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On the basis of a Chern-Simons field-theoretical description we propose a simple method for the derivation of
model interactions for Pfaffian paired states. We verify the method in the case of the Pfaffian (i.e., Moore-Read)
state and derive a general form of the model interaction in the case of the particle-hole (PH) Pfaffian. More than
one Landau level is needed to establish the correlations of the PH Pfaffian, and we present the values of relevant
three-body pseudopotentials for two Landau levels.
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I. INTRODUCTION

The discovery of the fractional quantum Hall effect
(FQHE) at an even-denominator, 5/2, filling factor [1] ini-
tiated an intensive search for viable paired states for the
explanation of the effect. A new paradigm of Pfaffian paired
states (with p-wave Cooper pairs) was introduced [2] that
was the most important building block for proposals of topo-
logical superconductivity and topological quantum comput-
ing. Still, after so many years of intensive experimental and
theoretical research, we are not sure which paired state can
be associated with the observed even-denominator FQHE.
A paired state, more precisely, the theoretical concept of
the so-called particle-hole (PH) Pfaffian, seems, according
to a recent experiment [3] and other experimental data and
theory [4] and theoretical proposals [4–7], very relevant for
the solution of the puzzle at 5/2, although another proposal [8]
was also made that the measured thermal conductance in the
experiment of Banerjee et al. [3] is a result of an insufficient
equilibration of the edge modes of the anti-Pfaffian (a state
related to the Pfaffian state).

The PH Pfaffian topological phase may be a result of
disorder-dominated physics [5–7,9] but might also be a result
of Landau level (LL) mixing in a system that may be consid-
ered uniform [9,10]. It is desirable to understand whether the
PH Pfaffian (state) can be supported in a uniform system, as
was done and demonstrated in numerical experiments [11–23]
for the Pfaffian and its PH conjugated partner, the anti-
Pfaffian [24,25], taking into account their model interactions
as well [11,26]. The search proved difficult because it was
found in numerical experiments [27] that the projection of
what is believed to be an appropriate model wave function
of the PH Pfaffian, to a fixed LL, represents a gapless state
(not the gapped one necessary for FQHE). Therefore, for
numerical experiments and in general, it is very desirable to
find a model interaction for the uniform PH Pfaffian state, and
in this work we will describe its general form.

The proposal of the PH Pfaffian state is connected to the
advance [28] in the effective (field-theoretical) description of

the Fermi-liquid-like state of composite fermions (underlying
quasiparticles) at compressible, even-denominator fractions.
Namely, instead of classical composite fermions, we may use
Dirac composite fermions to describe these fractions. The PH
Pfaffian constitutes a p-wave pairing in the opposite sense
of the direction dictated by external magnetic field that is
materialized in the chiral motion of the charge on the edge.
The PH Pfaffian also makes the most natural (underlying s-
wave) pairing of Dirac composite fermions. Thus, the solution
of the enigma of the PH Pfaffian may help us to understand
better pairing and superconductivity in Dirac systems ranging
from the FQHE ones to graphene and topological insulators.

This paper is organized as follows: In Sec. II, the Chern-
Simons (CS) description is reviewed, emphasizing its part in
the p-wave pairing. In Sec. III, the method is introduced based
on the CS description and the special pairing part to establish
model interactions for the Pfaffian and PH Pfaffian. The model
interaction(s) depend on the sign and strength of a pairing
parameter, and in Sec. IV, we analyze and discuss an effective
phase diagram and emergent phases as the value of the pairing
parameter is varied. The conclusions are given in the same
section.

II. CHERN-SIMONS DESCRIPTION
AND PFAFFIAN PAIRED STATES

In the following we will briefly review reasons for Dirac
composite fermion theory and the role of mass in this theory.
As argued in [28], the physics of the PH-symmetric, half-
filled, fixed LL of classical electrons may be connected to
the physics of the half-filled, n = 0 LL of Dirac electrons
(in the presence of magnetic field). The PH transformation
on real electrons may be considered a charge conjugation
and time reversal (CT) transformation in this Dirac system.
The symmetry under this (CT) transformation is also realized
in its dual theory (with fermions that do not couple directly
to the external fields), i.e., Dirac composite fermion theory.
The presence of a mass term breaks this symmetry (the mass
term transforms into minus itself). Therefore, the mass term
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in the Dirac composite fermion theory (i.e., its extension with
a mass), breaks the PH symmetry of the beginning (classical)
electrons and may mimic LL mixing of real systems.

The Dirac composite fermion theory [28] can provide a
framework for an analysis of Pfaffian paired states, as shown
in Ref. [10]. The theory predicts, in the absence of the Dirac
mass, equal-weight superposition of the Pfaffian and anti-
Pfaffian and, for small mass, either the Pfaffian or anti-Pfaffian
depending on the sign of the mass. On the basis of the same
theory, (i) the criticality of the PH Pfaffian (reversed-chirality
p wave) for the zero Dirac mass case (i.e., in the presence of
the PH symmetry) was predicted [10,29], that is, numerically
supported (no clear gapped state for the two-body interaction
in a fixed LL for PH-symmetric shift on the sphere [30] and
high overlap of the projected to the lowest LL usual PH
Pfaffian wave function with a composite fermion liquid wave
function [27,31]), and (ii) the stabilization was predicted for
the usual PH Pfaffian, i.e., with a complex-conjugate Pfaffian
part of the Pfaffian state, for nonzero mass. The nonzero
mass means the absence of PH symmetry and can mimic LL
mixing. The PH Pfaffian state that follows from the Dirac
composite fermion description with mass [10] is

�ZF = P f

{
1

(z∗
i − z∗

j )

} ∏
(zk − zl )

2. (1)

Here

P f

{
1

(z∗
i − z∗

j )

}
∼

∑
P

sgn P
N/2∏
i=1

1

(z∗
P(2i−1) − z∗

P(2i) )
, (2)

where the sum is over all permutations P of N integers.
The field theories (CS and Dirac composite fermion) via

gauge fields encode basic interactions and influence among
electrons. By a gauge field we describe and summarize the
combined effects of Coulomb interaction and constrained
dynamics resulting from the fact that electrons mostly live in
a fixed LL. The CS description does not include the projection
to a fixed LL, and we will use this description to estimate
qualitatively the influence of other LLs [beyond the first order
(in the LL mixing parameter) in the perturbation theory] when
a system supports a paired state. (Reference [32] gives the
first-order corrections in the perturbation theory.)

To set the stage and notation we will first review the
CS description at 1/2 filling, i.e., the Halperin-Lee-Read de-
scription [33], with nonrelativistic composite fermions. This
description may be considered a large mass m limit [34,35]
of the Dirac composite fermion description (which is man-
ifestly symmetric under particle-hole exchange). Thus, the
nonrelativistic description breaks PH symmetry and includes
the LL mixing which promotes the PH Pfaffian (according to
Refs. [9,10]) and makes a natural framework for the investi-
gation of the PH Pfaffian.

We start with the one-particle Hamiltonian,

H = �†(p − A)2�

2m
, (3)

with c = 1, e = 1, and h̄ = 1, where Aα = −(1/2)Bεαβxβ ,
i.e., Ax = −(B/2)y and Ay = (B/2)x, B = Bz. We also

take lB =
√

h̄c
eB = 1. The one-particle eigenstates are

�m ∼ zm exp{−(1/4)|z|2}, m = 0, 1, 2, . . ., i.e., holomorphic
functions (functions of only z) if we do not consider
the exponential, exp{−(1/4)|z|2}. The CS transformation
introduces gauge field a,

H = �
†
c f (p − A − a)2�c f

2m
, (4)

where ∇ × a = −2 �†� = −2 ρ(r). In the Coulomb gauge,
∇ · a = 0,

ax(r) = 2
∫

dr′ y − y′

|r − r′|2 ρ(r′), (5)

and

ay(r) = −2
∫

dr′ x − x′

|r − r′|2 ρ(r′). (6)

We would like to understand the pairing effect of the so-called
statistical interaction term,

Vst = −a · �
†
c f (p�c f ) − (p�

†
c f )�c f

2m
= −a · jc f . (7)

After simple steps and substitutions, which we describe in
Appendix A, we arrive at the following expression for the
Cooper channel in the inverse space [26], where operators ap
are associated with the inverse space:

V C
st = i

4π

m

1

V

∑
q,p

(p × q)

|p − q|2 a†
qapa†

−qa−p. (8)

Using complex notation for vectors p and q, we can rewrite
the Cooper channel as

V C
st = 2π

m

1

V

∑
q,p

(p∗ q − p q∗)

|p − q|2 a†
qapa†

−qa−p. (9)

The second term in (p∗ q − p q∗) with a negative sign has the
potential to develop pairing instability. We can rewrite that
term as

δV C
st = −

∑
q,p

exp{i(θp − θq)}Fa†
qapa†

−qa−p, (10)

where F is a positive function. Doing the mean-field analysis
as in Ref. [26] with the effective interaction,

δm f V
C
st = −

∑
q,p

exp{i(θp − θq)}F {〈a†
qa†

−q〉a−pap

+ a†
qa†

−q〈a−pap〉}, (11)

and using the form of the BCS reduced interaction as in the
Ref. [36],

δm f V
C
st =

∑
p

{
∗
pa−pap + 
pa†

pa†
−p}, (12)

we find for the wave function of the Cooper pair the following
behavior:

g(p) ∼ 1


∗
p

∼ 1

p
, (13)

and in the real space,

g(r) ∼ 1

z
. (14)
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This leads to a holomorphic Pfaffian state because the basis
of the single-particle states is also holomorphic (up to the
exponential factor, functions of only z, not z∗). If there were
a minus sign in front of the pairing interaction in (8) or a
plus sign instead of a minus sign in (7), we would have the
antiholomorphic pairing part, and this would lead to the PH
Pfaffian state (1).

III. MODEL INTERACTIONS FOR THE PFAFFIAN
AND PH PFAFFIAN

Following what was done in Ref. [26], we start with a
BCS-like description of the effective pairing interaction for
ordinary, non-Dirac composite fermions. Thus, we start with
classical composite fermions assuming that the effective mass
is large (considerable) and includes the particle-hole symme-
try breaking necessary for stabilization (development) of the
Pfaffian (PH Pfaffian). The effective description we assume is
a possible reduction of the CS description with higher-order
terms when a p-wave state (topological superconductivity)
of composite fermions is established. Thus, our beginning
Hamiltonian is

He f
BCS = 1

2m
�

†
c f (p)2�c f + λδajc f , (15)

where δa = A + a and a is described in Eqs. (5) and (6).
Note that we included the regularized form, discussed in
Appendix A, of the statistical interaction, i.e., the form with
δa instead of the one with a in Sec. II. This amounts to the
subtraction of the zero-point energy, i.e., (orbital) cyclotron
energy due to the motion in a constant magnetic field, which
we do not expect to be present in the description of pairing.
λ is an effective coupling which can be negative in the case
of the Pfaffian and positive for the PH Pfaffian (compare with
the discussion in Sec. II). (The effective BCS interaction in the
case of the PH Pfaffian, with λ > 0, is the one that was derived
in the scope of the Dirac composite fermion theory [28,34,35]
in the presence of a large Dirac mass (i.e., LL mixing, of both
signs) in Ref. [10].) We rewrite He f

BCS as

He f
BCS = 1

2m
�

†
c f (p − δa)2�c f − 1

2m
(δa)2�

†
c f �c f

+ (1 + λ)δajc f . (16)

Now we apply the CS transformation in reverse, from com-
posite fermions to the electron representation, to arrive at

Hel
BCS = 1

2m
�†(p − A)2� − 1

2m
(δa)2�†� + (1 + λ)δaJel

+ (1 + λ)
1

m
(δa)2�†�. (17)

To get Hel
BCS from He f

BCS we used the fact that the CS is a unitary
phase transformation [37] on fermion fields, which transforms
the first (kinetic) term in (16) back to the first term in (17)
[compare (3) and (4) in the previous section] and does not
change the form of the second term in (16). The third term
in (16) has the composite fermion current jc f described in (7),
which transforms as

jc f → jel + a
m

�†�. (18)

Applying this transformation, we get the two last terms
in (17), where

Jel = −i

2m
�†(∇ + iA)� − [(∇ + iA)�]†� (19)

is the gauge-invariant electron current. The Hamiltonians
Hel

BCS (λ) describe the effective interactions of electrons that
lead to paired states.

The CS description is, in essence, the Laughlin ansatz (or
organization of the solution) translated into the language of
field theory and thus refers mostly to the lowest-LL physics.
Our goal is a representation of the effective Hamiltonian for
paired states in a fixed LL, and in the following we will use
the lowest LL as a stage for that goal. Thus, we will model
interactions also for the paired states in the second LL, like
the Pfaffian, by effective parameters that we will find in the
lowest LL.

To begin modeling in a fixed LL we neglect (i.e., consider
as a constant) the first term (the kinetic term) in Eq. (17).
The remaining term, i.e., an effective interaction that we will
project to the lowest LL, is

V el
BCS (λ) = (1 + λ)δaJel + (1/2 + λ)

1

m
(δa)2�†�. (20)

In the following we will consider the resulting two-body
interactions from (20) less important for the physics of paired
states and thus concentrate on the resulting three-body in-
teraction. The contributions from the two-body part have to
be carefully calculated, and in Appendix B, the contribution
from the first term in (20), ∼ δajel , where jel = −i

2m {�†∇� −
∇�†�}, can be found.

The three-body interaction from the complete effective
interaction in (20) is

V 3
BCS (λ) = (1/2 + λ)

1

m
: (a)2�†� : . (21)

Plugging in the expressions for a in (5) and (6), we get

V 3
BCS (λ) = (1/2 + λ)

4

m

∫
dr1

×
∫

dr2
(r3 − r1)(r3 − r2)

|r3 − r1|2|r3 − r2|2 : ρ(r1)ρ(r2)ρ(r3) :;

(22)

that is, the three-body interaction in the coordinate represen-
tation is

V (r1, r2, r3) = (1/2 + λ)
4

m

(r3 − r1)(r3 − r2)

|r3 − r1|2|r3 − r2|2 . (23)

The fully antisymmetric wave functions for three particles are
given in [38], and they are

�k,l (r1, r2, r3) = 1

Zkl

(
z2

a + z2
b

)k
[

(za + izb)3l − (za − izb)3l

2i

]

× exp

{
−1

4
(|za|2 + |zb|2 + |zc|2)

}
, (24)

where integers k � 0, l � 1 and the total angular momen-
tum of the state is M = (2k + 3l ). The normalization factor
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TABLE I. Matrix elements in the lowest Landau level.

M

3 5 6 7 8 9 10

221/10080 1/(240
√

21)

M 1/24 1/48 7/240 1/80 2/105 ___________ ___________ 3/224

1/(240
√

21) 1/120

∼0.526 ∼0.022

M


M=3
1 0.5 0.7 0.3 ∼0.475 ___________ ___________ ∼0.321

∼0.022 0.2

Zkl = 23l+2k+1[π3(3l + k)!k!]1/2, and the complex coordi-
nates are

za =
√

2

3

(
z1+ z2

2
− z3

)
, zb = z1−z2√

2
, zc = z1+ z2+ z3√

3
.

(25)

Thus,
∑3

i=1 |zi|2 = |za|2 + |zb|2 + |zc|2.
To describe relevant three-body pseudopotentials (PPs)

we introduce matrix elements of a rescaled three-body in-
teraction: V (r1,r2,r3 )

�
, where � ≡ (1/2 + λ)4/m. The diagonal

matrix elements are defined as


M=2k+3l

=
∫

dr1

∫
dr2

∫
dr3

V (r1, r2, r3)

�
|�k,l (r1, r2, r3)|2.

(26)

The resulting three-body PPs for a fixed λ are

VM (λ) = �
M = (1/2 + λ)(4/m)
M . (27)

The matrix elements relevant for the interaction in the
lowest LL are listed in Table I.

Table I shows the rescaled values of the three-body PPs of
the interaction defined in (23), i.e., 
M = VM (λ)

�
, as functions

of the total angular momentum M. There are two (orthogonal)
wave functions for three fermions at M = 9, and thus, the
corresponding cases with l = 3, k = 0 and l = 1, k = 3 are
in the two columns, respectively, for M = 9 with common
off-diagonal (mutual overlap) elements.

Remarkably, ratios among the first three values of three-
body PPs, VM=5

VM=3
= 
M=5


M=3
= 0.5 and VM=6

VM=3
= 
M=6


M=3
= 0.7, are

quite close to the ones obtained by the first-order perturbation
theory in the second LL [32], ∼0.4 and ∼0.7, respectively.
We should notice that in this case the corresponding unit
can be expressed as e2

lB
1
κ

, where the LL mixing factor, κ =
( e2

lB
)/(h̄ eB

mc ), divides the expressions contrary to the case in the
perturbation theory, and thus, again, we should be aware that
we work with systems in which the LL mixing is considerable
(no κ → 0 limit).

But we can use the identified correspondence in ratios
to conclude that the field theory correctly predicts the main
features of a model interaction for a Pfaffian. Namely, it
predicts negative values of three-body PPs, VM (λ) = �
M =
(1/2 + λ)(4/m)
M , for M = 3, 5, and 6, to be crucial for
the establishment of a Pfaffian according to the expression

in Eq. (20), where we take λ � −1 in the Pfaffian case. This
prediction is in complete accordance with the numerical work
in Ref. [19]. In Fig. 3 of that work we see that the negative
values of three-body PPs, with the specified ratios (based
on the first-order perturbation theory in the second LL), are
crucial in obtaining the Pfaffian state. (We remind the reader
of the comments in the paragraph below Eq. (19) that we
model paired states in a fixed, lowest LL and this model
interaction is relevant for any fixed LL, including the second
LL.) In Table I we also list calculated matrix element values
for higher angular momenta (M = 7, 8, 9, 10), and (after the
simple rescaling) they follow the basic trend of the first-order
perturbation theory for the second LL, which favors Pfaffian
and anti-Pfaffian states as analyzed in Ref. [22].

The generation of three-body terms due to the LL mixing
using the perturbation theory has a long history [39–42]. It
led to the identification of relevant three-body parameters for
effective Pfaffian physics. Here we find a similar description
of an effective interaction for a Pfaffian using only field-
theoretical arguments.

It is an interesting question whether the field theory may
also predict a model interaction for the anti-Pfaffian (or dif-
ferentiate the anti-Pfaffian from the Pfaffian). Field theory can
describe the anti-Pfaffian as a Pfaffian pairing instability of a
Fermi liquid of composite holes [43] and, for that case, can
come up with the three-body interaction in (22). Therefore,
we should consider that three-body interaction in a fixed LL
and apply PH transformation to get the model interaction for
the anti-Pfaffian.

Next, according to formula (20) field theory predicts that
in the case of the PH Pfaffian, λ > 0, positive three-body
PPs are necessary for its establishment. This is quite expected
due to the role of the negative ones in the establishment of
the Pfaffian and anti-Pfaffian (Fig. 3 in Ref. [19]; see also
Ref. [22]), and thus, the positive values will suppress the
tendency to the Pfaffian and anti-Pfaffian.

Therefore, the main feature of the model interaction for a
PH Pfaffian in a fixed LL (the projection of the PH Pfaffian)
according to the field theory arguments is the series of positive
three-body PPs, VM (λ) for ratios VM

VM=3
= 
M


M=3
, specified in

Table I. Certainly, the question remains whether a real system
will slip into a Fermi liquid state, and we will discuss this in
the next section.

We comment that according to the main features of the
effective (model) interaction for the PH Pfaffian (in a fixed
LL) listed above, we do not expect more than three-body
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TABLE II. Matrix elements in the lowest Landau level with regularization.

M

3 5 6 7 8 9 10

0.01946

M 0.03309 0.01944 0.02487 0.01186 0.01592 ___________ ___________ 0.01047

0.00897

∼0.588

M


M=3
1 ∼0.587 ∼0.752 ∼0.358 ∼0.481 ___________ ___________ ∼0.316

∼0.271

(additional) PPs to be relevant. The main features are derived
on the basis of the BCS reduction we described in Eq. (15),
i.e., the reduction we believe is a faithful description of paired
states. On the other hand, on the basis of the perturbation
theory in κ we would also expect more than three-body
PPs. If, indeed, the PH Pfaffian physics is present, for some
κ � 1, it may be preceded by a distinct phase for which the
perturbation theory in κ is valid. On the other hand, the PH
Pfaffian would be based on a nonperturbative (nonanalytic) in
κ description of the LL mixing.

IV. BEYOND THE PROJECTION TO A FIXED
LANDAU LEVEL

We have argued for the main features of a model interaction
for a PH Pfaffian in a fixed LL. But we should also note that
there are strong arguments that the projection will represent a
gapless state:

(i) Let’s assume that the projection (i.e., associated wave
function) is PH symmetric. According to Refs. [10,29], i.e.,
arguments in Sec. II of Ref. [10] based on Dirac composite
fermion (manifestly PH symmetric) theory (more precisely,
the Bogoliubov description of the pairing of Dirac composite
fermions which encapsulates the BCS ground state), such a
state must be critical (gapless).

But we derived a model Hamiltonian (interaction) in a
fixed LL that has an explicit three-body interaction which
breaks PH symmetry, and thus, we should also consider the
possibility that the projection is not PH symmetric.

(ii) If the projection is not PH symmetric and represents
a gapped state, the state based on the projection and its
corresponding partner, a distinct phase, that we get by the PH
exchange have the same shift, i.e., an integer, a topological
number that characterizes the state of the system on a curved
background, such as a sphere. This is certainly not a sign

of two distinct phases. Moreover, the numerical results in
Ref. [27] for the overlap of the projection and its partner under
the PH exchange are very high for system sizes up to N = 12
despite the fact that the overlap must decay to zero in the
thermodynamic limit, irrespective of the presence of the PH
symmetry. (Thus, either the projection is PH symmetric and
we are back to the preceding case, or the state is gapless.)

Our model interaction for the PH Pfaffian in Eq. (17)
[or (20)] is defined in the space organized by LLs, and a
question is whether we will capture the nature and physics
of the PH Pfaffian if we consider only one LL for which
the rescaled magnitudes of the three-body PPs [divided by
� = (1/2 + λ)4/m] are specified in Table I. We can take the
effective LL mixing parameter in this system to be |1/2 + λ|.
Thus, in the case of the Pfaffian when λ = −1, we can stay in
a fixed LL, while if λ is of the same magnitude but opposite
sign, i.e., when we have the case of the PH Pfaffian with
λ = 1, it seems we need to consider an additional LL.

To assess the role of higher LLs we concentrate on the
three-body interaction, more precisely, diagonal matrix ele-
ments of the three-body interaction when one, two, or three
electrons are in one higher LL (the second LL). We consid-
ered the wave functions that we get by applying the raising
operators

a†
i =

√
2(−∂zi + z∗

i /4),

i = 1, 2, 3, to the lowest-LL wave functions in Eq. (24); we
considered applying (i) 1√

3
(a†

1 + a†
2 + a†

3) (one electron of
three electrons in the second LL, equivalent to a center of
mass excitation), (ii) 1

3 (a†
1a†

2 + a†
2a†

3 + a†
1a†

3) (two electrons
of three electrons in the second LL), and (iii) a†

1a†
2a†

3 (all
three electrons in the second LL). While calculating these
elements, we encountered ultraviolet divergences because of

TABLE III. Matrix elements for states with two particles in the lowest Landau level and one particle in the second Landau level.

M

2 4 5 6 7 8 9

0.01880

M 0.03279 0.01882 0.02528 0.01136 0.01933 ___________ ___________ 0.01212

0.00844

∼0.573

M


M=2
1 ∼0.574 ∼0.771 ∼0.346 ∼0.590 ___________ ___________ ∼0.370

∼0.257
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TABLE IV. Matrix elements for states with one particle in the lowest Landau level and two particles in the second Landau level.

M

1 3 4 5 6 7 8

0.01791

M 0.02880 0.02132 0.02302 0.01402 0.01430 ___________ ___________ 0.01046

0.00880

∼0.622

M


M=1
1 ∼0.740 ∼0.799 ∼0.487 ∼0.497 ___________ ___________ ∼0.363

∼0.305

the limitations of the effective CS theory and its inability to
capture short-range physics. Therefore, we had to regularize
the interaction in Eq. (23) (of the effective CS description). In-
stead of |r3 − r1|2 · |r3 − r2|2 in the denominator of Eq. (23),
we took (|r3 − r1|2 + a2) · (|r3 − r2|2 + a2), where a is a
short-distance cutoff. We checked that if the denominator is
modified into |r3 − r1|2 · |r3 − r2|2 + a4, the values of im-
plied PPs for a � lB do not change significantly. The values
of implied matrix elements when a = 1 = lB are given in
Tables II–V.

When a value for a certain matrix element was missing, the
numerical error was substantial.

V. DISCUSSION AND CONCLUSIONS

We need to analyze more closely the role of the parameter
λ. The sign of λ in the composite fermion picture (15)
determines the chirality of the underlying p-wave topological
superconductivity of the composite fermions, and after the CS
transformation into the electron picture, in (17), the parameter
λ determines whether we are in the Pfaffian, composite Fermi
liquid (CFL) [33], or PH Pfaffian phase. Even without the help
of exact diagonalizations, we can come up with a schematic
phase diagram of the electron system as a function of λ (see
Fig. 1). Two insights lead to the phase diagram as a function
of λ: (i) effective three-body coupling is (1/2 + λ) (this deter-
mines its sign), and (ii) the effective LL mixing parameter is
|1/2 + λ| (this determines how many LLs we need to include).
[We consider two-body interactions, which are likely positive
and monotonically decreasing with momenta, irrelevant for
(PH) Pfaffian pairing. The paired states are expected to be
stabilized by three-body interactions.]

As we change λ from negative to positive values, more
precisely, for λ � −1, we can estimate (due to the effective
LL mixing ∼|1/2 + λ|) that we need an extra LL to describe

the electron system with underlying BCS p-wave pairing of
composite fermions at (around) λ = 1/2. Prior to that value
of λ, for −1 � λ < −1/2, we expect a Pfaffian instability of
electrons; this is based on our expectation (corroborated by
numerics in [19,22]) that the negative values of three-body
interaction with specific ratios for lower angular momenta
(Table I and Fig. 2) will support Pfaffian physics. Pfaffian
physics largely occurs in a fixed LL, and the ground-state
wave function of the Pfaffian phase can be described by a
completely holomorphic expression in the (fixed) lowest LL.
The fixed LL physics is scale invariant in a special way; the
characteristic length is present only in the exponential factor,
which does not change as correlations in a fixed LL change.
To describe Pfaffian physics it is sufficient to stay in the
lowest LL and use the (unregularized, negative values of) PPs
described in Fig. 2 The physics does not depend on any length
scale, and although it is surprising at first sight that the field
theory can come up with finite matrix elements, we can use
them without any need to regularize. As we increase λ, for
−1/2 < λ � 1/2, the effective three-body interaction is pos-
itive because the value of the effective coupling, (1/2 + λ),
changes sign to positive at λ = −1/2. Thus, in this effective
description a phase transition may occur at λ = −1/2. We
expect an entrance into the (compressible) CFL phase. For
−1/2 < λ � 1/2 the LL mixing, ∼|1/2 + λ|, is not large, and
we may consider also in this region only PPs of the lowest
LL. At λ = 0, in the composite fermion representation as
well as the electron representation, we have a Fermi liquid
phase. Furthermore, for a whole interval, −1/2 < λ � 1/2,
we expect a CFL phase (in the electron system) because for
λ = −1/2 there is an abrupt change in the sign of the three-
body interaction accompanied by an oscillatory behavior in
the positive values of PPs as a function of the total angular
momentum of three fermions. The oscillatory behavior of the
(positive) values of PPs might be a sign of the compressible

TABLE V. Matrix elements in the second Landau level.

M 0 2 3 4 5 6 7

0.01474

M 0.02488 0.02113 0.01978 0.01427 0.01256 ___________ ___________ 0.01119

0.01012

∼0.592

M


M=0
1 ∼0.849 ∼0.795 ∼0.573 ∼0.505 ___________ ___________ ∼0.450

∼0.407
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FIG. 1. Schematic phase diagram as the pairing parameter λ is
varied.

correlations in the phase that we expect to be the CFL; a
state of three fermions may reduce its angular momentum
without resistance (or a significant increase in energy). Thus,
a (single) series with positive oscillatory values of three-body
PPs in the lowest LL (see Table I and Fig. 2) may be a
hallmark of the whole region, −1/2 < λ � 1/2, in which the
topological pairing at weak coupling of composite fermions
in (15) is suppressed under the CS transformation into the
electron representation. This system, at 0 < λ � 1/2, as we
will discuss below, confined to a single LL also represents a
projection of the PH Pfaffian to a fixed LL: any attempt to
confine the description of the PH Pfaffian in a fixed LL will
produce a gapless state, a state close to the CFL [10,27].

But we should note and emphasize that the particular
oscillatory behavior of PPs, as described in the bottom part
of Fig. 2, with positive values, may promote the pairing
necessary for a PH Pfaffian, in which any three electrons

FIG. 2. Matrix elements of three-body pseudopotentials in the
lowest Landau level for λ = −1 (above) and λ = 0 (bottom).

FIG. 3. Three-body pseudopotential matrix elements for λ = 1
(PH Pfaffian case) in the second Landau level (top), for states with
two particles in the second Landau level and one in the lowest Landau
level (middle), and in the lowest Landau level (bottom).

can mostly correlate (efficiently minimize their energy) in the
total angular momentum equal to M = 7, which is the char-
acteristic angular momentum for PH Pfaffian pairing. (Recall
that the characteristic angular momentum for a Pfaffian is
M = 5 [44].) Nevertheless, the compressible, Fermi-liquid-
like behavior results from the projection to a fixed LL due to
phase-space constraints which prohibit the pairing. Namely,
the expected leading term in the projection of the paired
state is equal to zero if the (unprojected) pairing function is
g(z) ∼ 1/z∗. We will come back to this point in the concluding
remarks.

Because the LL mixing parameter in our model Hamilto-
nian, (17), can be estimated to be equal to |1/2 + λ|, above
λ ∼ 1/2 we need to include at least one additional LL (the
second LL) to capture the underlying p-wave pairing state
of the electron system. This brings the natural scale (for
distance), the magnetic length lB as an external, fixed scale
that we used to regularize the three-body PPs, as described in
the previous section. The regularized intra-LL PPs are given
in that section. What we notice is that if we confine our
description to the lowest LL, the PPs are still characterized
by oscillatory behavior (see Table II and Fig. 3), and this
can lead to the compressible state. On the other hand, inter-
estingly, the three-body intra-LL PPs for the higher, second
LL are characterized by monotonically decreasing (with total
angular momentum) positive values (Table V and Fig. 3).
More importantly, in Table IV and Fig. 3, in the case of three
electrons, of which two are in the second LL, we see an
abrupt decrease in the values of repulsive PPs that occurs at
M = 5 (effectively, M = 7 in the lowest LL), a characteristic
angular momentum for the PH Pfaffian pairing (M = 5 in
the case of the Pfaffian, in the lowest LL). This opens up
the possibility for PH Pfaffian pairing correlations, which by
definition are antiholomorphic, to form and also exist in the
higher band, the second LL. At least two LLs are needed
to establish the PH Pfaffian. This is not surprising given the
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fact that the Pfaffian antisymmetrized product of Cooper pairs
with the projected pairing function 1/z∗ to the lowest LL
gLLL(z) ∼ z is zero. The same pairing function, projected to
the second LL, is gsLL(z, z∗) ∼ (|z|2 − 4) z, and thus, the extra
factor, (|z|2 − 4), brings the (magnetic) length scale into the
description and enables a nontrivial pairing to develop and
exist at short distances. But we should note that the values of
calculated PPs for electronic correlations do not lead imme-
diately to an expectation for the existence of a gapped paired
state; the transformation to the electron representation may
lead to a compressible state with some pairing correlations
due to the inclusion of the second LL. Further numerical
investigations are necessary to probe the existence of a gapped
state with the PH Pfaffian topological characterization on
the basis of the calculated PPs for the lowest two LLs.
In this work we developed a general framework, a model
interaction that can be used in the investigation of the PH
Pfaffian.

In the field-theoretical approach that we considered, be-
sides using the mean-field (classical) equations of motion
for fields in the effective composite fermion theory, we did
not do any further approximations. Our approach clearly
calls for a necessary inclusion of other LLs in numerical
approaches in the quest for the PH Pfaffian. By working
in a fixed LL, no matter how well the influence of other
LLs is included, one cannot access the PH Pfaffian pair-
ing. We described the pertinent three-body parameters for
two LLs.
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APPENDIX A: STATISTICAL INTERACTION

In this Appendix the details of the calculations that lead
from the statistical interaction in Eq. (7) to the Cooper
channel expression in Eq. (8) will be explained. If �c f =∑ 1√

V
exp{ik · r} ak and

jc f (r) = 1

2m
[�†

c f (−i∇�c f ) + (i∇�
†
c f )�c f ], (A1)

then

jc f
p =

∫
dr exp{ip · r} jc f (r) = 1

2m

∑
k

a†
p+kak(2k + p).

(A2)
Using the solutions in (5) and (6), it follows that

∫
jc f · a

2
=

∫
dr

∫
dr′

{
jc f
x (r)

y − y′

|r − r′|2 ρ(r′)

− jc f
y (r)

x − x′

|r − r′|2 ρ(r′)
}
. (A3)

If we introduce

jc f (r) = 1

V

∑
k

exp{ikr}jc f (−k) (A4)

and

ρ(r) = 1

V

∑
k

exp{−ikr}ρ(k), (A5)

we can rewrite the above expression as

∫
jc f · a

2
= 1

V

∑
k

i

{
ky

|k|2 jc f
x (−k)− kx

|k|2 jc f
y (−k)

}
ρ(k)(2π ).

(A6)

With

ρ(k) =
∑

p

a†
p+kap, (A7)

the statistical interaction becomes

∫
Vst = (−i)

2π

m

1

V

∑
k,p,q

2
(qxky − qykx )

|k|2 a†
p+kapa†

−k+qaq.

(A8)

If we consider only the Cooper channel, i.e., q = −p,

V C
st = (−i)

2π

m

1

V

∑
k,p

(−2)
(pxky − pykx )

|k|2 a†
p+kapa†

−k−pa−p.

(A9)

Introducing q = k + p, we get Eq. (8) in the main text.
To have a regularized, nondivergent statistical interac-

tion, we should exclude the k = 0 point in the summation,
in (A8), which amounts to an elimination of the part of
a that describes the external, constant magnetic field, i.e.,
Vst = −a · jc f → Vst (regularized) = −δa · jc f . This does not
influence the Cooper channel description, and we omitted this
regularization in Sec. II, but it is important for the discussion
in Sec. III.

APPENDIX B: TWO-BODY PSEUDOPOTENTIALS

In this Appendix the details of the calculation of the PPs for
the two-body interaction,

∫
dr a · jel , in the lowest and second

LLs will be presented. The projection of the first term in (20),

(1 + λ)δajel , (B1)

can be found by considering its second quantized form with
field operators that belong (are projected) to a fixed LL. We
consider

δajel = φ0

π

∫
dr′ 1

2i

jel (z − z′) − jel (z − z′)
|z − z′|2 δρ(r′), (B2)
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and thus,∫
dr ajel = − 1

2m

∫
dr

φ0

π

∫
dr′

{[
�† ∂

∂z � − ∂
∂z �

† �
]
(z − z′) − [

�† ∂
∂z � − ∂

∂z �
† �

]
(z − z′)

}
|z − z′|2 �†(r′)�(r′). (B3)

By partial integration and using ∂
∂z ( 1

z ) = ∂
∂z ( 1

z ) = 2πδ2(r − r′), in the usual units,

∫
dr ajel = − 2

m

∫
dr

∫
dr′

{[
�† ∂

∂z �
]
(z − z′) − [

�† ∂
∂z �

]
(z − z′)

}
|z − z′|2 �†(r′)�(r′), (B4)

with

�(r) =
∑

〈r|�n〉an =
∑

Mnzn exp

{
−1

4
|z|2

}
an, (B5)

where

Mn = Nn = 1√
2π2nn!

, (B6)

n = 0, 1, 2, 3, . . ., in the lowest LL and

Mn = Ñn fn, (B7)

with n = −1, 0, 1, 2, 3, . . ., and

Ñn = − 1√
2π2n+2(n + 1)!

, (B8)

with

fn = (2n + 2 − zz), (B9)

in the second LL.
In the lowest LL, ∫

dr ajel =
∑

n,n,m,m

− 2

m

(2π )2

2
Nn Nn Nm Nm I (n, n, m, m) : a†

n an a†
m am :, (B10)

and we have to use Ñn’s instead of Nn’s and calculate Ĩ (n, n, m, m) in the place of I (n, n, m, m) for the effective interaction in
the second LL.

We will consider the following diagonal elements with respect to states: a†
r a†

s |0〉, with r = 0 and s = l in the lowest LL and
r = −1 and s = l − 1 in the second LL. In this way we can extract the PPs W 2

l , l = 1, 3, 5, . . ., and W̃ 2
l , l = 1, 3, 5, . . ., in the

lowest and second LLs, respectively:

W 2
l = − (2π )2

m∗ N 2
l N 2

0 {I (l, l, 0, 0) + I (0, 0, l, l ) − I (0, l, l, 0) − I (l, 0, 0, l )} (B11)

and

W̃ 2
l = − (2π )2

m∗ Ñ 2
l−1 Ñ 2

−1 {Ĩ (l − 1, l − 1,−1,−1)+ Ĩ (−1,−1, l − 1, l − 1)− Ĩ (−1, l − 1, l − 1,−1)− Ĩ (l − 1,−1,−1, l− 1)}.
(B12)

In the above formulas we used m∗ to denote the effective mass. The explicit expressions for I and Ĩ , with 
 = m − m − n + n,
are

I (n, n, m, m) =
∫ ∞

0
dr1r1

{∫ r1

0
dr2r2 exp

[
−1

2
(|r1|2 + |r2|2)

]
r

m+m+ 

2

2 r
n+n− 


2 −2
1

(
n − 1

4
r2

1

)

+
∫ ∞

r1

dr2r2 exp

[
−1

2
(|r1|2 + |r2|2)

]
r

m+m− 

2 −2

2 r
n+n+ 


2
1

(
−1

4
r2

2

)}
(B13)
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and

Ĩ (n, n, m, m) =
∫ ∞

0
dr1r1

{∫ r1

0
dr2r2 exp

[
−1

2
(|r1|2 + |r2|2)

]
r

m+m+ 

2

2 r
n+n− 


2 −2
1

×
[

n fn(r1) fn(r1) fm(r2) fm(r2) − 1

4
r2

1 fn(r1) f̃n(r1) fm(r2) fm(r2)

]

+
∫ ∞

r1

dr2r2 exp

[
−1

2
(|r1|2 + |r2|2)

]
r

m+m− 

2 −2

2 r
n+n+ 


2
1 fn(r1) f̃n(r1) fm(r2) fm(r2)

(
−1

4
r2

2

)}
, (B14)

where fl (r) = 2l + 2 − r2 and f̃l (r) = 2l + 6 − r2.
Explicitly, for the lowest LL,

I1 = I (l, l, 0, 0) = l!

{
−1

2
+ 2l

2
− 2l

4

}
, (B15)

I2 = I (0, 0, l, l ) = l!

{
−2l

4

}
, (B16)

I3 = I (0, l, l, 0) = l!

{
−1

4

}
, (B17)

I4 = I (l, 0, 0, l ) = l!

{
−1

4

}
. (B18)

Therefore,

W 2
l ∼ (−I1 − I2 + I3 + I4) = 0 (B19)

for any l = 1, 3, 5, . . ..
Explicitly, for the second LL,

Ĩ1 = Ĩ (l − 1, l − 1,−1,−1) = l!

{
− l2 + 2l + 5

2
+ 2l

}
, (B20)

Ĩ2 = Ĩ (−1,−1, l − 1, l − 1) = l!

{
− l + 1

2
+ 2l

}
, (B21)

Ĩ3 = Ĩ (−1, l − 1, l − 1,−1) = l!

{
−3

2
+ 5

4
l − l2

4
+ 2l+1

}
, (B22)

Ĩ4 = Ĩ (l − 1,−1,−1, l − 1) = l!

{
− l2 − 5l + 6

4

}
. (B23)

Therefore,

W̃ 2
l = (−Ĩ1 − Ĩ2 + Ĩ3 + Ĩ4)

2l+3l!
= l

2l+1
(B24)

for a given l = 1, 3, 5, . . ..
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