.

WMSMON - gLite WMS Monitoring Tool

D. Vudragovi¢, V. Slavnic, A. Balaz and A. Beli¢
Scientific Computing Laboratory, Institute of Physics Belgrade
Pregrevica 118, 11080 Belgrade, Serbia
Phone: +381 11 371 3152, Fax: +381 11 316 2190
E-mail: dusan(@scl.rs, Web: http://www.scl.rs/

Abstract - The complex task of computing resources
discovery and management on behalf of user applications in
the gLite Grid environment is dome by the Workload
Management System (WMS) service. However, the current
implementation of Grid Service Availability Monitoring
framework does not include direct probes of this essential
service. In this paper we describe the newly developed
WMSMON tool, which provides a site independent,
centralized, uniform monitoring of gLite WMS services. This
tool is based on the collector-agent architecture, and offers
aggregated status view of all monitored WMS services, as
well as a detailed status page for each service, with links to
the appropriate troubleshooting guides when problems are
identified. The WMSMON tool is currently deployed by the
SEE-GRID-SCI Grid e-Infrastructure.

[. INTRODUCTION

Processing enormous amounts of data gencrated by
science experiments requires huge computational and
storage resources, and associated human resources for
operation and support. In order to enable seamless use of
available distributed resources and automatize as much
tasks as possible, a new layer is built on top of the existing
network infrastructure — Grid layer of software (Grid
middleware) able to interconnect distributed computing
and storage resources, and make them interoperate,
providing users with the unified access to all resources.

There arc many kinds of Grids with different purposes,
such as national Grid infrastructure (aiming to couple
high-end resources across a country, such as AEGIS [1],
D-Grid [2], or the UK e-Science program [3]), Grid
projects (funded by various international funding agencies,
c.g. EC-funded SEE-GRID-SCI [4], EGEE (5], or
NorduGrid [6] jointly funded by Nordic countrics), Grid
infrastructures provided by joint efforts of many
individuals aiming to help in solving important common
problems (e.g. in finding drugs for diseases,
SETI@HOME [7], etc.), consumer Grids established by
commercial companies, ctc,

Usually all Grid resources centers (sites) in one Grid
infrastructure or project use the same type of Grid
middleware, such as gLite [8] (used in EGEE, SEE-GRID-
SCI and many other projects), Globus Toolkit [9], Virtual
Data Toolkit [10] (used by the OSG project [11]), ARC
[12] (used by the NorduGrid collaboration), Garuda [13]
(Indian Grid middleware), etc.

The Workload Management System (WMS) is one of
the key Grid services composing the glite Grid
middleware stack. It provides a service responsible for the
distribution and management of tasks across resources
available on the Grid, i.e. it performs a complex task of

MIPRO 2009/GVS

distributed scheduling and management of users’ jobs on a
dynamically determined set of available computing
resources.

The gLite WMS service has been in continuous
development since before the start of European DataGrid
project [14], i.e. for about 8 years. The name used by the
developers was always Workload Management System,
but name Resource Broker (RB) was most commonly used
in the past by the users.

The Large Hadron Collider (LHC) [15] collaboration
has setup LHC Computing Grid (LCG) [16] in 2003,
which used the then-current release version of RB for the
LCG-1 production service, but the measured performance
of WMS was far from production quality. A lot of effort
was devoted to make this key service more robust.
However, its functionality was not extended nor improved,
and RB service has had minimal maintenance for several
years now.

Meanwhile, the developers of Grid middleware
organized around the EGEE project kept developing WMS
service and they produced a major new version in 2004,
which was incorporated into the glite 1.x release series.
However, this was never deployed in production. In 2006
the glite and LCG releases were forcibly merged to glite
3.0 and finally the new WMS was put into production. The
performance of the new service was unstable and it was
largely unused, keeping RB service still in production.

For this reason, the development of WMS continued
until major upgrade in the glite 3.1 release scries. With the
advent of EGEE-Il project, the acceptance criteria for
certification became realistic. Now it has finally been
certified as production-quality, hence the old RB
SERVICE was finally retired, and the new gLite-WMS is
used as a main production-quality service.

II. WMS ARCHITECTURE

The purpose of Workload Management System (WMS)
is to accept job submission and managenent requests from
its clients (configured on User Interface machines) and to
take appropriate actions based on these requests.

Through the User Interface (UT) [17], a user can find the
list of resources suitable to run a specific job, submit a job
for execution on a remote Computing Element (CE), check
the status of a submitted job, cancel one or more submitted
jobs, retrieve the output files of a completed job (output
sandbox), or retricve and display logging and bookkeeping
information about submitted jobs.

Once submitted from Ul machine, the job request
passes through several other components of the WMS
before it completes its execution. The WMS components
(18] handling the job are: Workload Manager Proxy,

239

Workload Manager, Job Controller, Log Monitor,
CondorC, Proxy Renewal Service, Logging and
Bookkeeping, and Log Monitor. The simplified
architecture of WMS and component interactions are
presented in Fig. |

The Workload Manager Proxy (WMProxy) [19]
provides support for the job control functionality through a
Web Services based interface. 1t provides a core module
performing validation, conversion, environment
preparation and information logging for cach incoming
request, before delivering it to the Workload Manager.

The Workload Manager (WM) is the core component of
the WMS. Given a valid request, it takes the appropriate
action to satisfy it. To do so, it uses support from one or
more of the following components:

1) Matchmaker: Helper component offering support to the
WM in making the decision on which of available
resources should be used to fulfill a particular job
submission request.

2) Information Super Market: Cache of all the information
on available computing and storage resources neccssary
for the matchmaking process. It is dynamically updated by
the Information Updater through a mixture of polling
resources information and receiving notifications.

3) Tusk Queue (TQ): Gives the possibility to keep a

submission request for a while if no resources matching
the job requirements are immediately available.

WME e Logging and
a4 Bookkeeping
!
Workload L—» Proxy
—_—
Manager] Renewal
t
Job | Log
Controler «— Monitor

i __—T
CondorC

Fig. |. Simplified gLite Workload Management System
Architecture.

In addition to preparing the intermal (CondorC)
submission file for each job, Job Controller (JC) module is
also responsible for creating the job wrapper script to
ensure the appropriate execution environment is sctup on
the Worker Node (WN) when job starts.

The Log Monitor (LM) component is responsible for
monitoring the CondorC log file, intercepting interesting
events concerning active jobs (events affecting the job
state machine: job done, job canceled, etc.) and triggering
appropriate actions.

CondorC is the module responsible for performing the
actual job management operations (job submission, job
removal, ectc.), issued on request of the Workload
Manager.

Proxy Renewal Service is available to assure that during
the lifetime of a job, a valid user proxy digital certiticate

240

exists within the WMS. The proxy renewal service relies
on the MyProxy service for renewing credentials
associated to the request, assuming that the user has stored
longer term credential on the MyProxy server.

The Logging and Bookkeeping (LB) service [20]
provides support for the job monitoring functionality: it
stores logging and bookkeeping information concerning all
events generated by the various components of the WMS,
as well as other services handling the job (UI, CE, WN).
Using this information, the LB service keeps a state
machine view of each job. LB service can be deployed
separately from WMS, but usually it is not the case, i.c.
two services are collocated on the same machine. The
WMSMON tool described in this paper assumes that LB
and WMS are installed and configured on the same server.

[II. WMS PROPERTIES RELEVANT FOR
MONITORING

The study of the WMS architecture and design leads to

the identification of key properties that can be used to
monitor the health and availability of gLite WMS service.
These propertics can be roughly classified as load
averages, job queues properties, file system properties, log
file properties, and availability/responsiveness of gLite
services/daemons:
1) Load averages: If the average value of the load of
WMS host machine (J-minute, 5-minute, or 15-minute
average) becomes too high, it will slow down the
management of existing jobs and job submission from Uls.
For this reason WMProxy software contains a load script
uscd for any of the supported job operations. By default,
WMS configuration load script is used during the
WMProxy operation of job registration and subnmssion.
The script as an input parameter has the threshold for load
average, and if the server load is too high, the requested
operation will be refused. In order to avoid this scenario,
the trend in CPU utilization should be tracked, and
appropriatc actions taken by the administrator.

2) Job quenes properties: 1f the number of jobs in some of
WMS queues becomes very high, it can atfect or even
block the proper work of WMS service and cause loss of

jobs. There are three queues used by the WMS service:

e The first queue is used for a communication between
WMProxy and WM. This communication is rcalized
through a thread-safe, file-system based queue.
Requests waiting to be served (i.e., submit, resubmit,
match, cancel) by WM are put in this queue. The jobs
that require resources not available will finish in this
queue, which sometimes can slow down submission of
new jobs from UT or increase the load of machine and
cause refusing submission of new jobs.

e The second (also thread-safe file-system based) queue
is used for JC and CondorC communication, for storing
the requests waiting to be served (i.e., submit, cancel)
by CondorC.

e When a job has been processed by WM and its helper
modules, and the appropriatc CE has been found, the
job has to be transferred to the CE via CondorC.
CondorC is the module responsible for performing the
actual job management operations (job submission, job
removal, etc.), issued by request of WM. The

MIPRO 2009/GVS

information regarding all jobs submitted to different
CEs while the job data is transferred can be retrieved
from this CondorC queue. 1t is important to monitor the
number of jobs in the CondorC queue, since the
significant increase in the number of jobs can be used
to identify problems in the operation of this WMS
service.

3) File system properties: Since thread-safe, file-system
based quecues are used for WMProxy-WM and JC-
CondorC communication, the size of these files can
indicate possible problems in the operation of key WMS
services.

Due to jobs that produce large output sandbox files,
monitoring of Sandbox partition is necessary. Also, it is
important to track the amount of data in middlewarc log
files partition, MySQL partition and temporary partition.
Each file in the Linux file system has the associated inode
number, which provides important information on the file,
such as user and group ownership, access mode (read,
write, execute permissions) and the type. The number of
inodes is limited for each filesystem at the moment of its
creation, limiting also the maximum number of files that
can be created by the file system. It can happen that users
submit large number of jobs with huge numbers of small
or empty files, so that the maximal number of inodes is
reached, and opcration of tile system blocked. This can
also happen due to malfunction of some of WMS services.
For this reason it is also very relevant to track the number
of used/available filesystem inodes.

4} Log files properties: WMS service is frequently
upgraded and new versions of software are relecased, which
can cause mistakes in the implementation of logrotate
scripts. Since the log files are used by different
applications for data analysis and statistic information, the
large log file sizes can cause significant slow down of such
services, or even block their normal operation. Also, this
can cause overload of the filesystem.

5) Availability/responsiveness of glite services/daemons:
Since cach of WMS services is implemented as a Linux
daecmon, due to stability issues it is still necessary to check
periodically if cach of them is active and responsive. The
retum status of each service should be equal to zero.
Normally, the services with a non-zero value are restarted
automatically, thanks to the WMS cron job that checks
statuses of all gLite services. For some dacmons the
automatic restart fails after a crash, as it tries to start the
service without first stopping it (to remove locks etc.). For
his reason it is important to track status of all WMS
services and to take appropriate actions if some of them
re not properly running,

[V. WMSMON ARCHITECTURE AND
IMPLEMENTATION

MSMON tool is based on the collector-agent
itecture that ensures monitoring of all properties
levant for successful operation of glite WMS service
1 nggering of the alarms if certain monitored parameter
s exceed predefined limits. In addition, the tool
des links to the appropriate troubleshooting guides

[PRO 2009/GVS

when problems are identified. The architecture of the
WMSMON tool is shown in Fig. 2.

WMSMON tool consists of two parts of software. The

first one, WMSMON Agent, should be installed on all
monitored WMS services, and locally aggregates the
values of all relevant parameters described in the previous
section. The second component of WMSMON software is
WMSMON Collector, installed on a specific machine
cquipped with the web server and gridFTP client, with the
aim to collect the data from all WMSMON Agents and to
provide web interface to the graphical presentation of the
collected data.
The WMSMON Agent is composed of data parser and
data publisher. The data parser is a bash script
implemented as a cron job that searches for predefined
WMS properties and parses their values. Since the data are
extracted from different sources, the script is using
separate methods for parsing and building of a vector of
relevant propertics values.

R
———— - -
I, SRS o -
wmsmon graph generator wmsmon data publisher
E =
e I
round robin | wmsmon wimismon
database . server cache___ client cache
= . —
& - ..
wmsmon data collector -

Fig. 2. WMSMON tool Architecture.

When the data vector is built, the data publisher
transfers it to the data cache. The main role of the data
cache is to storc and keep the data for the transfer to the
WMS Collector. In the casc of a broken network
connection between WMSMON Agent and WMSMON
Collector, the data cache ensures that there will be no loss
of information.

The data cache keeps the valucs of monitored properties
until they are transferred to the WMSMON Collector. In
order to provide high-performance, secure, reliable data
transfer, we use the gridFTP service [21], already deployed
by the glLite WMS middleware. Each WMSMON Agent
has only one configuration file containing the
distinguished name (DN) of the WMSMON Collector host
digital certificate that will be authorized to connect via
gridFTP server and mapped to a local user in order to
retrieve the information from the data cache.

The WMSMON Agent is implemented as a Linux
daemon. During its startup it configures gridFTP server on
a monitored WMS to allow the connection by a specific
WMSMON Collector (one or more), crcates appropriate
data parscr cron job, and initializes the data cache. The
Agent is released as an RPM package and thc latest
version is available from the SCL RPMs repository [22].

WMSMON Collector consists of the following
components: data collector, collector cache, database,
graph generator, and the frontend of the tool, released as a
web norial. The role of data collector is to retrieve the duta

241

from each of monitored WMS services, and to publish it to
the database and local cache. Using the data from the
databasc, the graph generator component produces graphs,
which are, together with the information from the data
cache, displayed through the WMSMON web portal.

The data collector is a bash script implemented as a cron
job. It periodically gathers and assembles the information
from all monitored WMSMON Agents via gridFTP
service, and publishes these data to the local database and
cache.

WMSMON tool uses as a backend databasc the Round
Robin Database (RRD) [23]. In this way the data are
stored in an casy and lightweight database that does not
require another running service, and has storage
requirements that can be easily limited by the design of the
database. RRD was written as a system to store and display
time-series data in a compact manner, with the size that
will not expand over time, and in the form suitable for
producing tunc graphs.

The data cache is introduced on WMSMON Collector
side, similarly to the cache on the Agent side. The purpose
of this cache is to provide the latest values of monitored
WMS properties for the WMSMON portal. Unlike RRD
that keeps all historical data for the chosen period, the
cache contains only the latest data.

WMSMON graph gencrator uses the data from RRD to
produce daily, weekly, monthly and yearly graphs.

wmsmon

WP | it g Trrsatana Laat Jote Tiw ayviam Log fSae Gloe demwey

Fig. 3. Overview of WMSMON web portal.

WMSMON web portal [24] presents information from
diverse WMS sources in a unified way, as can be seen on
Fig. 3. The main page provides the aggregated status view
of all monitored WMS services from the target Grid
infrastructure. This part of the portal presents the data in a
simpliticd way, with the emphasis on WMS services
identified not to work properly.

The portal also provides links to pages with detatled
information and graphs for each monitored WMS service.
These pages contain the latest data, as well as historical
data presented in the graphical form, as shown on Fig. 3.

The WMSMON Collector is implemented as a Linux
daecmon. During its startup it creatcs appropriate cron jobs,
inttializes the RRD and local cache, and provides Apache
server with the path information to WMSMON PHP
scripts. The WMSMON web portal is realized as a set of
PHP scripts. The WMSMON Collector is released as an

242

RPM package and the latest version is available from the
SCL RPMs repository.

V. CONCLUSIONS

We have presented the WMSMON tool, deigned and
implemented to monitor the properties relevant for
operation of gLite WMS services. This servicc is an
essential element in Grid infrastructures, providing
distributed scheduling of user jobs submission and
management requests. The WMSMON tool s
implemented in collector-agent architecture and cnables
identification of operational problems with monitored
WMS services, as well as assessment of hardware/software
bottlenecks. The WMSMON tool has been deployed in the
SEE-GRID-SCI infrastructure.

ACKNOWLEDGMENTS

This work is supported in part by the Ministry of
Science and Technological Development of the Republic
of Serbia through rescarch grant No. 01141035, and by the
European Commission through projects CX-CMCS (FP6),
SEE-GRID-SCI (FP7) and EGEE-III (FP7).

REFERENCES

[1] Academic and Educational Grid Initiative of Serbia
(ALGIS), http://www.aegis.rs/
[2] German Grid Initiative (D-Grid), http://www.d-grid.de/
[3] UK e-Science Programme,
http://www.rcuk.ac.uk/escience/
[4] SEE-GRID elnfrastructure for regional eScience (SEE-
GRID-SCI), http://www,see-grid-sci.eu/
[5] Enabling Grids for E-sciencE (EGEE),
http://www.eu-cgee.org/
1 NorduGrid, http://www.nordugrid.org/
[7] SETI@HOME, http://setiathome.ssl.berkeley .edu/
] gLite Middleware, http://glite.org/
] Globus Toolkit, hitp://www.globus.org/toolkit/
[10] Virtual Data Toolkit, http://vdt.cs wisc.edu/
] Open Science Grid (OSG),
http://www.opensciencegrid.org/
[12] Advanced Resource Connector (ARC),
http://www .nordugrid.org/middleware/
[13] India’s National Grid Computing Initiative (Garuda),
http://www.garudaindia.in/

[14] Europcan DataGrid project, http://eu-datagrid.web.cern.ch/
(15] Large Hadron Collider (LHC), hrtp://Ihc.web.cern.ch/

[16] LHC Computing Grid (LCG), http://lcg.web.cern.ch/

[17] https:/fedms.cemn.ch/file/722398/gLite-3-UserGuide. pdf
[18] Workload Management System User and Reference Guide,

https:/cdms.cem.ch/file/572489/1/WMS-guide.pdf

[19] WMProxy User Guide,
https://edms.cem.ch/file/674643/1/ WMPROXY -guide.pdf

[20] Logging and Bookkeceping User and Reference Guide,
https://edms.cern.ch/file/571273/2/LB-guide.pdf

[21] GridFTP data transfer protocol,
hetp://www.globus.org/grid_software/data/gridfip.php

MIPRO 2009/GVS

22] Scientific Computing Laboratory of the Institute of Physics
Belgrade, RPM repository, hittp://rpm.scl.rs/

[23] RRDtool, http://oss.oectiker.ch/trdtool/

[24] SEE-GRID WMSMON web portal, http://wmsmon.scl.rs/

MIPRO 2009/GVS 243

