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Dissipation-induced first-order decoherence phase transition in a noninteracting fermionic system
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We consider a quantum wire connected to the leads and subjected to dissipation along its length. The dissipation
manifests as tunneling into (out of) the chain from (to) a memoryless environment. The evolution of the system
is described by the Lindblad equation. Already infinitesimally small dissipation along the chain induces a
quantum phase transition (QPT). This is a decoherence QPT: the reduced density matrix of a subsystem in
the nonequilibrium steady state (far from the ends of the chain) can be represented as the tensor product of
single-site density matrices. The QPT is identified from the jump of the current and the entropy per site as
the dissipation becomes nonzero. We also explore the properties of the boundaries of the chain close to the
transition point and observe that the boundaries behave as if they undergo a second-order phase transition as a
function of the dissipation strength: the particle-particle correlation functions and the response to the electric
field exhibit a power-law divergence. Disorder is known to localize one-dimensional systems, but the coupling to
the memoryless environment pushes the system back into the delocalized state even in the presence of disorder.
Interestingly, we observe a similar transition in the classical dissipative counterflow model: the current has a
jump at the ends of the chain introducing an infinitely small dissipation.
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I. INTRODUCTION

Coupling to the environment can significantly change the
properties of a quantum system. Intuitively, the presence of
dissipation leads to a decrease of coherence in the system. It
can induce various types of phase transitions [1–9].

The best known example of such a transition is exhibited
by the spin-boson model: there is a critical value of the
interaction between the two-level system and the bosonic
environment, which localizes the system [10]. A more
complicated example is the superconductor-metal transition
in dissipative nanowires [6,7], which can be modeled as a
dissipative XY -spin chain, with a coupling to the bosonic bath
at every site of the chain. It was shown both analytically and
numerically [6,8,9] that the system experiences a universal
second-order phase transition at the critical value of the
coupling to the environment.

These are examples in the presence of the bosonic bath.
Realistically, especially in condensed matter systems, the bath
can be also fermionic [11]. It is possible to describe it in a sim-
ilar manner as the bosonic bath in the spin-boson model, i.e.,
using the Feynman-Vernon formalism. However, it is rather
complicated to consider more than one or two sites in such
a formulation. The problem is often simplified by studying a
Lindblad-type equation [12,13]. This corresponds to a memo-
ryless bath. Physically, this means that the quasiparticles in the
bath are assumed to have a much smaller dynamical timescale
compared to the excitations in the system. Even the mem-
oryless dissipation induces a novel behavior in the quantum
systems. For example, dissipation along the system can lead to
the algebraic decoherence in strongly interacting systems [14].

Phase transitions have been observed in the presence of
a particle or energy flow in various spin chains [15]. For
example, the equilibrium phase diagram of the transverse field
Ising model has two phases: ordered and disordered; while
in the presence of particle flow a new phase appears, which
carries a nonzero particle flux [16].

The density matrix of the nonequilibrium steady state
(NESS) of a noninteracting fermionic system is associated
with an effective Hamiltonian [3]. In this formalism, phase
transitions can be observed directly from the spectrum of the
effective Hamiltonian, which shows features absent in the
closed system. For example, a topological phase transition
has been found in a cold atomic system subjected to laser
irradiation [3].

Equilibrium phase transitions are characterized by dis-
continuous derivatives of the free energy [17]: the order of
the transition is equal to the order of the first discontinuous
derivative. In a nonequilibrium situation the free energy is not
a well-defined statistical quantity. The partition function, on
the other hand, remains well defined also for a nonequilibrium
system, as well as entropy, which is given by the logarithm of
the number of microstates [18]. Starting from the partition
function or entropy we can define the (nonequilibrium)
susceptibilities even though the free energy is ill defined [17].
The susceptibility diverges at the transition point [19]. For the
second-order quantum phase transition (QPT) the divergence is
physical and detectable, while it is a δ-function-like divergence
for a first-order transition. This means that in an infinite system
undergoing a first-order phase transition, when the divergence
equals the Dirac δ function, we can only observe the step
(discontinuity) in susceptibility, while the (infinitely narrow)
Dirac δ peak is not measurable.

A. Short overview

In this paper we study the fermionic chain connected to the
memoryless bath at every site of the chain, hence we consider
the Lindblad equation for noninteracting fermions [5,20–22].
The ends of the chain are connected to noninteracting memory-
less leads [22,23]. The difference in chemical potential induces
the particle flow in the system. We find a first-order QPT that
separates the regimes of coherent and dissipative transport
along the chain. The coherent state is characterized by the
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constant current along the chain, while in the dissipative state
the current induced by the coupling to the reservoirs decays
exponentially inside the chain. QPT between the two happens
already at an infinitesimally small coupling to the environment,
i.e., the critical coupling value is zero. The transition can
be understood microscopically from the fact that the density
matrix is decomposed into the tensor product of one-site
density matrices in the bulk. The phenomenological reason
for the transition is breaking of the time-reversal symmetry by
the dissipation along the chain. From the thermodynamic point
of view, the transition is a consequence of the entropy-per-site
jump. The bulk susceptibility also has a jump at the transition.
These facts make us conclude that it is a first-order phase
transition. We also detect the jump of the steady-state current
at the ends of the chain for sufficiently long chains. We
can observe this nonequilibrium QPT in the spectrum of
the effective Hamiltonian of the NESS: the gap present for
zero dissipation along the chain closes in the presence of
dissipation. A nonequilibrium QPT in the system coupled to
the Markovian bath has also been observed in the XY-spin
chain [2,5] and in the XX-spin chain [1].

The phase transitions are normally considered in the ther-
modynamic limit and the effects of the boundaries (finite-size
effects) are neglected (or, in numerical work, systematically
eliminated, e.g., by finite-size scaling). When we discuss the
transition between the coherent transport through the chain and
decoherent state induced by dissipation, we cannot neglect the
effects of the boundaries, because the particle current is due
to the injection of particles at the ends of the chain. Therefore,
we study the particle-particle correlation functions and the
electrical susceptibility in the NESS at the ends of the chain
and observe power-law divergences as a function of dissipation
strength along the chain.

We also consider the workings of dissipation in the presence
of disorder. We find that any memoryless dissipation extended
along the chain destroys the localization by disorder. This
result supports previous studies by the scattering matrix
approach [24] and the Landauer-type approach with deco-
herence [25]. The phase transition to the dissipative state is
universal and preserved in the presence of disorder.

II. MODEL AND FORMALISM

We are interested in the properties of the nonequilibrium
steady state of a chain of noninteracting fermions linearly
coupled to several noninteracting fermionic baths (reservoirs;
we use the two terms as synonymous). The full Hamiltonian
of such system is

Hfull = Hsys +
∑
i,α

Hi,α,coup +
∑
i,α

Hi,α,bath, (1)

where Hsys is the tight-binding Hamiltonian of the system:

Hsys =
∑
{ij}

tij (a†
i aj + H.c.) +

∑
i

Uia
†
i ai, (2)

with {ij} denoting the links between the sites, tij is the hopping
amplitude between the sites i and j and Ui is an on-site
potential. By Hi,α,bath we denote the Hamiltonian of the bath:
the index i here stands for the site of the chain, while the index

α denotes different baths coupled to the same site:

Hi,α,bath =
∑

k

εi,α,kb
†
i,α,kbi,α,k. (3)

The annihilation operators in the baths are denoted by symbol
bi,α,k , while the annihilation operators in the chain are ai .
Finally Hi,α,coup is the coupling between the system and the
bath, with the coupling strength pi,α,k:

Hi,α,coup =
∑

k

pi,α,k(b†i,α,kai,α + H.c.). (4)

In our model we have exactly two baths at every site which we
can denote as “incoming” and “outgoing”, with α ∈ {(i),(o)}.
The baths are described by the spectral function:

Ji,α(ω) =
∑

k

|pi,α,k|2δ(ω − εi,α,k). (5)

For a noninteracting system it has been shown [11,26] that
under the assumption of constant spectral density in the
reservoirs

Ji,α(ω) = νi,α

and for the plus/minus infinite chemical potential in the
reservoirs the time evolution of the system is described by
the Lindblad equation:

i
dρ

dτ
= Lρ,Lρ

= [H,ρ] + i
∑
j,i/o

{
2	

(i/o)
j ρ	

†(i/o)
j − [

	
†(i/o)
j 	

(i/o)
j ,ρ

]}
,

(6)

where the operator L is called the Liouvillian and 	j are the
Lindblad operators responsible for the coupling to the bath:

	
(i)
j =

√



(i)
j a

†
j , 	

(o)
j =

√



(o)
j aj , (7)



(i)
j = πνj,+∞

∑
k

|pi,+∞,k|2, 

(o)
j = πνj,−∞

∑
k

|pi,−∞,k|2,

(8)

with νj,±∞ being the density of states in reservoirs connected
to the site j with plus/minus infinite chemical potential.
The infinite chemical potential ensures Markovian dynamics
in the bath [27]: in the reservoir at the chemical potential +∞
there are always particles which can hop into the system and
in the reservoir at the chemical potential −∞ there is always
room for new particles hopping out of the system, therefore
such baths are memoryless. The finite bandwidth, finite
chemical potential, and finite temperature of the reservoirs
would make the evolution equation for the density matrix
nonlocal in time [11,26].1 Let us also note that the coefficients

 are not necessarily small, they can have any value. The
difference from the ordinary derivation [13] is that here both

1In the above derivation we have not discussed temperature, as it
does not matter in the case of infinite chemical potential. When the
chemical potential in the reservoirs becomes finite, the temperature
appears as an additional parameter.
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Source Drain

FIG. 1. (Color online) The setup of the problem: one-
dimensional chain is connected to the source and the drain as in
transport experiments. Every site of the chain is coupled to the
environment, which models the dissipation from the leakage of the
current due to imperfect insulation. The environment consists of two
reservoirs at plus/minus infinite chemical potentials coupled at each
site of the chain.

the system and the baths are noninteracting, therefore fewer
assumptions are required to get the Lindblad form of the
evolution equation.

Let us now apply the Lindblad formalism to our model. Our
chain is L sites long and it is coupled to the source and the
drain at infinite bias voltage at its ends:

	
(i)
1 =

√

(i)a

†
1, 	

(o)
1 = 0,

	L(i) = 0, 	
(i)
L =

√

(i)aL.

There is also a dissipation along the chain into a finite
temperature bath, which is represented by sources 	(i)

μ =√
d
(i)

μ a
†
μ and drains 	(o)

μ =
√
d
(o)

μ aμ, for μ = 2, . . . ,L − 1. The
d
 values are not infinitesimal: they are typically much smaller
than 
(i,o) but can take any value in principle; the notation d
 is
just for convenience. Schematically, the dissipative wire setup
we study is depicted in Fig. 1. From now on in the text and in
the plots the 
μ values are measured in the units of the hopping
t , which we assume to be constant along the chain (in other
words we put tij = t = 1).

A. Solving the Lindblad equation

The solution of the Lindblad equations for noninteracting
fermions is notably simplified in the superfermionic repre-
sentation [21,22], which is based on the doubling of the
degrees of freedom as in thermofield theory. Here instead of
solving a differential equation for the evolution of the 2L × 2L

density matrix, the calculations are done with the 2L × 2L

matrices. The observables of the NESS are computed directly.
What is more, the full-counting statistics of the transport
through the ends of the chain can be obtained by introducing
the counting field, which yields the generating function
of the counting statistics [22,23]. We will present the results for
the first cumulant of the generating function, i.e., the current, as
well as for the ratio between the second and the first cumulant,
which characterizes the noise in the system and is called the
Fano factor.

We evaluate the current along the chain by averaging the
local current operator over the NESS:

ĵk = −it(a†
kak+1 − a

†
k+1ak). (9)

At the ends of the chain the current and the Fano factor are
given by the derivatives of the generating function.

The Liouvillian for noninteracting fermions in the super-
fermionic representation becomes quadratic after performing
the particle-hole transformation [22], as the Liouvillian be-
comes diagonal in the basis {f,f ‡,f̃ ,f̃ ‡}, see Appendix. The
density matrix of the NESS is a vacuum for the operators f and
f̃ (see Appendix). As there exists a linear relation between the
initial basis {a,a†,ã,ã†} and the basis {f,f ‡,f̃ ,f̃ ‡}, the density
matrix of the NESS is quadratic:

ρNESS = exp(Hmna
†ã†)|00〉aã

〈I | exp(Hmna†ã†)|00〉aã

, Hjn = κ̃−1
ni κji, (10)

where the matrix κ is connected to the matrix of the eigenvec-
tors P of the transformation which diagonalizes the particle-
hole transformed Liouvillian [22] (see Appendix), namely
T = P −1, κkj = Tkj and κ̃kj = Tk+L,j for k,j = 1, . . . ,L.
Notice that iH is a Hermitian matrix as ρ is Hermitian, and
〈I | is the left vacuum, |I 〉 = ∑

n |nn〉aã [21], where by n we
denote the state in the a basis. Therefore, iH can be considered
as an effective Hamiltonian of the NESS.

III. DISSIPATION-INDUCED PHASE TRANSITION

In this section we first observe the dissipation-induced
phase transition in the transport properties at the ends of the
chain and in the bulk and then we characterize the transition in
the thermodynamic limit. Afterwards we discuss some specific
aspects of the transition at the ends of the chain by studying the
response to electric field and the particle-particle correlation
functions close to the ends and reveal its microscopic nature.
Finally, we study the influence of the dissipation on the
phenomenon of delocalization in disordered systems.

A. Observation of the transition

We model dissipation along the chain as tunneling to the
metallic gate in the absence of good isolation of the one-
dimensional chain from the environment. To implement this
we couple a source and a sink to every site of the chain [21]. We
also allow for disorder in the hybridization strengths d


(i/o)
μ to

account for different tunneling rates to the environment.
The fermionic chain coupled to the reservoirs only at its

ends has a uniform current along its length due to particle
conservation. Let us call the state of such a system coherent
as the current at its ends depends on both couplings. On the
other hand we call the state of the system decoherent when the
current through a given end depends only on the coupling of
the reservoir at this end.

We only expect to find a phase transition and the associated
discontinuities in the thermodynamic limit, i.e., in an infinite
system. For that reason we start by looking at a chain long
enough that there is no dependence on its length, Fig. 2(b). We
see a jump both in the current and in the Fano factor when the
dissipation is switched on, Fig. 2(a). Reference [23] provides
the large deviation calculation for the current distribution
function of the chain coupled to the reservoirs only at its ends.
The current distribution is discontinuous as a function of the
couplings to the reservoirs and the author suggests that this is
the reason of the phase transition also for the system dissipative
along its length.

205416-3
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FIG. 2. (Color online) (a) The jump of the current, j , and the
Fano factor, F , at infinitesimally small dissipation constant along
the chain d
 = d
(i) = d
(o) (
(i) = 
(o) = 1). (b) Dependence of
the current j and the Fano factor F through the ends of the chain
on the length L for random dissipation along the chain taken from
the range d
(i),d
(o) ∈ (0,0.04) (points with error bars) and for the
constant dissipation with the strength d
(i) = d
(o) = 0.02 (points
and the dashed lines). Here and everywhere else in the text and the
plots the 
μ values are measured in the units of the hopping t .

In order to understand better the nature of the states on
both sides of the transition, let us consider the current along
the chain. We compute the expectation value of the local
current operator (9) in the NESS for every link of the chain.
For a nondissipative system it is constant along the chain
due to the current conservation. For the dissipative case it
decays exponentially inside the system, Fig. 3. One would
certainly expect such behavior in the presence of the drains
only. But in our setup we have both the source and the drain
attached to every site of the chain. Therefore, we conclude
that the exponential decrease of the current is connected
to the coherence losses due to coupling to the memoryless
environment, and not simply to the current leakage into the
drains.

If we allow for a random distribution of the dissipation along
the chain, the current averaged over disorder configurations
decays with the same exponent as the current in the system
with uniform dissipation, with the magnitude equal to the mean
of the distribution of the disordered couplings, Fig. 3.

With increasing dissipation strength, the current through
one end of the chain becomes only weakly dependent on the
coupling at the other end of the chain because the coherence
of the transport through the chain is lost upon adding the

(a)

(b)

FIG. 3. (Color online) Exponential decay of the current along
the chain. (a) Logarithmic scale, different lengths of the system.
The currents in the system without randomness in dissipation are
represented by the regular sets of points (forming solid lines).
Darker, irregularly scattered points represent the current for one
realization of the disorder in dissipation along the chain. (b) The
current through a dissipative chain after averaging over different
disorder realizations. The scale is linear (not logarithmic) to show
the standard deviation of the (fluctuating, random) current. Notice
that the negative values of the current are physical, because some
realization of the (random) couplings d
 can give an overall current
flowing in the opposite direction. The couplings at the ends of the
chain are 
(i) = 
(0) = 1, d
 = 0.05. For the average over disorder
d


(i)
j ,d


(o)
j ∈ (0,0.1), j ∈ (2,L − 1).

dissipation along the chain, Fig. 4. Here we make a plot for
the constant dissipation rate along the chain since the current
averaged over disorder in coupling strengths is the same as in
the case of the constant dissipation (see Fig. 3).

Both the presence of the jump in the transport characteris-
tics at the ends of the chain and the coherence/decoherence
transition in the current along the chain suggest that any
nonzero dissipation along the chain induces the QPT. It is not
a van der Waals-type transition, meaning there is no analog
of the latent heat, that is, excitation of internal degrees of
freedom, but the extra energy is instead exchanged with the
bath.

1. Classical analogue

The Lindblad approximation for the driving at the ends of
the chain and decoherence along the chain make our quantum
model less quantum and more classical. This is exemplified
by comparing our results with a classical model introduced
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FIG. 4. (Color online) Logarithmic plot of the current flowing
from the system into the reservoir at the beginning of the chain
(denoted by 1) as a function of the hopping rates at the ends of the
chain, in the presence of the constant dissipation along the chain,
d
(i) = d
(o) = 0.02. Increasing the dissipation makes the current
through one end independent of the coupling at the other end of the
chain. In this plot we denote 
(i) = 
1, 
(o) = 
2.

by Roche, Derrida, and Doucot [28] for studying the classical
version of the Landauer picture of a quantum conductor, where
we also observe the exponential decay of the current inside the
chain as well as the jump of the steady-state current at the ends
of the chain upon introducing the dissipation along the chain.

We consider a counterflow model [28]: the system is
modeled by an L-site chain, where each of the sites may
contain two particles, one right-moving and one left-moving. It
is analogous to the quantum scattering problem. Let us call the
walls between the sites tunnel barriers. The time is discrete.
At each time step the right-moving state on the left of the
barrier and the left-moving state on the right of the barrier are
transferred to the right-moving state on the right of the barrier
and the left-moving state on the left of the barrier, respectively:

(0r,k−1,0l,k) → (0r,k,0l,k−1), (11)

(1r,k−1,1l,k) → (1r,k,1l,k−1), (12)

(0r,k−1,1l,k) →
{

(0r,k,1l,k−1) with prob. T ,

(1r,k,0l,k−1) with prob. (1 − T )
(13)

(1r,k−1,0l,k) →
{

(1r,k,0l,k−1) with prob. T ,

(0r,k,1l,k−1) with prob. (1 − T ),
(14)

where on the left-hand/right-hand side of the arrow is the
state before/after the time step respectively, 0 and 1 denote the
state of the system (empty/full), the subscripts r/ l stand for
right-/left-moving and k stands for the cell number. The first
and the last cell are updated at every time step to account for

the contact with the reservoirs:

(1r,1,0l,1) with prob. ρR, (15)

(0r,1,0l,1) with prob. (1 − ρR), (16)

(0r,L,1l,L) with prob. ρL, (17)

(1r,L,1l,L) with prob. (1 − ρL). (18)

The configuration space of this process grows exponentially
with the the number of sites: it contains 2L configurations.
This makes it complicated to calculate the counting statistics
using the transition matrix approach [28]. In general, the
described model has a diffusive behavior: the current through
the system decreases with increasing system size [28] (this
happens because each transmission process is a stochastic
process). In our model we obtain pure ballistic behavior by
moving all particles in the middle of the chain (which are
independent of the dynamics on the first and the last site) as a
whole, which is just what ballistic propagation means.

While earlier work [28] considers only the flux of particles
at the end of the chain, we introduce the dissipation in the
middle of the chain as a classical analog of decoherence (from
now on we call it decoherence to emphasize the lack of true
quantum-mechanical coherence in the classical model) as a
spontaneous appearance/disappearance of right/left moving
particles in between two propagation steps. Therefore, our
algorithm of time evolution of the dissipative chain is

(i) Initialize the time step:
(a) generate an arbitrary initial state in the first step;
(b) in the subsequent steps: update first the occupation

on the first and the last site of the chain according to (15)–
(18). Then update the occupation number in the middle,
which changes due to decoherence: if both left- and right-
moving states at the site k are empty, then with probability
d
(i)/2 one of them becomes occupied. If only the left-
or right-moving state is empty, then this state becomes full
with probability d
(i). The analogous update is done for
hopping out of the chain with the rate d
(o).
(ii) Move the particles:

(a) the right/left movers on the site from 2 to (L − 2)/3
to L − 1 from are shifted in the ballistic way (the particle
is moved by one site, if the site with the corresponding
chirality on its way is empty);

(b) make a move of the states around the barriers
according to rules (11)–(14);

(c) shift particles close to the ends if more ballistic
motion is possible with respect to the configuration af-
ter (11)–(14) comparing to the initial configuration.
(iii) Repeat the steps (i) and (ii).
According to our numerical simulation the average over

the time evolution of a single state equals to the average over
different initial states evolved for a fixed time, which is long
enough to approach the steady state, as we would expect in an
ergodic system. We present the long-time averages over time
of the evolution of a single state as it is less computationally
consuming comparing to the other averaging procedure.

The current through the chain can be determined in two
ways: as the difference between the right and left movers at
each cell or as the number of the particle transmissions between
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(a)

(b)

FIG. 5. (Color online) (a) The jump of the current at the end of
the chain upon switching on the decoherence along the chain in the
classical counterflow model. (b) Dependence of the current through
the first site of the chain on the length of the chain. Compare to Fig. 3,
where analogous behavior is observed for the quantum chain modeled
by the Lindblad equation. 


(in)
1 = 


(out)
2 = 0.5

the neighboring cells. Qualitatively these approaches give the
same answer for our decoherent problem.

To compare our numerical simulation with the Lindblad
approach we fix ρR = 1 and ρL = 0 to model the leads at
plus/minus infinite voltage. The time-averaged current decays
exponentially from the ends of the chain toward the middle,
Fig. 6. The saturation of the exponential decay in the middle
happens due to finite time of averaging. The average current

FIG. 6. (Color online) The dependence of the current on the site
index for different decoherence rates d
 in logarithmic scale in the
classical counterflow model: the exponential decay of the current from
the ends toward the middle of the chain is clearly visible, suggesting a
similar mechanism of decoherence as in the quantum chain in Fig. 4.



(in)
1 = 


(out)
2 = 0.5, tmax = 105.

through the end of the chain jumps when decoherence is
introduced in the system, Fig. 5. To observe the clear jump the
number of time steps should be large enough that the system
forgets about its initial configuration, at least about L/d
.

The behavior of the quantum chain is thus qualitatively
reproduced by the classical stochastic model. It might therefore
seem that the term quantum phase transition we have used for
the transition in the quantum chain is a misnomer. This is not
the case, since the classical counterflow model is stochastic and
thus exhibits fluctuations around the expectation values, i.e.,
averaged values. The generating function of the counterflow
model is thus analogous to the action of a quantum system, and
the jump of the suitably defined classical current is formally
analogous to the QPT observed earlier. A truly classical system
(with no fluctuations) would not show such a phase transition.

B. First-order phase transition in the thermodynamic limit

Phase transitions are normally studied using the thermo-
dynamic quantities and the response functions. In a nonequi-
librium situation the partition function and the entropy are
well-defined thermodynamic quantities. Here we concentrate
on the entropy and the response to the electric field, and
eventually explain the microscopic nature of the transition.

1. Entropy

The NESS is Gaussian, Eq. (10), as it can be represented
as an exponent of a quadratic operator. Therefore, its effective
Hamiltonian is a Hamiltonian of noninteracting fermions. In
analogy with equilibrium statistical physics one can connect
the entropy of the NESS to the eigenvalues μi of the effective
Hamiltonian (10) [29]:

S = −
∑

i

(
ln(1 + e−εi ) + εi

1 + eεi

)
, μi = e−εi . (19)

The entropy per unit length S = S/L does not depend on the
system length for sufficiently long systems and experiences a
jump upon turning on the dissipation along the chain, Fig. 7.
For a chain without dissipation the specific entropy always
depends on the couplings to the reservoirs at the ends of the
chain, while for a dissipative system it does not depend on
the couplings to the leads in the thermodynamic limit (the
contribution from the boundaries is of the order of 1/L).
The specific entropy tends to a value depending only on
the ratio of the incoming and outgoing rates along the chain
γ = d
(i)/d
(o):

S = ln(1 + γ ) − γ

1 + γ
ln γ. (20)

This corresponds to the entropy of the single site coupled
to only two baths by the Lindblad operators

√
d
(i)a† and√

d
(o)a. Indeed, the reduced density matrix of a site in the
middle of the chain is the same as for a single site coupled
to two baths up to a factor exponentially small in L. The
coupling to the rest of the chain is irrelevant. The current in
the middle of the chain vanishes, but what is happening is
even stronger: the correlation between two neighboring sites
vanishes exponentially 〈c†i+1ci〉NESS = O[exp(−βi)], where i

is the number of the site in the middle of the chain and β is the
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FIG. 7. (Color online) Entropy jump at the transition point as a
function of the dissipation strength. The dashed line is in agreement
with Eq. (20). Inset: dependence of the entropy on the chain length for
different dissipation strengths d
 = 0.01,0.02,0.03,0.04,0.05,0.06
(from top to bottom solid curve respectively), the dash-dotted line
corresponds to the entropy in the absence of the coupling to the
environment, the point at d
 = 0 at the main plot.

slope of the exponential decay. Therefore, we can write down
the reduced density matrix of the middle part of the system
neglecting the exponentially small correlations between the
sites as a tensor product of the density matrix of one site
connected to two baths.

2. Spatial decoupling in the density matrix

Such a spatial decoupling of a density matrix for a
completely translationally invariant system (without current
injection/removal at the ends) is evident. We can diagonalize
the Liouvillian by the Fourier transform. Indeed, in terms of
Ref. [22] the matrix M after the Fourier transform obtains the
block structure:

L =
∑

k

(a†
k ãk)Mk

(
ak

ã
†
k

)
− i

∑
k

(d
(i) + d
(o)), (21)

Mk =
(

−iδ
 + 2t cos k 2d
(o)

−2d
(i) iδ
 + 2t cos k

)
(22)

with δ
 = d
(i) − d
(o). Each of the matrices Mk can be
diagonalized: Mk = P −1

k DkPk , where Dk is a diagonal matrix
and Pk is a matrix of eigenvectors. This transformation
determines the basis where the Liouvillian is diagonal:(

fk

f̃
‡
k

)
= P

(
ak

ã
†
k

)
, (f ‡

k f̃k) = (a†
k ãk)P −1, (23)

L =
∑

k

(λkf
‡
k fk − λ∗

k f̃
‡
k f̃k). (24)

Here we assumed that Dk = diag(λk,λ
∗
k) and Imλk < 0. This

structure leads to cancellation of the constant term in the
Liouvillian.

The steady state density matrix is determined as the vacuum
of operators fk and f̃k . The transformation to the basis of the

a,a† occupation numbers gives the density matrix:

ρ =
∑

k

exp(Ha
†
kã

†
k)|00〉ak ãk

ak ãk
〈I | exp(Ha

†
kã

†
k)|00〉ak ãk

, (25)

H = i
d
(i)

d
(o)
, |I 〉akãk

= |00〉 + |11〉. (26)

The effective Hamiltonian H is a constant, therefore the
Fourier transform gives the density matrix which is a tensor
product in position space:

ρ = ⊗i

(
d
(o)

d
(o) + d
(i)
|00〉ai ãi

+ d
(i)

d
(o) + d
(i)
|11〉ai ãi

)
.

(27)

We can thus conclude that the density matrix is local in
space. For the case of disordered leakage along the chain
one cannot perform the Fourier transform of the Liouvillian
analytically but numerical calculation shows that the density
matrix averaged over disorder is again represented by the
tensor product of single-site density matrices. For a single
realization of the disorder in the couplings along the chain the
decomposition is not exact, as shown in Fig. 3(a) for the current
through the chain for a single realization of the disorder.

3. Response to the electric field

The response functions are good indicators of the equi-
librium phase transitions. Let us consider a response of the
current to a constant electric field E applied along the chain.
In the tight-binding model it is incorporated as a linearly
growing on-site potential: Um = mEl0, where l0 is the lattice
constant. In most models of the transport one assumes that
the current flow is due to an electric field applied along the
system. Here we have a current through the chain due to the
coupling to the reservoirs. The difference in on-site potential
from site to site can be viewed as applying an additional
field along the chain. For example, in a cold atom system
one can imagine a lattice constructed with varying depths of
the potential well. In the decoherent phase, the electric field
changes the response function only locally: close to the ends
we expect the susceptibility to be different from the middle
of the system due to the presence of coherence because of the
coupling to the reservoirs. The linear response of the current
to the electric field applied along the chain vanishes, and only
the quadratic part is left, Fig. 8, inset:

jNESS(E,d
(i),d
(o); L) − jNESS(0,d
(i),d
(o); L)

= σ (d
(i),d
(o); L)E2. (28)

Here we also notice that there is a scaling with E: the
dependence of the conductivity on length scales with E2 for the
same dissipation rates along the chain d
(i),d
(o). We attribute
the quadratic dependence on E to the structure of the NESS.
The Ohm’s law is an outcome of the linear response theory,
which implies that the current is a consequence of the electric
field applied to the equilibrium system. In our case the situation
is tremendously different—from the physical point of view, the
current is already present in the system due to contact with the
leads even before applying the electric field along the system.
From the viewpoint of the response theory, the response is
considered with respect to the nonequilibrium steady state. It
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FIG. 8. (Color online) Main plot: the convergence of the non-
linear response to the electric field for long systems in the bulk
of the chain. Solid lines correspond to different coupling strength
d
 = 0.005,0.01,0.02,0.03,0.05 (from top to bottom) and the dashed
line is d
 = 0. Inset: quadratic scaling of j (E) − j (0) with the
applied electric field (the scale in logarithmic).

is thus possible that the linear part of the response vanishes
and only the nonlinear part is present.

The nonlinear response to the electric field vanishes in the
bulk of the chain, Fig. 8. The response in the nondissipative
system grows infinitely in the thermodynamic limit because
of the translational invariance in the bulk. Indeed, when we
make the hopping parameters disordered (i.e., make them
vary along the chain), the infinite growth of σ is suppressed.
Therefore, there is a discontinuity in the value of σ for
infinitesimally small d
. It is consistent with the first-order
phase transition.

C. Near-boundary effects

The symmetrized particle-particle correlation function:

Ci(k) = 〈a†
i+kai + a

†
i ai+k〉NESS (29)

provides further information about the transition. The corre-
lations at the ends of the system are present and they decay
exponentially: Ci(k) ∝ exp(−k/ξi),i ∼ 1 or i ∼ L, where ξ is
a correlation length, Fig. 11. We find the power-law divergence
of the correlation length as the function of dissipation at
zero dissipation rate along the chain. Inside infinitely long
systems the correlations vanish: ξi → 0,i ∼ L/2,L → ∞, as
all coherence in the system is lost.

The nonlinear conductivity converges to a nonzero value
at the boundaries of the chain, Fig. 9, unlike in the bulk of
the chain, where it converges to zero. This happens due to
some remaining coherence at the ends of the chain. Even
more, there is a power-law scaling of the conductivity with
dissipation strength, the parameter, which drives the phase
transition, inset of Fig. 9.

To further corroborate the finding of the continuous QPT
at the edges, let us now consider the spectrum of the
effective Hamiltonian, H. For the translationally invariant
dissipative system from Sec. III B 2 the spectrum of the effec-
tive Hamiltonian is a δ function δ(ε − const × d
(i)/d
(o)),

FIG. 9. (Color online) Main plot: the convergence of the non-
linear response to the electric field for long systems at the ends
of the chain. Solid lines correspond to different coupling strength
d
 = 0.005,0.01,0.02,0.03,0.05 (from top to bottom) and the dashed
line is d
 = 0. Notice that the nonlinear conductivity at the ends
points stays nonzero also in the thermodynamic limit. As in Fig. 8,
the conductivity is infinite in the absence of dissipation. Inset:
scaling of σ with disorder strength with power-law fit: σ = αd
β ,
β = 3.161 ± 0.001.

where the constant comes from the freedom of choice of the
effective Hamiltonian, which is connected to the freedom of
choice of constants in front of the left and the right vacuum of
the Liouvillian. When we take into account the whole chain
with the end sites, the spectrum of the effective Hamiltonian
is influenced by the presence of the ends of the chain: in the
absence of the dissipation along the chain the lowest eigenvalue
λmin of H is 0, while in the presence of the dissipation λmin

shifts to a nonzero value, Fig. 10. There is a power-law scaling
of λmin with the strength of the dissipation, Fig. 10(b).

D. Disordered dissipative system

Let us consider a disordered system with random on-site
potential Ui in the Hamiltonian (2). The values Ui are taken
from the uniform distribution with the range (0,dU ).

It is known that in one spatial dimension disorder always
localizes the conservative system [30]. This is the well-known
Anderson localization: it happens because the electron waves
always interfere so that the overall wave function is localized
on the impurities. Such a system is an insulator as the overlap
of the electron wave functions at different positions in the
chain is exponentially small. This reasoning suggests the
scaling hypothesis, which proposes that the conductivity in
a disordered system should decrease exponentially with the
system size, when the system is in the localized regime.

However, the presence of dissipation changes this: dissi-
pation delocalizes the disordered system, as the dissipation
breaks the interference, which is responsible for the localiza-
tion. For averaging over disorder we used only 15 disorder
configurations, as the uncertainties of the average are already
small enough in that case (the error bars in the figure are of
the size of the symbols in the plot). This happens because
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(a)

(b)

FIG. 10. (Color online) (a) The lowest eigenvalue λmin of the
effective Hamiltonian (10) as a function of the system size for the
system without (black dashed line) and with dissipation (blue points:
averages over the disorder from the range (0,d
), purple line: constant
dissipation with d
/2, d
 = 0.025). (b) The scaling of the lowest
eigenvalue with disorder strength, λmin(d
), and the power-law fit
λmin ∝ d
β with β = 0.53 ± 0.01. The couplings to the source and
the drain are 
(i) = 
(o) = 1.

the density matrix of an open quantum system contains the
sectors with different particle numbers, hence the values of the
current in the NESS can be considered as averaged not only

FIG. 11. (Color online) Dependence of the correlation length on
the coupling to the environment for 
(i) = 
(o) = 1 (dots) and the
power-law fit (dashed line). Inset: correlations at one end of the
chain as a function of the position for different couplings strengths
d
 = 0.005, 0.01, 0.02 (from top to bottom: blue, green, red) and
exponential fits, which determine the correlation length (dashed
lines).

FIG. 12. (Color online) Dependence of the current through a
disordered dissipative system on the length of the system for different
values of the dissipation along the system, d
 = 0, 0.02, 0.03, 0.05
(from top to bottom at small L: black, blue, red, green; solid lines:
dU = 0.3, dashed lines: dU = 0; 
1 = 
2 = 1). The current through
the system is independent of the system length for a sufficiently long
system.

over disorder configurations, but also with respect to different
particle numbers.

The general phenomenology of the clean system with
dissipation is thus preserved also in the disordered system.
The current again reaches a finite (though smaller) value in the
thermodynamic limit, and the current at one end only weakly
depends on the coupling at the other end. An example is seen
in Fig. 12, where for simplicity we consider constant couplings
to the environment along the chain and average only over the
disorder realizations of the on-site potential.

IV. CONCLUSIONS AND DISCUSSION

We have considered the transport properties of a one-
dimensional wire with leakage to the environment. In experi-
mental systems, this leakage can happen due to misfabrication
and the presence of the tunneling from the wire to a metallic
region underneath the wire. We observe a first-order phase
transition for infinitely long systems already at infinitesimal
dissipation rate along the chain. From the microscopic point
of view, this QPT means discontinuous behavior of the density
matrix. On the macroscopic level it manifests itself in the jump
in the current and the Fano factor. From the thermodynamic
point of view we can say that the entropy jumps across the
transition. The specific entropy in the dissipative phase is equal
to the entropy of a single site coupled to the source and the
drain.

Essentially, the phase transition is an anomaly: dissipation
breaks the time-reversal invariance [31]. Upon taking the
symmetry-breaking parameter (dissipation strength) to zero,
we do not recover the result for unbroken symmetry. In the
continuum limit it is analogous to the fact that, for example,
viscosity effects in a fluid are nonperturbative and the flow
undergoes a qualitative change for arbitrarily small nonzero
dissipation: the scaling exponents of the correlation functions
of the velocities jump at the transition between an ideal and
viscous liquid [31]. To understand better the universality of
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our finding, we have considered also the classical stochastic
counterflow model, which describes a chain with two classes of
asymmetric exclusion random walkers, left- and right-moving.
In this case, dissipation is modeled by randomly creating
or destroying the random walkers with certain probabilities
at every (discrete) time step. This model, under suitable
assumptions, again shows the same anomaly and the current
jumps for arbitrarily small nonzero values of the dissipation.
In the counterflow model, the role of quantum fluctuations
is taken over by the stochastic fluctuations. In fluid dynamics,
the velocity fluctuations make the system effectively quantum.
The notion of QPT is thus justified, and the observation of
anomaly—breaking of a classical symmetry at the quantum
level, i.e., by the loop contributions to the action—becomes
natural.

In a different context, the transport theory for dissipative
systems has been developed in Refs. [24,32] in the language
of the scattering matrices. Our Lindblad-based approach and
the scattering approach are different in a few respects. First,
let us consider a system without dissipation, coupled to two
reservoirs at the ends. The scattering matrix theory describes
the case when the wave coming from the reservoir into the
system is coherent (just a plane wave), while the Lindblad
approach describes the case of incoherent leads—the hopping
in the chain happens stochastically. This is also reflected
in the transport properties: while for coherent transport the
conductivity is proportional to the number of open channels in
the system, for the transport induced by incoherent hopping it
is not [22]. Now let us move to the dissipative system. In the
scattering matrix approach the dissipation is modeled through
additional channels, which do not contribute to the transport
(for the one-dimensional nondissipative problem the scattering
matrix has the format 2 × 2, for the incoming and the outgoing
channel, while in the dissipative case the scattering matrix has a
larger dimension, and only two channels describe the transport
along the chain whereas the others describe the scattering in
the side channels). The dissipation constructed in this way is
coherent, while the Lindblad-like dissipation is incoherent.

It is interesting that the spin system coupled to the bosonic
bath at every site experiences a second-order phase transition,
and only at finite dissipation strength [6–9]. We do not know if
the order of the transition is related to the presence or absence
of memory or if it is determined by the statistics of the bath.

The phase transition in the quadratic fermionic systems
was studied also in Refs. [2,5]. There, the XY chain coupled
to the reservoirs at both ends was considered. The transition
manifests itself in the change of behavior of the spin-spin
correlation functions and the entanglement entropy, which
does not depend on the system size on one side of the transition
and grows linearly with the system length on the other side. The
authors argue that the transition is of infinite order as all local
observables are analytical across the transition. Subsequently
the critical behavior has been observed also in the XX-spin
chain [1] coupled to the environment at every site of the chain:
the spin-spin correlation functions are short ranged in the
nondissipative case, whereas they decay as a power law in the
presence of the on-site decoherence. The transition we observe
is significantly different from the previously studied cases
since it is of the first order. This probably happens because
the Refs. [2,5] consider the local dissipation (only at the ends

of the chain), while we are interested in the global dissipation.
The difference with respect to the transition in Ref. [1]
lies in the fact that the NESS is not Gaussian (Gaussianity
allows usage of the Wick’s theorem for the calculation of
higher-order correlation functions in terms of two-point ones,
while non-Gaussian states do not allow such expression): in our
case the particle-particle correlation functions in the presence
of dissipation decay exponentially, while for the XX chain with
on-site dephasing there is a power-law decay of correlations.

The current in the steady dissipative state of the system
decays exponentially inside the chain, because the coupling
to the environment decreases the coherence of the quantum
system. For the random dissipation along the chain, we find
that the average current decreases inside the system with the
same exponent as for the chain with the same dissipation at
every site, which equals to the mean of the random coupling.
One can try to measure the current along the dissipative chain
with a scanning tunneling microscope (STM): if it decreases
exponentially uniformly along the chain, then the dissipation
model without disorder is a valid model, if the current inside
the chain fluctuates, then the dissipation inside of the chain
is random. The STM should be in the regime of a very low
tunneling rate to the microscope tip, so that the tunneling to
the tip does not destroy the dissipative state of the system
itself.

We finish with an outlook. The state of the quantum
system depends on the dimensionality, disorder, interaction,
statistics, and symmetries. The dissipation adds one more
axis to the phase diagram. It can lead to new types of
behavior, already investigated in the spin-boson model [10],
arrays of the dissipative Josephson junctions, and dissipative
spin chains [6–9]. In the present paper we have investigated
the behavior of the noninteracting fermionic system coupled
to the Markovian bath and already have seen interesting
quantum critical phenomena upon adding the dissipation along
the chain. There are many unanswered questions: will this
transition remain first order upon adding memory to the
bath; what happens to it in the presence of interactions; do
dimensionality and symmetries influence the behavior of the
dissipative system, etc.
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APPENDIX: TRANSFORMATION OF THE LIOUVILLIAN
TO THE DIAGONAL BASIS

The solution of the Lindblad equation (6) for noninter-
acting fermions is notably simplified in the super-fermionic
representation [21,22]: operators acting from the right on the
density matrix are introduced. They are denoted by a tilde.
Then the Liouvillian can be written after the particle-hole
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transformation ã = b†,ã† = b in the quadratic form:

L = (a†b†)M
(

a

b

)
− i

∑
μ


(o)
μ − i

∑
μ


(i)
μ , (A1)

where the matrix M can be represented as

M = Hδaa + Hδbb + i

(i)
k δkk(−δaa + δbb)

+ i

(o)
k δkk(δaa − δbb) − 2


(i)
k δkkδba + 2


(o)
k δkkδab

(A2)

with H being a tight-binding Hamiltonian of the system, δxy is
the Kronecker symbol, for example δaa denotes the upper-left
L by L part of the matrix M, δkk stands for the diagonal of the
matrix in the site space.

Due to this specific structure of M the constant terms in
the expression (A3) vanish after introducing a new set of the
operators {f,f ‡,f̃ ,f̃ ‡} [22] and even more in this basis the
Liouvillian becomes diagonal:

Lf =
∑

i

λif
‡
i fi −

∑
i

λ∗
i f̃

‡
i f̃i . (A3)

The operators {f ‡,f̃ ‡} are dual to the operators {f,f̃ },
but not Hermitian conjugated, though the operators obey
anticommutation relations. The operators {f,f ‡,f̃ ,f̃ ‡} are

linear combinations of the operators {a,a†,ã,ã†}:
a†

m =
∑
k1

C
(1)
mk1

f
‡
k1 + C

(2)
mk1

f̃k1,

am =
∑
k1

A
(1)
mk1

fk1 + A
(2)
mk1

f̃
‡
k1.

The coefficient matrices C and A are connected to the matrix
of the eigenvectors P of the matrix M (see Ref. [22]):

P =
(

A(1) A(2)

A(3) A4)

)
, (P −1)T =

(
C(1) C(2)

C(3) C(4)

)
. (A4)

In P the eigenvectors are ordered in the following way: first
N of eigenvectors correspond to eigenvalues with a negative
imaginary part, while the second half have a positive imaginary
part and are complex conjugated to the first set. All matrices
A(i) and C(i), i = 1, . . . ,4 have dimension N × N .

In the f basis the Liouvillian operator is diagonal, therefore
the stationary solution of the Lindblad equation (6) is the
vacuum of the operators f :

f |NESS〉 = 0, f̃|NESS〉 = 0.

It allows us to calculate the expectation values in the NESS:
we transform the operator in the a basis to the f basis and take
its expectation value with respect to the vacuum.
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