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Quantum computing with graphene plasmons
I. Alonso Calafell 1, J. D. Cox2, M. Radonjić 1,4, J. R. M. Saavedra2, F. J. García de Abajo 2,3, L. A. Rozema1 and P. Walther 1

Among the various approaches to quantum computing, all-optical architectures are especially promising due to the robustness and
mobility of single photons. However, the creation of the two-photon quantum logic gates required for universal quantum
computing remains a challenge. Here we propose a universal two-qubit quantum logic gate, where qubits are encoded in surface
plasmons in graphene nanostructures, that exploits graphene's strong third-order nonlinearity and long plasmon lifetimes to
enable single-photon-level interactions. In particular, we utilize strong two-plasmon absorption in graphene nanoribbons, which
can greatly exceed single-plasmon absorption to create a “square-root-of-swap” that is protected by the quantum Zeno effect
against evolution into undesired failure modes. Our gate does not require any cryogenic or vacuum technology, has a footprint of a
few hundred nanometers, and reaches fidelities and success rates well above the fault-tolerance threshold, suggesting that
graphene plasmonics offers a route towards scalable quantum technologies.
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INTRODUCTION
Quantum computing could efficiently solve many essential
problems. However, building a quantum computer is not an easy
task. One particularly promising approach is to use single-photons,
whose weak interaction with the environment makes them
perfectly suitable for encoding and transmitting quantum
information. Nonetheless, this weak interaction strength makes
the implementation of photon–photon interactions a significant
challenge. While this can be overcome at the cost of extra
photons,1 the additional overhead makes purely linear-optical
schemes difficult to scale up.2 Alternatively, single-photon-level
nonlinearities can be used to directly create deterministic gates.3

However, this typically requires complex interactions with atomic
systems that cannot readily be miniaturized. Recent work shows
that graphene can provide a strong enough nonlinearity without
the technical drawbacks of those atomic systems.
Our graphene-based two-qubit logic gate is centered on

Franson's quantum Zeno gate,4 which is a universal “square-
root-of-swap” (SWAP1/2) gate.5 If two separable single-qubit states
|ϕ〉 and |ψ〉 enter modes 1 and 2, respectively, the gate creates an
entangled superposition of these states being swapped and not
swapped, i.e.,

ϕj i1 ψj i2!
1ffiffiffi
2

p ϕj i1 ψj i2þ ψj i1 ϕj i2
� �

; (1)

where the subscripts indicate the mode. As illustrated in Fig. 1a,
such an operation can be achieved by sending two photons to a
50:50 beamsplitter (BS): The gate succeeds when the two photons
exit in different modes, generating the state of Eq. (1), while, half
of the time, the gate will fail by allowing both photons to exit the
same mode (in reality, the situation is even more complicated
because of two-particle interference effects and the logical qubit
encoding).

If the SWAP process is made continuous by replacing the 50:50
beamsplitter with coupled waveguides, the quantum Zeno effect6

(wherein continuous measurement prevents a quantum system
from evolving), can boost the success probability of the gate to
100%.4 In this scenario, however, the quantum Zeno effect
requires nonlinear two-photon absorption to occur at the single-
photon-level. To date, such a strong optical nonlinearity has only
been achieved via complex interactions with atomic systems,7

which lack scalability.
Plasmon-polaritons, formed when light hybridizes with the

collective charge-carrier density oscillations in conducting materi-
als, confine electromagnetic energy to deeply-subwavelength
scales, and could potentially enable extremely strong optical
nonlinearities in nanoscale photonic circuits8—an ideal situation
for a scalable quantum logic gate. While plasmons supported by
noble metals provide large nonlinear enhancements and are
compatible with single-photon-level quantum experiments,9,10

they suffer from intrinsically high ohmic losses, severely limiting
their application to quantum technologies.
Graphene has recently arisen as a robust material platform for

plasmonics, capable of sustaining plasmon resonances with
extremely long lifetimes11,12 that can be tuned actively via
electrostatic gating.13 Furthermore, its low-dimensionality pro-
vides unprecedented levels of optical field confinement,14

boosting optical nonlinearities well above those in noble
metals,15–18 potentially enabling nonlinearities on the single- or
few-plasmon level.19,20 Here we propose that this system can be
used to implement a two-qubit quantum logic gate using
nanoplasmonic graphene waveguides.
We will use the so-called single-rail encoding, just as in the

original Zeno-gate proposal,4 where the absence of a particle
represents a logical 0, and the presence of a particle a logical 1. In
other words, |0〉 (|1〉) in the Fock basis represents a logical |0〉 (|1〉)

Received: 11 October 2018 Accepted: 9 April 2019

1Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna A-1090, Austria; 2ICFO-Institut de Ciencies
Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain; 3ICREA-Institucio Catalana de Recerca i Estudis Avancats, Passeig Lluis
Companys 23, 08010 Barcelona, Spain; 4Present address: Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of
Belgrade, Belgrade, Serbia
Correspondence: I. Alonso Calafell (irati.alonso.calafell@univie.ac.at)

www.nature.com/npjqi

Published in partnership with The University of New South Wales

http://orcid.org/0000-0002-8430-5279
http://orcid.org/0000-0002-8430-5279
http://orcid.org/0000-0002-8430-5279
http://orcid.org/0000-0002-8430-5279
http://orcid.org/0000-0002-8430-5279
http://orcid.org/0000-0002-2972-2969
http://orcid.org/0000-0002-2972-2969
http://orcid.org/0000-0002-2972-2969
http://orcid.org/0000-0002-2972-2969
http://orcid.org/0000-0002-2972-2969
http://orcid.org/0000-0002-4970-4565
http://orcid.org/0000-0002-4970-4565
http://orcid.org/0000-0002-4970-4565
http://orcid.org/0000-0002-4970-4565
http://orcid.org/0000-0002-4970-4565
http://orcid.org/0000-0002-4964-817X
http://orcid.org/0000-0002-4964-817X
http://orcid.org/0000-0002-4964-817X
http://orcid.org/0000-0002-4964-817X
http://orcid.org/0000-0002-4964-817X
https://doi.org/10.1038/s41534-019-0150-2
mailto:irati.alonso.calafell@univie.ac.at
www.nature.com/npjqi


state of the qubit. Higher-order Fock states fall out of this logical
subspace. Although the single-rail encoding has limitations,21 it
can be transformed into the more well-known dual-rail encoding
with linear optical elements.22

Implementing the SWAP1/2 gate with a BS is not straightforward
(Fig. 2a): If the logical input state is |00〉, |01〉, or |10〉 (encoded by
no particles in either mode, or one particle in the first or second,
respectively), the gate functions perfectly. In contrast, when one
particle is incident in each mode (a logical state |11〉) the correct
output is |11〉. Unfortunately, the Hong-Ou-Mandel (HOM) effect,
already observed for single plasmons,9,10,23 causes the particles to
bunch and exit in the same mode, implying that the gate always
fails. Since the HOM effect is independent of the relative phase
between the two modes, this holds in general. Even if the particles
are made indistinguishable, to circumvent HOM bunching, the
gate fails 50% of the times (see Fig. 1a).
In a Zeno gate, the swap between the two modes has to be a

continuous process, so that a “Zeno measurement” can be applied
as the system evolves. Such a continuous swap can be achieved
with a directional coupler (DC). To prevent the system from
evolving into a state in which both particles are in the same mode,
one must continuously monitor whether both particles are in the

same mode. In practice, the presence of a sufficiently strong two-
photon absorber can perform this measurement.4 At first glance, it
appears that in such a DC, when the particles bunch into the same
mode, they would be absorbed. However, when the swap
probability is much smaller than the two-particle absorption, the
Zeno effect does not even allow the particles to bunch in the
first place.
In graphene, this Zeno condition can be easily achieved. When

a single plasmon has less energy than the Fermi level, it is not
absorbed via electron-hole pair excitation. At the same time, a
mode containing two plasmon quanta can have enough energy to
be absorbed via an interband transition (Fig. 1b). Since the two-
plasmon absorption depends on the field strength while the
single-plasmon absorption does not, confining the graphene
plasmon field to a nanostructure enhances the two-plasmon
absorption rate, while leaving the single-plasmon absorption rate
unaffected20 (Fig. 1c).

RESULTS
As a physical realization of such a graphene-based quantum gate,
we envision a system of two graphene nanoribbons that support

Fig. 1 Basic operating principles of our nanoplasmonic quantum logic gate. a Simplest square-root-of-swap gate. Two photons are sent in the
two ports of a 50:50 beamsplitter. If the photons are distinguishable, half of the times the photons exit from different ports and a square-root-
of-swap gate is achieved. The other half of the times the two photons exit through the same port and the gate fails. If the photons are
indistinguishable, they bunch and always exit from the same port, so the gate always fails. b Electronic band structure of graphene with a
non-zero Fermi energy EF. Two photons can produce an interband transition and be absorbed, whereas single-photon absorption is forbidden
for photon energies below 2EF. c Ratios between the two-plasmon absorption rate, γ(2) (at the plasmon resonance frequency), and the intrinsic
damping rate, γ = 500 fs−1, for a range of nanoribbon widths, W, and Fermi energies, EF. The blue areas are regions in which two-plasmon
absorption is two to six orders of magnitude faster than linear absorption, providing a strong γð2Þ � γ condition that leads to extremely high
success probabilities for the gate

Fig. 2 Surface-plasmon-based SWAP1/2 gate comprised of nonlinear graphene nanoribbons. Nanoribbons are brought together so that the
plasmonic modes couple to each other via a Coulomb interaction. For a separation dz between the ribbons, there is an interaction length
L ¼ LSWAP1=2 after which the plasmon has 50-50% probability of remaining in the same mode or having swapped across ribbons. Thus, when a
single plasmon is input in each mode, |1〉1|1〉2, we find the output state with a one plasmon in each mode, |1〉1|1〉2, in which case the gate
succeeds, or b both plasmons in one of the modes, |2〉1|0〉2 or |0〉1|2〉2, in which case the gate fails. When a separable single-qubit is input into
each mode (|ϕ〉, |ψ〉), an entangled state is created, ϕj i1 ψj i2! 1ffiffi

2
p ϕj i1 ψj i2þ ψj i1 ϕj i2
� �

. In the absence of nonlinearity in the waveguide and
assuming indistinguishable plasmons, the HOM effect forces the plasmons to exit the gate in the same output mode, meaning that the gate
always fails for |1〉1|1〉2. However, driven by the Zeno effect, the strong nonlinearity of the graphene waveguides reduces the probability that
two plasmons are found in the same nanoribbon and increases the success probability. c We describe the SWAP1/2 gate as a six-state system
where U is the coupling between ribbons, while γ and γ(2) are the intrinsic damping and two-plasmon absorption rates, respectively
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propagating single plasmons (see Fig. 2). In this work we will
assume that the single plasmons are already excited, which could,
in principle, be achieved through the emission of a quantum light
source.24–27 The two nanoribbons are brought close to each other,
so that the plasmons are coupled via Coloumb interaction,
forming a graphene plasmon DC, whereby a plasmon starting in
one ribbon can couple to the other ribbon. The interaction length,
the ribbon width, and the ribbon spacing set the splitting ratio of
the DC. At the same time, the ribbon width and the Fermi energy
of the nanoribbons determine the two-plasmon absorption rate.
To model this system, we describe each ribbon as a two-level

system with energy ℏω, where ω is the resonant plasmon
frequency that depends on the nanoribbon width W and doping
level (Fermi energy) EF. As shown in Fig. 2c, we consider a
maximum of two plasmons, limiting the Hilbert space to six states.
States with an equal number of plasmons are coupled via a
Coulomb interaction of strength U. Decay processes are governed
by inelastic scattering rate γ, and γ(2) denotes the two-plasmon
absorption rate.
We quantify the Coulomb interaction by describing plasmons in

semi-infinite graphene nanoribbons within the so-called plasmon
wave function (PWF) formalism,28 adapted here to include the
effect of a non-vanishing optical wave vector k|| in the direction of
the ribbon transversal symmetry. Setting the nanoribbons to be
aligned horizontally, and separated by a distance dz in the z-
direction (see Fig. 2a), the interaction between N plasmons in one
ribbon and N′ plasmons in the neighboring one, both of them
propagating with parallel wave vector k||, is given by

Ukjj;NN0 ¼ 1
2

Z
d2R
Z

d2R0
ρindkjj;N

ðR;ωÞ
h i�

ρindkjj ;N0 ðR0;ωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� R0Þ2 þ d2z

q ; (2)

where the integrals are evaluated over the nanoribbons in a 2D
space R= (x, y) and ρindkjj ;N

ðR;ωÞ is the induced charge associated
with N plasmons (see Methods and Fig. S1).
Next, we compute γ(2) from the nonlinear conductivity σ

ð3Þ
ω , for

which an analytical expression in the local and zero-temperature
approximation is obtained quantum-mechanically in the Dirac
cone approximation and reported in ref. 29. As shown in the
Methods, the two-plasmon absorption rate is given by

γð2Þ ¼ �hωβð4Þq;1

Wβ
ð2Þ
q;1Δ

γ

Refσð1Þ
ω g

 !2

Refσð3Þω g; (3)

where β
ð2Þ
q;1 and β

ð4Þ
q;1 are the momentum-dependent field normal-

izations, which we consider to be unity for low momentum values.
Here Δ characterizes the spatial extent of the propagating
plasmon along the direction of transversal symmetry, which we
set to be equal to the ribbon width. We set the single-plasmon
lifetime to be γ= 500 fs−1, which is a realistic value, measured at
room temperature.11 Note that this lifetime can be extended by
going to cryogenic temperatures; for which lifetimes up to 10 ps
have recently been measured.12

We can now calculate the density matrix ρ(t) of the system by
solving the time-dependent Lindblad master equation, which is
the most general type of Markovian and time-homogeneous
master equation describing an open-quantum-system evolution
that is both trace-preserving and completely positive for any initial
condition30

_ρ ¼ � i
�h
H; ρ½ � þ

X
n;m¼1;2

γðnÞ anmρa
yn
m � 1

2
aynm anm; ρ
� �� �

; (4)

where γ(1)≡ γ, aym (am) denote plasmon creation (annihilation)
operators, n is the number of absorbed plasmons and m is the
nanoribbon mode. The Hamiltonian of the two-nanoribbon

system is

H ¼ �hω
X
m¼1;2

aymam þ Uðay1a2 þ ay2a1Þ (5)

where U is the Coulomb interaction given in Eq. (2), while ω is the
plasmon frequency of each nanoribbon mode.
We numerically solve Eq. (4) using Mathematica, from which we

obtain the required time tSWAP1=2 at which a single plasmon
incident in either nanoribbon is placed in an equal superposition
of both nanoribbon modes at the output. This time is related to
the Coulomb interaction U from Eq. (2) (i.e. stronger Coulomb
interaction U resulting in shorter tSWAP1=2 ). To calculate tSWAP1=2 we
define our initial state to be ρ(t= 0)= |ψi〉〈ψi|, where |ψi〉= |1〉1|
0〉2, and let it evolve until the probability of the plasmon being in
either of the modes is equal: P 10j iðtSWAP1=2Þ ¼ P 01j iðtSWAP1=2Þ. We
convert this time to a length LSWAP1=2 , by computing the plasmon
group velocity as shown in Fig. S2. The resulting LSWAP1=2 is plotted
in Fig. 3a. For EF > 0.1 eV the required LSWAP1=2 is always less than
the single-plasmon decay length, thus showing the potential of
long-lived graphene plasmons: novel physical effects can manifest
before the plasmon decays.
For all the results presented here, we set the spacing between

the two nanoribbons to dz= 1 nm. With current technology, such
atomically thin spacings can be realized by taking advantage of
2D materials like graphene.31 This parameter only affects the
Coulomb interaction strength, which will determine LSWAP1=2 . The
PWF used in our calculations is applicable for these scales, as
discussed in detail in ref. 28. Furthermore, for our parameter
regime, the Coulomb interaction does not depend very strongly
on dz (see Fig. S4 of the Supplementary Information).
Once LSWAP1=2 is determined, we proceed to analyze the system

when a single plasmon is input in each mode; that is,
ρ(t= 0)= |ψi〉〈ψi| where |ψi〉= |1〉1|1〉2. For this input, the gate
functions correctly if there is still one plasmon in each output
mode, which occurs with probability P 11j iðtSWAP1=2Þ.

DISCUSSION
In Fig. 3a–c we show the success probability P 11j iðtSWAP1=2Þ, the
probability of the plasmons bunching in the same nanoribbon
P 20j iðtSWAP1=2Þ þ P 02j iðtSWAP1=2Þ, and the probability for both plas-
mons to decay P 00j iðtSWAP1=2Þ, for a range of nanoribbon widths W
and Fermi energies EF. Notice the similarity of the contour features
between these figures and the γ(2)/γ ratio shown in Fig. 1c. In the
upper right corner the two-plasmon absorption is much weaker
than the single-plasmon absorption, leading to a very weak Zeno
effect, so the HOM effect prevails: that is, P 20j iðtSWAP1=2Þþ
P 02j iðtSWAP1=2Þ � P 11j iðtSWAP1=2Þ.
As we decrease both W and EF, γ

(2) increases, but not enough to
drive a noticeable Zeno effect. Instead, both of the plasmons are
likely to be absorbed, which is reflected in P 00j iðtSWAP1=2Þ � P 20j iþ
P 02j iðtSWAP1=2Þ.
In the region where γð2Þ=γ � 104 � 106, a strong Zeno effect

can be realized (light blue area of Fig. 1c). This leads to a large
increase in the success probability P 11j iðtSWAP1=2Þ, while P 20j i þ
P 02j iðtSWAP1=2Þ becomes negligible, meaning that the Zeno effect
completely suppresses the HOM effect. Despite the large γ(2),
P 00j iðtSWAP1=2Þ shows a minimum when γð2Þ � γ. In this optimal
region, we find a maximum success probability of 87.0% for W=
5 nm and EF= 0.335 eV, which is an increase in the success
probability of the SWAP1/2 gate from 0 to 87.0%. This already
places us well above the gate success probability rate required to
generate universal cluster states for quantum computation.32 This
performance is limited by the single plasmon lifetime. In Fig. 3e
we plot the success probability, maximized over the range of W
and EF shown in pannels a-d, versus the plasmon lifetime given by
1/γ. For lifetimes longer than 7.5 ps the success probability
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increases above 99%, reaching fault-tolerance regimes for surface
codes.33 Nevertheless, edge imperfections and structural defects
would decrease the plasmon lifetime and thus the fidelity of the
gate. The predicted nonlinearities, nevertheless, should persist in
their presence.
Since single-plasmon decay can also result in logical states

changing into other logical states, this process fidelity will be
further decreased. To quantify this, we evaluated the process
fidelity34,35 of our gate by simulating process tomography for the
complete range of W and EF under consideration (see Methods).
The resulting process matrix for W=5 nm and EF= 0.335 eV with a
lifetime of 500 fs is plotted in Fig. 4, and has a fidelity of 93.3%.
When the lifetime is increased to 10 ps, the fidelity is 99.6%.
Our proposed gate achieves process fidelities in the fault-

tolerance regime for relatively reasonable physical parameters.
Doping levels as high as 1–2 eV have been achieved,36,37

nanoribbon widths in the range of 10–40 nm have been
constructed using different means,31,38–40 and separation distances
≈1 nm are routinely achieved through single-atomic hexagonal
boron nitride spacers, which additionally guarantees the preserva-
tion of high-quality graphene optical response.31 Furthermore, by
combining ideas from quantum optics with nanoplasmonics, our
work opens up an entirely new and promising avenue in the
search for single-photon nonlinearities. While we have studied the
application of graphene nanoplasmonics to a quantum logic gate,
this could also be used for deterministic optical implementations

of quantum teleportation,41 cluster state generation,42 and single-
photon sources,19 underlining the applicability of this platform.

METHODS
Classical electrostatic description of plasmons in graphene
nanoribbons
We consider a single graphene nanoribbon occupying the R= (x, y) plane
that has a finite width W in the x-direction and is infinitely-extended along
the y-direction. In the linear approximation, following refs., 19,23 the self-
consistent electric field within the ribbon Eq produced by an impinging
field EextðR; tÞ ¼ Eextq eiðky y�ωtÞ þ c:c:, i.e., having frequency ω and momen-
tum ky ≡ q/W along y, is given by

EqðR;ωÞ ¼ Eextq ðR;ωÞ � 1
εabω

∇R

Z
d2R0

R� Rj j0ρ
ind
q ðR0;ωÞ; (6)

where εabω ¼ εaω þ εbω
� �

=2 is the average of the dielectric functions
describing media above (ðεaωÞ) and below ðεbωÞ the 2D layer and
ρindq ðR;ωÞ is the induced charge. From the continuity equation, we express
ρindq in terms of the local, linear 2D graphene conductivity σ

ð1Þ
ω as

ρindq ðR;ωÞ ¼ � i
ω
σð1Þω ∇R � fREqðR;ωÞ

	 

; (7)

where we have introduced the occupation factor fR, which is equal to one
when −W/2 ≤ x ≤W/2 and is vanishingly small everywhere else. In practice,
we employ the optical conductivity obtained for zero temperature in the
local limit (i.e., for vanishing in-plane optical momentum) of the random-

Fig. 3 Performance of the graphene-based SWAP1/2 for different nanoribbon width W and Fermi energy EF. Here the separation between the
nanoribbons is set to dz = 1 nm, and the in plane momentum along the ribbon to kjjjW ¼ 0:4. a Probability of still having one plasmon in each
mode when one plasmon is input into each mode after the input plasmons evolve along the interaction length LSWAP1=2 . We find a range
(shown in white) where the success probability is over 80% for reasonable physical parameters. b Probability of finding two plasmons in one
nanoribbon after the interaction between the initial plasmons occurs. This is the “failure probability” of the gate, as it corresponds to events
which take us out of the logical qubit subspace. As expected, these data show that in the region where P|11〉 is maximized the failure
probability is significantly suppressed. c Probability of losing both initial plasmons after they evolve along a distance LSWAP1=2 . d Interaction
length LSWAP1=2 required to perform the SWAP1/2 logic gate. For the plotted range, we find that, above EF= 0.1 eV, the required interaction
length is always shorter than the plasmon decay length (which is ≈ 500 nm for a 500 fs lifetime). e Success probability of the |11〉 input state as
a function of the plasmon lifetime 1/γ, maximized over the same W and EF range as in panels a–c
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phase approximation (RPA) as18

σð1Þω ¼ ie2

π�h2
EF

ωþ iτ�1
þ e2

4�h
Θð�hω� 2EFÞ þ i

π
log

�hω� 2EF
�hωþ 2EF

� �
; (8)

where the Fermi energy EF is related to the graphene Fermi velocity vF ≈ c/
300, doping charge-carrier density n according to EF ¼ �hvF

ffiffiffiffiffiffi
πn

p
and τ= 1/γ

is a phenomenological inelastic scattering rate. The first and second terms
in Eq. (8) describe the optical response arising from intraband and
interband electronic transitions, respectively, with the latter becoming
unimportant when EFtω.13 Incidentally, we have neglected inelastic
damping in the interband transitions. In terms of normalized coordinates
~θ � R=W and the normalized electric field~εqð~θ;ωÞ � W

ffiffiffiffi
f~θ

p
Eqð~θ;ωÞ, Eq. (6)

can be expressed as

~εqð~θ;ωÞ ¼~ε extq ð~θ;ωÞ þ ηð1Þω

Z
d2~θ0Mð~θ;~θ0Þ �~εqð~θ0;ωÞ; (9)

where η
ð1Þ
ω � iσð1Þω =εabω ωW is a dimensionless parameter characterizing the

intrinsic linear optical response of graphene, and

Mð~θ;~θ0Þ ¼
ffiffiffiffiffiffiffiffi
f~θf~θ0

q
∇~θ 	∇~θ

� � 1

~θ�~θ0



 


 ; (10)

which we identify as a real, symmetric operator that admits a complete set
of real eigenvalues. The electric field of Eq. (9) is expanded in eigenmodes
of the matrix Mð~θ;~θ0Þ as
~εqð~θ;ωÞ ¼

X
m

am~εq;mðθxÞeiqθy ; (11)

where the modes ~εq;mðθxÞeiqθy and their corresponding eigenvalues ηq,m
satisfy

~εq;mðθxÞeiqθy ¼ ηq;m

Z
d2~θ0Mð~θ;~θ0Þ �~εq;mðθ0xÞeiqθ

0
y (12)

and form an orthonormal setZ
dθx~ε

�
q;mðθxÞ �~εq;mðθxÞ ¼ δmm0: (13)

Inserting Eq. (11) into Eq. (9), we make use of Eqs. (12 and 13) to write

am ¼ bq;mð1� η
ð1Þ
ω =ηq;mÞ�1, where

bq;mðθyÞ ¼
Z

dθx~ε
�
q;mðθxÞ~ε extq ð~θ;ωÞ (14)

is a coefficient that depends on the form of the external field. In what
follows we take Eextq to be independent of x, so we may write

bq;mðθyÞ ¼ �WEextq �~ξ �
q;mcqðθyÞ, where cq(θy) contains the y-dependence

of the external field and ~ξq;m � �Rdθx~εq;mðθxÞ, so that the normalized

electric field in Eq. (11) becomes

~εqð~θ;ωÞ ¼
X
m

�WEextq �~ξ�q;m
1� η

ð1Þ
ω =ηq;m

~εq;mðθxÞcqðθyÞ: (15)

Electrostatic energy in nanoribbons
The electrostatic energy for identical, parallel ribbons separated by a
distance dz in the z-direction is given by

Uq;ll0 ðdzÞ ¼ W3

2

Z
d2~θ
Z

d2~θ0
ρindq;l ð~θ;ωÞ
h i�

ρindq;l0 ð~θ0;ωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðθx � θ0xÞ2 þ ðθy � θ0yÞ2 þ ðdz=WÞ2

q ; (16)

where, from Eq. (7) (taking εabω ¼ 1 for simplicity), we can express the
induced charge in ribbon l as

ρindq;l ð~θ;ωÞ ¼
η
ð1Þ
ω

W
∇~θ �

ffiffiffiffi
f~θ

q
~εq;lð~θ;ωÞ

h i
: (17)

Inserting the above expression into Eq. (16) and making use of Eq. (15),
the electrostatic energy becomes

Uq;ll0 ðdzÞ ¼ W3

2

X
mm0

Eextq;l �~ξq;m
1=ηð1Þω � 1=ηq;m

 !�
Eextq;l0 �~ξq;m0

1=ηð1Þω � =ηq;m0

 !
Iq;mm0 ðdzÞ; (18)

where

Iq;mm0 ðdzÞ ¼ R 1=2
�1=2dθx

R L=2W
�L=2Wdθy

R 1=2
�1=2dθ

0
x

´
R L=2W
�L=2Wdθ

0
y

∇~θ
�cqðθy Þ~εq;mðθxÞ½ ��∇~θ 0 �cqðθ0yÞ~εq;m0 ðθ0x Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðθx�θ0xÞ2þðθy�θ0y Þ2þðdz=WÞ2
p (19)

and L → ∞ is the nanoribbon length.
Assuming a plane wave field profile along the y-direction corresponding

to cqðθyÞ ¼ eiqθy , in a single ribbon (i.e., taking l= l′ and dz= 0), the use of
Eqs. (10) and (13) yields Iq,mm(0)=−Lδmm′/Wηq,m, and so the electrostatic
energy per unit length in ribbon l is

~Uq;l ¼ W2

2

X
m

�1
ηq;m

Eextq;l �~ξ�q;m
1=ηð1Þω � 1=ηq;m













2

: (20)

In practice, we restrict our study to the lowest-order m= 1 mode, and fix
the number of plasmon quanta in this mode using the condition
l�hωp ¼ 2Δ~Uq;l , where Δ is an effective length for the plasmon mode along
the ribbon (i.e., the characteristic spatial width of a pulse), leading to

Eextq;l �~ξ�2q;1



 


2¼ � l�hωηq;1

W2Δ

1

η
ð1Þ
ω

� 1
ηq;1













2

; (21)

where it is now understood that the indices l and l′ denote the number of
plasmons in the first and second ribbon, respectively. Using the above

Fig. 4 Process Matrix of the SWAP1/2 gate based on graphene surface plasmons. a Simulated process matrix of the SWAP1/2 gate at 93.3%
process fidelity for W= 5 nm and EF= 0.335 eV, with a lifetime of 500 fs. The axis label corresponds to the product of the Pauli operators used
to construct the two-qubit basis, as defined in the Methods section. Note that we only plot the magnitude of the process matrix elements.
b Residual between the simulated and ideal process matrices (||χideal|− s|χsim||) at the point of maximum fidelity
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condition, the coupling energy between ribbons containing l and l′
plasmons is obtained directly from Eq. (18), again considering only the
m=m′= 1 contribution.

Plasmon normalization
We normalize the electric field amplitude of the plasmon mode by
equating the absorbed and dissipated power at linear order, i.e.,

l�hωpγ ¼
Z

d2Rjð1Þq ðR; tÞ � EqðR; tÞ
� �

; (22)

where l is the number of plasmon quanta, jð1Þq ðR;ωÞ ¼ σ
ð1Þ
ω EqðR;ωÞ, and 〈...〉

denote the time-average. Using the result of Eq. (15) with only the m = 1
mode, we obtain

l�hωpγ ¼ 2W2

L
Refσð1Þω g Eextq;l �~ξ�q;1

1� η
ð1Þ
ω =ηq;1













2

β
ð2Þ
q;1

ZL=2W
�L=2W

dθy cqðθyÞ


 

2; (23)

where β
ðnÞ
q;1 ¼

R 1=2
�1=2dθx~εq;1ðθxÞn . For a mode defined as a plane-wave along

the ribbon, such that cyðθyÞ ¼ eiqθy within an effective length Δ, we write
the normalization condition for N plasmons as

Eextq;l �~ξ�q;1



 


2¼ l�hωpγ 1� η

ð1Þ
ω =ηm




 


2
2WRefσð1Þω gβð2Þq;1Δ

(24)

Two-plasmon absorption rate
Power absorption in a nanoribbon via two-plasmon absorption arises from

the nonlinear current jð3ÞðR; tÞ ¼ jð3Þq ðR;ωÞeiky y�iωt þ c:c:, where

jð3Þq ðR;ωÞ ¼ σ
ð3Þ
ω EqðR;ωÞ


 

2EqðR;ωÞ, and is given by

PTPA ¼
Z

d2Rjð3Þq ðR; tÞ � EqðR; tÞ; (25)

where jð3Þq ðR;ωÞ ¼ σ
ð3Þ
ω EqðR;ωÞ


 

2EqðR;ωÞ and σ

ð3Þ
ω is the local third-order

conductivity of extended graphene, for which we adopt the analytical
result obtained quantum-mechanically at zero temperature in the Dirac
cone approximation, as reported in ref. 29 Using Eq. (15) we write the time-
average of the absorbed power per unit length as

h~PTPAi ¼ 2W2

L
Refσð3Þω g Eextq;l �~ξ�q;1

1� η
ð1Þ
ω =ηq;1













4

β
ð4Þ
q;1

ZL=2W
�L=2W

dθy cqðθyÞ


 

4: (26)

Equating 〈PTPA〉 with the power dissipated by two-plasmon absorption,
2ℏωγ(2), we make use of the field normalization condition in Eq. (24) to
write the two-plasmon absorption rate for a ribbon containing l = 2
plasmons in the m = 1 mode as

γð2Þ ¼ �hωβð4Þq;1

Wβ
ð2Þ
q;1Δ

γ

Refσð1Þω g

 !2

Refσð3Þω g: (27)

In obtaining the above expression, we have again chosen the field along
the ribbon to have the form of a plane-wave (i.e., cyðθyÞ ¼ eiqθy ), and an
effective length Δ.

Process tomography
We send a complete set of 16 two-qubit states through our simulation and
compute the output states at tSWAP1=2 . To deal with failure events, when
|2〉1|0〉2 and |0〉1|2〉2 terms arise in the output states, we truncate the
output density matrix and renormalize the result. Such events only occur
when states involving two plasmons are input. We also numerically correct
for local single-qubit phases which arise in the output of the simulation.
We feed these output states in a least-squares process tomography
routine, generating a process matrix χsim. This process matrix is defined as,

ρout ¼
X
m;n

χm;nE
y
mρinEm; (28)

where ρin(out) is the input (output) density matrix, and Ei are the basis
operators constructed from the Kronecker product of the Pauli matrices
(labels of Fig. 4. We calculate the process fidelity between these, and the
ideal process (given by Eq. (10) of ref. 12 as Tr{χsimχideal}.

34,35

Numerical solution of the linblad master equation
We use the Lindblad equation introduced in Eq. (4) to describe and solve
the density matrix of our system. The first term of the Lindblad equation
contains the Hamiltonian given in Eq. (5). This Hamiltonian describes the
two identical graphene nanoribbons as a two-level system, where the
coupling between the levels is given by the Coulomb interaction U. We
define a 6-state Hilbert space that contains a vacuum state (|0〉1|0〉2), two
single-plasmon states (|1〉1|0〉2, |0〉1|1〉2) and three two-plasmons states
(|1〉1|1〉2, |2〉1|0〉2, |0〉1|2〉2). In this basis, the matrix form of the Hamiltonian
is

H ¼

0 0 0 0 0 0

0 �hω U 0 0 0

0 U �hω 0 0 0

0 0 0 2�hω
ffiffiffi
2

p
U

ffiffiffi
2

p
U

0 0 0
ffiffiffi
2

p
U 2�hω 0

0 0 0
ffiffiffi
2

p
U 0 2�hω

0
BBBBBBBB@

1
CCCCCCCCA
; (29)

where ℏω is the energy of the plasmon. The second term of the Lindblad
equation contains the loss channels of the system; namely, the single-
plasmon absorption γ(1) and the two-plasmon absorption γ(2). In matrix
form, this second term reduces to

H ¼

γð1Þðρ0101 þ ρ1010Þ þ γð2Þðρ0202 þ ρ2020Þ γð1Þ � 1
2 ρ0010 þ ρ0111 þ

ffiffiffi
2

p
ρ1020

� �
γð1Þ � 1

2 ρ0001 þ ρ1011 þ
ffiffiffi
2

p
ρ0102

� �
γð1Þ � 1

2 ρ1000 þ ρ1101 þ
ffiffiffi
2

p
ρ2010

� �
γð1Þð�ρ1010 þ ρ1111 þ 2ρ2020Þ γð1Þð�ρ1001 þ

ffiffiffi
2

p ðρ1102 þ ρ2011ÞÞ
γð1Þ � 1

2 ρ0100 þ ρ1110 þ
ffiffiffi
2

p
ρ0201

� �
γð1Þð�ρ0110 þ

ffiffiffi
2

p ðρ0211 þ ρ1120ÞÞ γð1Þð�ρ0101 þ 2ρ0202 þ ρ1111Þ
�γð1Þρ1100 � 3

2 γ
ð1Þρ1110 � 3

2 γ
ð1Þρ1101

� 1
2 ð2γð1Þ þ γð2ÞÞρ2000 � 1

2 ð3γð1Þ þ γð2ÞÞρ2010 � 1
2 ð3γð1Þ þ γð2ÞÞρ2001

� 1
2 ð2γð1Þ þ γð2ÞÞρ0200 � 1

2 ð3γð1Þ þ γð2ÞÞρ0210 � 1
2 ð3γð1Þ þ γð2ÞÞρ0201

0
BBBBBBBBBB@

�γð1Þρ0011 � 1
2 ð2γð1Þ þ γð2ÞÞρ0020 � 1

2 ð2γð1Þ þ γð2ÞÞρ0002
� 3

2 γ
ð1Þρ1011 � 1

2 ð3γð1Þ þ γð2ÞÞρ1020 � 1
2 ð3γð1Þ þ γð2ÞÞρ1002

� 3
2 γ

ð1Þρ0111 � 1
2 ð3γð1Þ þ γð2ÞÞρ0120 � 1

2 ð3γð1Þ þ γð2ÞÞρ0102
�2γð1Þρ1111 � 1

2 ð4γð1Þ þ γð2ÞÞρ1120 � 1
2 ð4γð1Þ þ γð2ÞÞρ1102

� 1
2 ð4γð1Þ þ γð2ÞÞρ2011 �ð2γð1Þ þ γð2ÞÞρ2020 �ð2γð1Þ þ γð2ÞÞρ2002

� 1
2 ð4γð1Þ þ γð2ÞÞρ0211 �ð2γð1Þ þ γð2ÞÞρ0220 �ð2γð1Þ þ γð2ÞÞρ0202

1
CCCCCCCCCCA

(30)

where ρijkl ¼ ij i1 jj i2ρ̂ kj i1 lj i2. So as to obtain the time-dependent density
matrix of the system, we numerically solve the system of ordinary
differential equations in Wolfram Mathematica. We employ the variable
stepsize implicit Backward Differentiation Formulas (BDF) or order 5. The
WorkingPrecision used in this algorithm was set to the MachinePrecision,
which, in our case, corresponds to 16 digits. In addition, the AccuracyGoal
and PrecisionGoal options are set to 10. The diagonal elements of this
density matrix exactly correspond to the probability of the plasmons being
in different modes. For example, ρ1111(t) is the probability that one
plasmon is found in each nanoribbon at a given time, ρ2020(t)+ ρ0202(t) is
the probability that two plasmons are found in a single nanoribbon at a
given time, and ρ0000(t) is the probability of not having any plasmon in the
system at a given time.
Once the density matrix of our system is found, we proceed to find the

required interaction time between the nanoribbons to implement a SWAP1/2.
To do so, we set our initial state to be ρ(t= 0)= |ψi〉〈ψi|, where
|ψi〉= |1〉1|0〉2, let it evolve in time and find tSWAP1=2 by looking for the time
at which the probability of the plasmon being in either of the modes is equal;
i.e., P 10j iðtSWAP1=2 Þ ¼ P 01j iðtSWAP1=2 Þ. The solution to this condition was found
numerically using Wolfram Mathematica with a minimum accuracy and
precision of 10 digits. Once tSWAP1=2 is determined, we define our initial state
to be ρ(t= 0)= |ψi〉〈ψi|, where |ψi〉= |1〉1|1〉2, and find the success probability
of the gate P11 at time tSWAP1=2 . Representative time-dependent density-
matrix elements are plotted in Fig. S6 in the Supplementary Information.
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