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Some fractional quantum Hall states observed in experiments may be described by first-quantized wave-
functions with special clustering properties such as the Moore-Read Pfaffian for filling factor �=5 /2. This
wavefunction has been constructed by constructing correlation functions of a two-dimensional conformal field
theory �CFT� involving a free boson and a Majorana fermion. By considering other CFTs many other clustered
states have been proposed as candidate fractional quantum Hall states under appropriate circumstances. It is
believed that the underlying CFT should be unitary if one wants to describe an incompressible, i.e., gapped
liquid state. We show that by changing the way one derives the wavefunction from its parent CFT it is possible
to obtain an incompressible candidate state when starting from a nonunitary parent. The construction mimics a
global change in parameters in the phase space of the electron system. We explicit our construction in the case
of the so-called Gaffnian state �a state for filling factor 2/5� and also for the Haldane-Rezayi state �a spin-
singlet state at filling 1/2�. We note that there are obstructions along this path in the case of the permanent
spin-singlet state of Read and Rezayi which can be characterized as a robust gapless state.
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I. INTRODUCTION

It is well known that two-dimensional electron gases in
high magnetic field may form incompressible liquids with
novel properties. This phenomenon called the fractional
quantum Hall effect �FQHE� has been studied by various
theoretical methods in the past twenty years. One successful
approach is the use of explicit trial wavefunctions �WFs�
explicitly written in the first-quantized language. The FQHE
happens when the electrons occupy the low-lying Landau
levels that are the quantized energy levels of a particle in a
plane submitted to a perpendicular magnetic field. Its appear-
ance also requires special commensurable ratios between the
number of electrons and the number of states in the occupied
Landau level. After the success of the Laughlin
wavefunction,1 the construction of so-called “composite fer-
mion” �CF� wavefunctions has been very successful2–4 in
describing many of quantum Hall incompressible liquids ob-
served to date. However there are some states observed in
experiments that do not fit easily in this scheme, the most
prominent case being a state that forms at filling factor �
=5 /2. This state is beyond the reach of the previously men-
tioned theories because it has an even denominator which is
forbidden in the CF constructions. There is an interesting
proposal due to Moore and Read5 to capture the physics of
this state by introducing the notion of pairing of composite
fermions. The explicit wavefunction they propose, hereafter
called the “Pfaffian,” has several desirable properties such as
good overlap with the results of exact diagonalization of
small systems and presumably has a gap to bulk density
excitation. This state has also quasiparticle excitations with
fractional charge �e /4 that have non-Abelian statistics, an
unprecedented phenomenon in physics. There are some ex-
perimental evidences6 for these peculiar fractionally charged
states. This special state has attracted attention in the context
of quantum computing.7

It is known that many of the WFs proposed in the litera-
ture can be derived from two-dimensional massless quantum
field theories possessing conformal invariance, i.e., confor-
mal field theories �CFT�. From a practical point of view the
WFs can be written as correlation functions of some opera-
tors in a given CFT. The Laughlin wavefunction can be con-
structed from expectation values of exponentials of a free
massless boson. The Pfaffian of Moore and Read can be
constructed from a free massless boson and an additional
massless fermion of Majorana type �the same type of fer-
mion that appears in the critical theory of the classical two-
dimensional Ising model�. One can also, starting from a
given CFT, deduce candidate WFs that have interesting prop-
erties inherited from its parent. For example, starting from
parafermion CFT, Read and Rezayi8,9 have constructed WFs
that have special vanishing properties: they are states that
vanish when clusters of k �bosonic� particles are at the same
point. This raises the following question: are there a priori
restrictions on the CFTs from which one can derive WFs?
Notably is unitarity of the CFT a necessary condition to de-
rive candidate WFs for incompressible states? nonunitary
CFT appear naturally in some physical systems, for example,
usual percolation has a critical point which is described by a
CFT with central charge c=−2, a nonunitary CFT. In the
FQHE context, there is the so-called Haldane-Rezayi
wavefunction10 with filling factor �=1 /2 which is derived
from a nonunitary CFT and it is known to be gapless.11 So it
may describe a critical point between different quantum Hall
states but certainly not a bulk incompressible FQHE state. It
has been argued by Read12 that, generically, nonunitary CFTs
lead to compressible gapless states. Recently many families
of WFs with interesting algebraic properties have been con-
structed from nonunitary CFTs �Ref. 13� so it may very well
be that they do not describe bulk gapped FQHE states.

When formulated in first-quantized language, most of the
quantum Hall WFs have expressions that do not translate
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easily in the Fock basis of second quantization. In general, a
true FQHE WF has components on all Fock basis states al-
lowed by symmetry. This is the case, for example, of the
exact eigenstates of the Coulomb problem in the lowest Lan-
dau level �LLL� as obtained by exact diagonalization. How-
ever some of the model trial WFs have simpler expressions.
It has been known for a long time14 that the celebrated
Laughlin wavefunction has nonzero components only in a
restricted set of the Fock basis. Indeed one can define a par-
tial order relation onto the Fock states and there is a special
set of occupation numbers, i.e., a special basis element that is
“greater” than all the other terms appearing in the expansion
of the Laughlin state. This special element is called the
dominant partition in the language of polynomials of several
variables �our convention in this paper� and is also called the
root partition in the literature. This means in practice that
these WFs are simpler than a generic state and also that some
of their properties are encoded/can be read off the dominant
partition. So the contemplation of the dominant partition may
be a tool to uncover previously unknown relationship be-
tween quantum Hall state, to be proved by other methods for
the whole WF.

In this paper we show that the analysis of the dominant
partition suggests that some quantum Hall WFs, constructed
from nonunitary CFTs, may be “cured” by addition of extra
quasihole-quasiparticle excitations to produce presumably
bonafide gapped Abelian quantum Hall states. This is in line
with what we expect from a critical theory located right at
the boundary of a gapped phase: some perturbation/
modification of it has to do with the bulk gapped phase. Here
we point out such a mechanism for two special quantum Hall
states, the Gaffnian state and the Haldane-Rezayi state. Even
this is suggestive, it remains to prove that it holds for the full
quantum Hall state. We show that a modification in the
Coulomb-gas formulation precisely allows to prove that our
identification holds for the complete state, i.e., not only one
�important� term of the Fock basis. This can be done by
using special background charges as introduced some time
ago in the CFT literature.

In Sec. II we show that by boundary insertions we can
transform the Gaffnian �bosonic� state at filling factor �
=2 /3 into the Jain state of bosons at �=2 /3 �this implies that
fermionic cases at �=2 /5 are related in the same manner�
and we transform the Haldane-Rezayi spin-singlet state by
boundary insertions of charged excitations into a �331� mul-
ticomponent Halperin state. The states we obtain through
these transformations are all Abelian incompressible states.
In Sec. III we give a general prescription in the Coulomb-gas
language to show that the correspondence we found holds
not only for the dominant partition but for the full quantum
Hall WFs. We also point out at least one case for which this
scheme is probably more complex: the permanent state
which cannot be transmuted by this mechanism into a
gapped state. In Sec. IV we apply the boundary insertion
construction to unitary Pfaffian state to find out whether it
would transform into an Abelian state. It is shown that the
Pfaffian remains stable under these transformations. Section
V contains our conclusions. In Appendix A, we discuss
briefly the neutral excitations on top of the Haldane-Rezayi
state. In Appendix B, we explicitly derive the Moore-Read
Pfaffian WF from the Coulomb-gas CFT.

II. FROM GAPLESS TO GAPFULL STATES VIA
BOUNDARY INSERTIONS

A. Quantum Hall states

We consider WFs for electrons residing in the LLL. In the
symmetric gauge, one-body orbitals are given by

�m�z� =
1

�2�m ! 2m
e−�z�2/4, �1�

where z=x+ iy is the complex coordinate in the plane where
electrons are confined and the positive integer m gives the
angular momentum of the state: Lz=m� �we have set the
magnetic length to unity�. A general N-body LLL quantum
state is thus of the form

��z1, . . . ,zN� = f�z1, . . . ,zN�e−�i�zi�
2/4. �2�

In the remainder of the paper we will always omit the �uni-
versal� exponential factor. The physics of two-dimensional
electrons in the LLL is governed by the following Hamil-
tonian:

H = �
i

1

2mb
�pi +

e

c
Ai�2

+ �
i�j

e2

�rij
, �3�

where mb is the band mass of the electron, � is the dielectric
constant of the host semiconductor and the distance between
electrons i, and j is rij = �ri−rj�. In the LLL the kinetic energy
is quenched and, in principle, one has to diagonalize the
interaction potential in Eq. �3� in the Fock space constructed
from products of one-body states in Eq. �1�. Several different
schemes have been developed to understand the physics of
this problem since no general analytical solution is possible.
It is feasible to diagonalize numerically the Hamiltonian
above Eq. �3� if one considers a small number of electrons so
that the Fock space is not enormously large. This method has
the advantage of being unbiased, i.e., there is no a priori
hypothesis on the form the many-body states but it is limited
to a small number of electrons on the order of 12–15, de-
pending on the filling factor of the LLL one wants to study.
Exact diagonalization gives the low-lying levels as a func-
tion of the conserved quantum numbers allowed by the ge-
ometry of the system. For example, in the unbounded plane
and using the symmetric gauge for the vector potential A
= 1

2B	r the only conserved quantity is the angular momen-
tum along the axis perpendicular to the plane �i.e., the B
axis�. Another successful approach is to construct explicit
trial wavefunctions. Originally this was pioneered by Laugh-
lin who wrote down an explicit formula1 for the wavefunc-
tion of N electrons when the filling factor of the LLL is
precisely 1/3. This Laughlin wavefunction is not an exact
eigenstate of Hamiltonian Eq. �3�, however it was shown
very soon by Haldane that it encompasses all the physics of
the exact ground state. This demonstration was done by com-
parison with data from exact diagonalization.15 This ap-
proach has been extended by Jain2–4 to many �if not all�
fractions displaying the FQHE. The wavefunctions con-
structed in this approach are known under the name of “com-
posite fermion” wavefunctions. Similarly they are not exact
eigenstates of the full many-body problem but comparison
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with exact diagonalization results show that they capture the
essential physics. A detailed account is given in Jain’s book.4

The composite fermion wavefunction are built from Jastrow-
type correlation factors in a way that generalizes the usual
notion of Slater determinant. It is also feasible to use these
wavefunctions as an alternate basis set and to diagonalize the
Hamiltonian Eq. �3� in this basis. This has proved useful to
describe, for example, the fate of electrons in quantum
dots.16,17 The same exact diagonalization techniques have
been employed also in the context of bosonic systems, mo-
tivated by the developments of experiments on ultracold
gases. This allows, for example, for studies of the crystalline
structures18,19 that form on small systems analogous to quan-
tum dots in electronic systems.

Some trial wavefunctions have been also obtained by ar-
guments based upon conformal field theories. In this ap-
proach one construct wavefunctions by computing expecta-
tion values of a product of operators of a definite CFT. This
is a way to reproduce the Laughlin wavefunction and it leads
to many interesting proposals, the most physically relevant
so far being the Pfaffian wavefunction of Moore and Read.
In the CFT approach, it is not known from the beginning if
the wavefunction is relevant to a given physical situation,
one has to compare its predictions with exact diagonalization
and/or experimental facts.

B. Quantum Hall polynomials

All the physics is contained in the analytic function f .
This function can be expanded in powers of the zi coordi-
nates and a general term in the expansion is characterized by
the set of occupation numbers of the one-body orbitals
�nm ,m=0,1 ,2 , . . .	. We will consider also bosonic quantum
Hall states for which one can have nm
1. If we start from a
fermionic state �F then antisymmetry and LLL means that
necessarily one can factor out a Jastrow-type factor:

�F = 

i�j

�zi − zj��B, �4�

with �B a bosonic, i.e., symmetric LLL wavefunction. So it
is enough to consider bosonic wavefunctions. The filling fac-
tors of these two states are then related by 1 /�F=1+1 /�B. A
given configuration of occupation numbers �n0 ,n1 ,n2. . .�
fully characterizes each term of the expansion of f . The set
of occupation numbers can be regarded as giving a partition
of N since N=�mnm. Alternatively one can also specify the
same configuration by giving all the m values that appear
with nonzero occupation numbers �m1 . . .m1m2 . . .m2. . .�
where each m is repeated nm times. This set of numbers then
defines equivalently a partition of the total angular momen-
tum Lz=�mmnm. In the physics literature it is common to
specify the set of occupation numbers while the mathemati-
cal literature20 on symmetric polynomials uses instead the
partitioning of Lz. A partition � defines also a unique sym-
metric monomial m� given by

m� = z1
k1 . . . zN

kN + permutations. �5�

This can be considered as a �unnormalized� wavefunction for
N bosons in the LLL where the quantum numbers ki of oc-

cupied orbitals can associated in a one-to-one correspon-
dence to a set of occupation numbers �nm	. For example, the
monomial for N=3 m=z1

2z2z3+perm is defined by the parti-
tion �0210…� since there are two bosons in the m=1 orbital
and one boson in the m=2 orbital. An arbitrary bosonic WF
in the LLL can be expanded in terms of such monomials,
each of them being indexed by a partition

f = �
�

c�m�, �6�

where c� are some coefficients. For a given f it may happen
that not all partition appear in the expansion above. Indeed
there is a partial ordering on partitions called the dominance
ordering: let � and � two partitions then �
� if �1+ ¯

+�i
�1+ ¯+�i for all i. This is only a partial order: it may
happen that the relation above does not allow comparison of
two partitions. Some of the trial wavefunctions proposed in
the FQHE literature have the property that there is a domi-
nant partition with respect to �wrt� this special order and all
partitions appearing in the expansion Eq. �6� are dominated
by a leading one

� = �
���

c�m�. �7�

This was first noted by Haldane and Rezayi14 in the case of
the Laughlin wavefunction. This property of dominance is
also shared by many of the special orthogonal polynomials in
several variables.20 It was realized after the work of Feigin et
al. in Ref. 21 that the Read-Rezayi �RR� trial
wavefunctions8,9 are all particular cases of the so-called Jack
polynomials. These symmetric polynomials noted J�

� are a
family indexed by a partition � and depend upon one param-
eter �. In fact we have

�RR
�k� = S 


i1�j1

�zi1
− zj1

�2 . . . 

ik�jk

�zik
− zjk

�2 � J�k

−�k+1���zi	� ,

�8�

where the first equality defines the Read-Rezayi states, one
divides the particles into k packets and S means symmetri-
zation the product of partial Jastrow factors. In the case of
the RR states we have �=−�k+1� and �k= �k0k0k0. . .�. The
usual bosonic Laughlin wavefunction is the special subcase
when there is only one packet k=1 and the Moore-Read
Pfaffian corresponds to the case k=2. In general the filling
factor of the order-k RR state is �=k /2. Such WFs may
describe some incompressible liquids of rapidly rotating
bosons or, after due multiplication by a Jastrow factor, some
elusive quantum Hall states in the second Landau level of
electrons such as the �=12 /5 state.

It is convenient also to study the FQHE in the spherical
geometry which has no boundaries and possesses the full
rotation symmetry. In this case the LLL is finite dimensional
since the sphere has a finite area. Basis �unnormalized� func-
tions of the LLL can be taken as: �S

M =uS+MvS−M ,M
=−S , . . . ,+S where u=cos�� /2�ei�/2, v=sin�� /2�e−i�/2 and
the flux through the sphere is 2S in units of the flux quantum
h /e. The stereographic projection from the sphere to a plane
gives a one-to-one mapping of the wavefunctions in these
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two geometries. When written on the sphere quantum Hall
WF have a linear relation between flux and number of par-
ticles 2S= �1 /��N−� when there is, in general, a nonvanish-
ing offset � called the “shift” in the FQHE literature wrt to
the defining relation of the filling factor. On the sphere the
finite number of orbitals leads to a finite set of occupation
numbers hence the dominant partition is now given unam-
biguously by these numbers.

Finally when considering WFs for systems with more
than one component �such as electrons with spin� it is con-
venient to define the Halperin wavefunctions22 with several
Jastrow-type factors

�mm�n = 

i,j�A

�zi − zj�m 

k,l�B

�zk − zl�m� 

a�A,b�B

�za − zb�n,

�9�

where there are two components and the respective indices
belong to subsets A and B.

C. Gaffnian state

In the fermionic Laughlin wavefunction at filling factor
1/3 any pair of particles have relative angular momentum at
least three. If we consider the projector onto relative angular
momentum one for each pair and sum these projectors then
the Hamiltonian

H2
1 = �

i�j

P2
1�ij� �10�

has a densest ground state with zero energy which is exactly
the Laughlin wavefunction. Similarly the bosonic Moore-
Read Pfaffian is the densest zero-energy ground state of the
Hamiltonian defined through P3

2�ijk�, excluding states where
three particles have relative momentum two. One can ask
now what is the densest zero-energy state when we consider
excluding relative angular momentum three for three par-
ticles and the unique answer is the so-called bosonic
Gaffnian WF introduced originally in Ref. 13 as a natural
generalization of the Pfaffian state. Its coordinate first-
quantized expression is

�G = S 

i�j�N/2

�zi − zj�2 

N/2�k�l

�zk − zl�2 

m�N/2�n

�zm − zn�

	

p�N/2

1

zp − zp+N/2
, �11�

where S stands for symmetrization. It was recognized as the
Jack polynomial J�G

−3/2��zi	� with dominant partition

�G = �2002002. . .� . �12�

While Jain wavefunctions are not in general Jack polyno-
mials however they do satisfy restrictive rules on the parti-
tions that appear when expanded in terms of monomials.
Notably there is a dominant partition of Jain states and in the
case of bosons at filling �=2 /3 it is given by

�2/3 = �2010110110102� �13�

as found in Refs. 23 and 24. By counting the number of
particles and fluxes, the relationship between the number of

particles and the number of flux quanta is the same as in the
Gaffnian state: N�= 3

2Ne−3. If we introduce one extra flux
quantum in the Gaffnian state without changing the number
of particles the new state may be described as an additional
zero somewhere in the configuration of the Gaffnian �i.e., a
Laughlin quasihole�.23 A state with a more uniform distribu-
tion of particles is obtained with a pair of half-flux non-
Abelian quasiholes, where one quasihole is put on the north
pole and the other on the south pole �in the sphere geom-
etry�. This is represented by the following partition:

�1qh−1qh = �11011011011011� �14�

�compare with Eq. �12� the number of flux quanta and par-
ticles�. This is the bulk configuration of Jain state Eq. �13�.
Due to the same number of flux quanta and particles in Eqs.
�12� and �13�, i.e., Gaffnian and Jain state, this suggests that
the Jain WF can be described as a Gaffnian WF with neutral
quasiparticle-quasihole excitations on the boundaries of the
system. This identification was first done in Ref. 23.

D. Case of Haldane-Rezayi state

The Haldane-Rezayi state was introduced in Ref. 10 as a
FQHE state with some kind of pairing. It is a global spin-
singlet that can be described as a collection of spin-singlet
pairs with pairing function g�z�
 1

z2 at filling factor �= 1
2 in

the fermionic case.

�HR = �
��SN/2

sign �
1

�z1
↑ − z��1�

↓ �2 . . . �zN/1
↑ − z��N/2�

↓ �2

	

i�j

�zi − zj�q, �15�

where q=2. Before realizing that Haldane-Rezayi �HR� is a
critical �gapless� state11 there were attempts25,26 to construct
the edge theory for this system on the assumption that the
HR system may represent a gapped phase even though it is
related to a nonunitary CFT. One of these attempts26 de-
scribes the edge of the HR system as the edge of a �331�
Halperin two-component state, i.e., one of the well-known
Halperin states22 that are certainly gapped.

We know show that, by inspection of the dominant parti-
tions, there is evidence for a change in physics due to bound-
ary insertions as we saw in the Gaffnian case. Explicitly the
dominant partition of the Haldane-Rezayi state is

�HR = �2̄0002̄0002̄0 ¯ 2̄0002̄� , �16�

where 2̄ means double occupancy of a single orbital with
both spins ↓↑. On the other hand the root configuration of the
�331� Halperin state is

��331� = �XX00XX00XX ¯ XX00XX� , �17�

where XX stands for ↑↓+↓↑, i.e., a symmetric superposition
of the neighboring opposite spins.27

It is important to note, by examining Eqs. �16� and �17�,
that for the same number of electrons there is one more or-
bital in the �331� case as can be expected by comparing flux
and particle number relations in the Haldane-Rezayi case:
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N�=2Ne−4, and in the �331� case: N�=2Ne−3. The extra
flux quantum can be introduced in the Haldane-Rezayi state
as an Abelian Laughlin quasihole and therefore as an extra
zero23 in Eq. �16� or as two non-Abelian quasiholes28 sym-
metrically at the boundaries of the system as in Eq. �17�.
Therefore this suggests again that the �331� Halperin state
can be derived by insertions of global non-Abelian excita-
tions in a “parent” Haldane-Rezayi state. The case of neutral
excitations is similar and is discussed in Appendix A.

E. Discussion

In this section we have shown that the special relationship
via boundary excitations between Gaffnian and other Wk

�k+1,k+r� generalizations29 at �= k
r and Jain states of

bosons at �= k
r as demonstrated in Ref. 24 is not unique but

extends to other non-Abelian gapless states such as HR, i.e.,
those states connected to nonunitary CFTs. These states are
presumably at a phase boundary to a gapped FQHE state.
Tweaking of interactions or imposing global change like with
a magnetic field parallel to the two-dimensional electron-gas
plane may lead the system from the critical point described
by the non-Abelian gapless state into a stable Abelian gapped
state and phase. In the next section we use the Coulomb-gas
formulation to extend our argument beyond merely the domi-
nant partition of the monomial expansion to the full WF.

III. BOUNDARY INSERTIONS IN THE LANGUAGE
OF COULOMB-GAS CORRELATORS

A. CFT formalism and FQH states

A bulk quantum Hall fluid is an incompressible liquid
which is spatially featureless. When sitting on a sphere it will
spread out to form a uniform film that is invariant by the
rotation group acting upon the sphere. The corresponding
quantum state should thus be annihilated by all the genera-
tors of the rotation group

L+� = L−� = Lz� = 0. �18�

The spherical geometry is of course a purely theoretical con-
struct. We can translate these conditions on the realistic pla-
nar geometry by using the stereographic projection. The ro-
tation operators are then differential operators acting upon
the particle coordinates

L+ = E0, L− = N��
i=1

N

zi − E2,

Lz =
1

2
NN� − E1,

where

En = �
i=1

N

zi
n �

�zi
. �19�

If we suppose that the WF is given by a correlation function
of some operators of a quantum field theory then we have the
following conditions:

�
i=1

N

�i�0��1�z1� ¯ �N�zN��0� = 0,

�
i=1

N

�zi�i + hi��0��1�z1� ¯ �N�zN��0� = 0

and

�
i=1

N

�zi
2�i + 2zihi��0��1�z1� ¯ �N�zN��0� = 0. �20�

These are the conditions for invariance under the global con-
formal group in two dimensions. It is thus clear that any CFT
which is by definition invariant under the larger local con-
formal symmetry group will satisfy these conditions. In a
given CFT the fields �i are the �quasi�primary fields and hi
are the corresponding conformal weights. Some quantum
Hall WFs can be derived from correlators of operators of
two-dimensional massless quantum field theories, the ex-
ample of the Moore-Read Pfaffian is given in Appendix B.

B. “Gaffnian” state

The Gaffnian WF is built from the minimal13,30 model
M2�3,5� The central charge is this nonunitary CFT is

c =
r�k − 1�

k + r
�1 − k�r − 2�� = −

3

5
. �21�

One way to construct this CFT and its correlators is to start
from a free boson theory and introduce a background
charge31–35 by adding an extra term to the energy-momentum
tensor

T�z� = −
1

2
:�x�z� � x�z�:+ i�2�0�

2x�z� , �22�

where the free boson is field x�z�. This additional contribu-
tion leads to a central charge

c = 1 − 24�0
2. �23�

One should then think31 of the background charge −2�0 as
being “at infinity.” In the FQHE formulated on the sphere
this means simply that the charge is located at the pole of the
sphere which is sent to infinity by stereographic projection.
The only nonvanishing correlators in the case of two-point
function are

�V��z�V2�0−��w�� =
1

�z − w�2���−2�0� , �24�

where the vertex operators are given by

V��z� ¬ exp�i�2�x�z��: . �25�

These two operators V� and V2�0−� are adjoint to each other
and their conformal weight is h=���−2�0�. In our case we
want 1−24�0

2=− 3
5 so that �0= 1

�15
.

We know that the non-Abelian quasihole derived from the
Gaffnian state is described by a product of a field � of the
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minimal model M2�3,5� �the neutral part� and a bosonic
vertex operator �the charge part�. The field � has a conformal
weight equal to h�=− 1

20. The corresponding values of �’s in
the bosonic representation are thus

��� − 2�0� = −
1

20
→ , �26�

�1,2 = �0 ���0
2 −

1

20
=

1
�15

�1 �
1

2
� . �27�

The vertex operator “at infinity” is

V�0=−2�0
¬ exp�− i2�2

1
�15

x�z = ���: . �28�

It appears as an additional insertion in correlation functions

�V�0
�z = ��¯� . �29�

We can recover the ordinary bosonic theory if we insert ver-
tex operators with �=−

�0

2 =�0 at two ends—z=� and z=0,
i.e., the two poles of the sphere in the following way:

�V�0/2�z = �� ¯ V−�0/2�z = 0�� �30�

or

�V�0
�z = ����†�z = �� ¯ ��†�z = 0�� , �31�

where we have defined

� ¬ exp�i�2
3

2

1
�15

x�z�� :

and

�†
¬ exp�− i�2

1

2

1
�15

x�z��: . �32�

These two operators are related to the non-Abelian
quasiparticle.36 In Eq. �31� we introduce a quasihole excita-
tion � through the vertex operator Eq. �25� with exponent

�1=
1

�15
�1+

1

2
�. The second vertex operator that we use for the

quasihole has exponent �2= 1
�15

�1− 1
2 �
0 and the same con-

formal dimension. We construct the quasiparticle excitation
�† through vertex operator with exponent −�2.

The most important implication of the boundary inser-
tions in CFT correlators is that by additional neutralizing
background charges we recover a standard bosonic descrip-
tion without background charges usually associated with
Abelian FQHE states. Indeed we have

�exp�i�2�x�z��exp�− i�2�x�w���with neutralizing insertions



1

�z − w�2�2 �33�

as in the usual Coulomb gas formulation. In the Gaffnian
case, though we can not reproduce the full wavefunction of
the Jain state, we note that the neutral part of the state we
obtain can be considered as a spin-singlet state of “spinons,”
i.e., excitations37 created by vertex operators with �= �

1
2 .

Thus the usual correlator of the neutral Coulomb gas can
reproduce a Halperin �221� state of bosons that is closely
related to the Jain state at �= 2

3 �they share the same low-
energy description38�. We find that the dominant partition of
this �221� state is

��221� = �XX0XX0XX0XX0XX� �34�

in the notation of Sec. II, to be compared with the bulk
pattern of Jain state in Eq. �13�.

Finally we mention that this construction with back-
ground charges can be generalized to other �= k

r cases de-
duced from CFTs associated with Wk�r+1,r+k� algebras us-
ing their multicomponent Coulomb gas representations.

C. Haldane-Rezayi state

In the case of Haldane-Rezayi state10 the CFT has central
charge c=−2, it is a nonunitary “scalar fermion” theory.25 We
now use the Coulomb gas mapping established for this non-
unitary ghost system in Ref. 39. For the background charge
q=−2�0 we should have

1 − 24�0
2 = − 2, �35�

hence we have

�0 =
1
�8

=
1

2�2
. �36�

The �—field needed for the neutral part description of the
non-Abelian quasihole, has conformal weight

h� = −
1

8
. �37�

Therefore we have

�1,2 = �0 ���0
2 −

1

8
= �0 =

1

2�2
. �38�

The background charge is given by the insertion of the fol-
lowing vertex operator “at infinity:”

V�0=−2�0
�z� = exp�− ix�z�� . �39�

We implement the �-field as

� = exp�i�2
1

2�2
x�z�� = exp�i

1

2
x�z�� . �40�

Therefore to recover a usual bosonic theory we can insert �
operators at two ends, z=� and z=0, in the following man-
ner:

�V�0
�z = ������ ¯ ��0�� . �41�

This parallels the boundary-insertion relationship we
found in the previous section that led to the �221� state that is
naturally described in the Coulomb gas formalism. If we use
the neutral fermion field instead of the �-field operator we
have �1,2=�0���0

2+1= 1
�8

�1�3� and again by “trivial in-
sertions” of a single field on both ends �i.e., trivial because
�1+�2=2�0 is always satisfied� we obtain again an insertion
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ansatz in the CFT formalism that leads to an Abelian state
described by ordinary Coulomb-gas formalism. This state
should be closely related to the hierarchy/Jain’s spin-singlet
state at filling factor 1/2 although we have not yet been able
to find the precise relationship.

Related to this is a comment we want to make that ac-
cording to �a� what we found about the root configuration of
HR state, i.e., how complex its definition is, and �b� that the
neutral part of the HR state can be decomposed into a prod-
uct of Cauchy determinant and permanent, the CFT associ-
ated with the HR state may be more general than a single
scalar fermion theory. This would imply more than one Cou-
lomb gas necessary to describe the neutral sector of the state
and its excitations, which is quite expected given that the
Coulomb-gas description of the neutral part of the
�boundary-insertions-related� hierarchy and Jain spin-singlet
state at 1

2 requires two Coulomb gases. �The K matrix of
these states is a 3	3 matrix.40� Nevertheless a single scalar
fermion theory is, as we already seen, able to capture the
basic mechanism of neutralization that is at work in this case.

D. Permanent state

The physics of the so-called permanent state was first de-
scribed in Ref. 8. This spin-singlet state is defined in the case
of electrons at filling factor one. The state contains one
power of the Laughlin-Jastrow factor �which is the Vander-
monde determinant� and has also a BCS-like pairing part
with a pairing function is 1

z . It can be written as

�per = �
��SN/2

1

�z1
↑ − z��1�

↓ � . . . �zN/1
↑ − z��N/2�

↓ �
i�j

�zi − zj�q,

�42�

where q=1 This is the densest zero-energy state of the pro-
jector that penalizes the closest possible approach of three
spin-1/2 particles for total spin 1/2. We find by direct expan-
sion of Eq. �42� and examination of the terms that the domi-
nant partition of the permanent state is

�per = �2̄02̄02̄02̄02̄. . .� �43�

in the notation of Sec. II. The CFT that corresponds to this
permanent state is the so-called � ,� �nonunitary� commuting
spinor ghost system. It is explained in Ref. 39 that the ghost
system allows a representation by two Coulomb gases. Only
one of them needs a background charge and represents a pair
of scalar fermions as in the CFT formalism for the HR state.
The boundary-condition changing field � �or the spin field�
can be represented by a vertex operator of a Bose field that
does not need a background charge. Therefore the insertions
of this field � at the ends of a general correlator do not lead
to a complete neutralization of the background. Thus, since
the � field in the case of permanent CFT generates a non-
Abelian excitation, its insertions on the boundaries of the
permanent system cannot lead to an Abelian gapped state
contrary of the HR state. Indeed this can be guessed already
from the partition analysis: the insertions will transform Eq.
�43� into a dominant partition of the Halperin �111� state

�1111111111� , �44�

i.e., a dominant partition of a state that is known41 to be
gapless.

IV. BOUNDARY INSERTIONS AND THE UNITARY
PFAFFIAN CASE

A. Introduction

The examples we have given for quantum Hall states con-
nected to nonunitary theories are known in the literature as
critical states—see Ref. 13 for the case of Gaffnian and Ref.
11 for the Haldane-Rezayi case. They are recognized to be at
the phase boundary to the Abelian states that we described
here via boundary insertions. Therefore our construction has
the following physical interpretation—it tells whether and in
what manner a quantum Hall state connected to a nonunitary
CFT and therefore gapless can be transmuted, via some glo-
bal change in parameters described by boundary insertions,
into unitary theory with Abelian braiding properties of exci-
tations. Then the natural question to ask is what happens if
we apply boundary insertions to unitary non-Abelian states;
whether they will be transmuted, if the neutralization of the
background charges is complete while using CFT construc-
tions, into Abelian unitary states. If they are “immune” that
would give an insight into a stability of a particular state and
a stability of its non-Abelian property. In the following we
will discuss the effect of the boundary insertions on the
Moore-Read Pfaffian state.

B. Case of Pfaffian

The Pfaffian can be built from the M2�3,4� minimal
model or Ising CFT. The central charge is c=1 /2 and this is
the simplest unitary theory which as a minimal model can be
represented in the Coulomb-gas formalism. Then it is not
hard to repeat the algebra as in the Gaffnian case in Sec.
III B to find �0= 1

2�12
and corresponding �’s for the non-

Abelian quasihole field � are �1=3�0 and �2=−�0. There-
fore in this case it is impossible to introduce a quasiparticle
vertex operator reversing the sign of �1 or �2 and achieve the
neutralization of the background charge by two
quasiparticle-quasihole pairs like in the Gaffnian case.

Therefore we established that the Pfaffian state is stable
wrt global insertions of quasiparticle-quasihole pairs; inser-
tions will not lead to an Abelian state. Nevertheless we
should also examine trivial insertions �see below Eq. �41��,
i.e., those that are made by placing a single field on both
ends of the system. By doing this we may be still just in an
excited sector of the non-Abelian theory but as we saw in the
Haldane-Rezayi case we may as well enter or make a space
for an Abelian theory ��331� in the Haldane-Rezayi case�.
The CFT construction can not give us an answer for that and
we have to resort to examining root configuration that corre-
spond to this kind of trivial insertions, to see if the outcome
may be an Abelian state. The basic root configuration of the
fermionic Pfaffian at �=1 /2 is
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�pf = �11001100110011� . �45�

Insertions of a neutral fermion on both ends would lead to
the following L=0 state:

�nf = �10110011001101� . �46�

The bulk configuration did not change and we do not have a
reason to believe that this structure can be connected to an
Abelian state. Even if we start with two-component picture
of the structure that is ensuing after the neutralization �we
end up with two Coulomb gases—compare the discussion in
Sec. III B and the relationship between Gaffnian, �221�, and
Jain’s atate� this will not take us out of Pfaffian. Namely, the
root in Eq. �46� can be related to the root configuration of
two component �331� state but its �anti�symmetrization leads
back to Pfaffian.

Next we can consider putting non-Abelian quasiholes on
two ends of the system. The corresponding root configura-
tion in the fermionic Pfaffian case is

�qh = �101010101010101� . �47�

If we again invoke the two-component interpretation that the
CFT allows, the bulk configuration of the root in Eq. �47�
can be related to the bulk configuration of the root of the Jain
state, �1,1�2�1 in the usual Jain notation, at �=1 /2 as de-
scribed by Eqs. �A5� and �A6�. The state can be rewritten as

�1,1�1�2�1

�1
. �48�

�1,1�1 is nothing but a �221� state which under appropriate
inclusion of derivatives and a symmetrization procedure can
be transformed into the Jain bosonic state, �2�1. Therefore
this case, with non-Abelian quasihole insertions, is nontrivial
in the sense that it might lead to a non-Abelian composite
Jain state:42

��2�1�2

�1
�49�

but again non-Abelian which shows how the Pfaffian physics
at �=1 /2 is immune to abelianization but can be transmuted
by changing parameters of the system into another non-
Abelian state.

It is interesting to note that the �bosonic� Read-Rezayi
states at �= k

r ; r=2, k=3,4 allow the abelianization by
quasiparticle-quasihole pairs as we described in the Gaffnian
case �Sec. III B�. This is not surprising given that these con-
structions can be considered at the same time with some
hierarchy �Abelian� constructions as viable candidates for
corresponding filling factors.

V. CONCLUSION

We have shown how to construct an Abelian gapped
FQHE state starting from a FQHE state deriving from a non-
unitary CFT. This construction is done in the Coulomb-gas
language by the introduction of some background charges.
Since we expect that states constructed from a nonunitary
CFT are gapless it means that we have a way to construct a

gapped Abelian state whose boundary in some parameter
space presumably contains the gapless state. It is interesting
to note that the Abelian/non-Abelian character of the states is
not preserved: in the two examples discussed in this paper
the gapped state is Abelian while it is the critical theory
which is non-Abelian. Of course the non-Abelian character
of a gapless theory is a bit formal since it is not possible to
perform an adiabatic exchange of excitations to obtain their
braiding properties: there is no adiabatic limit since there is
no gap to protect the excitations.

While we have treated in some detail the case of the
Gaffnian and the HR states the Coulomb-gas construction
shows that it is more general. However it cannot be com-
pletely general. Indeed we have an example, the permanent
state, for which this construction is impossible with non-
Abelian quasihole insertions. It would be interesting to have
a clearer understanding of this special case.

Finally we applied the boundary insertion ansatz to the
unitary Pfaffian case. The Pfaffian character and non-Abelian
behavior remain preserved under boundary insertions point-
ing out to the stability of this state in the context of the
FQHE of polarized electrons at �=1 /2.
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APPENDIX A: NEUTRAL BOUNDARY INSERTIONS
AND HALDANE-REZAYI STATE

We now ask whether boundary insertions can be done in
the HR state while keeping flux and particle relation fixed,
i.e., in a neutral way, to transform the HR state into a gapped
state. The basic neutral excitations of the HR system are
neutral fermions and they carry only a spin degree of free-
dom. After an inspection of which partitions with boundary
insertions are still uniform �L=0� states we conclude that the
following dominant partition:

�N = �2̄00↑0↓0↑0↓0↑0↓002̄� �A1�

together with the configuration that we find by exchanging
ups and downs

�N� = �2̄00↓0↑0↓0↑0↓0↑002̄� , �A2�

describes the neutral fermion insertions.43

On the other hand from �a� the study of paired fermion
states11 and �b� the work on spin-singlet hierarchy40 and pos-
sible spin-singlet candidates44 at fillings 1

q , q even, we know
that there is an Abelian incompressible phase closely con-
nected with the HR state. In the hierarchy picture this is a
spin-singlet state that can be constructed by condensing spin-
less quasielectrons on the top of the Halperin �332� state at
�= 2

5 . We will use the expression of the state in the Jain
picture:44
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� = �1,1�2�1, �A3�

where we used the usual Jain notation for �1, the Jastrow-
Laughlin factor for the filled LLL �Vandermonde determi-
nant�, �2 as the wave function for two filled LLs of all par-
ticles and �1,1 as the filled LLL of both spins, i.e., �110� state
in the Halperin notation. The spinless part of the wave func-
tion ��2�1� is the Jain state at �= 2

3 for bosons which the
dominant partition is in Eq. �13�, i.e.,

�2/3 = �2010110110102� . �A4�

Inserting the fluxes that carry spin by �1,1, after a little in-
spection we find

�1/2 = �2̄00↑0↓0↑0↓0↑0↓002̄� �A5�

and

�1/2� = �2̄00↓0↑0↓0↑0↓0↑002̄� �A6�

as the basic configurations that describe the Jain state at 1
2 .

By comparing what we found out about neutral fermion con-
structions in the HR state �Eqs. �A1� and �A2�� we conclude
that this Jain state at 1

2 can be realized by implementing
boundary insertions of neutral fermions in the HR state, at
least when considering dominant partitions.

APPENDIX B: MOORE-READ STATE AS A CFT
CORRELATOR

The Moore-Read state is given by

�MR = 

i�j

�zi − zj�mPf� 1

zi − zj
� , �B1�

where

Pf� 1

�zi − zj�
� = �

��SN

sgn �
1

�z��1� − z��2��
. . .

1

�z��N−1� − z��N��

�B2�

and we have a pairing part �Pfaffian� or neutral part that
corresponds to a correlator of N Majorana fermion fields.
The Laughlin part or charge part is a correlator of special
bosonic vertex operators with a background charge.5 Explic-
itly for the Pfaffian part

�Pf = Pf� 1

�zi − zj�
� , �B3�

we have hi=h= 1
2 , ∀i that is �in the previous notation� �E2

+Z��Pf =0 and �E1+N 1
2 ��Pf =0 so that M =−N 1

2 , i.e., N�

=−1, and for the Laughlin part

�L
m = 


i�j

�zi − zj�m �B4�

the correlator is given by

�exp�− iN�m�����exp�i�m��z1�� . . . exp�i�m��zN���
�B5�

for a boson field � and with the background charge at z
=�, which �as we will explain more later� shifts the value of
the conformal weight of exp�i�m��z�� from m

2 to m
2 − m

2 N so
that: �E2+Z�m−mN���L

m=0 and �E1+ N
2 �m−mN���L

m=0,
i.e., M = mN�N−1�

2 and N�=m�N−1�. Together, �Pf and �L
m

lead to the Moore-Read WF with N�=m�N−1�−1 as ex-
pected.
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