these problems as co-dependent problems, as we may be
able to achieve a lower number of resources. Note that AutoQKeras
does not completely remove model layers.

In AutoQKeras, one can specify which layers to quantize by spec-
ifying the index of the corresponding layer in Keras. If attempting
to quantize the full model in a single shot, the search space becomes
very large. In AutoQKeras, there are two methods to cope with this:
grouping layers to use the same choice of quantization or quantiza-
tion by blocks. For the former, regular expressions can be provided
to specify layer names that should be grouped to use the same quan-
tization. In the latter case, blocks are quantized sequentially, either
from inputs to outputs or by quantizing higher energy blocks first. If
blocks are quantized one by one, assuming each block has N choices
and the model consists of B blocks, one only needs to try N × B,
rather than NB options. Although this is an approximation, it is a
reasonable trade-off considering the explosion of the search space
for individual filter selections, weight and activation quantization.

Whether to quantize sequentially from inputs to outputs or start-
ing from the block that has the highest energy impact depends on
the model. For example, for a network like ResNet66, and if filter
tuning is desirable, one needs to group the layers by the ResNet
block definition and quantize the model sequentially to preserve the
number of channels for the residual block. A few optimizations are
performed automatically during model training. First, we dynami-
cally reduce the learning rate for the blocks that have already been
quantized so that they are still allowed to train, but at a slower pace.
Also, we dynamically adjust the learning rate for the layer we are
trying to quantize as opposed to the learning rate of the unquan-
tized layers. Finally, we transfer the weights of the model blocks we
have already quantized, whenever possible (when shapes remain the
same).

We then use AutoQKeras to find the optimal quantization configu
rations for the baseline model for extremely resource-constrained
situations, one targeting a minimization of the model’s footprint in
terms of model energy (QE) and one minimizing the footprint in
terms of model bit size (QB), using the different available targets
in AutoQKeras. We want to reduce the resource footprint by at
least a factor of four while allowing the accuracy to drop by at most
5%. We also allow for tuning of the number of neurons for each
dense layer, for the same reason given above for model filter tuning.

Table 2 | Per-layer quantization and relative energy consumption for automatically quantized QKeras models, showing per-layer
quantization configuration and the relative model energy consumption for the AutoQKeras energy optimized (QE) and AutoQKeras
bits optimized (QB) models, compared to the simple homogeneously quantized model, Q6

Model Accuracy (%) Precision E
EQ6

Bits
BitsQ6

Dense ReLU Dense ReLU Dense ReLU Dense Softmax

QE 72.3 〈4, 0〉 〈4, 2〉 Ternary 〈3, 1〉 〈2, 1〉 〈4, 2〉 w: Stoc. bin. b:
〈8, 3〉

〈16, 6〉 0.27 0.18

QB 72.8 〈4, 0〉 〈4, 2〉 Stoc. bin. 〈4, 2〉 Ternary 〈3, 1〉 Stoc. bin. 〈16, 6〉 0.25 0.17

Q6 74.8 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 1.00 1.00

When different precision is used for weights and biases, the quantization is listed as w and b, respectively. Stoc. bin., stochastic binary quantization.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

ArticlesNATuRE MACHinE InTELLigEnCE

The model is quantized sequentially per block, where one block
consists of a Dense layer and a ReLU layer. The resulting quanti-
zation configuration is listed in Table 2. A very aggressive quanti-
zation configuration is obtained for both optimizations, with both
binary and ternary quantizers and a bit-width of four at maximum
for kernels. Despite the large search space, the obtained configura-
tions are very similar, as is to be expected due to the strong cor-
relation between model energy and bit size. Whenever an input or
the kernel has one (binary) or two (ternary) bits, we can completely
eliminate multiplication operations in an implementation, saving
valuable multiplier resources.

The preferred number of neurons per layer is half that of the
original (32, 16, 16 rather than 64, 32, 32).

We then compare the relative energy consumption and bit size
of the QE and QB models as computed with QTools with respect to
the simple homogeneously quantized model using a 6-bit precision
in Listing 2, hereby referred to as Q6.

The QE and QB model energy consumption is reduced by 75%
when compared to the Q6 model and, despite the aggressive quan-
tization and reduction in neurons per layer, only a ~3% degrada-
tion in accuracy is observed for both. The total bit size is reduced
by 80%. The QB model obtains a slightly smaller energy footprint
than the QE model, alluding to some degree of randomness when
scanning such a large search space. The relative power consump-
tion when implemented on FPGA hardware will be discussed in the
section ‘Ultralow-latency, quantized model on FPGA hardware’.

All the models presented so far are trained minimizing the cat-
egorical cross-entropy loss67 using the Adam optimizer68. A learn-
ing rate of 0.0001 is set as the starting learning rate. If there is no
improvement in the loss for ten epochs, the learning rate is reduced
by 50% until a minimum learning rate of 10−6 is reached. The batch
size is 1,024 and the training proceeds for 100 epochs. The train-
ing time for the models trained quantization-aware with QKeras is
increased by ×1.5 with respect to the Keras equivalent.

For particle detector trigger applications, it is often desirable to
operate the algorithm at very low false positive rates (FPRs), ensur-
ing that only the most interesting events are kept while staying
within the available trigger bandwidth. In Extended Data Fig. 4,
the classification performances of the BF, Q6, QE and QB models
for two different target classes, top (t) and gluon (g), are compared.
These classes were chosen as the ones where the original network,
introduced in ref. 13, had the highest and lowest area under the curve
(AUC) scores, respectively. Specifically, the receiver operating char-
acteristic (ROC) curves of FPR versus true positive rate (TPR), and
the corresponding AUC, are shown. The classification performance
of the Q6 model is almost identical to that of the BF model for FPRs
down to 0.1%. The QE and QB models perform slightly worse, with

AUC scores 0.02 points lower than for Q6 and BF. For a fixed FPR
of 1%, the TPR for BF/Q6 is 60% and is 55% for QE/QB. No nota-
ble degradation at very low FPR, where typical trigger algorithms
would be operated, is observed.

With AutoQKeras, we give the user full flexibility to optimize
the quantization configuration for a given use-case. An estimate
of the model size and energy consumption can be computed using
QTools and the user can then proceed by instructing AutoQKeras
as to how much energy or bits it is desirable to save, given a certain
accuracy-drop tolerance. Going from a pre-defined Keras model to
an optimally quantized version (based on available resources) that
is ready for chip implementation is made extremely simple through
these libraries.

The final, crucial step in this process is to take these quantized
models and make it simple to deploy them in the trigger system
FPGAs (or any hardware) while making sure the circuit layout is
optimal for the ultralow-latency constraint. We will address this in
the following section.

Ultralow-latency, quantized model on FPGA hardware
To achieve ultralow-latency inference of QKeras models on FPGA
firmware, we introduce full integration of QKeras layers in the
hls4ml library. The libraries, together, provide a streamlined pro-
cess for bringing quantized Keras models into particle detector trig-
gering systems, while staying within the strict latency and resource
constraints and performing high-accuracy inference.

When converting a QKeras model to an HLS project, the model
quantization configuration is passed to hls4ml and enforced on
the FPGA firmware. This ensures that the use of specific, arbitrary
precision in the QKeras model is maintained during inference. For
example, when using a quantizer with a given alpha parameter (that
is, scaled weights), hls4ml inserts an operation to rescale the layer
output. For binary and ternary weights and activations, the same
strategies as in ref. 43 are used. With binary layers, the arithmetical
value of −1 is encoded as 0, allowing the product to be expressed
as an XNOR operation. The full workflow starting from a baseline
TensorFlow Keras model and up until FPGA firmware generation
is shown in Fig. 2. This illustrates how, through two simple steps,
Keras models can be translated into ultra-compressed, highly paral-
lel FPGA firmware.

We now compare the accuracy, latency and resource consump-
tion of the different models derived so far: the BF, BP and BH mod-
els derived without using QKeras, two models optimized using
AutoQKeras minimizing the model energy consumption (QE)
and model bit consumption (QB), as well as a range of homoge-
neously quantized QKeras models scanning bit-widths from 3 to 16.
Each model is trained using QKeras version 0.7.4, translated into

TensorFlow Keras model
Accuracy

requirement
Resource

constraints

AutoQKeras
optimization

QKeras
quantizers

QTools
estimates

Quantization
configuration hls4ml

Fixed-point translation
Parallelization

Firmware generation

KTuner
API

QKeras
model

HLS project

Fig. 2 | The QKeras and hls4ml workflow. The full workflow starting from a baseline TensorFlow Keras Model, which is then converted into an optimally
quantized equivalent through QKeras and AutoQKeras. This model is then translated into highly parallel firmware with hls4ml.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

Articles NATuRE MACHinE InTELLigEnCE

firmware using hls4ml version 0.2.1, and then synthesized with
Vivado HLS (2019.2), targeting a Xilinx Virtex Ultrascale 9+ FPGA
with a clock frequency of 200 MHz. We compare the resource con-
sumption and latency on chip for each model, to the model accuracy.
The resources at disposal on the FPGA are DSPs, LUTs, block ran-
dom access memory (BRAM) and flip-flops. In this case, the BRAM
is only used as a LUT read-only memory for calculating the final
softmax function and is the same for all models, namely 1.5 units,
corresponding to a total of 54 kb. For larger NNs using a higher reuse
factor and longer latency, BRAM may also be used to store model
weights. The estimated resource consumption and latency from logic
synthesis, together with the model accuracy, are listed in Table 3. A
fully parallel implementation is used, with an initiation interval—the
number of clock cycles between new data inputs—of 1 in all cases.
Resource utilization is quoted in the percentage of total available
resources, with absolute numbers quoted in parentheses.

The most resource-efficient model is the AutoQKeras QE model,
reducing the DSP usage by ~98%, LUT usage by ~80% and flip-flop
usage by ~90%. The accuracy drop is less than 3%, despite using half
the number of neurons per layer and the overall lower precision.
The extreme reduction of DSP utilization is especially interesting
as, on the FPGA, DSPs are scarce and usually become the critical
resource for ML applications. DSPs are used for all MAC operations,
but, if the precision of the incoming numbers is much lower than
the DSP precision (which, in this case, is 18 bits) MAC operations
are moved to LUTs. This is an advantage, as a representative FPGA
for the LHC trigger system has O(103) DSPs compared to O(106)
LUTs. If the bulk of multiplication operations is moved to LUTs, this
allows for deeper and more complex models to be implemented. In
our case, the critical resource reduces from 56% of DSPs for the
baseline to 3.4% of LUTs for the 6-bit QKeras trained model with
the same accuracy. The latency is O(10) ns for all models.

In the final two columns of Table 3, we compare the relative
energy estimation from QTools with the post place-and-route power
report from Vivado for the three QKeras models, in both cases rela-
tive to the Q6 model. Because the target clock frequency and model
initiation interval are identical across these models, the inference
rate is the same and taking the ratio of the power is equivalent to
taking the ratio of the energy. Very good agreement between the
QTools relative energy estimates and the Vivado relative power esti-
mates is observed for the QE and QB models, and the energy order-
ing is the same for all models.

We compare the results obtained using the QKeras and hls4ml
workflow to LogicNets47, another work on extreme low-latency,
low-resource, fully unfolded (initiation interval = 1) FPGA imple-
mentations. The metrics are those quoted in Table 3. Two LogicNets

models have been evaluated: one using the same architecture as in
this Article, JSC-M and another using a larger architecture (32, 64,
192, 192, 16 numbers of neurons), JSC-L. For JSC-M, an accuracy
of 70.6% is quoted, 1.7 points lower than the most resource-efficient
model using QKeras and hls4ml, QE. In addition, QE uses 1.2×
fewer LUTs than JSC-M. No DSPs are used in LogicNets, compared
to the 66 DSPs in use by the QE model.

The latency has only been evaluated for JSC-L and is quoted to
be 13 ns, using a clock frequency of 384 MHz. The final softmax
function has been removed from this estimate. In high-energy phys-
ics experiments, the final softmax layer is crucial because trigger
thresholds are usually set based on an algorithm’s FPR. The thresh-
old on the FPR is usually set as high as the trigger bandwidth allows,
maximizing the TPR while staying within the bandwith-budget.

For a clock period of 5 ns, the QE model has a latency of 55 ns,
reduced to 45 ns when ignoring the final softmax layer. The JSC-L
model has a latency of 13 ns for a clock period of 2.6 ns.

Finally, we compare the accuracy and resource consumption
of a range of homogeneously quantized QKeras models, scanning
bit-widths from 3 to 16. In Fig. 3 (left) the accuracy relative to the
baseline model evaluated with floating-point precision is shown as
a function of bit-width. This is shown for the accuracy as evalu-
ated offline using TensorFlow QKeras (green line) and the accuracy
as evaluated on the FPGA (orange line). We compare this to the
performance achievable using the baseline model and post-training
quantization (purple dashed line). The markers represent the
accuracy of the baseline, baseline pruned, baseline heterogeneous
and AutoQKeras optimized models (again emphasizing that the
AutoQKeras models use half as many neurons per layer as the base-
line Keras model). Models trained with QKeras retain performance
very close to the baseline using as few as 6 bits for all weights, biases
and activations. Accuracy degrades slightly down to 98% of the
baseline accuracy at a precision of 3 bits.

Post-training homogeneous quantization of the baseline model
shows a much more notable accuracy loss, with accuracy rapidly
falling away below 14 bits. The model resource utilization as a func-
tion of bit-width for homogeneously quantized QKeras models is
shown in the right plot in Fig. 3. The switch from DSPs to LUTs
mentioned above is clearly visible: below a bit-width of ~10, MAC
operations are moved from the DSPs to the LUTs and the critical
resource consumption is considerably reduced. For example, in this
case, using a model quantized to 6-bit precision will maintain the
same accuracy while reducing resource consumption by ~70%. The
symbols in Fig. 3 show the resource consumption of the heteroge-
neously quantized models. The only model comparable in accuracy
and resource consumption to the AutoQKeras optimized models,

Table 3 | Performance on a Xilinx VU9P FPGA (2), showing model accuracy, latency, resource utilization and relative energy estimate
for six different models

Model Accuracy (%) Latencyc
(ns)

Latency (clock
cycles)

DSP (%) LUT (%) FF (%) EQK
EQK(Q6)

PHLS
PHLS(Q6)

BF 74.4 45 9 56.0 (1,826) 5.2 (48,321) 0.8 (20,132) – –

BP 74.8 70 14 7.7 (526) 1.5 (17,577) 0.4 (10,548) – –

BH 73.2 70 14 1.3 (88) 1.3 (15,802) 0.3 (8,108) – –

Q6 74.8 55 11 1.8 (124) 3.4 (39,782) 0.3 (8,128) 1.00 1.00

QE 72.3 55 11 1.0 (66) 0.8 (9,149) 0.1 (1,781) 0.27 0.30

QB 71.9 70 14 1.0 (69) 0.9 (11,193) 0.1 (1,771) 0.25 0.25

LogicNets JSC-M47 70.6 NAa NA 0 (0) 1.2 (14,428) 0.02 (440) – –

LogicNets JSC-L47 71.8 13b 5 0 (0) 3.2 (37,931) 0.03 (810) – –
aNot evaluated. bUsing a clock frequency of 384 MHz. cThe latency is evaluated for a clock cycle of 200 MHz. Resources are listed as percentage of total, with absolute numbers quoted in parentheses. The
energy is estimated relative to the Q6 model and correspond to the relative energy computed using QTools (second to last column) and the relative power estimate from the post place-and-route report
from Vivado (last column).

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

ArticlesNATuRE MACHinE InTELLigEnCE

QE and QB, is the baseline heterogeneous (BH). However, in con-
trast to the QKeras models, BH has been pruned to a weight sparsity
of 70%, which further reduces the resource consumption (all zero
multiplications are removed). In addition, the process of manually
quantizing a model post-training is time-consuming and cumber-
some, and not guaranteed to always succeed due to its lossy nature.
AutoQKeras and hls4ml allow us to quantize automatically through
quantization-aware training, with specific tolerances in terms of
accuracy and area, greatly simplifying the process.

In ref. 69, the QKeras and hls4ml workflow has been dem-
onstrated on convolutional architectures benchmarked on the
Streetview House Numbers dataset70, both on large FPGAs and small
system-on-chip FPGAs. High accuracy matching the floating-point
model accuracy can be maintained down to 6-bit precision with
QKeras, executed with a latency of 5 μs. For larger convolutional
architectures like ResNet66, hls4ml does not scale due to the very
low latency target and the fully on-chip implementation used to
obtain this. Our main application is the efficient implementation of
smaller, custom models targeting latencies of O(10) ns to O(1) μs.

Conclusion and future work
We have introduced a novel library, QKeras, providing a simple
method for uncovering optimally heterogeneously quantized DNNs
for a set of given resource or accuracy constraints. Through simple
replacement of Keras layers, models with heterogeneous per-layer,
per-parameter type precision, chosen from a wide range of novel
quantizers, can be defined and trained quantization-aware. A model
optimization algorithm that considers both model area and accuracy
is presented, allowing users to maximize the model performance
given a set of resource constraints, crucial for high-performance
inference on edge. Support for these quantized models has been
implemented in hls4ml, providing the necessary chip layout instruc-
tion components to enable ultrafast inference of these tiny-footprint
models on a chip. We have demonstrated how on-chip resource
consumption can be reduced by a factor of 50 without much loss in
model accuracy while performing inference within O(10) ns. The
methods presented here provide crucial tools for inference on the
extreme low-area and low-latency edge, like that in particle detec-
tors where a latency of O(1) μs is enforced. Taking a pre-trained
model and making it suitable for hardware implementation on the
edge, both in terms of latency and size, is one of the bottlenecks
for bringing ML applications into extremely constrained computing

environments (for example, a detector at a particle collider), and
the workflow presented here will allow for a streamlined and simple
process, ultimately resulting in a great improvement in the quality
of physics data collected in the future.

The generality and flexibility of the QKeras+hls4ml work-
flow opens up a wide array of possible future work. This includes
integration with other quantization libraries targeting non-FPGA
hardware, such as TensorFlow Lite, as well as those targeting FPGA
synthesis, such as FINN (and the quantization library Brevitas) and
HAQ. In addition, while the energy estimator provides a good base-
line for relative energy consumption, as demonstrated, we hope to
extend the library to provide more device-specific absolute energy
estimates. We also plan to explore using a combination of block
energy and the curvature of the weight space, as done in HAQ, when
quantizing a network one block at a time. Finally, work is ongoing to
use the QKeras+hls4ml workflow to deploy ML algorithms for the
next data-taking period at CERN LHC both on FPGAs and ASICs.

Methods
Additional layers, quantizers and methods in QKeras. In this section, we will
give an overview of the available layers, quantizers and methods in QKeras. A
summary of available layers in QKeras is listed in Extended Data Fig. 3.

For several quantizers (including quantized_bits), a parameter called
keep_negative can be set.

If keep_negative is true, negative numbers are not clipped. With a lower
number of bits, the rounding adds more bias to the number system. Reference 71
suggested using stochastic rounding, which uses the fractional part of the number
as a probability to round the number up or down.

Stochastic rounding for quantized_bits quantizers can be turned on by setting
use_stochastic_rounding = True. However, when an efficient hardware or software
implementation is considered, this flag should be avoided in activation functions as
it may affect the implementation efficiency.

Activations have been migrated to QActivation, but activation parameters
passed directly in convolutional and dense layers will be recognized as well.

The bernoulli and stochastic functions rely on stochastic versions of the
activation functions, so they are best suited for weights and biases. They draw a
random number with uniform distribution from sigmoid of the input x, adding
additional regularization. The result is based on the expected value of the
activation function. The temperature parameter determines the steepness of the
sigmoid function.

The quantizers quantized_relu and quantized_tanh are quantized versions of
ReLU61 and tanh functions, respectively.

The quantized_po2 and quantized_relu_po2 quantizers perform exponent
quantization, as defined in ref. 72. The main advantage of this quantizer is that it
provides a representation that is very efficient for multiplication. The parameter
max_value defines maximum value.

1.04 LUT
FF
DSP

40

50

30

20

10

0

4 6 8 10 12 14 16

QKeras CPU
QKeras FPGA
Post-train quant.

1.02

1.00

0.98

0.96

0.94

0.92

0.90
5 10 15

Bit-width Bit-width

R
es

ou
rc

e
us

ag
e

(%
)

R
at

io
 m

od
el

 a
cc

ur
ac

y/
ba

se
lin

e
ac

cu
ra

cy

BF BP BH QE QB BF BP BH QE QB

Fig. 3 | Performance on a Xilinx VU9P FPGA. Relative accuracy (left) and resource utilization (right) as a function of bit-width. The right-hand panel shows
the metrics for the heterogeneously quantized models. The relative accuracy is evaluated with respect to the floating-point baseline model. Resources are
expressed as a percentage of the targeted FPGA, a Xilinx VU9P.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

Articles NATuRE MACHinE InTELLigEnCE

It should also be noted that the QSeparableConv2D layer is implemented as a
depthwise, followed by pointwise quantized expansions, which is an extended form
of the SeparableConv2D implementation of MobileNet73. The reason we chose to
use this version is that MobileNet’s SeparableConv2D has an activation between
the depthwise convolution and the pointwise convolution, where we need to at
least apply some form of quantization.

Besides the drop-in replacement of Keras layers, we have written a few utility
functions.

The model_quantize function converts a non-quantized model into a quantized
version, by applying a specified configuration for layers and activations. The
method model_save_quantized_weights saves the quantized weights in the model
compatible with an inference or writes the quantized weights in the file filename
for production. The method load_qmodel loads and compiles the quantized Keras
model. The methods print_model_sparsity and print_qstats print sparsity for the
pruned layers in the model and statistics of the number of operations per operation
type and layer. Meanwhile, quantized_model_debug allows for debugging and
plotting model weights and activations. Finally, extract_model_operations
estimates which operations are required for each layer of the quantized model, for
example xor, mult, adder and so on.

Variance shift handling in QKeras. A critical aspect when training quantized
versions of tensors and trainable parameters is the variance shift. During training
with very few bits, the variance may shift a lot from its initialization. With popular
initialization methods, such as glorot_normal, during the initial steps of the
training, all of the output tensors will become zero. Consequently, the network will
not be trained. For example, in a VGG network74, the fully connected layers have
4,096 elements, and any quantized representation with fewer than 6 bits will turn
the output of these layers to 0, as log2(

√

(4, 096)) = 6. For layer i and minimum
quantization threshold Δ, the weights wi are quantized by quantizer(wi) operation.
When the gradient is computed, the quantized weights will appear as a result of
the chain rule computation, as depicted in Extended Data Fig. 2. With the absolute
values of all weights below Δ, the gradient will vanish in all layers that transitively
generate the inputs to layer i. This applies to any large DNN.

QKeras mitigates this challenge by rescaling the initialized weights
appropriately. The parameter alpha is used as a scaling factor. It can be considered
as a way to compute a shared exponent when used in weights75. It can be set
to a given value manually, or overridden by setting it to auto or auto_po2.
With alpha = ‘auto’, we compute the scale as ∑q(x)x/∑q(x)q(x) as in ref. 24 for
the quantization function q, with a different value for each output channel or
output dimension of tensor x. This provides a learned scaling factor that can be
used during training. With alpha = ‘auto_po2’19, the scaling factor is set to be a
power-of-2 number.

For the ternary and stochastic_ternary quantizers, we iterate between scale
computation and threshold computation, as presented in ref. 76, which searches for
the threshold and scale tolerant to different input distributions. This is especially
important when we need to consider that the threshold shifts depending on
the input distribution, affecting the scale as well, as pointed out by ref. 77. When
computing the scale in these quantizers with alpha = ‘auto’, we compute the scale
as a floating-point number. With alpha = ‘auto_po2’, we enforce the scale to be a
power of 2, meaning that an actual hardware or software implementation can be
performed by just shifting the result of the convolution or dense layer to the right
or left by checking the sign of the scale (positive shifts left, negative shifts right),
and taking the log2 of the scale. This behaviour is compatible with shared exponent
approaches, as it performs a shift adjustment to the channel.

Data availability
The data used in this study are openly available at Zenodo58 from https://doi.
org/10.5281/zenodo.3602260.

Code availability
The QKeras library, which also includes AutoQKeras and QTools, is available
from https://github.com/google/qkeras (the work presented here uses
QKeras version 0.7.4). Examples on how to run the library are available in the
notebook subdirectory. The hls4ml library is available at https://github.com/
fastmachinelearning/hls4ml and all versions ≥0.2.1 support QKeras models
(the work presented here is based on version 0.2.1). For examples on how to use
QKeras models in hls4ml, the notebook part4_quantization at https://github.com/
fastmachinelearning/hls4ml-tutorial serves as a general introduction.

Received: 23 November 2020; Accepted: 6 May 2021;
Published: xx xx xxxx

References
	1.	 Lin, S.-C. et al. The architectural implications of autonomous driving:

constraints and acceleration. ACM SIGPLAN Notices 53, 751–766 (2018).
	2.	 Ignatov, A. et al. AI benchmark: running deep neural networks on Android

smartphones. In Computer Vision – ECCV 2018 Workshops. ECCV 2018

Lecture Notes in Computer Science Vol. 11133 (eds Leal-Taixé, L. & Roth, S.)
288–314 (Springer, 2018); https://doi.org/10.1007/978-3-030-11021-5_19

	3.	 Leber, C., Geib, B. & Litz, H. High frequency trading acceleration using
FPGAs. In 2011 21st International Conference on Field Programmable Logic
and Applications 317–322 (IEEE, 2011).

	4.	 The LHC Study Group. The Large Hadron Collider, Conceptual Design.
Technical Report CERN/AC/95-05 (CERN, 1995).

	5.	 Apollinari, G., Béjar Alonso, I., Brüning, O., Lamont, M. & Rossi, L.
High-Luminosity Large Hadron Collider (HL-LHC): Preliminary Design Report.
Technical Report (Fermi National Accelerator Laboratory, 2015).

	6.	 Iandola, F. N. et al. SqueezeNet: AlexNet-level accuracy with 50× fewer
parameters and <0.5-MB model size. Preprint at https://arxiv.org/
pdf/1602.07360.pdf (2016).

	7.	 Howard, A. G. et al. MobileNets: efficient convolutional neural networks for
mobile vision applications. Preprint at https://arxiv.org/pdf/1704.04861.pdf
(2017).

	8.	 Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C.
MobileNetV2: inverted residuals and linear bottlenecks. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition 4510–4520 (IEEE,
2018).

	9.	 Ma, N., Zhang, X., Zheng, H.-T. & Sun, J. ShuffleNet V2: practical guidelines
for efficient CNN architecture design. In Proc. European Conference on
Computer Vision (ECCV) Lecture Notes in Computer Science 116–131
(Springer, 2018).

	10.	Howard, A. et al. Searching for MobileNetV3. In Proc. IEEE International
Conference on Computer Vision 1314–1324 (IEEE, 2019).

	11.	Ding, X. et al. Global sparse momentum SGD for pruning very deep
neural networks. In Advances in Neural Information Processing Systems
(eds Wallach, H. et al.) 6382–6394 (NIPS, 2019).

	12.	He, Y., Zhang, X. & Sun, J. Channel pruning for accelerating very deep neural
networks. In Proc. IEEE International Conference on Computer Vision
1389–1397 (IEEE, 2017).

	13.	Duarte, J. et al. Fast inference of deep neural networks in FPGAs for particle
physics. J. Instrum. 13, P07027 (2018).

	14.	Nagel, M., van Baalen, M., Blankevoort, T. & Welling, M. Data-free
quantization through weight equalization and bias correction. In Proc. IEEE
International Conference on Computer Vision 1325–1334 (IEEE, 2019).

	15.	Meller, E., Finkelstein, A., Almog, U. & Grobman, M. Same, same but
different: recovering neural network quantization error through weight
factorization. In Proc. 36th International Conference on Machine Learning
(eds Chaudhuri, K. & Salakhutdinov, R.) 4486–4495 (PMLR, 2019).

	16.	Zhao, R., Hu, Y., Dotzel, J., De Sa, C. & Zhang, Z. Improving neural network
quantization without retraining using outlier channel splitting. Preprint at
https://arxiv.org/pdf/1901.09504.pdf (2019).

	17.	Banner, R., Nahshan, Y. & Soudry, D. Post training 4-bit quantization of
convolutional networks for rapid-deployment. In Advances in Neural
Information Processing Systems (eds Wallach, H. et al.) 7950–7958 (NIPS,
2019).

	18.	Moons, B., Goetschalckx, K., Van Berckelaer, N. & Verhelst, M. Minimum
energy quantized neural networks. In 51st Asilomar Conference on Signals,
Systems, and Computers 1921–192 (ACSSC, 2017).

	19.	Courbariaux, M., Bengio, Y. & David, J.-P. BinaryConnect: training deep
neural networks with binary weights during propagations. In Advances in
Neural Information Processing Systems 28 (eds Cortes, C. et al.) 3123–3131
(Curran Associates, 2015).

	20.	Zhang, D., Yang, J., Ye, D. & Hua, G. LQ-Nets: learned quantization for
highly accurate and compact deep neural networks. In Proc. European
Conference on Computer Vision (ECCV) 365–382 (Springer, 2018).

	21.	Li, F. & Liu, B. Ternary weight networks. Preprint at https://arxiv.org/
pdf/1605.04711.pdf (2016).

	22.	Zhou, S. et al. DoReFa-Net: training low bitwidth convolutional neural
networks with low bitwidth gradients. Preprint at https://arxiv.org/
pdf/1606.06160.pdf (2016).

	23.	Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y. Quantized
neural networks: training neural networks with low precision weights and
activations. J. Mach. Learn. Res. 18, 6869–6898 (2017).

	24.	Rastegari, M., Ordonez, V., Redmon, J. & Farhadi, A. XNOR-Net: ImageNet
classification using binary convolutional neural networks. In Computer Vision
– ECCV 2016. Lecture Notes in Computer Science Vol. 9908 (eds Leibe, B.
et al.) 525–542 (Springer, 2016).

	25.	Micikevicius, P. et al. Mixed precision training. In International Conference on
Learning Representations (ICLR, 2018).

	26.	Zhuang, B., Shen, C., Tan, M., Liu, L. & Reid, I. Towards effective
low-bitwidth convolutional neural networks. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) 7920–7928
(IEEE, 2018).

	27.	Wang, N., Choi, J., Brand, D., Chen, C.-Y. & Gopalakrishnan, K. Training
deep neural networks with 8-bit floating point numbers. In Advances in
Neural Information Processing Systems 7675–7684 (NIPS, 2018).

Nature Machine Intelligence | www.nature.com/natmachintell

https://doi.org/10.5281/zenodo.3602260
https://doi.org/10.5281/zenodo.3602260
https://github.com/google/qkeras
https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml-tutorial
https://github.com/fastmachinelearning/hls4ml-tutorial
https://doi.org/10.1007/978-3-030-11021-5_19
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1901.09504.pdf
https://arxiv.org/pdf/1605.04711.pdf
https://arxiv.org/pdf/1605.04711.pdf
https://arxiv.org/pdf/1606.06160.pdf
https://arxiv.org/pdf/1606.06160.pdf
http://www.nature.com/natmachintell

ArticlesNATuRE MACHinE InTELLigEnCE

	28.	Wang, K., Liu, Z., Lin, Y., Lin, J. & Han, S. HAQ: hardware-aware automated
quantization with mixed precision. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (IEEE, 2019).

	29.	Dong, Z., Yao, Z., Gholami, A., Mahoney, M. & Keutzer, K. HAWQ: Hessian
AWare Quantization of neural networks with mixed-precision. In Proc. 2019
IEEE/CVF International Conference on Computer Vision (ICCV) 293–302
(IEEE, 2019).

	30.	Dong, Z. et al. HAWQ-V2: Hessian AWare trace-weighted Quantization
of neural networks. In Advances in Neural Information Processing Systems
Vol. 33 (eds Larochelle, H. et al.) 18518–18529 (Curran
Associates, 2020).

	31.	Wu, B. et al. Mixed precision quantization of ConvNets via differentiable
neural architecture search. Preprint at https://arxiv.org/pdf/1812.00090.pdf
(2018).

	32.	Chollet, F. et al. Keras https://github.com/fchollet/keras (2015).
	33.	Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems http://tensorflow.org/ (2015).
	34.	Paszke, A. et al. PyTorch: an imperative style, high-performance deep

learning library. In Advances in Neural Information Processing Systems 32
(eds Wallach, H. et al.) 8024 (Curran Associates, 2019); https://arxiv.org/
pdf/1912.01703.pdf

	35.	Open Neural Network Exchange Collaboration https://onnx.ai/ (2017).
	36.	Venieris, S. I., Kouris, A. & Bouganis, C.-S. Toolflows for mapping

convolutional neural networks on FPGAs: a survey and future directions.
ACM Comput. Surv. 51, 56 (2018).

	37.	Guo, K., Zeng, S., Yu, J., Wang, Y. & Yang, H. A survey of FPGA-based neural
network inference accelerators. ACM Trans. Reconfigurable Technol. Syst. 12,
2 (2018).

	38.	Shawahna, A., Sait, S. M. & El-Maleh, A. FPGA-based accelerators of deep
learning networks for learning and classification: a review. IEEE Access 7,
7823–7859 (2019).

	39.	Abdelouahab, K., Pelcat, M., Serot, J. & Berry, F. Accelerating CNN inference
on FPGAs: a survey. Preprint at https://arxiv.org/pdf/1806.01683.pdf
(2018).

	40.	Intel. Intel High Level Synthesis Compiler https://www.intel.com/content/www/
us/en/software/programmable/quartus-prime/hls-compiler.html (2020).

	41.	Mentor/Siemens. Catapult High-Level Synthesis https://www.mentor.com/
hls-lp/catapult-high-level-synthesis (2020).

	42.	Iiyama, Y. et al. Distance-weighted graph neural networks on FPGAs for
real-time particle reconstruction in high energy physics. Front. Big Data 3,
598927 (2021).

	43.	Ngadiuba, J. et al. Compressing deep neural networks on FPGAs to binary
and ternary precision with hls4ml. Mach. Learn. Sci. Technol. 2, 015001
(2020).

	44.	Umuroglu, Y. et al. FINN: a framework for fast, scalable binarized neural
network inference. In Proc. 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays 65–74 (ACM, 2017).

	45.	Blott, M. et al. FINN-R: an end-to-end deep-learning framework for fast
exploration of quantized neural networks. ACM Trans. Reconfigurable
Technol. Syst. 11, 16 (2018).

	46.	Alessandro, F. G. & Nickfraser, U. Y. Xilinx/brevitas: Release version 0.2.1
https://doi.org/10.5281/zenodo.4507794 (2021).

	47.	Umuroglu, Y., Akhauri, Y., Fraser, N. J. & Blott, M. LogicNets: co-designed
neural networks and circuits for extreme-throughput applications. In 30th
International Conference on Field-Programmable Logic and Applications
291–297 (IEEE, 2020).

	48.	Guan, Y. et al. FP-DNN: an automated framework for mapping deep neural
networks onto FPGAs with RTL-HLS hybrid templates. In 2017 IEEE 25th
Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM) 152 (IEEE, 2017).

	49.	Sharma, H. et al. From high-level deep neural models to FPGAs. In Proc.
2016 49th Annual IEEE/ACM International Symposium on Microarchitecture 1
(IEEE, 2016); https://doi.org/10.1109/MICRO.2016.7783720

	50.	Gokhale, V., Zaidy, A., Chang, A. X. M. & Culurciello, E. Snowflake: an
efficient hardware accelerator for convolutional neural networks. In Proc.
2017 IEEE International Symposium on Circuits and Systems (ISCAS) 1–4
(IEEE, 2017).

	51.	Venieris, S. I. & Bouganis, C.-S. fpgaConvNet: a toolflow for mapping diverse
convolutional neural networks on embedded FPGAs. In Proc. NIPS 2017
Workshop on Machine Learning on the Phone and other Consumer Devices
(NIPS, 2017); https://arxiv.org/pdf/1711.08740.pdf

	52.	Venieris, S. I. & Bouganis, C.-S. fpgaConvNet: automated mapping of
convolutional neural networks on FPGAs. In Proc. 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays 291
(ACM, 2017).

	53.	Venieris, S. I. & Bouganis, C.-S. fpgaConvNet: a framework for mapping
convolutional neural networks on FPGAs. In Proc. 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM) 40 (IEEE, 2016).

	54.	Huimin Li et al. A high performance FPGA-based accelerator for large-scale
convolutional neural networks. In Proc. 2016 26th International Conference on
Field Programmable Logic and Applications (FPL) 1–9 (IEEE, 2016).

	55.	Zhao, R. et al. Hardware compilation of deep neural networks: an overview.
In 2018 IEEE 29th International Conference on Application-Specific Systems,
Architectures and Processors (ASAP) 1–8 (IEEE, 2018).

	56.	Google. TensorFlow Lite https://www.tensorflow.org/lite (2020).
	57.	Moreno, E. A. et al. JEDI-net: a jet identification algorithm based on

interaction networks. Eur. Phys. J. C 80, 58 (2019).
	58.	Pierini, M., Duarte, J. M., Tran, N. & Freytsis, M. HLS4ML LHC Jet Dataset

(150 particles) https://doi.org/10.5281/zenodo.3602260 (2020).
	59.	Zhu, M. & Gupta, S. To prune, or not to prune: exploring the efficacy of

pruning for model compression. Preprint at https://arxiv.org/pdf/1710.01878.
pdf (2017).

	60.	Coelho, C. Qkeras https://github.com/google/qkeras (2019).
	61.	Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann

machines. In Proc. 27th International Conference on International Conference
on Machine Learning 807–814 (ICML, 2010).

	62.	Hennessy, J. L. & et al. Computer Architecture: a Quantitative Approach 6th
edn (Morgan Kaufmann, 2016).

	63.	Horowitz, M. Computing’s energy problem (and what we can do about it). In
Proc. 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC) 10–14 (IEEE, 2014).

	64.	O’Malley, T. et al. Keras Tuner https://github.com/keras-team/keras-tuner
(2019).

	65.	Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. & Talwalkar, A.
Hyperband: a novel bandit-based approach to hyperparameter optimization.
J. Mach. Learn. Res. 18, 6765–6816 (2017).

	66.	He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) 770–778 (IEEE, 2016).

	67.	Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning
(MIT Press, 2016).

	68.	Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In 3rd
International Conference on Learning Representations (ICLR) 2015, Conference
Track Proceedings (eds Bengio, Y. & LeCun, Y.) (ICLR, 2015); https://arxiv.
org/pdf/1412.6980.pdf

	69.	Aarrestad, T. et al. Fast convolutional neural networks on FPGAs with hls4ml.
Preprint at https://arxiv.org/pdf/2101.05108.pdf (2021).

	70.	Netzer, Y. et al. Reading digits in natural images with unsupervised feature
learning. In Proc. NIPS 2011 Workshop on Deep Learning and Unsupervised
Feature Learning (NIPS, 2011); https://deeplearningworkshopnips2011.files.
wordpress.com/2011/12/12.pdf

	71.	Gupta, S., Agrawal, A., Gopalakrishnan, K. & Narayanan, P. Deep learning
with limited numerical precision. In Proc. 32nd International Conference on
Machine Learning 1737–1746 (PMLR, 2015).

	72.	Kwan, H. K. & Tang, C. Z. A design method for multilayer feedforward
neural networks for simple hardware implementation. In Proc. 1993 IEEE
International Symposium on Circuits and Systems Vol. 4, 2363–2366
(IEEE, 1993).

	73.	Howard, A. G. et al. MobileNets: efficient convolutional neural networks for
mobile vision applications. Preprint at https://arxiv.org/pdf/1704.04861.pdf
(2017).

	74.	Simonyan, K. & Zisserman, A. Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning
Representations (eds Bengio, Y. & LeCun, Y.) (ICLR, 2015); https://arxiv.org/
pdf/1409.1556.pdf

	75.	Das, D. et al. Mixed precision training of convolutional neural networks using
integer operations. In International Conference on Learning Representations
(ICLR, 2018).

	76.	Hwang, K. & Sung, W. Fixed-point feedforward deep neural network design
using weights +1, 0, and −1. In Proc. 2014 IEEE Workshop on Signal
Processing Systems (SiPS) 1–6 (IEEE, 2014).

	77.	Li, F., Zhang, B. & Liu, B. Ternary weight networks. Preprint at https://arxiv.
org/pdf/1605.04711.pdf (2016).

Acknowledgements
M.P. and S.S. are supported by, and V.L. and A.A.P. are partially supported by, the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant no. 772369). V.L. is supported by Zenseact under
the CERN Knowledge Transfer Group. A.A.P. is supported by CEVA under the CERN
Knowledge Transfer Group. We acknowledge the Fast Machine Learning collective as
an open community of multi-domain experts and collaborators. This community was
important for the development of this project.

Author contributions
C.N.C., A.K., S.L. and H.Z. conceived and designed the QKeras, AutoQKeras and QTools
software libraries. T.A., V.L., M.P., A.A.P., S.S. and J.N. designed and implemented

Nature Machine Intelligence | www.nature.com/natmachintell

https://arxiv.org/pdf/1812.00090.pdf
https://github.com/fchollet/keras
http://tensorflow.org/
https://arxiv.org/pdf/1912.01703.pdf
https://arxiv.org/pdf/1912.01703.pdf
https://onnx.ai/
https://arxiv.org/pdf/1806.01683.pdf
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.mentor.com/hls-lp/catapult-high-level-synthesis
https://www.mentor.com/hls-lp/catapult-high-level-synthesis
https://doi.org/10.5281/zenodo.4507794
https://doi.org/10.1109/MICRO.2016.7783720
https://arxiv.org/pdf/1711.08740.pdf
https://www.tensorflow.org/lite
https://doi.org/10.5281/zenodo.3602260
https://arxiv.org/pdf/1710.01878.pdf
https://arxiv.org/pdf/1710.01878.pdf
https://github.com/google/qkeras
https://github.com/keras-team/keras-tuner
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/2101.05108.pdf
https://deeplearningworkshopnips2011.files.wordpress.com/2011/12/12.pdf
https://deeplearningworkshopnips2011.files.wordpress.com/2011/12/12.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1605.04711.pdf
https://arxiv.org/pdf/1605.04711.pdf
http://www.nature.com/natmachintell

Articles NATuRE MACHinE InTELLigEnCE

support for QKeras in hls4ml. S.S. conducted the experiments. T.A., A.A.P. and S.S. wrote
the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s42256-021-00356-5.

Correspondence and requests for materials should be addressed to T.K.A.

Peer review information Nature Machine Intelligence thanks Jose Nunez-Yanez, Stylianos
Venieris and the other, anonymous, reviewer(s) for their contribution to the peer review
of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

Nature Machine Intelligence | www.nature.com/natmachintell

https://doi.org/10.1038/s42256-021-00356-5
http://www.nature.com/reprints
http://www.nature.com/natmachintell

ArticlesNATuRE MACHinE InTELLigEnCE ArticlesNATuRE MACHinE InTELLigEnCE

Extended Data Fig. 1 | Model architecture and quantization. Model architecture for the fully-connected NN architecture under study. The numbers in
brackets are the precisions used for each layer, quoted as 〈B, I〉, where B is the precision in bits and I the number of integer bits. When different precision
is used for weights and biases, the quantization is listed as w and b, respectively. These have been obtained using the per-layer, per-parameter type
automatic quantization procedure described in Section VI.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

Articles NATuRE MACHinE InTELLigEnCEArticles NATuRE MACHinE InTELLigEnCE

Extended Data Fig. 2 | Variance shift. Variance shift and the effect of initialization in gradient descent.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

ArticlesNATuRE MACHinE InTELLigEnCE ArticlesNATuRE MACHinE InTELLigEnCE

Extended Data Fig. 3 | Layers and quantisers in QKeras. List of available layers and quantizers in QKeras.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

Articles NATuRE MACHinE InTELLigEnCEArticles NATuRE MACHinE InTELLigEnCE

Extended Data Fig. 4 | ROC curves for the models under study. ROC curves of false positive rate (FPR) versus true positive rate (TPR) for the Baseline Full
(BF), quantized 6-bit (Q6), AutoQKeras Energy Optimized (QE) and AutoQKeras Bits Optimized (QB) models.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

	Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors

	Motivation

	Related work

	Particle identification in the hardware trigger

	Obtaining optimal heterogeneous quantization

	Resource-aware automatic quantization

	Approximating relative model energy consumption.
	Defining a forgiving factor.

	Ultralow-latency, quantized model on FPGA hardware

	Conclusion and future work

	Methods

	Additional layers, quantizers and methods in QKeras
	Variance shift handling in QKeras

	Acknowledgements

	Fig. 1 Quantized ReLU function in QKeras.
	Fig. 2 The QKeras and hls4ml workflow.
	Fig. 3 Performance on a Xilinx VU9P FPGA.
	Extended Data Fig. 1 Model architecture and quantization.
	Extended Data Fig. 2 Variance shift.
	Extended Data Fig. 3 Layers and quantisers in QKeras.
	Extended Data Fig. 4 ROC curves for the models under study.
	Table 1 Per-layer quantization for post-training quantized models.
	Table 2 Per-layer quantization and relative energy consumption for automatically quantized QKeras models, showing per-layer quantization configuration and the relative model energy consumption for the AutoQKeras energy optimized (QE) and AutoQKeras bits o
	Table 3 Performance on a Xilinx VU9P FPGA (2), showing model accuracy, latency, resource utilization and relative energy estimate for six different models.

