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The Holstein model is a benchmark model of systems with electron-phonon interaction. However, its electrical
transport properties are not yet fully understood. In this work, we performed numerically exact calculations of
the imaginary-time current-current correlation function of the Holstein Hamiltonian for a broad range of model
parameters. These calculations were performed using a path-integral-based quantum Monte Carlo method. We
compared these results with the results obtained under the assumption of conventional band transport, small
polaron hopping, and polaron band transport. From this comparison, we identified the regions in parameter space
where each of these transport regimes is valid. In some cases when an imaginary-time comparison of current-
current correlation functions could not give conclusive results, we complemented it with real-time comparisons
or a comparison with the literature data on numerically exact dc mobilities. Overall, we found that the parameter
space is almost completely covered by the three mentioned transport regimes.

DOI: 10.1103/t1g7-r95d

I. INTRODUCTION

The mobility of charge carriers in semiconductor materials
is mainly governed by the interaction between electrons and
phonons [1-3]. Depending on the strength of the interaction
and the temperature, different carrier transport regimes can
occur [4,5]. In scenarios where the electron-phonon interac-
tion is weak, carriers are delocalized and sometimes scatter
on the phonons, placing the system within the traditional
band transport regime. This is the common regime ob-
served in the conduction band of traditional semiconductors,
where transport phenomena are described by the Boltzmann
equation [6—12]. In conditions of strong electron-phonon in-
teraction and high temperatures, the carriers become entirely
localized and they move by occasionally hopping between
neighboring sites [13-18]. This type of hopping behavior
commonly occurs in small-molecule-based organic semicon-
ductors [19]. The hopping rates and mobility in these systems
are often modeled using the Marcus formula [20-24]. In cases
where the interaction remains strong while the temperature
is low, carriers delocalize and form a band, which is much
narrower than the bare electron band. This scenario is known
as the polaron band transport regime [25].

The mentioned regimes take place under conditions of
either a weak or strong electron-phonon interaction, or in sce-
narios where the temperature is significantly high or low. The
methods that have been developed to calculate the carrier mo-
bility in real materials are typically based on the assumption of
either band transport [6—12] or hopping mechanisms [20-24].
However, these methods are sometimes applied even when
it is uncertain if one of these regimes is genuinely present
within the material. On the other hand, the methods that do not
make the assumption about the transport regimes are typically
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limited to model Hamiltonians [26—47]. For these reasons, it
is of significant interest to understand the range of validity
of different transport regimes. Moreover, it is especially im-
portant to determine if the specified regimes cover the entire
parameter space or if there are areas where carrier transport
cannot be adequately explained by any of these regimes.

This research tackles these questions by examining a proto-
type model with electron-phonon interaction, i.e., the Holstein
model [48]. An ideal approach to answering these questions
would be to perform numerically exact calculations of car-
rier mobility or current-current correlation function using
real-time or real-frequency methods throughout the whole
parameter space and compare the results with the predictions
of each of the theories corresponding to characteristic trans-
port regimes. Although several numerically exact approaches
have been applied to the Holstein model in recent years, their
practical applicability is restricted to a limited part of the
parameter space [49-54]. On the other hand, imaginary-time
quantities can be reliably calculated across a significantly
broader range of the parameter space.

In this work, we therefore perform numerically exact cal-
culations of the imaginary-time current-current correlation
function over a broad range of parameters. These calcula-
tions are conducted employing a path-integral-based quantum
Monte Carlo (QMC) method [55-59]. For the same parameter
sets, we calculate the same quantity under the assumptions
of band transport, hopping, or polaron band transport mecha-
nisms. The comparison of these results allows us to infer the
range of validity of each of the transport regimes. In some
cases where the comparisons of the imaginary-time correla-
tion functions do not give conclusive results, we complement
them with comparisons of real-time correlation functions or
mobilities.

The structure of the paper is as follows. Section II presents
the model and methods on which our work is based. In
Sec. IT A, we briefly introduce the Holstein Hamiltonian.

©2025 American Physical Society
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Section IIB outlines the QMC method employed to com-
pute current-current correlation functions and dc mobilities,
which are pivotal to our findings. In Sec. IIC, we de-
rive analytical expressions for various transport regimes and
present some results based on these expressions. Specifically,
Sec. IIC1 derives formulas for current-current correlation
functions and dc mobility for strong electron-phonon inter-
actions, with a particular emphasis on the high-temperature
limit. Next, Sec. IIC2 derives expressions in the case of
weak electron-phonon interaction and large polaron transport.
Lastly, Sec. II C 3 addresses low-temperature polaron narrow
band transport. In Sec. IIC4, we present some results ob-
tained from the formulas presented in Secs. IIC 1-IIC3. In
Sec. III, we compare the results obtained using the expressions
for different transport regimes to numerically exact QMC re-
sults and construct the transport regime diagram, which gives
the information about the range of parameters where each of
the transport regimes takes place. We finalize the paper with
the conclusions in Sec. IV.

II. MODEL AND METHODS
A. Holstein Hamiltonian

We consider the model in one dimension consisting of one
carrier (electron) interacting with a chain of equidistant motifs
(ions). This simple model is described with one-dimensional
Holstein Hamiltonian,

H=-J7Y"Y"a} a+Y awoblb,
p y==%l p
+ Y Gala,(b, + b)), 1)
p

where a,, and aj; are electronic operators that annihilate or cre-
ate an electron at lattice site p, b, and b; are phonon operators
that annihilate or create a phonon of angular frequency wq at
lattice site p, G is the electron-phonon coupling constant, and
J is the electronic transfer integral. We use the system of units
where the reduced Planck constant 7, the elementary charge e,
the lattice constant ¢;, and the Boltzmann constant kg are set
to 1.

B. QMC method

The main quantity that we evaluate in this work is the
current-current correlation function which contains informa-
tion about electronic transport properties. It reads

Cjj(1) = (j)j(0)) = Z~ " Te[e PetM je = j1, (2)

where Z = Tre #¥ represents the partition function in the
canonical ensemble, B is the inverse temperature, and the
operator j is given by

J =i (ayapss —d, ap). 3)
P

The operator j can also be represented as

j=)_ uwaa, )
k

where vy = —2J sink is the band velocity and the operators
ay (aZ) annihilate (create) an electron of momentum k. When
t is a real number, Eq. (2) defines the real-time current-current
correlation function. For t = —it, where the real number 7 is
from the interval 0 < 7 < B, Eq. (2) defines the imaginary-
time current-current correlation function. The dc mobility is
related to the real-time current-current correlation function as

(3]

ﬂ o0
=5 [ atmjon. )
2 )

The system with a single electron in the canonical ensemble
is equivalent to the system in the grand canonical ensemble
with chemical potential . — —oo. This corresponds to the
physical situation where the carrier concentration in the band
is low and the chemical potential is well below the bottom of
the band.

We perform a numerically exact calculation of the current-
current correlation function using the path-integral quantum
Monte Carlo method. The details of the methodology were
presented in our previous work [59] and summarized in
Ref. [60], so we discuss it here only briefly. Within the
method, the real- or imaginary-time evolution operators (e
or e ##) are divided into evolution operators over small time
steps using the Suzuki-Trotter expansion. The path integral for
the correlation function then reduces to a sum which is eval-
uated using a Monte Carlo procedure. The systematic error
arising from the finite time step is controlled by choosing a
sufficiently small time step. The statistical error coming from
a finite number of samples in the Monte Carlo evaluation of
the sum is controlled by choosing a sufficiently large number
of samples. It is therefore more challenging to obtain results at
extremely low temperatures (large 8) or at greater real times
(large 7).

To perform more efficient calculations, it is also possible
to exploit the fact that the trace in Eq. (2) can be expressed
using any complete basis that spans the Hilbert space of the
system, as we discussed in our previous work [59]. While
the final result is independent of the choice of the basis, the
basis does influence the statistical error in the Monte Carlo
summation that is performed over a limited number of terms
only [61]. This insight enables us to select a basis that reduces
the statistical error of the Monte Carlo sums within certain
parameter ranges. With such a choice, we can perform the
simulation for longer real times before the dynamical sign
problem [62—-67] occurs and we can perform imaginary-time
calculations at lower temperatures (larger ). We find that it
is convenient to use the basis of electron momentum states
and the coordinate representation for phonons in the case of
weaker electron-phonon interactions. For stronger interaction,
we find that it is more convenient to use the position represen-
tation for the electron and the coordinate representation for
phonons. This basis gives an additional advantage that phonon
coordinates can be integrated out.

In this paragraph, we give some technical details regarding
our QMC calculations. We have performed calculations so
that the standard deviation is no greater than about 1% of the
result. To achieve such precision, we used from 103 to 10° MC
samples in a single calculation. Full QMC calculations were
repeated 10 or 100 times for better statistics and standard error
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estimation. We have chosen the time discretization step values
to be less or equal to 0.1/J since convergence tests showed us
that for such small values, there is no significant change in
the result. Finally, we discuss the system size parameter—the
number of sites in the one-dimensional (1D) model. All our
calculations were performed to be representative of the ther-
modynamic limit. We have chosen a sufficiently large number
of sites so that its further increase does not affect the result.
For the majority of the calculations for short real times (Jt <
1.0) and imaginary times (at higher temperatures), the number
of about 10 sites was sufficient, while for longer real times
and some lower temperatures, there was a need for a much
larger system with several tens of sites. This also sets the limit
to our calculations as these are not computationally feasible
for larger systems. In Fig. SO of the Supplemental Material
[68], we present an example of the calculations for different
system sizes when A = 0.01, 7/J = 0.1, and wg = 3J. We
also present in Fig. S10 of the Supplemental Material [68] a
detailed table with the parameter values (time steps, number
of sites, number of MC samples, etc.). We refer the reader to
Ref. [59] for a more detailed discussion regarding the choice
of simulation parameters.

C. Transport regimes

In the case of a 1D Holstein model, the strong electron-
phonon coupling causes the carrier to self-trap in the potential
well, which is formed due to phonon displacements on the
lattice site [5]. In such a way, a “localized small polaron” is
formed. At very low, near-zero temperatures, a small polaron
can tunnel between equal-energy neighboring sites with no
change in energy (diagonal/coherent processes). This is sim-
ilar to free carrier band transport, but in this case the polaron
band is extremely narrow [25]. At higher temperatures, the
polaron may move by phonon-assisted hopping between sites
(nondiagonal/incoherent processes). On the other hand, in the
case of weak electron-phonon coupling, the carrier is usually
called a large polaron. It acts as a free carrier with somewhat
increased effective mass that occasionally scatters on lattice
vibrations. The phonon scattering of large polaron causes
its mobility to decrease with increasing temperature and its
transport is conventional band transport. The large polaron is,
in general, more mobile compared to the small polaron. In
this section, we present the expressions for a current-current
correlation function in each of the three mentioned regimes:
(small polaron) hopping, (small) polaron band transport, and
(large polaron) band transport.

1. Hopping transport

The expression for the hopping rate between two neighbor-
ing sites can be obtained by treating the electronic coupling
between the sites as a perturbation and applying the Fermi’s
golden rule. Such an expression is expected to be valid
when the electron-phonon interaction is sufficiently strong
and when the temperature is not too low. This expression takes
the form which is known in the literature [69-71]:

o0 . .
W= J2 f dt ¢~ 2 Pt 1=t D0 0] )

oo

where np, = (e#0 — 1)~! is the phonon occupation number.
The derivation of this expression can be found in Ref. [69] or
[70]. The corresponding current-current correlation function
reads (see Eq. (24) in Ref. [60])

(1) = 207 =2 [t =l Dm0 =] 7

In the limit of high temperature, Eq. (6) reduces to the widely
used Marcus formula [20-24],

W= Jz,/’%”e—%, (8)

with A = 2w_c12 and the corresponding mobility,

w=pr ﬁ%e—%. )

The corresponding current-current correlation function reads
(see Eq. (26) in Ref. [60])
Cji(t) = 2J%e 7" e 1hoit (10)

where o = é—gi

In the case of the Holstein model with a single dispersion-
less phonon mode that we are considering, Eq. (6) leads to
a diverging result for the hopping rate and the dc mobility
since the current-current correlation function from Eq. (7)
does not decay to zero when t — oo. The origin of this di-
vergence comes from the fact that small polarons are treated
as quasiparticles with infinite lifetime in such considerations.
An improvement over such approach where broadening of
small polaron states is taken into account by calculating the
relevant self-energies was presented recently in Appendix C
of Ref. [60] and here we present the first application of that
approach. One then obtains (see Eq. (25) in Ref. [60])

(1) = glt)e 2o Pt 1=t Dm0 mmue ']
where
o) — 22 P 1 D228 i Jalh Cry/@)

(B —it) /oo L(=2B./c0) ’
(12)

while I; (J;) is the (modified) Bessel function of the first kind
of order 1 and

co = 27% 2 "Gt D ), (13)

with

2
@ = 4(%0) 1on(ton + 1). (14)

The corresponding dc mobility, which is related to C;;(¢) via
Eq. (5), is then given as

(52
=22 Bme 2 Gt D

Py [ dwe™#* A(w)A(w + log)(e)e™ %
[ dwe=FeA(w) ’
(15)
where

TTCo

Alw) = 0(4cy — @), (16)
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I; denotes the modified Bessel function of the first kind of
order /, and 6 is the step function.

To summarize this section, in the rest of the paper we
will use Eqgs. (11) and (15) as the result for the current-
current correlation function and the dc mobility in the hopping
regime. We will also compare these results to their high-
temperature limits given by Eqs. (10) and (9). The results for
imaginary-time current-current correlation functions will be
simply obtained by the replacement t — —ir.

2. Band transport

In this section, we present the expressions for the current-
current correlation function and the dc mobility in the band
transport regime. This regime is expected to take place when
the electron-phonon interaction is sufficiently weak and when
the temperature is not too high. Starting from Eq. (4), we
obtain

Yo p vivk () (Dar(ag )

>ilaiar)

We then make use of the independent particle (also known
as the bubble) approximation, which is known to be exact
in the limit of weak electron-phonon interaction [60] for the
Holstein model,

Cjjt) =

a7

(al(Oa(t)a)ap) = S lal (Dar) (ar(a)),  (18)
and obtain

al (O)a) (a(t)al) sin? (k)
Silaiar) '

The expectation values in Eq. (19) are found from the elec-
tronic spectral function which is related to the retarded
Green’s function as Ap(w) = —%Ime(a)). The Green’s
function is found from the self-energy in the Migdal ap-
proximation which includes the diagrams that describe single
phonon emission and absorption processes. This is, in most
cases, sufficient for weak electron-phonon interaction. How-
ever, when % > 1, there are momenta k that satisfy |g; £
wp| > 2J for which single-phonon processes are not allowed
due to energy conservation. In these cases, we also include the
diagrams that describe two-phonon processes. The detailed
expressions for self-energies and for expectation values in
Eq. (19) are given in Sec. S1 of the Supplemental Material
[68].

The dc mobility in the band transport regime is obtained
from the expression (see Ref. [72])

Cyi(t) = 472 2=t (19)

Zk nkrkv,f

L ’

where n; = e #% and the scattering time is given as rk_l =
—2Im ¥ (w)|w=¢,. While the expression for band transport
mobility including single-phonon processes only has been
previously used (see, e.g., [72]), we are not aware of previous
works that include two-phonon processes, which are neces-
sary when 5% > 1.

Hae = B (20)

3. Polaron band transport

In this section, we derive the expression for the dc mo-
bility and for the imaginary-time current-current correlation
function in the polaron band transport regime. This ex-
pression is expected to be valid when the electron-phonon
coupling is strong and when the temperature is very low.
To this end, we perform the Lang-Firsov unitary transforma-
tion of the Hamiltonian and work in the basis of polarons
that form a narrow band. We treat the remaining interact-
ing part of the Hamiltonian as a perturbation and evaluate
the corresponding self-energy. We derive the expression
for the current-current correlation function and identify the
contributions stemming from (i) processes with no phonon
exchange (diagonal/coherent processes) and (ii) phonon-
assisted processes (nondiagonal/incoherent processes). Since
the processes (i) are the dominant ones in the polaron band
transport regime, we include the contribution from these pro-
cesses only in the expressions for the polaron band transport
regime.

First, we perform the Lang-Firsov [73] unitary transforma-
tion H = U~'HU with

U = o5 Sebantit) o

The transformed Hamiltonian takes the form H = Hy + V,
with

ﬁo = Z ékazak + Z wob;bp, (22)
k p
where
G? -
& = —— —2Jcosk (23)
wo

is the polaron band dispersion and

G2
- Jef(ZnPthl)%

(24)

is the renormalized electronic transfer integral. The interac-
tion term V' in the transformed Hamiltonian reads

- 1
V= > a), By, (25)
k.q
with
Big=— ) J" O glo, —6].  26)
p,r=pxl
G (b — Q1) % . )
where 6, = e« ™" " and 6y = e “ , while N is the

number of lattice sites.

The current-current correlation function in the independent
particle (bubble) approximation [60] is given as (special case
of the result from Ref. [72] when the Lang-Firsov transforma-
tion is used instead of a more general transformation)

2k (all (t)a, ){ax, (¢ )azz Wik (1)

Cji(t) = .
Y > lalar)

27)
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The averages in the previous equation are taken with respect
to the transformed Hamiltonian H, while

72

J . )
Vo) = =1 D Xy @Dl Dgy,a), - (28)
X, Y==+I1,
VA
with
Oxyz(t) = eao.z.x,z+y[(nph+1)e'i“’0’+nphei“’0’] (29)

and ag,p,s,s, = g—g(aR]Rz + 85,5, — Or,s, — Skys, ). We then di-

vide Oxyz(t) = 9)(((;,)2 + 65}, (), with the two components
defined as follows:

9;((0)22 = I[2a0,zx,z+v~/Mpn (Mpn + 1)1,
Oyz(®) =D 12007 74y /npn (g + 1]

10
x eflontg=3tonf (30)

The term 0)((1}32(1‘) contains the factor e/®’ which describes
energy exchange with phonons. As polaron band transport
is coherent, phonon-scattering processes are absent. Conse-
quently, only the term 9)((0Y)z is relevant for polaron band
transport and we include only this term in what follows. Next,
we use the Kubo formula [Eq. (5)] and we exploit the relations

(al (Day,) = / dwe' Ay, (w)e P, 31

(Clkz (t )Cllz) = / da)e_ithkz (C()), (32)

where A is the polaron spectral function for the
Hamiltonian H and we make use of the fact that
Dbl2a0 zx z+y/Mpn(nph +1)] ~ 1 in the polaron band
transport regime, which takes place at low temperature
when 7y, is close to zero. We then arrive at the expression

p >, 07 [ doAg(w)?e P
Zk T ’
with ¥ = —2Jsink and 7z = e #%. Subsequently, we can

apply the approximation valid in situations where the spectral
function is narrow, as it is here:

Pde =70 (33)

- e fo My T
dwA 20=Bo _ _ = —, 34
/ whi(w)e IS @) loes, — w0 Y

with the polaron lifetime defined as 7 = m |w=z, - The
expression for self-energy X;(w) is derived in Sec. S2 in
the Supplemental Material [68]. Finally, the dc mobility for
polaron band transport can be expressed using the following
formula:

> At v}
>k i 7
which takes exactly the same form as the formula for con-
ventional band transport [Eq. (20)] with a difference that the
band energies, band velocities, state occupations, and life-
times should be replaced by their renormalized values. We are
not aware of any previous rigorous derivation of this formula.

To evaluate the imaginary-time current-current correlation
function in the polaron band transport regime, we make a

Mae = B (35)

further approximation that the spectral function can be ap-
proximated with the § function, A;(w) ~ §(w — & ). We note
that such an approximation would not be good enough for a
real-time correlation function and the mobility since it does
not lead to decay of the correlation function at long real
times, but is sufficient for imaginary times. The imaginary-
time current-current correlation function is then given as

BE ir —Ei )2y (O)
Zklkz e~ PEx ol —Fk, )ZYklkz G6)
D e F 7

where z = —it (0 < 7 < B)and Yk(](?z denotes the contribution

to Y4k, from the term 9,(((;,)2.

Cjj(2) =

4. Selected results in different transport regimes

In this section, we present several results obtained using
approximate formulas for the dc mobility and the correlation
function presented in previous sections. With this, we get an
initial insight about the transport regimes in different parts
of parameter space. To present the results, we express all
energies in terms of the electronic transfer integral J, while
we express the electron-phonon interaction strength through
the dimensionless parameter A = G? /(2Jwo).

We start with the hopping regime and discuss the con-
nection between the two different formulas in that regime.
In Sec. II C 1, we have presented expressions for hopping
mobility and current-current correlation function [Egs. (15)
and (11)] in the case of the Holstein model with a single dis-
persionless phonon mode with correction that gives finite dc
mobility in the whole temperature range. We are also consid-
ering expressions for dc mobility [Eq. (9)] and current-current
correlation function [Eq. (10)] derived from the Marcus for-
mula for hopping between two sites which are valid in the
high-temperature limit. It is expected that the expressions
derived within these two approaches give the same result at
high enough temperatures.

From Fig. 1, we can see that the curves for mobility
obtained with Eq. (15) and Eq. (9) tend to get closer with
increasing temperature and eventually converge towards each
other when the temperature is high enough. From Fig. 2, we
can see that current-current correlation functions follow the
same trend as mobility. Mainly, we can see that correlation
functions in imaginary time, as well as real parts of correlation
functions in real time, match at high temperature and do not
match at low temperature. It is also worth commenting on
the effect of the phonon frequency. From Figs. 1(a) and 1(b),
it is obvious that as the phonon energy wp is larger com-
pared to the transfer integral J, the high-temperature limit is
reached at higher temperatures. The same correspondence can
be made regarding the electron-phonon interaction strength;
the stronger the interaction X, the high-temperature effects
take place at higher temperatures. We must pay attention to
the fact that all expressions discussed in this paragraph are
derived under the assumption of hopping transport and have
a physical sense only for stronger electron-phonon interac-
tions (A > 0.500). This analysis gives us confidence in the
formulas for dc mobility given in Eq. (15) and current-current
correlation function given in Eq. (11) derived in Sec. IIC 1
with the assumption of strong electron-phonon interaction and
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FIG. 1. Hopping mobility obtained using Eq. (15) is shown with
full lines and the label “h,” while the mobility obtained from Eq. (9)
in the high-temperature limit is shown with dashed lines and the
label “ht.” Results are shown for a range of temperatures and various
interaction strengths A. The results for phonon angular frequency
wy = J/3 are shown in (a), while the results for wy = J are shown
in (b).

small electron transfer integral since they coincide with the
well-known Marcus formula in the high-temperature limit.
Next, we discuss the polaron band transport regime and its
crossover to the hopping regime. In Sec. II C 3, we discussed
that at very low temperatures and strong electron-phonon in-
teractions, it is expected that polaron band transport will take
place. To see exactly at how low temperatures this type of
transport occurs, we will compare the results obtained using
Eq. (35) for polaron band transport with the results obtained
from Eq. (15) for hopping. The intersection of these curves
can be considered to be a good estimate at which temperature
the transition from polaron band transport to hopping trans-
port occurs. As we can see in Fig. 3, the greater the interaction
strength, the intersection of the polaron band transport and

FIG. 2. (a) Current-current correlation function in imaginary
time and (b) real part of the current-current correlation function in
real time. Results shown with full lines labeled “h” are obtained with
Eq. (11) and results obtained with Eq. (10) in the high-temperature
limit are shown with dashed lines and labeled “ht.” The results are
shown for wy = 3J, A = 2.000 and the temperatures 7' /J = 10.0 and
T/J = 0.5 for imaginary-time correlation functions and 7 /J = 10.0
and 7 /J = 1.0 for real-time correlation functions.

the hopping transport mobilities is at lower temperature. We
can conclude that for stronger electron-phonon interactions,
the hopping transport will occur at lower temperatures. Also,
as we already saw in the analysis before this, with increasing
phonon frequency, the high-temperature effects arise at higher
temperatures. This can be seen in Fig. 3, as for wy = 3J the
intersections are at higher temperatures compared to the case
when wy = J/3. While the results for all interaction strengths
are presented in Fig. 3, one should bear in mind that only
the results for stronger interactions (say A > 0.5) should be
considered for the analysis of the crossover from polaron
band transport to hopping. This analysis gave us an important
insight into the range of parameters where we can expect the
polaron band transport regime to hold.
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FIG. 3. Mobility obtained from Eq. (15) for hopping is shown
with a full line and labeled “h.” Mobility for a polaron band transport
is shown with a dashed line and labeled “p.” Results are shown for
various interaction strengths A and for phonon angular frequencies

(@) wy = J/3,(b) wy = J, and (c) wy = 3J.
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FIG. 4. Temperature dependence of mobility shown for a range
of interaction strengths. The full line labeled as “b” stands for band
transport and the dashed line labeled as “h” denotes hopping mobil-
ity. Results are shown for a range of interaction strengths A and for
phonon angular frequency wy, = J/3.

Finally, we discuss the band transport regime and its
crossover to the hopping regime. In Sec. IIC3, we pre-
sented expressions for the current-current correlation function
[Eqg. (19)] and the dc mobility [Eq. (20)] in the band transport
regime. These expressions are derived under the assump-
tion of weak electron-phonon interaction. The carrier in this
transport regime is a large polaron as opposed to the small
polaron that is characteristic for hopping transport. A large
polaron moves similarly to a free carrier, but with increased
effective mass and it sometimes scatters on thermally induced
lattice phonons. At high temperatures, due to increased lattice
vibrations, the large polaron may turn into a small polaron.
Therefore, we may also expect that even in the case of weak
electron-phonon interaction, the crossover from band trans-
port to hopping could occur at high enough temperatures.
Hopping mobility at higher temperatures experiences a slower
decline compared to a fast decrease in band-type mobility as
a result of increased phonon scattering with temperature. As
can be seen in Fig. 4, with an increase in temperature (for
a relatively weak electron-phonon interaction), the hopping
mobility tends toward band mobility and they eventually in-
tersect. Although the results for all interaction strengths are
presented in Fig. 4, one should bear in mind that only the
results for weaker interaction (say, A < 0.500) should be con-
sidered for the analysis of the crossover from band transport
to hopping.

Previous analysis gives us an overall expectation for the
validity range of relevant transport regimes throughout the
parameter space. Namely, at extremely low temperatures and
strong electron-phonon interaction, the polaron band trans-
port regime is prevailing. In contrast, when the temperature
is high and there is a strong electron-phonon interaction,
hopping transport is the dominant mechanism. For weak
electron-phonon interactions, conventional band transport is
generally the dominant transport mechanism, except possibly
at very high temperatures. To put these expectations on a
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solid ground, it is essential to compare our findings, derived
from equations presented in Sec. II C, with numerically exact
results obtained without approximations and assumptions of
the transport regime.

II1. RESULTS

To reliably identify the transport regimes throughout the
parameter space of the Holstein model, we compare numer-
ically exact results for the imaginary-time current-current
correlation function obtained using path-integral quantum
Monte Carlo with approximate results obtained under the
assumption of each of the transport regimes. We performed
QMC calculations throughout the parameter space 0.1 <
T/J £10.0, 0.01 < A < 2.0 for three values of the phonon
angular frequency wy = J/3, wy = J, and wy = 3J. While it
would be very desirable to have the comparison at the level
of the real-time correlation functions or the dc mobility, it is
currently not possible to obtain numerically exact results for
such a broad range of model parameters. For a limited set of
model parameters where numerically exact results for the dc
mobility are available, we make such a comparison. Namely,
we compare the dc mobility for the three transport regimes
with the numerically exact results obtained using the hierar-
chical equations of motion (HEOM) method in Ref. [54] and
with our previous results obtained from real- and imaginary-
time QMC in Ref. [59].

A. Comparison of imaginary-time current-current
correlation functions

For the comparison of the imaginary-time current-current
correlation function with the correlation functions in the band
transport and in the hopping regime, we define a numerical
criterion that describes how much imaginary-time correlation
functions differ from each other. The numerical value that
describes how much the function CJ(;)(I) deviates from the

numerically exact function C%Mc(t) is given by the formula

Jdt | @) — )|
| [dt C3C@))|

c, = , (37

where we have taken CSMC to be our reference value. We
consider that the two functions are in good agreement if
DC” < 0.2.

In the case of the polaron band transport regime, we
choose a different criterion based on the following physical
arguments. In the polaron band transport regime, all physi-
cally relevant processes happen in a narrow range of energies
whose width is given by the renormalized bandwidth 4J.
In the derivations of polaron band transport equations in
Sec. IIC3, this range of energies was effectively selected
by choosing only the exy)z term in relevant equations. On
the other hand, an exact current-current correlation function
also contains the information about the processes of multi-
phonon emission/absorption that happen at energies equal to
multiples of the phonon energy. Therefore, one cannot expect
an agreement between the numerically exact current-current
correlation function C]%MC and the one obtained under the

assumption of polaron band transport Cﬁ), even when the
system is in the polaron band transport regime. On the other
hand, as discussed in Refs. [74,75], the C;; at imaginary-time

t= —i% contains only the information about the conductivity
at low frequencies, which is exactly the frequency range rel-
evant for polaron band transport. Consequently, to identify if
the system is in the polaron band transport regime, we evaluate

the quantity

! —CP (e = —i)]
Dc, = . 2 (38)
-- =

When the system is in the polaron band transport regime,
the 9)(((;)2 term dominates over the 9)((11,)2 term in equations in
Sec. IIC 3 and therefore D¢, from Eq. (38) satisfies Dc;, <
0.5. Hence, we consider that the system is in the polaron band
transport regime if D¢, < 0.5, with Dc;; given in Eq. (38).

We further note that the formulas for imaginary-time Cj;
in the polaron band transport and in the conventional band
transport regime converge to the same value when one sets the
electron-phonon interaction to be small. Namely, for a small
interaction, Yy, in Eq. (28) reduces to Y, = 4J Z(Skl & sin? k;
(because in this limit J = J and fyyz = 1) and C;;(z) from
Eq. (36) then reduces to

_ap > e Persin®k
Z e~ Bex

The same result is obtalned from Eq. (19) by exploiting that
for small interaction (a] (t)ay) = e~F=1%  (qy(t)af) = e~

Hence, the polaron band transport formula contains the band
transport formula as its special case. For this reason, whenever
our criterion for Dc;; suggests that both polaron band transport
and conventional band transport are possible, we assign the
conventional band transport regime for these values of param-
eters.

The results for the quantity D¢, for all three regimes are
presented in Fig. 5. As prev1ously stated, for both hopping
and band transport, we have set the threshold for tolerance
between functions at a maximum of 20%. To demonstrate
what this means, we show an example of current-current cor-
relation functions for parameter values (wy = J/3, A = 0.500)
in Fig. 6. As can be seen in Fig. 6, there is an obvious matching
of the QMC data with the function obtained for hopping
transport at a temperature 7 /J = 10.0, which is also visible
in Fig. 5 where the numerical value D, is less than 0.2
in the case of hopping transport. On the other hand, neither
band transport nor hopping results match the QMC data at
a temperature 7 /J = 0.1, as can be seen from Fig. 6. This
is also evident in Fig. 5(a), where the numerical value Dc;,
is greater than 0.2 for both band and hopping transport. This
value is lower in the case of band transport; nevertheless, it
remains approximately 0.5, which is considerably higher than
our set threshold of 0.2.

Several points are missing in Fig. 5 for the following rea-
sons. It is very challenging to perform QMC calculations at
high interaction strengths and low temperatures, as discussed
in Sec. II B. Therefore, we could not obtain the data at the
lowest temperatures and the strongest interactions for phonon
frequencies wy =J and wy = 3J. It is well known in the

Cji(2) = (39)
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FIG. 5. The relative difference Dc;; of the approximate and
QMC imaginary-time current-current correlation functions for dif-
ferent values of the temperature 7', the interaction strength A, and
the phonon angular frequency w,. The results are presented for three
phonon frequency values across the three respective columns. Each
row represents the difference for the specified transport regime. In
(a), the results for band transport (“b”) and hopping transport (“h”)
are presented, while in (b), the result for polaron band transport (“p”)
is presented.

literature that it is challenging to obtain current-current cor-
relation functions at low temperatures and strong interactions,
as evidenced, for example, by the fact that numerically exact
dc mobilities can be obtained in practice only at temperatures
T 2 1 and interactions A < 1 [54,59]. In the case of band
transport calculations, the spectral function becomes very
narrow at the lowest temperatures, which poses a challenge
for the calculation. This prevented us from obtaining con-
verged results for band transport at the lowest temperatures
for phonon frequencies wy = J and wy = 3J. A similar issue
was observed in calculations for weak coupling in Ref. [72].

3.0 .
o5 . 12.0
2.0 1.5
I
SN 15F T/J=100 A
b H 11.0
O 1.0} .
0.5} 1 L 0.5
_______________ \
0.0} . T
, - : J0.0
0.00 0.05 0.10 0 5 10
Jt Jt

FIG. 6. Current-current correlation functions in imaginary time
at temperatures (a) 7'/J = 10.0 and (b) T /J = 0.1 for the parame-
ters wp = J/3 and A = 0.500. Correlation functions obtained using
Eq. (11) for hopping transport are presented in full lines and labeled
“h,” while the functions calculated using formulas from Sec. IIC2
for band transport are presented as dashed lines and labeled “b.”
QMC results are represented with points.

Lastly, numerical issues in the calculation of Bessel functions
arise in calculations that assume the polaron band transport
regime for highest temperatures and strongest interactions
when wy = J/3 (where it is actually expected that this regime
does not take place).

Figure 5 can be, to a significant extent, used to identify
the relevant transport regimes throughout the parameter space.
However, for certain parameters, we see from the figure that
more than one regime is possible, in principle. In such cases,
to distinguish which regime is in place, we complement our
analysis with dc mobilities and real-time current-current cor-
relation functions when these results are available.

B. Comparison of mobilities

In this section, we compare dc mobilities obtained using
the expressions for hopping given by Eq. (15), polaron band
transport given by Eq. (35), and conventional band transport
given by Eq. (20) with numerically exact mobilities that are
obtained using HEOM and path-integral QMC techniques.

Figure 7 shows the mobility calculated for different tem-
peratures and coupling strengths for a phonon energy wy = J.
This value of phonon frequency was chosen because of the
availability of the most comprehensive and reliable HEOM
(Ref. [54]) and QMC (Ref. [59]) results for this chosen set of
parameters. The lines show results obtained with expressions
from Sec. II C, whereas the points depict the numerical results
obtained using HEOM and QMC techniques. As depicted in
Fig. 7, there is a noticeable agreement between the numer-
ical data and the results obtained with formulas for certain
transport regimes. Specifically, our band transport expression
defined by Eq. (20) holds true for the minimal interaction
(A = 0.010) in Fig. 7 and remains reasonably accurate for the
next stronger interaction (A = 0.125). Furthermore, in case
of stronger interactions (A > 0.500), the numerical data align
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FIG. 7. Temperature dependence of mobility obtained using for-
mulas for hopping (labeled as “h”) and band transport (labeled as
“b”’) compared with (a) numerically exact QMC data from Ref. [59]
and (b) HEOM data from Ref. [54]. Numerical data are presented
as points. The upward error bars in QMC data were estimated as
described in Ref. [59]. The results are shown for wg = J.

well with the hopping mobility given in Eq. (15). The result
in Fig. 7 clearly indicates that for the weakest interaction and
high temperatures, the band transport is the correct regime.
This is clear from the numerical data in Fig. 7, which are
in perfect alignment with the band mobility and, within the
temperature range displayed, the band and hopping mobilities
do not intersect. Meanwhile, we cannot make such a clear dis-
tinction between hopping and band transport regimes based on
the results in Fig. 5(a). The challenges associated with numeri-
cally exact calculations at extremely low temperatures prevent
us from depicting the crossover from polaron band transport
to hopping transport in Fig. 7. However, this crossover can be
seen in Fig. 8, for the phonon angular frequency of wy = 3J.
It is possible to observe this crossover for this value of wy
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\0
101 E |
C \.
~.
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FIG. 8. Temperature dependence of mobility obtained using for-
mulas for hopping (labeled as “h”) and polaron band transport
(labeled as “p”) compared with exact mobility obtained using the
HEOM method in Ref. [54] (labeled as “heom”). The results are
shown for wy = 3J and A = 0.500.

since it takes place at higher temperature, as could have been
expected based on the results of Fig. 3(c). This result aligns
with the result shown in Fig. 5(b), where it indicates the dom-
inance of the polaron band transport regime up to temperature
T/J = 2.0 and, based on Fig. 8, the crossover takes place
between temperatures 7 /J = 2.0 and T /J = 3.0.

C. Transport regime diagram for the one-dimensional
Holstein model

The final transport regime diagram based on all the previ-
ous results is presented in Fig. 9. In what follows, we explain
in detail how this diagram was constructed in the case when
the phonon energy wy equals J, while we provide a similar
explanation for other values of @y in Secs. S3 and S4 in the
Supplemental Material [68]. It is evident from Fig. 5 that the
band transport regime prevails in the areas characterized by
the two weakest interactions and low temperatures. With an
increase in temperature, Fig. 5 indicates that both band and
hopping transport mechanisms could be possible. To clarify
which transport regime is dominant at high temperatures, we
turn our attention to Fig. 7. The figure clearly shows that
across the entire temperature range for the weakest interac-
tion, the band transport regime prevails since numerically
exact HEOM results fully agree with the band transport re-
sults, while the curves for band and hopping mobility do not
intersect. For the second interaction strength, A = 0.125, it
remains difficult to differentiate between band and hopping
mobility, as evident in Fig. 7 where both expressions for dc
mobility give a result similar to the numerically exact result.
Similarly, Fig. 10 shows that distinguishing the real-time cor-
relation functions for the band and hopping regimes is equally
challenging in this range of parameters. For these reasons, we
depict this range of parameters as an intermediate range at the
crossover between band and hopping transport. We eventually
assign the result at the highest temperature to the hopping
regime since the imaginary-time result for the band regime

054314-10



IDENTIFICATION OF THE TRANSPORT REGIMES OF ...

PHYSICAL REVIEW B 112, 054314 (2025)

2.000
1.000
0.500

0.125
0.0104 wo/J =1/3
b ;

T rrorrrreyg
2.000
1.000

~< 0.500
0.125

0'010.,“"’/".:1. R R h
2.000

1.000

0.500

0.125

0.0104 wo/J =3 .

b — — T
101t 10° 10*
T/J

k=)

FIG. 9. Transport regime diagram for the Holstein model. The
results are shown for three values of phonon angular frequency wy/J
for the same values of the interaction strength A and the temper-
ature 7'/J. Three distinct transport regimes are labeled as “b” for
conventional band transport, “h” for hopping transport, and “p” for
polaron band transport. The label “m” stands for the intermediate
regime between the band and hopping transport. The unlabeled white
areas correspond to areas in parameter space where none of the three
transport regimes can be applied based on our results.

starts to deviate from the numerically exact result, as seen
in Fig. 5. For the interaction strength A = 0.500, by looking
at Fig. 5, it is evident that hopping transport dominates at
temperatures above T /J = 2.0. At lowest temperatures (say
T/J = 0.2 and lower), one sees from Fig. 5 that the system
is in the polaron band transport regime. For the intermediate
range of temperatures between these extremes, Fig. 5 sug-
gests that the system could be in the band transport regime.
Figure 11 shows that in this range of temperatures, real-time

2.2

2.1

2.0

C;j;[J7

1.9

L4,

Jt

FIG. 10. Imaginary- and real-time current-current correlation
functions for wy = J, A = 0.125, T /J = 5.000. Lines labeled with
“h” correspond to functions obtained with Eq. (11) for hopping
transport, lines labeled “b” correspond to functions obtained with
expression for band transport, and QMC results are represented with
points.
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FIG. 11. Real-time current-current correlation functions for
wo =J, A =0.500, and the temperatures 7'/J = 1.000 and T /J =
0.500. Lines labeled with “h” correspond to functions obtained for
hopping transport, lines labeled “b” correspond to functions obtained
with expression for band transport, and QMC results are represented
with points.

correlation functions obtained under the assumption of band
transport are in better agreement with the QMC results than
the ones obtained under the assumption of hopping. Never-
theless, there is a noticeable discrepancy of band transport
correlation functions and QMC results for temperature 7 /J =
0.5. For these reasons, we do not assign a single regime for
these parameters and denote that this is an intermediate range
of parameters where none of the mentioned regimes apply.
In Fig. 9, this ambiguity is represented by a white area. On
the other hand, for a temperature of 7'/J = 1.0, we classify
it as an intermediate band transport hopping regime, which
is depicted by label “m” in Fig. 9. This classification is due
to the QMC correlation function results being more closely
aligned with both the hopping and band transport correlation
functions. When the interaction strength is set to A = 1.000
and the temperature is 7/J = 0.5 or higher, Fig. 5 clearly
indicates that hopping is the appropriate transport regime. The
crossover point for mobility curves of hopping and polaron
band transport (see Fig. 3) lies between temperatures 7/J =
0.2 and T'/J = 0.3. Therefore, we conclude that for tempera-
tures below T'/J = 0.3, the polaron band transport regime is
in place. For an interaction strength of A = 2.000 and temper-
atures less than 7'/J = 0.2, we perform the same assignation
for the same reason. Based on previous analysis that combines
results obtained with formulas from Sec. II C and numerically
exact HEOM and QMC data for imaginary- and real-time
current-current correlation functions and dc mobilities, we
construct the transport regime diagram in parameter space
defined with interaction strength A and temperature 7 /J for
phonon frequency wy = J depicted in Fig. 9. In the same
manner, we construct the diagrams for phonon frequencies
wo = J/3 and wy = 3J with details given in Secs. S3 and S4
in the Supplemental Material [68].

Next, we discuss other works in the literature where
transport regime diagrams of models with electron-phonon
interaction were investigated. In Ref. [45], the authors con-
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sidered a mixed Holstein-Peierls model relevant for organic
semiconductors. They examined possible regimes when the
strength of electronic coupling and nonlocal electron-phonon
coupling is changed. Due to a different type of Hamiltonian,
and the fact that temperature was not varied in Ref. [45],
these results are not directly comparable to ours. Nevertheless,
the band transport regime (termed bandlike in Ref. [45]) and
the hopping regime (termed phonon assisted in Ref. [45])
were clearly identified, respectively, for large and small elec-
tronic coupling. In Ref. [46], the authors considered a two-site
Holstein model and the crossover between different charge
transfer regimes as they evolve over time for different adia-
baticity ratios. They identify the regimes they term polaronic,
soft-gating, and transient localization. Our study offers com-
plementary insight in comparison to these two works. We
study the effects of temperature over a wide range, which
were not addressed in Ref. [45]. While we directly address the
long-range charge transport quantified by the dc mobilities,
Ref. [46] was focused on short-range charge transfer.

IV. CONCLUSION

In conclusion, we studied in detail the transport regimes of
a benchmark model with the electron-phonon interaction—
the one-dimensional Holstein model. We computed the
imaginary-time current-current correlation functions using
a numerically exact path-integral-based QMC method for
a broad range of model parameters that practically covers
the whole parameter space. These were compared with the
corresponding functions under the assumptions of the band
transport regime, the hopping regime, and the polaron band
transport regime. The comparisons were used to establish
the range of validity of each of these transport regimes. The
analysis was complemented with a comparison of real-time
current-current correlation functions and dc mobilities for pa-
rameters where these data are available.

In accordance with expectations, the results indicate that
band transport occurs at low interaction strengths and low
temperatures, hopping transport is present for strong inter-
action and high temperatures, while polaron band transport
takes place for strong interaction and low temperatures. More

importantly, the results indicate that practically the whole
parameter space is covered by the three mentioned transport
regimes, except for some parts of the space at intermedi-
ate electron-phonon coupling strengths. This conclusion is
something that one may not have expected. Such a con-
clusion might have important consequences for modeling
charge transport in real materials. It is practically impossi-
ble to model charge transport in real materials for arbitrary
electron-phonon coupling strength without the assumption of
a particular transport regime. On the other hand, as mentioned
in Sec. I, it is possible to perform simulations of mobility
in real materials assuming the band transport or the hopping
transport regime. If our conclusions regarding the applicabil-
ity of one of the three transport regimes throughout most of
the parameter space could be extended from the benchmark
Holstein model to models of realistic materials, this would
open the way to perform reliable studies of real materials by
performing calculations under the assumptions of one of the
transport regimes.
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S1. SELF-ENERGIES IN BAND TRANSPORT REGIME

In this section of Supplemental Material, we give expressions for self-energies in the band transport regime.
The self-energy in the Migdal approximation is given as

G2

Zk(w) = W

[(nph + I)G;O_)q(w —wp) + nth,g()jq(w + wo)} , (S1)
q

where GO) (w) = (w—¢p +i07) 71 is the Green’s function in the absence of interaction. By performing the summation
b

in Eq. (S1) one obtains
Y(w) = G*(npn + 1)S(w — wp) + G*nppS(w + wo) , (S2)
where
) e
S(w) = § Vw42 27 . (S3)
T if |ﬁ| <1

The retarded Green’s function is then simply found from the Dyson equation:

GiH(w) = m ; (S4)

the spectral function is given as
1
Ap(w) = — Im G (w) (S5)

and the averages that enter the expression for current-current correlation function read

(a%(t)aw = /jc dw e“t Ay (w)e P (S6)

(ar(t)al) = /_ T aw e WAL (W) . (S7)

In the case when 5% > 1, we also include the most relevant diagram including two phonon processes. The relevant
self-energy is

4
g 1 1 1

ImXY(k,w) = ==npn(nyn + 1 Im - + S8
(k,w) = Srzmon (1 >%j pp— kZ R — (S8)

We then obtain
Im ¥ (w) = g4nph(nph +1)51[Sa(w — wp) + Sa2(w + wp)] (S9)

where
1 1

51 szw—5k+10+’ (510)
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The last two sums can be evaluated analytically and read

where

Sg(l‘)

1 1
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S3
S2. SELF-ENERGY IN POLARON BAND TRANSPORT REGIME

The first nonzero term in the retarded self-energy arising from interaction V reads [special case of equations in
Ref. [72] when Lang Firsov unitary transformation is used rather than the more general transformation]

i1
Sew) = 5 Z/dwla,&q(w —w1)DP_ g jq(w1) (S15)
q
with
D?fqﬁk’q(w) = i Z leisQSqu/dt eiwt{eaRleslsg [(nph"rl)e*iwot+npheiwot] - 1}’ (816)
R151R232
leiszsqu _ JQ(SRI7sli16R2752i1€i[kR1—(k’—q)Sl]ei[(k—q)Rz—kSﬂ_ (Sl?)
Making use of
e .
eacos@ — Z Il(a)e‘w (818)
l=—00

and

(g + 1m0 s’ = 2 g, + 105 [ (1415 )| (19)

1
Ek(w) = m Z Z leis’zSqu

g R1S1R2S2

{ |:IO (aR1R25152 -2 \/ nph(nph + 1)) - l:l lea*q(w)—’— (S20)
Z I (aR1R25152 -2 \/ nph(nph + 1)) e_%IWOBGllij(w + le)

10

we arrive at

In the polaron band transport regime, the Green’s function has maxima at energies around &,. The dispersion
€k is rather flat. Relevant arguments of self-energies are then those at around €. On the other hand, the term
Git q(w + lwp) has maxima at energies around £y + lwg. Hence, it is only the [ = 0 term in previous equation that
determines the values of the self-energy at its relevant arguments. By including this term only and introducing the
definition

1 ikR

e
So(B,w,J) = + . s21
oy w, J) N;w+2Jcosk+1O+ (S21)
we arrive at
2
Bi(w) = Z J25Rl,sli15R2,s2i16_2(W) (2npntl) pik(R1—S2)
R1=0,51,R2,52 (822)

SO (RQ — Sl,w, j) |:IO <2(ILR1325152 nph(nph + 1)) — 1:| .

The sum So(R,w, J) can be evaluated analytically. To write down this expression we introduce the notation 7 = 2%

277
21 =-T+ V72— 1, 2 =—7— /72 — 1 and obtain
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S3. TRANSPORT REGIME CROSSOVERS IN FIG. [10] FOR wo = J/3.

In this section, we explore further into the regime crossovers depicted in Fig. for wo = J/3.

For the weakest interaction strength where A = 0.010, the results from Fig. [5| imply that both band transport
and hopping could be possible in principle at higher temperatures. A closer examination of Fig. shows that the
numerically exact data align closely with the band mobility, while the hopping mobility remains below the band
mobility curve (see also Fig. . This observation confirms that we are indeed dealing with band transport regime
across the entire temperature range.

A =0.010(b)
© A =0.125(b)
A= 0.500(b)
A = 1.000(b)
X = 0.010(h)
A =0.125(h)
A = 0.500(h)
A = 1.000(h)
A = 0.010(heom)
A = 0.125(heom)
A = 0.500(heom)
A = 1.000(heom)

10"}

I 10°f,

1071

T/J

FIG. S1: Mobility obtained from formulas for band transport (labeled ”b”) and hopping transport (labeled "h”)
compared with numerically exact HEOM data. Numerical data are presented as points. Results are shown for
W = J/3

At an interaction strength of A = 0.125 and temperatures lower than 7'/J = 1.0, Fig. suggest that band transport
is the relevant regime. However, for temperatures of T'/J = 2.0 and 5.0, it is unclear whether the correct transport
regime is band transport or hopping. Fig. shows mobility data where, in the temperature interval from 7/J = 1.0
to T'/J = 10.0, we are unable to distinguish between band and hopping mechanisms. It is also difficult to distinguish
between the two mechanism from real-time correlation functions, as illustrated in Fig. where the QMC data
show proximity to both the hopping and band transport correlation function. For this reason, we label this region as
an intermediate region between band and hopping transport. Using the results from Fig. we assign the hopping
mechanism at largest temperature for this interaction strength.

2.00

1.75

1.50

1.25

1.00

Cj;[J?]

0.75
0.50

0.25

0.000 1 2 0

FIG. S2: Real time current-current correlation functions for wy = J/3, A = 0.125, and the temperatures 7'/J = 2.000
and T'/J = 5.000. Lines labeled with "h” correspond to functions obtained for hopping transport, lines labeled ”b”
correspond to functions obtained with expression for band transport and QMC results are represented with points.
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Cj;[J?]

0.0 25 5.0 0.0 0.5 1.0
Jt Jt

FIG. S3: Real and imaginary time current-current correlation functions for wg = J/3, A = 0.500, and 7'/J = 1.000.
Lines labeled with ”h” correspond to functions obtained for hopping transport, lines labeled ”b” correspond to
functions obtained with expression for band transport and QMC results are represented with points.

At an interaction strength A = 0.500 from Fig. [5| we can deduce that for temperatures greater than 7'/J = 1.0
hopping is the dominant mechanism. Fig. illustrates that the numerically exact results align closely with the curve
representing hopping mobility across the temperature range of T/J = 1.0 to T//J = 10.0. However, upon analyzing
the correlation functions, it remains ambiguous whether the appropriate mechanism at 7'/J = 1.0 is hopping or band
transport, as shown in Fig. At temperatures below T'/J = 1.0, the results from Fig. [5| suggest that none of the
three regimes is in place. This is depicted in Fig. as a white region.

For an interaction strength of A = 1.000, as indicated by Figures [5] and it is clear that within the temperature
interval from T'/J = 1.0 to T'/J = 10.0, the hopping mechanism is in place. The correlation function data from Fig.
suggest that imaginary-time correlation functions correspond most closely to the hopping functions for temperatures
below T/J = 1.0. Fig. [3| suggests that the polaron band transport regime can occur only at temperatures below
T/J = 0.1. Consequently, we infer that within the temperature range of T/J = 0.1 to T'/J = 10.0, hopping transport
is dominant for this set of parameters. The same can be concluded for an interaction strength of A = 2.000.
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S4. TRANSPORT REGIME CROSSOVERS IN FIG. FOR wo = 3J.

Next, we examine Fig. p|in the case wg = 3J and A = 0.010. It is evident that both band transport and hopping
meet the criterion within the temperature range of T'//J = 1.0 to T'/J = 10.0. We distinguish between the two through
the analysis of real-time current-current correlation functions (see Fig. which imply that within the temperature
range T/J = 0.5 to T//J = 10.0, the proper regime is conventional band transport. This conclusion can be safely
extended to lower temperatures based on physical arguments that lowering the temperature for weak interaction
reduces the electron-phonon scattering and therefore preserves the band transport mechanism.
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FIG. S4: Real time current-current correlation functions for wg = 3J, A = 0.010, and the temperatures 7'/J = 2.000
and T//J = 10.000. Lines labeled with ”"h” correspond to functions obtained for hopping transport, lines labeled ”b”
correspond to functions obtained with expression for band transport and QMC results are represented with points.

When considering the subsequent interaction strength of A = 0.125, as shown in Fig. [5] the imaginary-time criterion
is met for band transport between T/J = 0.2 and T'/J = 5, and for hopping in the temperature range from 7/J =1
to T/J = 10. The limited mobility data (refer to Fig. indicate that for temperatures lower than T//J = 5, the
appropriate regime is band transport. This can also be seen from the real time correlation function shown in Fig.
for T'/J = 2, which demonstrates how real-time QMC data more closely follow the curve for band transport. We
continue to explore the real-time current-current correlation functions. As illustrated in Fig. [S7 at a temperature
of T/J =5, the system is in the intermediate regime between band transport and hopping. However, at the higher
temperature of T'/J = 10.0, it is evident from Fig. and [5| that hopping is the relevant regime.

5 == A=0125(b) -t A= 1.000(h) ® )\ = 0.500(heom)
10°..... A=0.125(h) ==+ X =0.500(p) ¢ X =1.000(heom)
----- A =0.500(h) =+ X =1.000(p) fi X =0.125(gmc)

T/J

FIG. S5: Mobility obtained from formulas for band transport (labeled ”b”), hopping transport (labeled "h”) and
polaron band transport (labeled ”p”) compared with numerically exact heom data. Numerical data are presented as
points. Results are shown for wy = 3J.
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FIG. S6: Imaginary- and real-time current-current correlation functions shown for specified parameters wy = 3.J,
A =0.125, T/J = 2.000. Lines labeled with "h” correspond to functions obtained with Eq. [11] for hopping transport,
lines labeled ”b” correspond to functions obtained with expression for band transport and QMC results are
represented with points.
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FIG. S7: Real-time current-current correlation functions for wy = 3J, A = 0.125, and the temperatures 7/J = 5.000
and T'/J = 10.000. Lines labeled with ”"h” correspond to functions obtained for hopping transport, lines labeled ”b”
correspond to functions obtained with expression for band transport and QMC results are represented with points.

Next, we examine the results for the interaction strength A = 0.500. We can regard this interaction as moderately
strong, suggesting the potential for polaron band transport to occur. As illustrated in Fig. [5} the conditions for
polaron band transport are met within the temperature range of T/J = 0.1 to T'/J = 2. Furthermore, band transport
might be possible from T'/J = 0.5 to T/J = 2, and hopping could occur from T/J =1 to T//J = 10. We exclude the
likelihood of conventional band transport at any temperature upon analyzing real time current-current correlation
functions. Fig. supports this argument as it shows that numerically exact QMC data are equally far from the band
transport and hopping regime. Fortunately, there is a limited set of numerically exact HEOM data in this range of
parameters, which effectively demonstrate the shift from polaron band transport to hopping, as depicted in Fig.
for mobility. This transition aligns with the point where the mobility curves for polaron band transport and hopping
intersect.

For the two strongest interactions, A = 1.000 and A = 2.000, we lack some numerical data at the lowest temperatures.
Therefore, our deductions regarding transport regime transitions will be based on previous conclusions. From Fig.
for an interaction strength of A = 1.000, the criterion for polaron band transport is met within the temperature range
of T/J = 0.1 to T/J = 1.0, whereas hopping might be possible from T'/J = 0.5 up to T/J = 10. We dismiss the
possibility of conventional band transport for the same reasons as for the previous interaction strength. As depicted
in figures [3] and the curves for polaron band mobility and hopping mobility intersect around the temperature
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FIG. S8: Real-time current-current correlation functions for wy = 3J, A = 0.500, and the temperatures 7/J = 1.000
and T'/J = 2.000. Lines labeled with ”h” correspond to functions obtained for hopping transport, lines labeled ”b”
correspond to functions obtained with expression for band transport and QMC results are represented with points.

T/J = 2. Thus, we deduce that the appropriate transport mechanism is polaron band transport up to 7'/J = 2, while
for temperatures exceeding T'/J = 2, the hopping mechanism prevails. In a similar manner, when the interaction is
A = 2.000, the point where the two corresponding curves intersect occurs at approximately T/J = 1.0. Thus, we
conclude that the appropriate transport mechanism is polaron band transport for temperatures lower than 7'/J = 1,
transitioning to hopping transport for temperatures beginning at 7'/J = 1.0 and above.

S5. DETAILS ON QMC CALCULATIONS OF IMAGINARY-TIME CURRENT-CURRENT
CORRELATION FUNCTIONS.

In this section we present details on the choice of simulation parameters in QMC calculations of imaginary-time
current-current correlation functions in present work. In Fig. the effect of limited system size (number of sites
Ny) on result of QMC calculations is shown for the interaction strength A = 0.010, the temperature 7'/J = 0.1 and
the phonon frequency wy = 3J. We can see that the number of sites needed to reach the thermodynamic limit is 25
in that case.
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FIG. S9: Imaginary-time current-current correlation function calculated with different number of sites Ny. The
results are shown for the interaction strength A = 0.010, the temperature T'/J = 0.1 and the phonon frequency
wo = 3J.

In Fig. a table is provided with the values used in our calculations for the time discretization step JAt,
the number of MC samples N and the system size (the number of sites) Ny for each specified temperature T'/J,
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interaction strength A and phonon frequency wg. The table also contains information whether the calculations were
completed using the momentum (m) or the electron position (p) basis.

wo=JI3 wWo=J wWo=3J
A TI3 JAt Ns Nq basis JAt Ns Nqg basis JAt Ns Nqg basis
0.1 0.1 1.0E+06 15 m 0.1 1.0E+06 20 m 0.1 1.0E+05 30 m
0.2 0.1 1.0E+05 15 m 0.1 1.0E+05 15 m 0.1 1.0E+05 25 m
0.5 0.08 1.0E+05 10 m 0.08 1.0E+05 15 m 0.08 1.0E+05 20 m
0.010 1.0 0.05 1.0E+02 80 m 0.05 1.0E+03 60 m 0.04 1.0E+05 15 m
2.0 0.025 1.0E+02 80 m 0.025 1.0E+03 60 m 0.025 1.0E+05 15 m
5.0 0.01 1.0E+02 80 m 0.01 1.0E+03 60 m 0.01 1.0E+05 15 m
10.0 0.005 1.0E+02 80 m 0.005 1.0E+03 60 m 0.005 1.0E+05 15 m
0.1 0.1 1.0E+06 15 m 0.1 1.0E+06 20 m 0.1 1.0E+05 20 m
0.2 0.1 1.0E+05 15 m 0.1 1.0E+05 15 m 0.1 1.0E+05 15 m
0.5 0.08 1.0E+05 10 m 0.08 1.0E+05 15 m 0.08 1.0E+05 15 m
0.125 1.0 0.05 1.0E+03 10 m 0.05 1.0E+03 20 m 0.04 1.0E+05 15 m
2.0 0.025 1.0E+03 10 m 0.025 1.0E+03 20 m 0.025 1.0E+03 10 m
5.0 0.01 1.0E+03 10 m 0.01 1.0E+03 20 m 0.01 1.0E+03 10 m
10.0 0.005 1.0E+03 10 m 0.005 1.0E+03 20 m 0.005 1.0E+03 10 m
0.1 0.1 1.0E+06 15 m 0.1 1.0E+06 20 m 0.1 1.0E+05 20 m
0.2 0.1 1.0E+05 15 m 0.1 1.0E+05 15 m 0.1 1.0E+05 15 m
0.5 0.08 1.0E+05 10 m 0.08 1.0E+05 15 m 0.08 1.0E+05 15 m
0.500 1.0 0.05 1.0E+04 7 m 0.05 1.0E+04 10 m 0.05 1.0E+05 15 m
2.0 0.025 1.0E+04 7 m 0.025 1.0E+04 10 m 0.025 1.0E+03 10 m
5.0 0.01 1.0E+04 7 m 0.01 1.0E+04 10 m 0.01 1.0E+03 10 m
10.0 0.005 1.0E+04 7 m 0.005 1.0E+04 10 m 0.005 1.0E+03 10 m
0.1 0.1 1.0E+06 15 m 0.1 1.0E+06 20 m 0.1 1.0E+06 25 m
0.2 0.1 1.0E+05 15 m 0.1 1.0E+05 15 m 0.1 1.0E+06 20 m
0.5 0.08  1.0E+05 10 m 0.08  1.0E+05 15 m 0.08  1.0E+05 15 m
1.000 1.0 0.02 1.0E+05 7 p 0.02 1.0E+05 7 m 0.02 1.0E+05 15 m
2.0 0.01 1.0E+05 7 p 0.01 1.0E+05 7 m 0.01 1.0E+05 7 p
5.0 0.004 1.0E+05 7 p 0.004 1.0E+05 7 m 0.004 1.0E+05 7 p
10.0 0.002 1.0E+05 7 p 0.002 1.0E+05 7 m 0.002 1.0E+05 7 p
0.1 0.1 1.0E+06 15 m - - - - - - - -
0.2 0.1 1.0E+05 15 m 0.1 1.0E+06 20 m - - - -
0.5 0.08 1.0E+05 10 m 0.08 1.0E+05 15 m 0.08 1.0E+05 15 m
2.000 1.0 0.02 1.0E+05 7 o] 0.02 1.0E+05 10 p 0.02 1.0E+05 7 p
2.0 001 10E+05 7 p 0.01 1.0E+05 10 p 001 10E+05 7 p
5.0 0.004 1.0E+05 7 p 0.004 1.0E+05 10 p 0.004 1.0E+05 7 p
10.0 0.002 1.0E+05 7 p 0.002 1.0E+05 10 p 0.002 1.0E+05 7 p

JAt - time discretization step

Nd - number of sites (system size)

m - electron momentum states

Ns - number of MC samples

p - electron position states

FIG. S10: The table with values of simulation parameters used in QMC calculations of imaginary-time
current-current correlation functions.



