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Electrical control of a spin qubit in InSb nanowire quantum dots: Strongly suppressed spin
relaxation in high magnetic field
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In this paper we investigate the impact of gating potential and magnetic field on phonon induced spin relaxation
rate and the speed of the electrically driven single-qubit operations inside the InSb nanowire spin qubit. We
show that a strong g factor and high magnetic field strength lead to the prevailing influence of electron-phonon
scattering due to deformation potential, considered irrelevant for materials with a weak g factor, like GaAs or
Si/SiGe. In this regime we find that spin relaxation between qubit states is significantly suppressed due to the
confinement perpendicular to the nanowire axis. We also find that maximization of the number of single-qubit
operations that can be performed during the lifetime of the spin qubit requres single quantum dot gating potential.
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I. INTRODUCTION

Spin of an electron confined in a semiconductor quantum
dot (QD) can act as a carrier of quantum information [1] and a
building block of quantum computers. In order to manipulate
electron spin, usage of the external magnetic [2,3] and electric
[4–6] field was suggested. Although spin control by means
of a magnetic field is straightforward, electrical control of
spin qubit through electric-dipole spin resonance (EDSR) is
technologically more desirable [7–10].

Spin-orbit coupling (SOC) plays an essential role in the
EDSR spin qubit scheme, since it allows transitions be-
tween qubit states using the spin-independent driving, such as
electric-dipole interaction. On the other hand, the presence of
SOC induces undesired phonon mediated transitions between
qubit states [11–21]. In order to suppress the coupling to
phonons, approaches like the optimal design of QDs [22,23]
or the control of system size [24] was suggested.

Relaxation rates are dependent on the full three-
dimensional QD potential, but in most cases contribution
of the confinement along the direction(s) perpendicular to
the substrate in which QDs are embedded can be neglected.
Assuming magnetic fields up to several tesla, this reduction
is justified in material with a weak effective Landé g factor.
A typical example that satisfies this assumption are lateral
GaAs QDs [25], while in the opposite direction lies an InSb
nanowire, having two orders of magnitude stronger g factor
[26]. Having also very strong SOC, spin qubits in InSb
nanowires [27–31] have attracted much attention due to the
observed [28] fast electric-dipole induced transition between
qubit states, whose speed is equal to the strength of Rabi
frequency.

Since both Rabi frequency and phonon induced relaxation
rates are dependent on the magnetic field orientation and
strength, design of the gating potential, and SOC, there is

a wide range of possibility to tune their strength, with the
goal of obtaining as much as possible single-qubit operations
during its lifetime.

In this paper we search for the optimal regime in which
electrical control of the InSb spin qubit can be achieved. We
analyze both single and double quantum dot (DQD) potential
and discuss its positive features and negative drawbacks on the
spin qubit. In the case of double quantum dot potential, there
is the possibility to tune the distance between the dots and to
analyze the effects of the asymmetric gating potential. Also,
we address the situations in which full three-dimensional con-
finement has nontrivial influence on spin relaxation rates. We
will show that scattering by deformation potential dominates
in this regime. Finally, to offer a quantitative insight into the
spin qubit quality, we define a figure of merit as the ratio of
Rabi frequency and the overall spin relaxation rate and discuss
the obtained results in terms of this measure.

This paper is organized as follows. In Sec. II the single-
electron Hamiltonian model of the InSb nanowire is in-
troduced. In Sec. III we start with the definition of Rabi
frequency and phonon induced spin relaxation rate between
spin qubit states. After that, we independently study their
dependence on tunable parameters of the system. Using the
obtained results, quality of the spin qubit is discussed with the
help of the figure of merit as a quantitative measure. In the end
we finish the paper with a short conclusion and the impact of
the presented results.

II. NANOWIRE SPIN QUBIT MODEL

We start with the Hamiltonian describing the electron
confined in an InSb nanowire [30]

H = p2

2m∗ + V (x) + Hso + Hz, (1)
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FIG. 1. (Upper panel) Nanowire QD—schematic view. Electron
dynamics along the nanowire (x) axis is described by the Hamilto-
nian H , given in Eq. (1). Angle between the nanowire x axis and
magnetic field direction n = (cos θ, sin θ, 0) is equal to θ , while the
spin-orbit vector a = (cos ϕ, sin ϕ, 0) builds an angle ϕ with the x
axis. (Lower panel) Confining potential used in Eq. (1): QD and
DQD potential. In the case of a DQD potential [Eq. (6)] symmetric
confinement is depicted (ωL = ωR), with distance between the dots
equal to 2d .

where m∗ is the effective mass, p = −ih̄∂/∂x momentum
in x direction, V (x) is the gating potential used to localize
the electron, while Hso represents the spin-orbit interaction
Hamiltonian consisting of two terms: Dresselhaus [32] and
Rashba [33]. The presence of the Dresselhaus SOC is due to
the material in which an electron is embedded. On the other
hand, Rashba SOC appears when an electric field E in the
z direction is applied (see Fig. 1). In an InSb nanowire, a
spin-orbit interaction Hamiltonian is equal to [30]

Hso = (αDσx + αRσy)p, (2)

where σx and σy are Pauli matrices, while αD and αR are
Dresselhaus and Rashba spin-orbit coupling strengths. Suit-

able change of parameters αR and αD with α =
√

α2
D + α2

R and
ϕ = arctan (αR/αD) allows us to write Eq. (2) as

Hso = αa · σp, (3)

using the unit spin-orbit vector a = (cos ϕ, sin ϕ, 0) and the
vector σ made of Pauli matrices. Finally, Hz is the Zeeman
term, describing the coupling of spin and magnetic field

Hz = g

2
μBB · σ, (4)

where g is the effective Landé factor, μB is the Bohr magneton,
while B = Bn is the applied magnetic field in the plane of
the substrate, building an angle θ with the growth x axis of
the nanowire (see the upper panel of Fig. 1). In this work a
magnetic field is considered to be in-plane to minimize the
orbital effects [22,34–36]. In Appendix A we have shown that
for B up to 3 T, orbital effects of a magnetic field are small
and can be neglected.

Typical gating that confines a single electron in experi-
mental setups [37] can be modeled as a harmonic oscillator
quantum dot (QD) [38] or double quantum dot (DQD) [29]
potential. Corresponding potentials are equal to (see the lower
panel of Fig. 1 as an illustration)

V QD(x) = 1
2 m∗ω2x2, (5)

V DQD(x) = 1
2 m∗ min

{
ω2

L(x + d )2, ω2
R(x − d )2

}
. (6)

In the case of a QD potential, the only degree of freedom
is the harmonic potential frequency ω, while in the DQD case
frequencies ωL and ωR can be tuned, as well as the distance
2d between the dots. Since DQD potential allows asymmetric
confinement, we introduce asymmetry parameter δ, equal to
the ratio of frequencies in the left and right dot, δ = ωL/ωR.
Impact of the DQD confinement will be discussed in terms of
δ, 2d , and ωR = ω (more detailed explanation can be found in
Sec. III A).

The Hamiltonian of the electron in different potential types
and magnetic field strengths can be solved using the numerical
diagonalization [39], although perturbative approaches in the
study of spin qubit properties are common [21,27,30]. In this
work we follow the numerical approach; the numerical pro-
cedure used in obtaining the eigenvalues and eigenvectors of
the Hamiltonian given in Eq. (1) is explained in Appendix B.
In order to successfully diagonalize the Hamiltonian, orbital
x0 = √

h̄/m∗ω and spin-orbit xso = h̄/m∗α lengths are de-
fined. In our calculations we have used m∗ = 0.014 me [29],
x0 = 30 nm [29], and xso = 165 nm [40] parameters for both
QD and DQD potentials (recall that ωR = ω in the DQD case),
related to the experimental reports on InSb nanowires. On the
other hand, we have used g factor in bulk InSb material, g =
−51.3 [41], being in the range of the experimentally reported
values [38,42]. Initial check of the numerical recipe presented
in Appendix B were exact analytical results obtained in the
special case of the infinite square well [43]. In this case we
were able to reproduce the results concerning the angular
dependence of the energy splitting between Zeeman sublevels,
Rabi frequency, and the relaxation rate.

The nanowire Hamiltonian [Eq. (1)] describes the single-
electron dynamics in the x direction only. To ensure the
validity of the one-dimensional approximation and to suppress
the dynamics in the yz plane, a much stronger yz plane
confinement than in the x direction is needed. In this case, a
wave function along both directions, y and z, will correspond
to the respective ground state. To take into the account the wire
geometry of the system, the same confinement length y0 =
z0 = 10 nm in the y(z) direction is assumed. We model the
confinement potential as harmonic [39], to which the ground
state wave function ψ (y) = e−y2/2y2

0/
√√

πy0 corresponds. In
the z direction an additional potential eEz (z > 0; z = 0
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corresponds to the position of the substrate) is present due
to the applied electric field. Finally, the substrate acts as an
infinite potential barrier for the confined electron, forbidding
him to propagate in the z < 0 region [44]. The ground state
ψ (z) of the Hamiltonian in the z direction is found using
the same numerical method as for the Hamiltonian in the x
direction. Thus, the ground state wave function in the yz plane
is equal to �(y, z) = ψ (y)ψ (z).

III. EDSR AND SPIN RELAXATION IN NANOWIRE
SPIN QUBIT

In order to achieve electrical control of the nanowire spin
qubit, an oscillating electric field in the x direction should
be switched on, resulting in the Rabi Hamiltonian HR =
eE0x cos(ωEt ). When the applied electric field is in resonance
with our quantum system, Rabi frequency �01 is defined as

�01 = eE0

h
|〈0|x|1〉|, (7)

measuring the speed of the single-qubit rotations. In Eq. (7)
states |0〉 and |1〉 correspond to the ground and first excited
state of the single electron Hamiltonian H , while e|〈0|x|1〉|
is the dipole matrix element. We are particularly interested
in the case where qubit states are Zeeman sublevels of the
orbital ground state, since in this regime strength of the Rabi
frequency can be manipulated by changing the magnetic field
orientation [30].

Besides providing the opportunity to electrically control
the spin qubit, SOC triggers the undesired phonon induced
transition between qubit states, setting up a limit on the qubit
lifetime. Rate of spin relaxation can be determined from the
Fermi golden rule

01 = 2π

h̄

∑
νq

|Mν (q)|2|〈ψ0|eiq·r|ψ1〉|2δ(�E01 − h̄ωνq).

(8)
Transition is triggered by acoustic phonons of energy h̄ωνq
that correspond to the energy separation between qubit states,
�E01 = |E0 − E1|. We assume a linear dispersion relation of
acoustic phonons with respect to the intensity of wave vector
q, ωνq = cν |q|, yielding |q| = �E01/h̄cν .

Next, three different geometric factors |Mν (q)|2 entering
spin relaxation rates originate from different types of electron-
phonon scattering: electron-longitudinal phonon scattering
due to the deformation potential [45]

|MLA−DP(q)|2 = h̄D2

2ρcLAV
|q|, (9)

electron-longitudinal phonon scattering due to the piezoelec-
tric field [45]

|MLA−PZ(q)|2 = 32π2h̄(eh14)2

ε2ρcLAV

(3qxqyqz )2

|q|7 , (10)

where h14 is piezoelectric constant, and electron-transverse
phonon scattering due to the piezoelectric field [45]

|MTA−PZ(q)|2 = 2
32π2 h̄(eh14)2

ε2ρcTAV

×
∣∣∣∣q2

x q2
y + q2

x q2
z + q2

y q2
z

|q|5 − (3qxqyqz )2

|q|7
∣∣∣∣. (11)

Finally, spin relaxation rates are dependent on the tran-
sition matrix element |〈ψ0|eiq·r|ψ1〉|2 which depends on
the full three-dimensional confinement. In order to divide
the contribution of confinements along the nanowire axis
and the yz plane, we write the transition matrix element
as |〈0|eiqxx|1〉|2|Tyz|2, where |〈0|eiqxx|1〉|2 is the contribution
along the nanowire direction, while

|Tyz|2 =
∣∣∣
∫∫

dydz|�(y, z)|2ei(qyy+qzz)
∣∣∣2

(12)

represents scattering in a plane perpendicular to the nanowire
axis.

The role of |Tyz|2 in the spin relaxation rate depends on
the regime in which spin qubit operates. At low magnetic
fields, when |q|z0 � 1 and |q|y0 � 1, dipole approximation
eiq·r ≈ 1 + iq · r is valid [22] and |Tyz|2 can be replaced
with (1 + |q|2z2

0 cos2 θ ) ≈ 1, implying that one-dimensional
approximation is justified. However, at higher magnetic fields,
dipole approximation is not valid and confinement in the yz
direction can play a significant role. To determine its role in
the spin relaxation rate, we have numerically calculated |Tyz|2
beyond the dipole approximation.

Magnetic field strengths for which the system operates out-
side of the dipole approximation (|q|y0 � 1) can be roughly
estimated; assuming energy separation between qubit states
proportional to gμBB, Fermi golden rule determines phonon
wave number |q| = gμBB/(h̄cλ), where cLA = 3800 m/s
[46] and cTA = 1900 m/s [47], giving us magnetic field
strengths for the electron-phonon scattering in the longitudi-
nal (0.084 T) and transverse (0.042 T) direction above which
we are outside of the dipole approximation.

Before we continue, we provide necessary param-
eters for the calculation of the spin relaxation rate:
eh14 = 1.41 × 109 eV/m [45], ε = 16.5, D = 7 eV [48],
ρ = 5775 kg/m3 [49].

A. Rabi frequency

We start the discussion of obtained results with the analysis
of Rabi frequency dependence on the parameters of interest.

In Fig. 2(a), dependence of �01 (in eE0x0/h units) on
θ − ϕ and magnetic field strength is presented for the QD
confinement potential. Our results confirm the expected π

periodic behavior with respect to θ − ϕ [30]. Depending
on the magnetic field strength, results can be divided into
two classes. In the first class qubit states represent Zeeman
sublevels of the orbital ground state; in this regime zero Rabi
frequency can be found for special magnetic field orientations
(θ − ϕ = 0, π ), since these qubit states have orthogonal spin
components. In the second class, magnetic field strengths have
led to rearrangement of energy levels, such that qubit states
originate from the ground and the first excited orbital state.
In this situation, an orbital qubit is constructed, with a very
weak dependence of �01 on θ − ϕ (�01 �= 0 in the orbital
qubit regime for any θ − ϕ). Critical magnetic field value Bc

of spin to orbital qubit transition is almost independent on
θ − ϕ and can be easily determined from the eigenspectrum
analysis. Alternatively, for θ − ϕ = 0, π , abrupt switch of �01

from zero to the nonzero value at Bc is a fingerprint of the
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(a) (b)

(c)

FIG. 2. (a) Dependence of Rabi frequency �
QD
01 (in eE0x0/h

units) on θ − ϕ ∈ (0, π ) and B ∈ (0, 3) T for QD gating potential.
(b) In the case of DQD confinement, dependence of Bc on the
asymmetry parameter δ ∈ (1, 5) and distance between the dots 2d ∈
(30, 120) nm is given. (c) Dependence of the ratio �

DQD
01 /�

QD
01

on θ − ϕ ∈ (0.05, 0.95)π and magnetic field strengths B = 0.01 T,
B = 0.05 T, and B = 0.08 T is presented for the symmetric DQD
potential; distance between the dots is equal to 2d = 120 nm. For
the same angle range and magnetic field values �

QD
01 in eE0x0/h units

is presented.

transition. In the case of the QD potential, we extract the
critical magnetic field value Bc ≈ 2.04 T.

Gating with DQD potential gives a qualitatively similar
dependence of �01 on B and θ − ϕ. Being interested in
the qualitative comparison of the impacts of QD and DQD
potentials, we first establish a basis for comparison between
them. To this end, we assume the same frequency of the QD
potential and the right dot of the DQD potential, ω = ωR, and
vary the asymmetry parameter δ and the distance between
the dots 2d . For highly asymmetric DQD confinement and the
large interdot distance, the electron will reside on only one
dot, i.e., this potential is effectively the same as the single
QD potential. The qualitative similarity of the single and
double QD potential is checked through the comparison of
the probability density of the ground and first excited state
(qubit states); similar probability density profiles of the qubit
states directly correspond to the similar Rabi frequency values
of the two systems. Using the numerical comparison of the
probability densities and the Rabi frequency in the case of QD
and DQD potential, it can be concluded that for 2d � 120 nm
and δ � 5 there is no effective difference between the results
arising from two potentials. In other words, one should use
δ < 5 and 2d < 120 nm to test the genuine effects of the DQD
potential.

Figure 2(b) depicts the dependence of Bc in the DQD case
on δ ∈ (1, 5) and 2d ∈ (30, 120) nm. When compared to the
Bc value in the QD case, drastically lower values are found,
especially in the case of symmetric confinement with well

separated left and right QD. As an example, critical magnetic
field value Bc ≈ 0.085 T for the symmetric DQD confinement
with 2d = 120 nm is roughly 24 times smaller than in the QD
case.

Lower Bc for the symmetric DQD confinement is followed
by at most factor 3 increase of �01(BDQD

c ), when compared to
�01(BQD

c ). This slight increase, followed by lower Bc below
which symmetric DQD operates, indicates a steeper rise of
Rabi frequency for symmetric DQD confinements and the
possibility to induce an even bigger difference between �

DQD
01

and �
QD
01 for the optimal magnetic field configuration. To

investigate this possibility, we have performed a numerical
analysis of the Rabi frequency ratio �

DQD
01 /�

QD
01 for a wide

range of DQD confinements and different magnetic field
strengths/orientations, such that both systems operate as spin
qubits. Our results confirm that symmetric DQD confinement
maximally enhances this ratio when operating at magnetic
field strengths close to Bc for the DQD potential, while the
field orientation should be chosen such that θ − ϕ is close
to 0 or π . In order to illustrate this conclusion, in the left
panel of Fig. 2(c) we present the ratio �

DQD
01 /�

QD
01 for 2d =

120 nm and δ = 1 in the DQD case, assuming field orienta-
tions θ − ϕ ∈ (0.05, 0.95)π and magnetic field strengths B =
0.01 T, B = 0.05 T, and B = 0.08 T (BDQD

c ≈ 0.085 T for this
setup). Since angles θ − ϕ = 0, π should be excluded from
the analysis because they correspond to zero Rabi frequency,
we have restricted our plots to a θ − ϕ region smaller than π

[see the right panel of Fig. 2(c) for the �
QD
01 values], obtaining

the highest ratio of around 800. It should be noticed that for
angles closer to 0/π even bigger ratios (104) can be obtained,
but at the cost of lowering the value of Rabi frequency.

B. Spin relaxation

Another important component for determining spin qubit
quality is the spin relaxation rate. Similarly as Rabi fre-
quency, 01 is dependent on the magnetic field and gating
potential. However, 01 can be additionally dependent on the
confinement in yz plane. In order to compare the influence
of three-dimensional confinement with the confinement along
the nanowire axis solely, we define one-dimensional approx-
imation of the relaxation rate 1D

01 by changing the transition
matrix element |〈ψ0|eiq·r|ψ1〉|2 with |〈0|eiqxx|1〉|2 in Eq. (8).

It has been known that in lateral GaAs QDs spin relaxation
rates are dominated by piezoelectric field [50,51]. In our case,
we wish to analyze the influence of each relaxation channel;
thus, the overall spin relaxation rate will be divided into three
contributions:

01 = LA−DP
01 + LA−PZ

01 + TA−PZ
01 , (13)

each dependent on a different geometric factor, see
Eqs. (9)–(11).

Before presenting the numerical results, conclusions inde-
pendent on the choice of gating potentials are provided. First,
01 shows oscillatory dependence on the θ − ϕ angle, being
equal to zero for θ − ϕ = 0, π and reaching the maximum
for θ − ϕ = π/2 in the spin qubit regime [21]. Second, for
weak magnetic field strengths (B < 0.1 T), piezoelectric fields
dominate relaxation rates. At the same time, yz confinement
can be ignored.
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(a)

(b)

FIG. 3. (a) Dependence of the relaxation rates on the magnetic
field strength B ∈ (0.1, 2) T for θ − ϕ = π/2. Red circles represent
the contribution of deformation potential in the scattering rates, while
inverted pink (blue) triangles show the contribution of piezoelectric
field for the electron-phonon scattering in the transverse (longitu-
dinal) direction. Finally, black squares represent relaxation rates in
the one-dimensional approximation, in which the contribution of
the confinement perpendicular to the nanowire axis is neglected.
(b) Dependence of 01 on the magnetic field strength B ∈ (0.1, 1.5) T
in the case of QD and DQD confinement potential. Magnetic field
orientation is chosen such that θ − ϕ = 0.05π . In the DQD case,
the distance between the dots is set at 90 nm, while the asymmetry
parameter is varied.

To explore a new type of behavior accessible in InSb spin
qubits, we focus our attention on stronger magnetic fields and
investigate its impact on each relaxation channel and one-
dimensional approximation of the total relaxation rate 1D

01 .
We start from the QD potential. In Fig. 3(a), dependence of
relaxation rates on B ∈ (0.1, 2) T for the fixed angle θ − ϕ =
π/2 is given [52]. Red circles represent the contribution of
deformation potential, pink inverse (blue) triangles denote the
impact of piezoelectric field in the electron-phonon scattering
along the transverse (longitudinal) direction. Graphs show
that relaxation rate LA−PZ

01 can safely be ignored, while
LA−DP

01 and TA−PZ
01 have nontrivial influence on 01. For

weak magnetic fields TA−PZ
01 term is dominant, while for

large magnetic fields LA−DP
01 should be considered solely

[39]. A different influence of TA−PZ
01 and LA−DP

01 lies in
the opposite behavior of the corresponding geometric factors:
|MTA−PZ(q)|2 [|MLA−DP(q)|2] is inversely (directly) propor-
tional to the energy splitting between the Zeeman levels and
decreases (increases) with the magnetic field rise.

Contribution of the yz plane confinement on the spin relax-
ation rate can be determined by comparing the 1D

01 with relax-
ation rate channels. The comparison is illustrated in Fig. 3(a),
clearly demonstrating that one-dimensional approximation of
the spin relaxation rate is valid only for weak magnetic fields,
below 0.1 T. At higher fields, due to the strong g factor
of the InSb material, both |q|y0 and |q|z0 are greater than
one, triggering the effects of the yz plane confinement for
each relaxation rate channel. Thus, suppressed spin relaxation
represents a fingerprint of a material with a strong g factor.

In the case of DQD potentials, dependence of Bc on the
form of gating presents a serious limitation on the regimes that
can be accessed. For example, if the Bc value is sufficiently
weak, Bc < 0.1 T, the spin qubit operates under the dominant
influence of the piezoelectric field. A strong magnetic field
regime is beneficial for spin qubit operation due to strong Rabi
frequency and suppressed spin relaxation. In order to operate
in this regime, asymmetric DQD potential should be used. To
compare the influence of QD and DQD potential on 01, in
Fig. 3(b), we plot the dependence of the spin relaxation rate in
the case of QD and DQD confinement on the magnetic field
strength B ∈ (0.1, 1.5) T, assuming θ − ϕ = π/2 and 2d =
90 nm. Besides the symmetric δ = 1 confinement, asymmetric
DQD confinements (δ = 2, 3) were analyzed as well. The
presented results show that DQD gating leads to increased
relaxation rates, when compared to the QD potential. This dif-
ference is minimized for highly asymmetric gating potentials.
Note that B independent 01 values suggest that orbital qubit
is created: energy difference between the states with the same
spin component (representing the orbital qubit states in our
case) is independent on B and triggers phonons on the same
energy, leading to the observed effect. Consequently, these
points should be excluded from the spin qubit analysis.

Finally, we emphasize that in the special case of the asym-
metric DQD potential with δ = 1.5 a similar trend of the spin
relaxation rate is ascertained [21], i.e., after the increase of the
spin relaxation rate in the dominant regime of the piezoelectric
field, suppression of spin relaxation is observed, followed by
the increase up to magnetic field independent saturation value
[see the green triangles in Fig. 3(b) as a comparison].

C. Spin qubit quality

Quantitative estimate of the spin qubit quality can be given
with the help of the figure of merit ξ [22],

ξ = �01

01 + o
, (14)

measuring the number of qubit operations that can be imple-
mented during the qubit lifetime. In Eq. (14) o represents
relaxation rate of decay channels different from phonons. To
divide the contribution of phonons from them, we rewrite ξ in
terms of the phonon figure of merit ξph = �01/01 and relative
influence of other channels with respect to phonons o/01.
Thus,

ξ = ξph

1 + o
01

. (15)

We first analyze ξph for the QD confinement. Neglect-
ing the weak magnetic field regime [53], in Fig. 4 we
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FIG. 4. For the QD confining potential, dependence of the fig-
ure of merit ξ

QD
ph (given in dimensionless unit 7.25 m

V × E0) and
Rabi frequency (in eE0x0/h units) on the relative angle θ − ϕ ∈
(0.05, 0.95)π and magnetic field strength B ∈ (0.1, 2) T is presented.

present the dependence of ξ
QD
ph on B ∈ (0.1, 2) T and θ − ϕ ∈

(0.05, 0.95)π . The restricted θ − ϕ domain plotted is due to
the a priori exclusion of θ − ϕ = 0, π values (QD

01 = 0 in
these situations). Plots show that to maximal value of ξ

QD
ph

correspond relative angles θ − ϕ = 0.05π, 0.95π . This result
suggests that for θ − ϕ closer to 0 or π than presented even
bigger ξQD values can be obtained, at the cost of lowering the
Rabi frequency. In other words, 

QD
01 has a steeper decline to

zero than �
QD
01 , when θ − ϕ goes from π/2 to 0 or π .

Magnetic field orientation isotropy of o [51] implies that
shift from θ − ϕ = π/2 increases o/

QD
01 also. Thus, in order

to maximize ξ , optimization of both ξ
QD
ph and o/

QD
01 is

needed. Since at high magnetic fields phonon induced relax-
ation dominates [51], deviation of θ − ϕ from π/2 improves
the spin qubit quality until o/

QD
01 drops below 1. This sets

up the optimal magnetic field orientation.
Finally, we compare the impacts of DQD and QD poten-

tials on the spin qubit quality. As discussed in Sec. III A,
Rabi frequency in the DQD case can be three orders of
magnitude greater than in the QD case. Enhanced Rabi fre-
quency suggests that SOC effects are more pronounced; thus,
phonon induced spin relaxation rate should be enhanced.
When compared to the QD case, an increase of 

DQD
01 followed

by the negative trend of ξ
DQD
ph ensures that spin qubit quality

decreases; symmetric DQD confinements give the poorest
results, while highly asymmetric DQD potentials provide
similar values as for QD gating.

IV. CONCLUSIONS

We have investigated the influence of gating potentials,
magnetic field strength and orientation on Rabi frequency
and spin relaxation rate in a single electron InSb nanowire
spin qubit. Due to the strong Landé g factor, we were able
to show that InSb spin qubit can operate in the regime in
which deformation potential of acoustic phonons dominate
relaxation rate. Qualitatively new behavior of spin relax-
ation rate comes from the confinement perpendicular to the
nanowire axis, offering a new regime in which spin qubit
can successfully operate. We have shown that gating potential
has a crucial role in enabling such a situation, additionally
pointing out simple harmonic potential as beneficial for the
optimal definition of a spin qubit. Although presented for InSb

nanowire spin qubits, conclusions remain valid for spin qubits
in other materials with a strong g factor. Thus, modifications
of g due to different effects, e.g., strong in-plane magnetic
field [54], do not interfere with the conclusions stated in this
work.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
ONE-DIMENSIONAL HAMILTONIAN

Here we derive the effective one-dimensional Hamiltonian
H of the electron in an InSb quantum wire, by averag-
ing the three-dimensional kinetic energy term T3D and two-
dimensional spin-orbit Hamiltonian H2D

so over y and z direc-
tion. Thus, we start from the three-dimensional Hamiltonian

H3D = T3D + V (x) + H2D
so + Hz, (A1)

where T3D = ∑
i=x,y,z P2

i /2m∗ (Pi = pi + eAi),

H2D
so = αR(Pxσy − Pyσx ) + αD(Pxσx − Pyσy), (A2)

while V (x) and Hz are the gating potential and the Zeeman
term, defined in Eq. (4) and Eqs. (5) and (6), respectively. The
choice of the vector potential components Ax = −Bz sin θ ,
Ay = 0, Az = −By cos θ is such that it corresponds to the ap-
plied in-plane magnetic field B = B(cos θ, sin θ, 0). After av-
eraging the kinetic energy operator over the y and z direction
using the ground state wave function �(y, z) = ψ (y)ψ (z), we
get

〈T 〉 = p2
x

2m∗ − eB〈z〉 sin θ

m∗ px +
[ 〈p2

y〉
2m∗ + 〈(pz − eBy cos θ )2〉

2m∗

+e2B2 sin2 θ〈z2〉
2m∗

]
. (A3)

In the previous equation, only the first and second term affect
the dynamics in the x direction, while all terms in the square
brackets can be considered the constant shift of energy and,
therefore, can be neglected.

Next, effective one-dimensional spin-orbit interaction
Hamiltonian is equal to

〈Hso〉 = αR((px − eB〈z〉 sin θ )σy − 〈py〉σx )

+αD((px − eB〈z〉 sin θ )σx − 〈py〉σy)

= (px − eB〈z〉 sin θ )(αRσy + αDσx ), (A4)

where we have used the fact that expectation value of the
momentum py, 〈py〉 = ∫ ∞

−∞ �∗(y, z)py�(y, z), is explicitly
equal to zero.

A further simplification of the effective Hamiltonian can be
made by neglecting the term eB〈z〉 sin θ px/m∗ from Eq. (A3)
and eB〈z〉 sin θ from Eq. (A4). Assuming that intensity of px
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is proportional to h̄/x0, magnetic field dependent terms can be
neglected if the relation

h̄

x0
� eB〈z〉 (A5)

is satisfied. More concretely, when the h̄/x0 is for a factor of
10 stronger than the magnetic field dependent term, orbital
effects of the magnetic field are small and can be discarded.
In our calculations, the magnetic field strengths of interest are
up to 3 T, yielding the relation for the z expectation value

〈z〉 � 0.1
h̄

ex0 × 3 T
(A6)

that has to be satisfied to successfully operate in this regime.
As discussed in Sec. II, the wave function ψ (z) is dependent
on the strength of the applied electric field E : with the
increase of the electric field strength 〈z〉 increases. In other
words, the strength of the electric field is limited from above.
Numerical estimate for the critical value of electric field is
6.5 × 106 V/m, going to be used in our numerical calcula-
tions. Under these assumptions, the effective one-dimensional
Hamiltonian resembles the one defined in Eq. (1), used in the
rest of the paper.

APPENDIX B: NUMERICAL SOLUTION OF THE
ONE-DIMENSIONAL SCHRÖDINGER EQUATION

In order to find eigenvectors and eigenenergies of the
Hamiltonian H , given in Eq. (1), numerical diagonalization
is performed. After defining orbital and spin-orbit lengths as
x0 and xso = h̄/mα, respectively, such that x = x0u, where u
is dimensionless variable, H can be written in the following
form:

H = h̄2

2m∗x2
0

Hred. (B1)

Eigenvectors of H are the same as of Hred, while eigenvalues
of H and Hred differ for the factor h̄2/2m∗x2

0, having the energy
units. The benefits of using Hred instead of H stems from the
transfer into dimensionless units, more suitable for numerical
manipulation. The concrete form of Hred is equal to

Hred = − d2

du2
− 2i

x0

xso
a · σ

d

du
+ Veff (u) + geff n · σ, (B2)

where geff and Veff (u) are effective Landé factor and effective
potential, respectively,

geff = g
m∗x2

0μBB

h̄2 , Veff (u) = 2m∗x2
0

h̄2 V (x0u), (B3)

while vectors a and n are spin-orbit and magnetic field unit
vectors, respectively, defined in the main text. The form of
effective potential depends on the choice of gating potential
(5) and (6), while effective Landé factor is linearly dependent
on the magnetic field strength B.

To numerically solve the eigenproblem of Hred, orbital
space is discretized with an uniform grid. First and second
derivative of a wave function are approximated by finite
difference uniform grid formulas [55]

dψ (u)

du
= ψ−4

280h
− 4ψ−3

105h
+ ψ−2

5h
− 4ψ−1

5h

− ψ4

280h
+ 4ψ3

105h
− ψ2

5h
+ 4ψ1

5h
+ O(h8), (B4)

d2ψ (u)

du2
= − ψ−4

560h2
+ 8ψ−3

315h2
− ψ−2

5h2
+ 8ψ−1

5h2
− 205ψ0

72h2

− ψ4

560h2
+ 8ψ3

315h2
− ψ2

5h2
+ 8ψ1

5h2
+ O(h8), (B5)

with accuracy to the h8 order, where h is the uniform grid step.
By definition, ψ±n = ψ (u ± nh) represent wave functions
shifted in the left/right (−/+) direction of the coordinate
space for nh.

Uniform grid formulas allow us to represent the Hamilto-
nian as a square matrix. Effective potential is represented as
a diagonal matrix, while matrix representation of the first and
second order derivative have nondiagonal terms in addition.
Since Hred is dependent on spin degrees of freedom also,
the orbital part of the Hamiltonian is trivially extended in
the spin space. Also, the Zeeman Hamiltonian is trivially
extended in the orbital space, while the matrix form of the
spin-orbit Hamiltonian is obtained as a tensor product of the
first derivative matrix and spin Hamiltonian a · σ.

In the QD case, harmonic potential is centered at u = 0,
while in the case of DQD potential numerical calculations
assumed each QD center range from u = ±1/2 to u = ±2.
We have checked that for all studied situations the choice of u
from the interval (−8, 8) is enough to capture the smooth de-
cline of the orbital wave function to 0 at u = ±8. Also, the di-
vision of the orbital space into N = 2000 parts was enough to
ensure convergence of the results, i.e., for the increase of N to
4000 the relative difference between the results is below 10−4.
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