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Method for obtaining polaron mobility using real and imaginary time
path-integral quantum Monte Carlo
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We developed a path-integral quantum Monte Carlo-based methodology for calculation of polaron mobility
in systems with electron-phonon interaction. Within the method, the current-current correlation function in both
the imaginary and real time is calculated in a numerically exact way. The choice of basis for representation
of the path integral enabled us to reduce the sign problem and perform real-time calculations for longer times.
The DC polaron mobility was extracted by performing analytic continuation that makes use of both the real and
imaginary-time data. The method was applied to the Holstein polaron model in one dimension. We obtained
reliable results for the temperature dependence of the Holstein polaron mobility for interactions ranging from
weak to strong and temperatures that are not too low.
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I. INTRODUCTION

The electron-phonon interaction is the dominant mecha-
nism that determines the mobility of electrons or holes in
semiconducting materials at room temperature [1,2]. There
is a significant group of materials where it is sufficiently
strong so that its perturbative treatment is not appropriate
[3–5]. For such materials, one cannot apply the standard
Bloch-Boltzmann theory [6] of electronic transport, nor the
methods for mobility calculation based upon this theory that
were developed in the last decade [6–12]. It is therefore of
great interest to develop methods for the calculation of mo-
bility of an electron interacting with phonons which would be
applicable regardless of the strength of interaction.

The simplest model describing an electron interacting with
phonons is the Holstein polaron model [13] where each lat-
tice site accommodates one phonon and the electron interacts
only locally with the phonon from the same site. This model
served in the last several decades as a playground where
the methods aiming at describing the systems with electron-
phonon interaction were tested. Ground-state and equilibrium
finite-temperature properties of the Holstein model are now
well understood [14–25] and significant progress was recently
made in evaluation of the electronic spectral function [26–30].

Nevertheless, it remains rather challenging to calculate the
dynamical response of the system, which is encoded in real-
time correlation functions in a numerically exact way; that
is, without resorting to additional approximations in addition
to those contained in the Hamiltonian. To calculate the DC
polaron mobility one needs to calculate the current-current
correlation function up to very long times. One of the methods
to achieve this is to represent the current-current correlation
function using Feynman’s path integral formalism [31,32] and
perform the calculation of the integral using a Monte Carlo
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method [24,33]. The main challenge comes from the fact that
the sum obtained this way contains terms of varying phases.
The Monte Carlo procedure for calculation of such a sum is
then not guaranteed to converge. This issue constitutes the
so-called dynamical sign problem [34–39]. The dynamical
sign problem is not pronounced at small real times but it
becomes severe at long times, making the calculations impos-
sible. Other numerically exact methods that can in principle
be used to evaluate real-time correlation functions include the
finite-temperature Lanczos method [26], the time-dependent
density-matrix renormalization-group method [28,40], and
the hierarchical equations of motion method [29,41], whereas
each of these exhibits its own challenges. There is also a
significant number of approaches where the polaron transport
in the Holstein and related models is evaluated by resorting to
different types of approximations [42–57].

An approach that is often used to avoid the dynamical sign
problem is to calculate the correlation functions in imaginary
time or frequency and then perform the analytic continuation
to real time or frequency [38,58–68]. However, such analytic
continuation is an ill-posed problem and it gives reliable re-
sults in some cases only.

In this work, we perform path-integral quantum Monte
Carlo calculations of the current-current correlation function
in real and imaginary times for the Holstein model and we
extract the DC mobility from these calculations. There are
two main advances that we introduce in this work. First,
we make use of the fact that the dynamical sign problem is
basis-dependent [69]. By choosing the appropriate basis for
the formulation of the path-integral quantum Monte Carlo
method, we reduce the dynamical sign problem and enable
the calculation of the current-current correlation function
for longer times. Second, we perform the calculation of the
current-current correlation function for both imaginary and
(short) real times. To obtain the DC mobility, we then per-
form the analytic continuation, starting from both real and
imaginary-time data. It is somewhat surprising that this simple
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idea has rarely been exploited in the literature—we are in fact
aware of only one work that exploited this idea [38]. The
implementation of these ideas enabled us to obtain the mo-
bility of the Holstein polaron for a broad range of parameters
ranging from weak to strong interactions at temperatures that
are not too low.

The paper is organized as follows: We briefly introduce the
model Hamiltonian in Sec. II A. In Sec. II B we derive the
path-integral representation of the current-current correlation
function in two different bases and describe the numerical
Monte Carlo algorithms for its calculation. In Sec. II C we
present the procedure for analytic continuation that makes use
of both real and imaginary-time data to obtain the DC mobil-
ity. An example of the application of the analytic continuation
procedure is presented in Sec. III A. Convergence tests of our
numerical calculations are presented in Sec. III B. The final
results for the temperature dependence of the Holstein polaron
mobility are presented in Sec. III C, while concluding remarks
are given in Sec. IV.

II. MODEL AND METHODS

A. Model Hamiltonian

We consider the system described by the Holstein model
on an one-dimensional lattice. Each lattice site accommo-
dates one phonon mode. An electron interacts locally with the
phonon. The system is described by the Hamiltonian

H =
∑

n

[
− J

(
c†

ncn+1 + c†
n+1cn

) +
(

P2
n

2M
+ 1

2
Mω2

nX 2
n

)

+
√

2MωnGc†
ncnXn

]
. (1)

The first term describes electron hopping on the lattice, where
J is the electronic transfer integral between neighboring sites.
The operators c†

n (cn) stand for electron creation (annihilation)
operators at the nth site. The second term describes the phonon
of angular frequency ωn, while Xn (Pn) are phonon position
(momentum) operators at site n. Dispersionless phonons with
ωn = ω0 are assumed. The mass M of the oscillator can be set
to M = 1 without loss of generality. The last term describes
the electron-phonon interactions of strength G. We assume
periodic boundary conditions. In the derivations throughout
the paper we use the system of units where the lattice constant
a and the universal physical constants h̄, e0, and kB are equal
to 1. We denote the inverse temperature as β = 1/T .

The Hamiltonian given in Eq. (1) can be written in the
following equivalent form, which is more suitable for the
derivation of the path integral representation:

H = H0 + H1 + H2, (2a)

H0 =
∑

n

P2
n

2M
, (2b)

H1 =
∑

n

(√
2MωnGc†

ncnXn + 1

2
Mω2

nX 2
n

)
, (2c)

H2 = −J
∑

n

(c†
ncn+1 + c†

n+1cn). (2d)

The Hamiltonian H2 is diagonal in electron momentum
representation H2 = ∑

k ε(k)c†
kck , where the bare electronic

dispersion is given as ε(k) = −2J cos(k) and c†
k (ck) are the

electron creation (annihilation) operators in the momentum
representation.

B. Path-integral representation of time-correlation functions

The central quantity that we consider in this work is the
DC mobility which is given by the Kubo formula [42,70]

μ = β

2

∫ ∞

−∞
dt〈 j(t ) j(0)〉, (3)

where the current-density operator j for the Holstein model
reads

j = iJ
∑

n

(c†
ncn+1 − c†

n+1cn). (4)

To evaluate the mobility, one needs to calculate the time-
correlation function (TCF) 〈 j(t ) j(0)〉, where the brackets
denote the average in the canonical ensemble.

The TCF that corresponds to arbitrary operators A and B is
by definition

〈A(t )B〉 = Z−1Tr[e−βH eitH Ae−itH B], (5)

where Z = Tr(e−βH ) is the partition function and the time de-
pendence of the operators is given as A(t ) = eitH Ae−itH with
A(0) ≡ A. To derive a discretized path-integral representation
of the TCF given in Eq. (5), we make use of the Trotter-Suzuki
expansion in accordance with the ideas from Refs. [24,33]:

〈A(t )B〉 = lim
m,Q→∞

Z−1
m Tr[(e−τH0 e−τH1 e−τH2 )m(ei�tH0

× ei�tH1 ei�tH2 )QA(e−i�tH0 e−i�tH1 e−i�tH2 )QB],

(6)

The imaginary-time interval of length β was divided into m
subintervals of length τ = β/m, while the real-time interval of
length t was divided into Q subintervals of length �t = t/Q.
The term Zm is the partition function that is obtained when the
imaginary-time interval is divided into m subintervals.

The trace in Eq. (6) can be evaluated by representing it
in any complete basis that spans the Hilbert space of the
system. The result of the full summation does not depend on
the choice of basis. However, the result and the statistical error
of Monte Carlo summation, which includes only a sample of
the terms in the sum, depends on the choice of basis. This
fact can be exploited to choose a basis where the statistical
error of Monte Carlo summation is smaller. In practice, this
enables us to perform calculations for longer real times than
if only one choice of basis were used. We made use of two
possibilities for the choice of basis: (i) the basis obtained as a
direct product of electronic momentum states and phonon co-
ordinate eigenstates; (ii) the basis obtained as a direct product
of the electronic states with an electron localized at a certain
site and phonon coordinate eigenstates. The choice (i) is more
natural for weak electron-phonon interaction, while we make
use of (ii) for stronger electron-phonon interaction and for
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imaginary-time calculations. It should be noted that the choice
(ii) allows us to analytically integrate out phononic degrees of
freedom.

We consider both the real time correlation function as
defined in Eq. (5) and the imaginary time correlation function
(obtained by the Wick rotation t → −it , t ∈ R) given by

〈A(−it )B〉 = Z−1Tr[e−βH etH Ae−tH B]. (7)

We denote the trace appearing in Eq. (6) as Cm,Q
A,B and in the

next two sections we derive its path-integral representation in
the two bases mentioned. In the derivation, we assume that the
operators A and B depend on electronic degrees of freedom
only, which is the case for the current-density operator for the
Holstein model given in Eq. (4).

1. Path integral with momentum representation for electrons

We expand the trace from Eq. (6) in the basis containing the
states that are a direct product of electron momentum states
and phonon coordinate eigenstates:

|k; {X }〉 = |k〉|X0〉|X1〉 · · · |XN−1〉, (8)

where N is the number of sites in the lattice. The elec-
tron momentum k takes one of N discrete values from
the first Brillouin zone, while phonon coordinates are real
numbers. To obtain a discretized representation of the path
integral, we evaluate the trace Cm,Q

A,B in the basis given
in Eq. (8). The details of the derivation are given in
Sec. I of the Supplemental Material [71]. We arrive at the
expression:

Cm,Q
A,B =C′

1

∫ m−1∏
j=0

DX j
m+Q∏
p=m

DX p
m+2Q+1∏

r=m+Q+1

DX re−S1[τ ;X j ]e−S2[−i�t ;X p]e−S3[i�t ;X r ]

×
∑
{k}

m−1∏
j=0

fk j+1,k j (−τ ; X j+1)
m+Q−1∏

p=m

fkp+1,kp (i�t ; X p+1)
m+2Q∏

r=m+Q+1

fkr+1,kr (−i�t ; X r+1)

× 〈X m+Q; km+Q|A|km+Q+1; X m+Q+1〉〈X m+2Q+1; km+2Q+1|B|k0; X 0〉, (9)

where C′
1 is an irrelevant constant and

∑
{k} denotes the summation over all k variables. Phonon actions are given by the

expressions

S1[τ ; X j] = τ

m−1∑
j=0

∑
n

⎡
⎣M

2
ω2

n

(
X j+1

n

)2 + M

2

(
X j+1

n − X j
n
)2

τ 2

⎤
⎦,

S2[−i�t ; X p] = −i�t
m+Q−1∑

p=m

∑
n

⎡
⎣M

2
ω2

n

(
X p+1

n

)2 + M

2

(
X p+1

n − X p
n
)2

(i�t )2

⎤
⎦,

S3[i�t ; X r] = i�t
m+2Q∑

r=m+Q+1

∑
n

[
M

2
ω2

n

(
X r+1

n

)2 + M

2

(
X r+1

n − X r
n

)2

(i�t )2

]
. (10)

The functions fki,k j (z; xi ) are fermion propagators between states ki and k j in complex time z and are defined as

fki,k j (z; X i ) = ezε(ki )
1

N

∑
n

ein·(ki−k j )+zG
√

2MωnX i
n . (11)

The estimator for the TCF is given by the expression

〈A(t )B〉m,Q = Cm,Q
A,B

Cm,Q
1,1

, (12)

where the term Cm,Q
1,1 denotes Cm,Q

A,B for A = B = 1. The es-
timator from Eq. (12) closely represents the true correlation
function 〈A(t )B〉 when m and Q are large enough.

We rewrite the trace Cm,Q
A,B in matrix notation by introducing

the vector variable for phonon coordinates:

Y = (Y 0,Y 1, . . . ,Y m+2Q−1)T = (X 1, X 2, . . . , X m+Q−1,

X m+Q+1, . . . , X m+2Q−1, X m+2Q, X 0)T , (13)

so the trace takes form

Cm,Q
A,B = C′

1

∫
DYe− 1

2 YT DYF (Y). (14)

The matrix D is a symmetric matrix that represents the
quadratic form in the phonon actions. The function F (Y) is
a trace of the product of matrices

F (Y) = Tr[F (−τ ;Y 0)F (−τ ;Y 1) . . .F (−τ ;Y m−1)

× F (i�t ;Y m) · · ·F (i�t ;Y m+Q−2)

× G(i�t ;Y m+Q−1)F (−i�t ;Y m+Q) · · ·
× F (−i�t ;Y m+2Q−2)G(−i�t ;Y m+2Q−1)] (15)
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When A = B = j the elements of the matrices are given as

[F (z;Y k )]l, j = ezε(2π j/N ) 1

N

N−1∑
n=0

e−in·( j−l ) 2π
N +zG

√
2ω0Y k

n ,

[G(i�t ;Y m+Q−1)]l, j = − 2J sin (2π j/N )ei�tε(2π j/N ) 1

N

N−1∑
n=0

e−in·( j−l ) 2π
N +i�tG

√
2ω0Y m+Q−1

n ,

[G(−i�t ;Y m+2Q−1)]l, j = − 2J sin (2π j/N )e−i�tε(2π j/N ) 1

N

N−1∑
n=0

e−in·( j−l ) 2π
N −i�tG

√
2ω0Y m+2Q−1

n , (16)

where z is complex time. When A = B = 1, the matrices G
should be simply replaced by matrices F .

We calculate the integrals that appear in Cm,Q
A,B using a

Monte Carlo technique by directly sampling from phonon
action

S[Y] = 1
2 YTDY. (17)

Since D is a complex symmetric matrix, we can diagonal-
ize the quadratic form YTDY by eigen decomposition D =
Q�Q−1, where � is a diagonal matrix and Q is an orthogonal
matrix QT = Q−1. The quadratic form then takes the form
YTDY = ZT Z. We can therefore directly sample the compo-
nents Zk from a Gaussian distribution and find the vectors Y
by applying an inverse transformation Y = QT �−1/2Z.

2. Path integral with position representation for electrons

In this case we make use of the basis consisting of states
that are a direct product of electron position states and phonon
coordinate eigenstates,

|r; {X }〉 = |r〉|X0〉|X1〉 · · · |XN−1〉, (18)

The electron position takes the values r = 0, . . . , N − 1. Fol-
lowing the same procedure as in Sec. II B 1, we arrive at a
similar expression for the trace Cm,Q

A,B in this basis, where the
details of the derivation are given in Sec. II of the Supplemen-
tal Material [71]:

Cm,Q
A,B =C′

2

∑
{r}

〈rm+Q|A|rm+Q+1〉〈rm+2Q+1|B|r0〉

×
m−1∏
j=0

I (τ ; r j+1 − r j )
m+Q−1∏

p=m

I (−i�t ; rp+1 − rp)

×
m+2Q∏

q=m+Q+1

I
(
i�t ; rq+1 − rq

)

×
∫ m−1∏

j=0

DX j
m+Q−1∏

p=m

DX p
m+2Q∏

q=m+Q+1

DX q

× e−S1[τ ;X j ]e−S2[−i�t ;X p]e−S3[i�t ;X q], (19)

where C′
2 is an irrelevant constant, the symbol

∑
{r} denotes

the summation over all r variables and phonon actions are

given by the expressions

S1[τ ; X j] = τ

m−1∑
j=0

∑
n

[
M

2
ω2

n

(
X j+1

n

)2

+ M

2

(
X j+1

n − X j
n
)2

τ 2
+ G

√
2Mωnδn,r j X

j+1
n

]
,

S2[−i�t ; X p] = − i�t
m+Q−1∑

p=m

∑
n

[
M

2
ω2

n

(
X p+1

n

)2

+ M

2

(
X p+1

n − X p
n
)2

(i�t )2 + G
√

2Mωnδn,rpX
p+1

n

]
,

S3[i�t ; X q] = i�t
m+2Q∑

q=m+Q+1

∑
n

[
M

2
ω2

n

(
X q+1

n

)2

+ M

2

(
X q+1

n − X q
n
)2

(i�t )2 + G
√

2Mωnδn,rq X q+1
n

]
.

(20)

The functions I (z; r j+1 − r j ) represent Fourier-transformed
electron propagators to coordinate space and they are defined
as [24]

I
(
z; r j+1 − r j

) = 1

N

N−1∑
n=0

cos

(
2π

N
n
(
r j+1 − r j

))

× exp [2zJ cos(2πn/N )]. (21)

The integral over phonon coordinates in Eq. (19) can be
solved analytically. As in the previous section, we introduce
the vector variable for phonon coordinates which leads to

f ({r}) =
∫ m−1∏

j=0

DX j
m+Q−1∏

p=m

DX p
m+2Q∏

q=m+Q+1

DX q

× e−S1[τ ;X j ]e−S2[−i�t ;X p]e−S3[i�t ;X q]

=
∫

DYe−S[Y], (22)

where Y is given in Eq. (13) and the action is a quadratic form
with an additional linear term

S[Y] = 1
2 YTDY + YT · d({r}). (23)
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The matrix D is the same as in Sec. II B 1, while the vector
d({r}) depends on the configuration of electron position states.
After calculating the multidimensional Gaussian integral over
phonon states we obtain the function f ({r}) that depends on
electron position states

f ({r}) = C′
3 exp

(
1
2 d({r})T · D−1 · d({r})

)
, (24)

where C′
3 is an irrelevant constant that remains after Gaussian

integration.
The trace Cm,Q

A,B is in this case given as

Cm,Q
A,B = C′

2C
′
3

∑
{r}

w({r})F ({r}), (25)

where we introduced the weight function w({r}) and the func-
tion F ({r}) given by the expressions

w({r}) =
m−1∏
j=0

I
(
τ ; r j+1 − r j

) m+Q−1∏
p=m

|I (−i�t ; rp+1 − rp)|

×
m+2Q∏

q=m+Q+1

|I (i�t ; rq+1 − rq)|, (26)

F ({r}) = 〈rm+Q|A|rm+Q+1〉〈rm+2Q+1|B|r0〉

× exp

(
1

2
d({r})T · D−1 · d({r})

)

×
m+Q−1∏

p=m

eiφ(−i�t ;rp+1−rp)
m+2Q∏

q=m+Q+1

eiφ(i�t ;rq+1−rq ),

(27)

where φ(z; ri − r j ) = arg[I (z; ri − r j )].
To calculate the real-time correlation function we use the

same estimator 〈A(t )B〉m,Q as in Eq. (12). The sum in Eq. (25)
over electron position states will be calculated by using the
Monte Carlo technique. After a simple change of variables
r j , the weight w({r}) becomes a product of single-variable
functions. These variables can then be sampled independently
to obtain the configuration of electron positions {r}.

To obtain the path integral in imaginary time, we can sim-
ply make the substitution t → −it in expressions obtained in
real time. The weight from Eq. (26) and the function from
Eq. (27) are now completely real and are given by the expres-
sions:

w({r}) =
m−1∏
j=0

I
(
τ ; r j+1 − r j

) m+Q−1∏
p=m

I (−�t ; rp+1 − rp)

×
m+2Q∏

q=m+Q+1

I (�t ; rq+1 − rq), (28)

F ({r}) =〈rm+Q|A|rm+Q+1〉〈rm+2Q+1|B|r0〉

× exp

(
1

2
d({r})T · D−1 · d({r})

)
. (29)

C. Analytic continuation

The path-integral quantum Monte Carlo methodology de-
scribed in Sec. II B gives us the current-current correlation
function 〈 j(tc) j(0)〉 either at imaginary times (tc = −it , 0 �

t � β) or at short real times (tc = t). On the other hand, the
central quantity that we are interested in is the DC mobility
μ = μ(ω = 0). The relation between 〈 j(tc) j(0)〉 and μ(ω)
reads

〈 j(tc) j(0)〉 =
∫ ∞

−∞
dω

1

π

ωe−iωtc

1 − e−βω
Reμ(ω). (30)

This type of problem is in the quantum many body community
typically addressed by calculating the correlation function
[in our case 〈 j(tc) j(0)〉] at imaginary times where there is
no sign problem and then performing analytic continuation
to obtain Reμ(ω). The methods that are typically used to
perform analytic continuation include the maximum entropy
method [38,58,59,63,65–67], the Padé approximation method
[59–61], the singular-value decomposition method [59,63,64],
etc.

However, one can also make use of the calculations for
those real times where the sign problem is not pronounced
and accurate values of the current-current correlation function
can be obtained. Therefore, we perform analytic continuation
by making use of both imaginary-time and real-time data
obtained by path-integral Monte Carlo calculations of the
current-current correlation function.

We make use of the singular-value decomposition method
to perform analytic continuation. The discretized version of
Eq. (30) reads

j = K · m, (31)

where K is a known linear operator obtained from discretiza-
tion of Eq. (30). The vector j contains the current-current
correlation function for all (real or imaginary) times at which
calculations were performed. The vector m is unknown and
it contains the discrete representation of Reμ(ω). All the ele-
ments of j, K, and m are real if we represent complex numbers
as a column of two real numbers—their real and imaginary
part. Any real matrix can be transformed to the form known
as singular-value decomposition:

K = USVT , (32)

where U and V are orthogonal matrices, while S is a diago-
nal matrix whose elements sk are called the singular values.
Within the singular-value decomposition method we find m
as

m =
∑

k

UT
.,k · j

sk
V.,k, (33)

where UT
.,k (V.,k) is the kth column vector of matrix UT (V).

The challenge in obtaining m from Eq. (33) comes from
the fact that there are many singular values that are close to
zero. The presence of such values leads to large multiplication
of any noise (stemming from Monte Carlo data or from finite
numerical precision). Therefore, in practice one takes only a
limited number of terms in Eq. (33) that correspond to largest
values of sk .

We note that analytic continuation that includes both
real- and imaginary-time data is by no means limited to the
singular-value decomposition method. It can be performed by
appropriate modification of any other analytic continuation
method. We nevertheless chose the singular-value decompo-
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sition method because it most transparently demonstrates the
challenges of analytic continuation procedure.

III. RESULTS

A. Examples of analytic continuation procedure

In this section, we present examples of the results ob-
tained from our analytic continuation procedure. To assess the
accuracy and limitations of the procedure, it is desirable to
know the exact reference result for μ(ω) that the procedure
should ideally reconstruct. For this reason, here we do not
apply the procedure to our Monte Carlo data. Instead, we
make use of the frequency dependence of mobility obtained
in Ref. [72] that we refer to as the reference dynamic mobility
μref (ω). From the reference dynamic mobility, we construct
the real- and imaginary-time current-current correlation func-
tions using Eq. (30). Next, we add noise to these data whose
strength is comparable to the noise present in our Monte Carlo
data. Finally, we apply the analytic continuation procedure
described in Sec. II C to such data and obtain Reμac(ω).
By comparing Reμac(ω) and Reμref (ω) we can estimate the
accuracy of the analytic continuation procedure. Since we are
mostly interested in DC mobility we make the comparison in
particular at ω = 0. We use the relative error

δ = Reμac(ω = 0) − Reμref (ω = 0)

Reμref (ω = 0)

as an estimate of the error of analytic continuation procedure.
The results are presented for model parameters ω0/J = 1,

G/J = 1 and T/J = 1 in Fig. 1(a). These results were ob-
tained from imaginary-time data for times up to 0.6/J and
real-time data for times up to 1/J , while the results in Fig. 1(b)
are obtained from same imaginary-time data with the addition
of real-time data with ranges specified in the caption of the
figure.

In Fig. 1(a) we demonstrate how the number of singular
values (svs) taken in the sum given by Eq. (33) affects the
outcome of analytic continuation. If we take too many svs
terms (e.g., svs = 13), we include the term with rather small
absolute value of sk in Eq. (33). The noise in the data j in
Eq. (33) is then strongly multiplied and we get too much noise
in the Reμac(ω). On the other hand, if we take too few singular
values (e.g., svs = 8, 9) we do not have enough information
and Reμac(ω) does not resemble the reference Reμref (ω) at
all. The best choice in practice is to take as many singular
values as possible before Reμac(ω) becomes too noisy. For the
specific case shown in Fig. 1(a) the best choice is the result
obtained with 12 singular values. The number of singular
values used in typical calculations in this work is reported in
the table in Sec. III of the Supplemental Material [71].

In Fig. 1(b) we demonstrate the benefits of performing
analytic continuation starting both from real- and imaginary-
time data as opposed to using the imaginary-time data only.
By adding more relevant data in real time, we get closer to
the reference result in comparison with the case when we
use imaginary-time data only. We can see that, by combining
imaginary- and real-time data, we can get much closer to the
reference value of mobility.

FIG. 1. Examples of the application of the analytic contin-
uation procedure: (a) The reference result (labeled μref ) and
the results obtained using different number of singular values
(svs). The inset shows the result obtained using svs = 13 with
a full range on the y axis; (b) The reference result (μref )
and the results obtained using imaginary-time data only [labeled
μ(tre = 0)], using imaginary-time data and real-time data for real
times up to 0.4/J [labeled μ(tre � 0.4/J )] and using imaginary-time
data and real-time data for real times up to 1/J [labeled μ(tre �
1.0/J )]. The results are presented for model parameters ω0/J = 1,
G/J = 1 and T/J = 1. The results are shown for ω � 0 because the
equality Reμ(ω) = Reμ(−ω) holds.

B. Choice of simulation parameters

To make sure that the results of our quantum Monte Carlo
calculations are reliable, we paid particular attention to set
the appropriate values of all relevant simulation parameters.
Relevant convergence tests were performed to choose these
values. Since our goal is to get very precise data such that
standard deviation is not greater than 1% of the result, we used
104–106 Monte Carlo samples in a single calculation and we
repeat each calculation 100 times to achieve better statistics
and to estimate the statistical error. The discretization time
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FIG. 2. The dependence of the imaginary-time current-current
correlation function on the number of sites N for ω0/J = 1 and
G/J = 1: (a) at a high temperature T/J = 10, (b) at a low tempera-
ture T/J = 0.5. The results are shown for imaginary times 0 � t �
β/2 only since the identity Cj j (t ) = Cj j (β − t ) holds. The error bars
in panel (a) of the figure denote the estimated standard deviation of
the result, while the error is too small to be visible in panel (b) of the
graph.

steps τ and �t also have to be set to particular values. From
appropriate convergence tests, we found that the values τ =
�t = 0.1

J are small enough as taking smaller time steps does
not make a significant change in the result. Time discretization
steps and the number of Monte Carlo samples used in typical
calculations in this work are given in the table in Sec. III of
the Supplemental Material [71].

Another relevant parameter is the number N of sites that
determines the system size. Our goal is to obtain the results
representative of the thermodynamic limit N → ∞. In prac-
tice, we thus choose N which is large enough so that further
increase in the number of sites does not change the result. In
Figs. 2(a) and 2(b) we present the imaginary-time current-
current correlation function for ω0/J = 1 and G/J = 1 at a
high temperature T/J = 10 and a low temperature T/J = 0.5
for a different number N of sites. We see that, for these

FIG. 3. Real part of real-time current-current correlation func-
tion for different number N of sites for G/J = 0.141, ω0/J = 1, and
T/J = 2.5.

parameters, N = 5 sites are sufficient at a high temperature,
while N = 10 sites are needed at a low temperature. Such
behavior is expected since the increase in temperature reduces
spatial correlations. For this reason, the system becomes more
local at a higher temperature and a smaller number of sites is
needed to reach the thermodynamic limit.

In Fig. 3 we present the time dependence of the real part
of current-current correlation function in real time obtained
through Monte Carlo calculations for various system sizes in
the case of weak electron-phonon interaction G/J = 0.141,
ω0/J = 1, and T/J = 2.5. We see from the figure that a
system of N = 30 sites is needed for accurate calculation for
times up to Jt = 15. Such a large N is needed in this case
because the carrier mean-free path is large for weak electron-
phonon interaction and the system size larger than the carrier
mean-free path is needed to obtain the result representative
of the thermodynamic limit. To reduce the computational
effort we performed the calculation for smaller times with

FIG. 4. Time decay of the real part of real-time current-current
correlation function at various temperatures for ω0/J = 1 and
G/J = 0.5.
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FIG. 5. Temperature dependence of Holstein polaron mobility
for different electron-phonon interaction strengths and ω0/J = 1.
The label “ct” stands for the results obtained by analytic continuation
from real- and imaginary-time data. Results labeled “rt” are obtained
by direct integration of current-current correlation function in real
time (full lines connecting the dots are guide to the eye). The results
labeled “a” are approximate results from Ref. [72].

adequately smaller N . In particular, we used N = 20 for times
from Jt = 5 to 10 and N = 30 for times from Jt = 10 to 15.

In Fig. 4 we present the decay of the real part of current-
current correlation function in real time for ω0/J = 1, G/J =
0.5 and a range of temperatures. We see that for higher tem-
peratures (T/J � 2) we fully capture the time decay of the
current-current correlation function. In that case, it is possible
to calculate the mobility by direct integration using the Kubo
formula given in Eq. (3). This approach gives us the most ac-
curate results for polaron mobility where the only uncertainty
comes from statistical errors of Monte Carlo calculations,
which are rather small. The time decay of current-current
correlation function for lower temperatures (T/J < 2 in this
case) is slower and we cannot obtain reliable results at larger
times when the dynamical sign problem becomes severe and
Monte Carlo statistical errors become significant. In this case,
we resort to analytic continuation procedure described in
Sec. II C to obtain the result for polaron mobility. That pro-
cedure gives results with systematic error that can appear to
be significant, especially in the case of low temperatures. In
this case, longer real times become more relevant and analytic
continuation that makes use only of imaginary-time and short
real-time data becomes less successful.

C. Temperature dependence of polaron mobility

We present the final results of our work in this section.
The temperature dependence of mobility for one-dimensional
Holstein model is presented in Fig. 5. The results are given
for electron-phonon interactions ranging from weak (G/J =
0.141) to strong (G/J = 2.830) and ω0/J = 1.

The results labeled “ct” in Fig. 5 were obtained from ana-
lytic continuation procedure that makes use of imaginary-time
data and real-time data up to times where it is possible to
obtain Monte Carlo results with small error. The error bars
were estimated as follows: We first calculate the relative error

that the analytic continuation procedure introduces to real and
imaginary-time data generated from dynamic mobility calcu-
lated using an approximate method in Ref. [72], as described
in Sec. III A. We then assume that the relative error of analytic
continuation procedure applied to Monte Carlo data for the
same parameter set is the same. This is a good estimate since
the current-current correlation functions obtained in Ref. [72]
and in this work largely resemble each other. Hence, it is
expected that analytic continuation performs equally well for
both of these current-current correlation functions. From the
relative error, we eventually calculate the estimate of the ab-
solute error of the analytic continuation procedure applied to
Monte Carlo data. We find that analytic continuation typi-
cally tends to underestimate the mobility. For this reason, we
present one-sided errors in Fig. 5.

The results obtained by direct integration in real time for
times where reliable current-current correlation function is
available are labeled “rt.” For reference, we present also the
results obtained using an approximate method of Ref. [72]
(these are labeled “a”).

The most accurate results in this work are the results ob-
tained for relatively weak electron-phonon interactions G/J �
1 and higher temperatures T/J � 2. For these parameters, we
can capture the full time decay of the current-current correla-
tion function and the results obtained by direct integration are
therefore accurate. For these parameters, analytic continuation
also gives essentially the same results as direct integration.

The path integral for G/J < 1 was calculated using the mo-
mentum representation for electronic states (see Sec. II B 1).
The alternating phase that remains in the integrand is pro-
portional to the factor �tG [see Eq. (16)]. For this reason,
the approach works well for weaker interactions, while for
large interactions the dynamical sign problem becomes quite
severe. We also note that it is a significant challenge to obtain
reliable results at low temperatures, because longer times be-
come relevant then, as already discussed in Sec. III B. The
other approach based on position representation (described
in Sec. II B 2) of electronic states was used to calculate the
current-current correlation function in imaginary time, and in
real time for interactions G/J � 1.

To illustrate the importance of the choice of basis, we
present in Fig. 6(a) the ratio of the standard deviation of
the current-current correlation function Cj j (t ) and its absolute
value |Cj j (t )| obtained from the calculations using either the
position or momentum basis for electronic states. The results
are presented up to times when the standard deviation be-
comes comparable to the result (except for G/J = 0.5 and
the position basis, where longer times can be reached). As
can be seen from the figure, in the case of weak interaction
(G/J = 0.5), the standard deviation is much smaller when
the momentum basis is used, while for strong interaction
(G/J = 2), the standard deviation is significantly smaller
when the position basis is used. To demonstrate that such a
behavior originates from variations of phases of the terms in
Monte Carlo summation (known as the sign problem in the
literature), we present in Fig. 6(b) the average sign of the
Monte Carlo sum used to evaluate the nominator in Eq. (12)
for the same parameters as in Fig. 6(a). For the sum

∑
i Ai the

average sign is defined as sav = |〈Ai/|Ai|〉|. It takes the value
of one when there is no sign problem and it is equal to zero
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FIG. 6. The real-time dependence of (a) the relative standard
deviation and (b) the average sign of the real-time current-current
correlation function for ω0/J = 1 and T/J = 2. The label “m” de-
notes the results obtained with the momentum representation for
electrons and the label “p” denotes the results obtained with the
position representation for electrons.

when the sign problem is most severe. We see from Figs. 6(b)
and 6(a) that the average sign is close to one in cases where
standard deviation is small and that it decreases towards zero
at times when standard deviation starts to be comparable to
the result.

In Fig. 7 we present the current-current correlation func-
tion in imaginary time for T/J = 1, ω0/J = 1, and various
values of interaction. We see that it is much more sensi-
tive with respect to (imaginary) time variable for stronger
electron-phonon interactions, while for weak electron-phonon
interactions it appears to have almost a constant value. There-
fore, for weak interactions and low temperatures the results
obtained from analytic continuation have large error since
the input data on current-current correlation function have
very little information (they are almost constant in imagi-
nary time and exhibit a slow decay up to the largest real

FIG. 7. Imaginary time current-current correlation function for
T/J = 1, ω0/J = 1 and for various interaction strengths. The results
are shown for imaginary times 0 � t � β/2 only since the identity
Cj j (t ) = Cj j (β − t ) holds.

times for which data are available). For weak interactions and
high temperatures, the real-time data already contains almost
full information on the current-current correlation function.
Consequently, analytic continuation gives rather accurate re-
sults for these parameters. Analytic continuation also works
reasonably well for stronger interactions (G/J � 1). In that
case, the current-current correlation function data have a pro-
nounced dependence in imaginary time and for short real
times, which gives good enough information to obtain rea-
sonable results from analytic continuation. We note that, for
stronger interactions, the mobility obtained by direct inte-
gration noticeably underestimates the mobility from analytic
continuation. The reason for this is the presence of additional
peaks in Cj j (t ) at times tn = n 2π

ω0
(n � 1) which are not cap-

tured by direct integration, as can be seen in Fig. 8.
To summarize for which parameters the methodology

presented works best, one can inspect Fig. 5. It can be seen
that the error is rather small for relatively weak interactions
G/J � 1 and relatively high temperatures T/J � 2.

FIG. 8. Time dependence of real part of real-time current-current
correlation function for G/J = 2.83 and T/J = 2 obtained by ap-
proximate method from Ref. [72] (labeled “approximate”) and by
our QMC calculations (labeled “qmc”). The inset shows a detailed
view for times Jt � 1.5.
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Reasonably accurate results can be also obtained for stronger
interactions G/J > 1 and relatively high temperatures
T/J � 2. On the other hand, it is quite challenging to obtain
the results at low temperatures T/J < 1.

It is interesting to compare the results obtained in this
work with the results of Ref. [72] obtained using an approxi-
mate method. For almost all values of the parameters studied,
the results of Ref. [72] fall within the error bar range of the
results obtained in this work. Such an agreement establishes
the approach of Ref. [72] as a method to obtain reasonably
good temperature dependence of the mobility.

We also compare our results to the results of Ref. [68]
which is the only reference where the results for tempera-
ture dependence of Holstein polaron mobility were reported
based on the calculation using the methodology that should
be in principle numerically exact. The results of Ref. [68]
agree with our results for weakest interaction G/J = 0.141
and the temperatures when our estimated error is relatively
small. However, for stronger interactions G/J = 1, G/J = 2,
and G/J = 2.83 the results of Ref. [68] give lower values
of mobility than our results. For example, at G/J = 2.83,
ω0/J = 1 and T/J = 2 the range of mobility reported in
Ref. [68] is μ ∈ (2.8 × 10−3, 8.1 × 10−3), while in our case it
is μ ∈ (3.1 × 10−2, 7.2 × 10−2). For these parameters, direct
integration around the first peak in current-current correlation
function (in the range 0 � Jt � 1 in Fig. 8) gives already
μ ≈ 1.5 × 10−2 and the integration around subsequent peaks
could only increase this value. The results of Ref. [68] were
obtained using analytic continuation of imaginary-time data
only and we believe that this analytic continuation might not
be sufficiently reliable for all parameter values. This could po-
tentially explain the difference between the results of Ref. [68]
and our results.

All the calculations and examples presented in this paper
are for a phonon frequency of ω0/J = 1. We next discuss
the effect of phonon frequency on the accuracy and appli-
cability of the methodology. As discussed previously, the
methodology performs best when it is possible to perform
calculations for real times which are sufficiently long that
the current-current correlation function decays toward zero
and it is difficult to perform simulations for low temperatures

since the correlation function decays rather slowly then. The
current-current correlation function is expected to decay more
rapidly to zero when the average number of phonons is larger,
which happens for smaller phonon energies. Hence, it is ex-
pected that it will be possible to reach even lower temperatures
in the simulations for smaller phonon energies. On the other
hand, for larger phonon energies, the lowest temperature for
which simulations can be performed is expected to be larger.

IV. CONCLUSION

In conclusion, we developed the path-integral quantum
Monte Carlo methodology for a numerically exact calculation
of real- and imaginary-time current-current correlation func-
tions and for the extraction of polaron mobility from these
data in systems consisting of an electron interacting with
phonons. The appropriate choice of basis for representation
of the path-integral-enabled calculations for longer real times.
The use of both real- and imaginary-time data enabled more
reliable analytic continuation in comparison with the tradi-
tional approach where only the imaginary-time data are used.
The methodology was applied to the Holstein polaron model
and enabled us to obtain reliable results for the temperature
dependence of polaron mobility for interactions ranging from
weak to strong and for temperatures that are not too low.
The overall ideas of the methodology are not restricted to the
Holstein polaron model and can be in principle applied to any
Hamiltonian describing an electron interacting with phonons.
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In this Supplemental material we present the details of the derivation of the expression for

Cm,Q
A,B = Tr

[(
e−τH0e−τH1e−τH2

)m (
ei∆tH0 ei∆tH1ei∆tH2

)Q
A
(
e−i∆tH0e−i∆tH1e−i∆tH2

)Q
B
]

(1)

in the two representations and present the table with the parameters of the simulations.

I. PATH INTEGRAL EXPRESSION FOR Cm,Q
A,B WITH ELECTRONS IN THE MOMENTUM

REPRESENTATION

By expressing the trace from Eq. (1) in the basis |k; {X}⟩ defined in the main part of the paper, we obtain

Cm,Q
A,B =

∑
k0

∫ (N−1∏
n=0

dX0
n

)
⟨{X0}; k0|ρ(−τ)mρ(i∆t)QAρ(−i∆t)QB|k0; {X0}⟩, (2)

where we introduced the index ”0” on electron momentum and phonon coordinate variables and we introduced the
shorthand notation

ρ(z) = ezH0ezH1ezH2 . (3)

We make use of the relation for the resolution of identity

1 =
∑
k

∫ (N−1∏
n=0

dXn

)
|k; {X}⟩⟨{X}; k| (4)

and insert the resolution of identity between each two subsequent operators in Eq. (2) to obtain

Cm,Q
A,B =

∑
k0,...,km+2Q+1

∫ m−1∏
j=0

DXj

m+Q∏
p=m

DXp

m+2Q+1∏
q=m+Q+1

DXq

m−1∏
j=0

⟨Xj ; kj |ρ(−τ)|kj+1;X
j+1⟩


(

m+Q−1∏
p=m

⟨Xp; kp|ρ(i∆t)|kp+1;X
p+1⟩

)
⟨Xm+Q; km+Q|A|km+Q+1;X

m+Q+1⟩ m+2Q∏
r=m+Q+1

⟨Xr; kr|ρ(−i∆t)|kr+1;X
r+1⟩

 ⟨Xm+2Q+1; km+2Q+1|B|k0;X0⟩.

(5)

The basis states that enter the expression for the resolution of identity were indexed as ”1”,”2”,...,”m + 2Q + 1” in
increasing order from left to right and we introduced the notation

{Xj} → Xj ,

N−1∏
n=0

dXj
n → DXj .

∗ nenad.vukmirovic@ipb.ac.rs
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To calculate the matrix elements ⟨Xj ; kj |ρ(z)|kj+1;X
j+1⟩ we need to find how exponential operators act on the basis

states. The operator ezH2 acts trivially as:

ezH2 |kj ;Xj⟩ = ezε(kj)|kj ;Xj⟩. (6)

The operator ezH1 acts as:

ezH1 |kj ;Xj⟩ = ez
M
2

∑
n ω2

n(X
j
n)

2 1

N

∑
k,m

eim·(kj−k)+z
√
2MωmGXj

m |k;Xj⟩. (7)

The operator ezH0 depends on phonon momentum only and its matrix element is given as

⟨Xj ; kj |ezH0 |kj+1;X
j+1⟩ = δkj ,kj+1

(
M

−2πz

)N
2

e
∑

n

M(Xj+1
n −X

j
n)

2

2z . (8)

Making use of Eqs. (6)-(8) we get the expressions for matrix elements that appear in Cm,Q
A,B :

⟨Xj ; kj |ρ(−τ)|kj+1;X
j+1⟩ = C1 fkj+1,kj

(
−τ ;Xj+1

)
exp

(
−τ
∑
n

(
M

2
ω2
n(X

j+1
n )2 +

M

2

(Xj+1
n −Xj

n)
2

τ2

))
, (9)

⟨Xp; kp|ρ(i∆t)|kp+1;X
p+1⟩ = C2 fkp+1,kp

(
i∆t;Xp+1

)
exp

(
i∆t

∑
n

(
M

2
ω2
n(X

p+1
n )2 +

M

2

(Xp+1
n −Xp

n)
2

(i∆t)2

))
, (10)

⟨Xr; kr|ρ(−i∆t)|kr+1;X
r+1⟩ = C3 fkr+1,kr

(
−i∆t;Xr+1

)
exp

(
−i∆t

∑
n

(
M

2
ω2
n(X

r+1
n )2 +

M

2

(Xr+1
n −Xr

n)
2

(i∆t)2

))
,

(11)

where C1,C2 and C3 are irrelevant constants that originate from the prefactor in Eq. (8), while the functions
fki,kj (z;X

i) are fermion propagators between states ki and kj in imaginary or real time defined as:

fki,kj
(z;Xi) = ezε(ki)

1

N

∑
m

eim·(ki−kj)+z
√
2MωmGXi

m . (12)

We then obtain the expression from the main part of the paper:

Cm,Q
A,B = C ′

1

∫ m−1∏
j=0

DXj

m+Q∏
p=m

DXp

m+2Q+1∏
r=m+Q+1

DXr e−S1[τ ;X
j ]e−S2[−i∆t;Xp]e−S3[i∆t;Xr]×

×
∑
{k}

m−1∏
j=0

fkj+1,kj
(−τ ;Xj+1)

m+Q−1∏
p=m

fkp+1,kp
(i∆t;Xp+1)

m+2Q∏
r=m+Q+1

fkr+1,kr
(−i∆t;Xr+1)×

× ⟨Xm+Q; km+Q|A|km+Q+1;X
m+Q+1⟩⟨Xm+2Q+1; km+2Q+1|B|k0;X0⟩ ,

(13)

where C ′
1 = C1C2C3 is an irrelevant constant, the symbol

∑
{k}

denotes the summation over all k variables, while

phonon actions are given by expressions:

S1[τ ;X
j ] = τ

m−1∑
j=0

∑
n

[
M

2
ω2
n(X

j+1
n )2 +

M

2

(Xj+1
n −Xj

n)
2

τ2

]
,

S2[−i∆t;Xp] = −i∆t

m+Q−1∑
p=m

∑
n

[
M

2
ω2
n(X

p+1
n )2 +

M

2

(Xp+1
n −Xp

n)
2

(i∆t)2

]
,

S3[i∆t;Xr] = i∆t

m+2Q∑
r=m+Q+1

∑
n

[
M

2
ω2
n(X

r+1
n )2 +

M

2

(Xr+1
n −Xr

n)
2

(i∆t)2

]
.

(14)
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II. PATH INTEGRAL EXPRESSION FOR Cm,Q
A,B WITH ELECTRONS IN THE POSITION

REPRESENTATION

In this case, we express the trace from Eq. (1) in the basis |r; {X}⟩ defined in the main part of the paper and obtain

Cm,Q
A,B =

∑
r0

∫ (N−1∏
n=0

dX0
n

)
⟨{X0}; r0|ρ(−τ)mρ(i∆t)QAρ(−i∆t)QB|r0; {X0}⟩. (15)

We make use of the following resolution of identity

1 =
∑
r

∫ (N−1∏
n=0

dXn

)
|r; {X}⟩⟨{X}; r| (16)

and follow the same procedure as in the previous section to arrive at the expression analogous to Eq. (5):

Cm,Q
A,B =

∑
r0,...,rm+2Q+1

∫ m−1∏
j=0

DXj

(m+Q∏
p=m

DXp

) m+2Q+1∏
q=m+Q+1

DXq

m−1∏
j=0

⟨Xj ; rj |ρ(−τ)|rj+1;X
j+1⟩

×

×

(
m+Q−1∏
p=m

⟨Xp; rp|ρ(i∆t)|rp+1;X
p+1⟩

)
⟨Xm+Q; rm+Q|A|rm+Q+1;X

m+Q+1⟩×

×

 m+2Q∏
q=m+Q+1

⟨Xq; rq|ρ(−i∆t)|rq+1;X
q+1⟩

 ⟨Xm+2Q+1; rm+2Q+1|B|r0;X0⟩

(17)

The relevant matrix elements are now given as

⟨Xa; ra|ezH0 |rb;Xb⟩ = δra,rb

(
M

−2πz

)N
2

e
∑

n

M(Xb
n−Xa

n)
2

2z , (18)

⟨Xa; ra|ezH1 |rb;Xb⟩ = δra,rbe
z
∑

n G
√
2Mωnδn,rb

Xb
nez

M
2

∑
nω

2
n(X

b
n)

2
N−1∏
n=0

δ
(
Xa

n −Xb
n

)
, (19)

⟨Xa; ra|ezH2 |rb;Xb⟩ = I (−z, ra − rb)

N−1∏
n=0

δ
(
Xa

n −Xb
n

)
, (20)

with I (z, r) ≡ 1
N

∑
k cos(kr)e

−zε(k). Making use of Eqs. (18)-(20) and taking into account that operators A and B

act only on electron states we get the expression for Cm,Q
A,B from main part of the paper:

Cm,Q
A,B = C ′

2

∑
{r}

⟨rm+Q|A|rm+Q+1⟩⟨rm+2Q+1|B|r0⟩

m−1∏
j=0

I(τ ; rj+1 − rj)

×

×

(
m+Q−1∏
p=m

I(−i∆t; rp+1 − rp)

) m+2Q∏
q=m+Q+1

I(i∆t; rq+1 − rq)

×

×
∫ m−1∏

j=0

DXj

(m+Q−1∏
p=m

DXp

) m+2Q∏
q=m+Q+1

DXq

 e−S1[τ ;X
j ]e−S2[−i∆t;Xp]e−S3[i∆t;Xq ],

(21)
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where C ′
2 is an irrelevant constant, the symbol

∑
{r} denotes the summation over all r variables and the actions are

given as

S1[τ ;X
j ] = τ

m−1∑
j=0

∑
n

[
M

2
ω2
n(X

j+1
n )2 +

M

2

(Xj+1
n −Xj

n)
2

τ2
+G

√
2Mωnδn,rjX

j+1
n

]
,

S2[−i∆t;Xp] = −i∆t

m+Q−1∑
p=m

∑
n

[
M

2
ω2
n(X

p+1
n )2 +

M

2

(Xp+1
n −Xp

n)
2

(i∆t)2
+G

√
2Mωnδn,rpX

p+1
n

]
,

S3[i∆t;Xq] = i∆t

m+2Q∑
q=m+Q+1

∑
n

[
M

2
ω2
n(X

q+1
n )2 +

M

2

(Xq+1
n −Xq

n)
2

(i∆t)2
+G

√
2Mωnδn,rqX

q+1
n

]
.

(22)
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III. TABLE WITH SIMULATION PARAMETERS

Real time QMC Imaginary time QMC

N N svs

0.141

10 30 0.1

momentum

15 0.06 0.002

position 10

5 23

5 30 0.1 25 0.12 0.004 5 40

2 30 0.1 55 0.3 0.01 5 40

1 30 0.1 55 0.6 0.02 5 43

0.5 30 0.1 55 1.2 0.04 / /

0.5

10 4 0.1

momentum 10

0.06 0.002

position 10

10 13

5 5 0.1 0.12 0.004 10 17

2 5 0.1 0.3 0.01 10 20

1 5 0.1 0.6 0.02 10 20

0.5 1 0.1 1.2 0.04 / /

1

10 1.6 0.02

position 10

0.06 0.002

position 10

20 11

5 1.6 0.02 0.12 0.004 20 10

2 1.6 0.05 0.3 0.01 20 11

1 1 0.1 0.6 0.02 20 10

0.5 1 0.1 1.2 0.04 20 10

2

10 1 0.01

position 10

0.06 0.002

position 10

80 25

5 1.2 0.01 0.12 0.004 150 48

2 1.3 0.025 0.3 0.01 200 55

1 1.3 0.025 0.6 0.02 200 54

0.5 1.4 0.05 1.2 0.04 200 40

2.83

10 1 0.01

position 10

0.06 0.002

position 10

200 24

5 1 0.01 0.12 0.004 300 34

2 1 0.02 0.3 0.01 360 51

1 1 0.025 0.6 0.02 / /

0.5 1 0.025 1.2 0.04 / /

Analytic 
continuation

G/J T/J J t‧ max J‧�t Ns

electron 

basis J t‧ max J‧� Ns

electron 

basis �max/J

104 105

104 105

104 105

104 105

104 105

104 105

104 105

104 105

104 105

104 105

106 105

106 105

106 105

106 105

106 105

106 105

106 105

106 105

106 105

106 105

106 105

106 105

106 105

106 105

106 105

The table with simulation parameters for typical values of Holstein model parameters G/J and T/J . tmax denotes
the maximal real or imaginary time for which quantum Monte Carlo (QMC) simulation was performed, ∆t is the
time step in real time simulation, τ is the time step in imaginary time simulation, Ns is the number of samples in
the Monte Carlo simulation, N is the number of lattice sites in the system, the parameter ωmax denotes the range
[−ωmax, ωmax] of frequencies for representation of Reµ(ω), while svs denotes the number of singular values used
in analytic continuation. For the analytic continuation procedure Reµ(ω) was represented on a frequency grid of
100ωmax/J points in the range [−ωmax, ωmax]. Real and imaginary time data were calculated at time points that
are multiples of the time step and lie in the range (0, tmax). When G/J = 0.141 the number of sites N denotes the
number of sites needed to perform converged calculation for t = tmax.


