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Particle-hole Pfaffian intracorrelations and intercorrelations in the quantum Hall bilayer
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Particle-hole (PH) Pfaffian topological phases may exist in a uniform system due to strong Landau level
(LL) mixing according to theoretical predictions based on the Son-Dirac composite fermion theory. Numerical
investigations in the presence of large LL mixing are limited due to numerical complexities, when taking into
account at least one more LL. Because of this, we apply the same field theoretical approach to the quantum Hall
bilayer at total filling factor equal to one, for which many numerical studies exist. The most advanced in Zhu
et al. [Zheng Zhu, Liang Fu, D. N. Sheng, Phys. Rev. Lett. 119, 177601 (2017)] predicts an intermediate phase
(for intermediate distances between layers) with an even-odd effect. According to our approach, the intermediate
phase represents a mixed negative-flux p-wave pairing i.e., coexisting intra (PH Pfaffian in each layer) and inter
(a la PH Pfaffian) pairing correlations. This again underlines a necessity for strong entanglement with additional
degrees of freedom, i.e., at least one more (additional) LL in the search for a stable PH Pfaffian phase in a single
layer. Based on the analogy with the bilayer physics, we propose a PH Pfaffian wave function that resides in
two LLs.
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I. INTRODUCTION

Fractional quantum Hall effect (FQHE) [1] phenomena
are usually explained by taking a single Landau level (LL)
projection—a projection of the Hilbert space of the problem
to a single LL. This is not always justified with respect to
experiments (the so-called LL mixing may be large), but it
efficiently captures the special commensuration of the number
of electrons with respect to the number of flux quanta through
the system that leads to the stability of states and quantization
of the Hall conductance that characterizes the FQHE.

The FQHE at 5/2 [2] is an example when LL mixing may
be decisive in selecting a state with a particular order; the
most prominent candidate state from numerical experiments is
anti-Pfaffian [3–5] (a particle-hole conjugate of Pfaffian state
[6]), but the experiments [7,8] point out the presence of the
so-called PH Pfaffian topological order. The PH Pfaffian state
is proposed as the state that will reflect the PH symmetry
(the symmetry under exchange between particles and holes)
of an isolated half-filled LL but, in a way paradoxically, it
is expected to be stabilized by disorder and LL mixing [9].
That this is the case may be recovered by considering the
Dirac composite fermion (CF) theory [10]—a theory that in-
corporates the PH symmetry of an isolated half-filled LL and
examining possible pairing channels [11]. The PH Pfaffian
order is present when the Dirac mass—the PH symmetry
breaking agent—is considerable.

The bilayer problem, in a first approximation, is a problem
with two LLs, usually the same one—the lowest LL (LLL)
in each layer, that are degenerate (of the same energy). The

two degenerate LLs may differ, in general, as discussed in
Ref. [12]. The two degenerate LLs may be viewed as an
extreme case of LL mixing, which is completely justified as in
the case of the graphene bilayer [13], or may simulate (in an
approximate way) the effect of LL mixing, if we consider one
of the layers at higher chemical potential, i.e., the cyclotron
energy.

In this paper, we reexamine the quantum Hall bilayer
physics at filling factor one, i.e., when each layer is half filled.
By assuming the projection to the LLL in each layer, we
apply the Dirac CF theory and examine pairing instabilities.
We find that they are the same as in the single layer but may
be classified as possibilities for inter- and intrapairings. The
most relevant to the existing numerical work are those that
describe the bilayer at intermediate distances. We identify
them as negative flux p-wave (a la PH Pfaffian) inter and PH
Pfaffian (intra) pairing correlations that are associated with the
presence of mass in each layer due to the interaction between
layers, and thus in the absence of the PH symmetry inside
layers. As an implication of our results on the quantum Hall
bilayer, we propose a PH Pfaffian wave function for a single
layer that resides in two LLs.

II. THE QUANTUM HALL BILAYER

A. The two-component description of a half-filled single layer

In the treatment of the quantum Hall bilayer, we will apply
the usual Chern-Simons (CS) approach, but also consider its
version with Dirac CF fields, which takes into account the
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FIG. 1. The solution of the self-consistent BCS problem. Left
column: Radial direction k-dependent pairing amplitude for various
values of m. Channel l = 1 solution (PH Pfaffian) only depends
on |m|, while l = 3 (anti-Pfaffian) and l = −1 (Pfaffian) channel
solutions are symmetric with the sign flip of m. Upper right panel:
Dependence of the maximum of the pairing amplitude on m (always
found at the Fermi level kF ). Lower right panel: Total energy of
the different pairing solutions compared to the normal state energy.
Gray vertical lines denote the transition between different channels.
Color in the background corresponds to the energetically favorable
channel at the given m—a measure of Landau-level mixing. The
color of lines: Pfaffian—green, anti-Pfaffian—orange, PH Pfaffian—
blue. From Ref. [11].

PH symmetry (the symmetry under exchange of particles and
holes) if it is present, like in the case of an isolated half-
filled LL. The CS approach via gauge field(s) incorporates the
Coulomb interaction among underlying electrons by connect-
ing an electron with its correlation hole. We may in a way
speak about an excitonic instability (although correlation hole
is not an independent degree of freedom and we cannot speak
about a real exciton) and, like in the Laughlin case at ν =
1/3, bosonic exciton (exciton = electron + correlation hole)
condensation. We will use the word exciton in the following
just to emphasize the composite nature of the underlying
quasiparticles. At ν = 1/2, the correlation hole is of a bosonic
nature and the resulting exciton is fermionic, and a way to
include the Coulomb repulsion is to set each two electrons
(more precisely excitons, i.e., quasiparticles) apart by consid-
ering a p-wave pairing. These p-wave correlations are present
in the nonrelativistic CS description as shown in Ref. [14]
via the statistical interaction—the influence of the gauge field
on particles and the source of the gauge field are the same
particles. This picture is much cleaner and complete if we
explicitly include the PH symmetry of an isolated half-filled
LL, and thus consider without bias, on equal footing, electrons
and holes, though, on one hand, this may result in nonexistant
phenomena because we are (it seems) artificially doubling
the degrees of freedom but, on the other hand, the excitonic
physics, Coulomb repulsion may be captured more efficiently.
In Fig. 1, results are presented for p-wave instabilities, based
on the Dirac CS field theory for the half-filled LL, in the

presence of a mass term, which is a PH symmetry-breaking
parameter. The internal gauge field, i.e., its change δa from
the uniform mean-field value, is described by

1

2

�∇ × a
2π

= c†c + d†d, (1)

i.e., sources are what we may call (as underlying
quasiparticles) CFs—composites of electron and correlation
holes, represented by field c (a component of the Dirac spinor)
and composite hole (CH)—a composite of a hole and its cor-
relation particle, represented by a field d (another component
of the Dirac spinor) [15]. It is interesting to note that with the
two degrees of freedom we have tje possibility for intrapairing
(Pfaffian and anti-Pfaffian) and interpairing (PH Pfaffian).

B. The pairing instabilities of the quantum Hall bilayer

The quantum Hall bilayer at total filling factor one is an
old subject [16,17]; when layers are close to each other, i.e.,
d—the distance between layers, d � lB (magnetic length), due
to the Coulomb repulsion, a real excitonic instability occurs
between electrons and holes that are in the opposite layer. This
is captured by the following ground-state wave function:

�(111) =
∏
i< j

(zi↑ − z j↑)
∏
k<l

(zk↓ − zl↓)
∏
m<n

(zm↑ − zn↓), (2)

i.e., the (1,1,1) state. If we confine the physics to the lowest
LLs (LLLs) of both layers, we expect for large distances the
physics of separate, two half-filled LLLs and the Dirac CF
description to be valid in each layer. When layers are close,
the ground state is very much the (1,1,1) state and we can
describe this system by a (nonrelativistic) CS theory [18]:

L =
∑

σ

�†
σ

(
i∂t − A0 − aσ

0

)
�σ

−
∑

σ

1

2M
�†

σ (p − A − aσ )2�σ − 1

2π
a↑∂a↓

+ interactions, (3)

where M denotes the mass of CFs. By varying aσ
0 , δL

δaσ
0

= 0,
we get

−�†
σ�σ − �∇ × a−σ = 0. (4)

Thus the effective magnetic field is

�∇ × Aσ
eff

2π
= �∇ × A

2π
+ �∇ × aσ

2π

= ρ − ρ−σ = ρσ . (5)

Thus, CS fermions are at the integer filling factor equal to
one (each), in each layer. We introduce a shift in variable a,
ãσ = aσ + A,

L =
∑

σ

�†
σ

(
i∂t − ãσ

0

)
�σ

−
∑

σ

1

2M
�†

σ (p − ãσ )2�σ − 1

2π
ã↑∂ ã↓

+ 1

2π
(ã↑ + ã↓)∂A − 1

2π
A∂A. (6)
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(We omitted interactions in the last expression.)
To connect this description with the one at large distances,

in which an effective Dirac physics is expected, let’s consider
a Dirac system Lagrangian, LD, that in the limit of large mass
becomes L:

LD =
∑

σ

iχ̄σ γ μ
(
∂μ + iãσ

μ

)
χσ − M

∑
σ

χ̄σχσ

− 1

2π
ã↑∂ ã↓

+ 1

2π
(ã↑ + ã↓)∂A − 1

2π
A∂A. (7)

In the Pauli limit of large mass M, the Lagrangian, LD,
with two-component Dirac fields, χ̄σ , σ =↑,↓, becomes
the Lagrangian L, with one-component fermionic fields �σ ,
σ =↑,↓. This transformation and limit, in the context of the
physics of a half-filled, isolated LL system, was introduced
in Refs. [19,20], where the transformation was associated
with the mass parameter that breaks particle-hole symmetry
of the isolated LL, i.e., of the Dirac theory, and transforms
the Dirac theory into the theory of the usual nonrelativistic
CFs. The mass term in that case mimics the influence of the
LL mixing. In our case, the role of the LL mixing is taken
by the interaction between the layers. The phenomenological
parameter M breaks the particle-hole symmetric description
via Dirac fields, the description that is expected to be valid
in the limit of large distances between the layers and trans-
forms it continuously into the one that is appropriate at small
distances. For the detailed explanation of the microscopic
origin of the two-component description (that is effectively
a one-component superposition of two) and the meaning of
the two components; see Ref. [15]. When the particle-hole
symmetry is present as in an isolated LL, the Dirac theory
takes into account both CFs and CHs (anti-CFs [21]); their
simultaneous presence is necessary due to the requirement
for the explicit particle-hole symmetry in the theory. In the
Pauli limit, the mass term acts as a Zeeman term that effec-
tively promotes one of the two components that describes the
usual CF.

Let’s consider the case with M = 0 in LD and apply the
duality transformation. Here, for a fixed σ , ãσ plays the role
of a uniform background field and thus we apply this transfor-
mation assuming small fluctuations in ãσ , i.e., �∇ × ãσ ≈ B

2 ,

where B = �∇×A
2π

. Also, these are not neutral Dirac systems in
background fields, but each system is at filling factor one, i.e.,
half filled in the n = 1 LL (not n = 0 LL). Thus, if the usual
duality transformation brings out half-filled LL physics of an
isolated, usually LLL, in this case n = 1, and we need to add
CS terms to get the right Hall conductance of the subsystems,
which are not neutral. Thus we are introducing new spinors,
η↑ and η↓, and in the new representation,

Ld (M = 0) =
∑

σ

iη̄σ γ μ
(
∂μ + ibσ

μ

)
ησ

+
∑

σ

1

2π
bσ ∂ ãσ − 1

4π

∑
σ

ãσ ∂ ãσ , (8)

− 1

2π
ã↑∂ ã↓ + 1

2π
(ã↑ + ã↓)∂A − 1

2π
A∂A. (9)

As the response due to the variation of external field, we have

jμe ≡ −δLd

δAμ

= ∂A

π
− ∂ ã↑ + ∂ ã↓

2π
. (10)

Once again, we see that for j0
e ≡ ρe = B, in the mean field,

and applying the symmetry under exchange of ↑ and ↓,
we get

�∇ × ã↑

2π
= �∇ × ã↓

2π
= B

2
. (11)

Also, from the equations of motions, δLd
δbμ

= 0, we have

− jησ + ∂ ãσ

2π
= 0, (12)

and from δLd
δãσ

= 0,

∂bσ

2π
− ∂ ãσ

2π
− ∂ ã−σ

2π
+ ∂Aσ

2π
= 0. (13)

Thus, in the mean field �∇×bσ

2π
= 0. It is not hard to see that if

we integrate out field a↑ − a↓ we get b↑ = b↓ = b. Integrating
out a↑ + a↓ gives the following effective action:

L(M = 0) =
∑

σ

iη̄σ γ μ(∂μ + ibμ)ησ

+ 1

4π
(b + A)∂ (b + A) − 1

2π
A∂A. (14)

Thus, even in the case when M = 0, which we can identify
with the one when the layers are infinitely apart, we do not
have two independent systems, but effective correlations be-
tween two layers. We extrapolate this description to the case
when M �= 0 by the following Lagrangian density:

L =
∑

σ

iη̄σ γ μ(∂μ + ibμ)ησ

+ m
∑

σ

η̄σ ησ

+ 1

4π
b∂b + 1

2π
b∂A − 1

4π
A∂A, (15)

where the mass parameter m here is a function of the previ-
ous parameter M; certainly m should monotonically increase
if M increases (i.e., the distance between the layers decreases).
The mass term in Eq. (15) comes with the + sign to eliminate
the 1

4π
b∂b term in the Pauli-Villars regularization so the Hall

conductance of the whole system is 1 × e2

h , given by the last
term in the Lagrangian. We are in the Zhang’s representation
(picture) of quasiparticles because

jμe ≡ − δL
δAμ

= ∂A

2π
+ ∂b

2π
, (16)

and, from the equations of motions, δLd
δbμ

= 0, we have

− jη↑ − jη↓ + ∂b

2π
+ ∂A

2π
= 0, (17)

i.e., the variation of je = j↑e + j↓e and jη↑ + jη↓ with respect to
∂A
2π

is up to a sign, ∂b
2π

, i.e., the same.
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We can solve for b using Eq. (17) in terms of the density
of the η quasiparticles and investigate the Cooper channels of
the statistical interaction,

Vst = −
∑

σ

η̄σ �γ bησ , (18)

that may lead to various Pfaffian intrapaired or interpaired
(p-wave, . . .) states.

Also, the limit of small and intermediate mass we identify
or consider as cases when layers are away from each other (not
close) because m represents a parameter which tells us how
much the particle-hole symmetry inside each layer is spoiled
from the case of isolated layers when m = 0.

Following the same steps as in Ref. [11], we may arrive at
the conclusion that for the intermediate values of m, the rel-
evant Cooper channel interaction, i.e., dominant (possibility
for) pairing is of the following form:

VCch =
∑
k,p,σ

Vk,pa†
k,σ a†

−k,σ a−p,σ ap,σ

∑
k,p

2Vk,pa†
k,↑a†

−k,↓a−p,↓ap,↑, (19)

with

Vk,p = 2π

8V

1

EpEk
{−4m|k||p| i sin{θp − θk}

|k − p|2 }, (20)

which describes PH Pfaffian (intra) correlations, inside each
layer, and, with the same kind of vorticity, intercorrelations
between the layers.

If we assume the intrapairing, the mean field Hamiltonian
is of the following form:

Ka
eff =

∑
k,σ

ξka†
k,σ

ak,σ

+
∑
k,σ

1

2
(�a

ka†
k,σ a†

−k,σ + (�a
k )∗a−k,σ ak,σ ), (21)

and in the case of interpairing we may write

Ke
eff =

∑
k,σ

ξka†
k,σ ak,σ

+
∑
k,σ

(
�e

ka†
k,↑a†

−k,↓ + (
�e

k

)∗
a−k,↓ak,↑

)
. (22)

In the mean-field treatment, we find �e
k = �a

k , and that the
ground-state energies are the same, i.e., inter and intrapair-
ing are equally likely, irrespective of the value of mass
(for intermediate values of distance). The solution is given
in Fig. 1 in blue. This independence of mass, i.e., dis-
tance between the layers, of the ratio between inter- and
intrapairing is certainly a consequence of our previous ap-
proximations. As the distance is increasing, we can expect that
intrapairing is becoming more likely (intra Coulomb repulsion
is becoming more pronounced) and the share of intrapairing
is increasing in a possible mixed state in which inter- and
intrapairing coexist.

This mixed pairing ground-state description is consistent
with the numerical results of Ref. [22]. The odd-even ef-
fect that is observed in the data for intermediate distances is

consistent with the stability of states with an even number
of particles in each layer with respect to states with an odd
number number of particles in each layer; if we have an even
number in each layer, we have to break a pair to make a
transfer to another layer. Also the persistence of the superfluid
stiffness (density) (in this study of finite systems) in this mixed
state may be connected with the necessary persistence of in-
terpairing correlations and pairs which represent the interlayer
ordering at intermediate distances. This was already observed
in Ref. [23], in the work that proposed and detected inter
p-wave pairing. (This persistence of the superfluid stiffness
should be a consequence of algebraic off-diagonal long range
order [24] in this regime which is marked by the absence of
the Goldstone mode. This finite stiffness is a finite-size effect.
But this regime, for a finite (not zero) interval of distance,
with persistent interlayer correlations, without long-range or-
der (LRO), cannot be a finite-size effect as also evidenced
in recent experimental data [25]. A question may be whether
intra-PH Pfaffian correlations may survive the thermodynamic
limit and, also, the presence of disorder in experiments.)

The presented CS description of the quantum Hall bilayer,
in conjunction with the numerical results in Ref. [22] gives
further evidence that the PH Pfaffian (intra)correlations (in
a layer) require the presence of correlations or entanglement
with the second layer or a second (another) LL. The mixed
state phase should be bounded at a small distance, dc1, by
a critical state in which all Cooper pairs are pairs between
CFs in different layers, and at a large distance, dc2, by two
PH Pfaffian states, each state describing (intra)pairing in its
corresponding layer. (This direct product state should be in the
same phase of two CF Fermi-liquid-like states [11,26–28] and
dc2 may be at infinity.) Although the two-component Dirac
CS formalism introduces seemingly artificial degrees of free-
dom, its prediction of the inter- and intraopposite vorticityPH
Pfaffian correlations and instabilities in the bilayer system is
fully consistent with the available numerical data. This gives
support for relevance and motivates further investigation of
PH Pfaffian correlations in a single layer in the presence of
strong LL mixing.

III. THE PH PFAFFIAN STATE IN THE SINGLE LAYER

The doubling of degrees of freedom in Son’s Dirac CF the-
ory introduces a possibility for PH Pfaffian, but if m (the mass
parameter of the theory)= 0, and we are describing isolated
half-filled LL, the possibility is artificial—it is based on and
includes an additional (artificial) degree of freedom, i.e., it
describes the excitoniclike binding of electrons and holes (i.e.,
CFs and CHs, which are not independent degrees of freedom).
Remarkably, this is reflected in the field theory which has no
PH Pfaffian instability at m = 0, as we can see in Fig. 1. We
need at least one additional LL to induce PH Pfaffian correla-
tions to physically justify the excitoniclike pairing, which in
the one-component, low-energy limit (of the Dirac theory near
Fermi level) becomes the p-wave pairing of effective CFs.
This is similar to the two-component, quantum Hall bilayer
physics, but certainly two LLs do not represent two equiva-
lent subsystems of the bilayer. We may expect finite density
of electrons in the higher LL, in an ideal, strong-coupling
PH Pfaffian construction in which all CFs are paired and
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subsystems are not identical, as in the construction proposed
in Ref. [29]. [This strong-coupling, ideal form for Pfaffian can
be defined in an isolated LL (Moore-Read construction [6]).]

Based on the quantum Hall bilayer analogy, we propose a
PH Pfaffian wave function, that, in the long-distance limit—
with no projection applied, is of the following form:

�PHPf =
∏
i< j

(zi − z j )
2P f { (z̄i + z̄ j )

(z̄i − z̄ j )
}, (23)

where P f denotes the antisymmetrized product (collection) of
Cooper pairs described by (z̄i+z̄ j )

(z̄i−z̄ j )
, of spinless-indistiguishable

electrons. A description of the details of the analogy and an
analysis of the proposed wave function can be found in the
Appendix. By adding a (z̄i + z̄ j ) factor to each Cooper pair
(i, j), first we are transforming neutral sectors (not charged
sectors) and we are at, overall, the same filling factor 1/2. In
fact, by associating this factor to each pair, we are putting (on
average) one electron of the pair in the higher, second LL. For
a fixed configuration of pairs, there are factors of the form∏{N/2}

{i=1} z̄{i} (where curly brackets denote those N/2 electrons
that are chosen from N of them—a fixed partition of N), and
that is telling us that half of the electrons are in the second
LL. Thus the filling factor of the LLL is 1/4, and it is the
same with the second LL. (The total filling factor is 1/2.)

The topology of the state is still of a p-wave superconduc-
tor (up to charge modes). We can see that by considering edge
excitations—edge states and bulk quasielectron excitations
that should generate them. In the case of Pfaffian [30], to ex-
tract the Majorana mode from the bulk quasihole excitations,
the following Pfaffian identity was crucial:

P f (ai − a j ) = 0, (24)

if ai, i = 1, . . . , P, P > 2 and even to eliminate spurious states
in the Pfaffian case. In that case, {ai} were the coordinates of
electrons, {zi}. In the case of the proposed PH Pfaffian, due
to factors (z̄i + z̄ j ) and complex conjugated coordinates in the
construction of bulk quasielectrons, for details see Ref. [31],
the complex {ai} are {z̄2

i }, and we can use the Pfaffian identity
to again extract Majorana edge states (but of opposite vortic-
ity).

Thus, when LL1 (the first excited level) and LL2 are de-
generate, the PH Pfaffian construction, Eq. (23), may be the
ground state. As we raise the chemical potential of LL2, the
construction may evolve into states of the following form:

∏
i< j

(zi − z j )
2A

{
P f

{
(z̄i + z̄ j )

(z̄i − z̄ j )

} ∏
{p}

exp{i�kp�rp}
}

(25)

(where the product of plane waves describes electrons that
do not pair), i.e., CFs may transfer into the lower LL by
forming the Fermi sea (we omitted the projection of the Fermi
sea—composite fermion liquid (CFL) part). (We are moving
away from the ideal case but the topology should stay the same
[32].) The final result of the raising of the chemical potential
of LL2 would be a CFL state that will compete with the
Pfaffian, anti-Pfaffian superposition in the case of the isolated
half-filled LL1.

A question may be raised whether the proposed PH
Pfaffian construction will, with all certainty, lead to a gapped

state. We described a likely implied edge-state physics (that
characterizes a gapped, toopological state and class), but we
lack a parent Hamiltonian, for which the construction is an
exact ground state, and more systematic analysis to consider
the edge description, with a chiral boson and a Majorana
fermion, as a certain characterization of the construction. The
fact that the construction lives in two LLs may be considered
unusual for a gapped state, but the effective description that
can be inferred from the construction, on the level of effective
quasiparticles, is a weak pairing (i.e., topological) version of
the description of the p-wave superconductor of Ref. [32], in
a weak coupling limit that is also followed by a polarization
of the system. Thus, there are arguments that support the
expectation that the construction represents a gapped state
(that may be stabilized by Coulomb interaction), but the fi-
nal verdict may come from further analytical and numerical
investigations.

Therefore, we may ask ourselves whether a construction
that we described may exist in the case of two LLs and
whether it is relevant for the explanation of the FQHE at filling
factor 5/2. Numerical explorations may give the answers—a
similar study as the one in Ref. [13]. There, LL0 and LL1
were considered degenerate (in the context of the graphene
bilayer) and, in fact, from this study we can conclude that
in the case of the (nonrelativistic) single layer, even if we
neglect the cyclotron energy, the (spin polarized) electrons
(or holes) concentrate (group) in one LL at filling factors 1/2
and 3/2. So dominant is the exchange effect, so stable is the
correlated state, of Fermi liquid and Pfaffian kind, that they
exist even in the case of degenerate LLs (when particles have
more space). (We may say the system is polarized—electrons
tend to occupy a particular LL.)

In the case of FQHE at 5/2, we may (similarly) assume that
the spin quantum Hall effect inside LL0 is so stable and strong
(electrons are polarized in a special way) that we may con-
centrate our attention to the two relevant LLs: LL1 and LL2.
Also see Ref. [33] for an argumentation for considering only
two LLs in the case of the PH Pfaffian. If the system supports
a PH Pfaffian topological phase, electrons should not group
in a single LL in the ground state (because the PH Pfaffian
cannot exist in a single LL, the most recent numerical studies
are in Refs. [28,34]). In Fig. 2 are Coulomb matrix elements—
Haldane pseudopotentials in the problem with two LLs: LL1
and LL2. In the case of the reduced Hamiltonian with only
elements: V 1111,V 2222, and V 1212 = V 2121, the system is still
polarized in LL1 due to the strong exchange effect [35]. But
if we include V 1221 = V 2112, in Ref. [12] it was demonstrated
that the ground state is an unpolarized Haldane-Rezayi state.
Also, this reference states that the depolarization of this kind
occurs only in the LL1, LL2 degenerate case and not in the
LL0, LL1 case. The question is, What is the ground state when
we include all matrix elements in the LL1, LL2 case? If we
stabilize PH Pfaffian correlations, then we need to test whether
they persist if we increase the chemical potential of LL2.
The complete diagonalization that we plan for future work
may also indicate whether PH Pfaffian correlations support
an incompressible state.

Recently, another related work [21] appeared on arXiv that
explored the physics of bilayer at filling factor one. Our con-
clusions overlap in the way that PH Pfaffian correlations can

245303-5



M. V. MILOVANOVIĆ AND S. DJURDJEVIĆ PHYSICAL REVIEW B 104, 245303 (2021)

FIG. 2. Matrix elements of generalized Haldane pseudopoten-
tials for LL1 and LL2 for Coulomb interaction relative to V 1111

0 .

be viewed as an s-wave pairing of CF and CH—the concept
that was introduced in Ref. [15], which gives a microscopic
derivation of the Dirac CF theory. The geometry of the numer-
ical work in Ref. [21] is the geometry of sphere, which may
be biased toward particular instabilities, while the geometry
of the numerical experiment in Ref. [22] is the torus geometry
(which does not have that bias but may be disadvantageous
in other ways). The predictions of both references overlap in
the most important and interesting—intermediate—region for
which we showed that an effective field-theoretical descrip-
tion is also possible.
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APPENDIX: THE BILAYER AND SINGLE LAYER WAVE
FUNCTIONS

Due to the inclusion of mass(es) m in the description of
each layer in the case of bilayer, Dirac CFs are becoming
ordinary (nonrelativistic) CFs of the usual CS description, for
considerable m in the intermediate region. Thus, for the wave
function that will describe the internegative-flux pairing, in
the long distance, we expect the following form:

�e(zi1↑, . . . , ziN/2↑, z j1↓, . . . , z jN/2↓)

= Det

{
1

z̄i↑ − z̄ j↓

}

×
N/2∏

i1<i2

(zi1↑ − zi2↑)2
N/2∏

j1< j2

(z j1↓ − z j2↓)2, (A1)

where Det denotes an antisymmetrized collection of Cooper
pairs described by 1

z̄i↑−z̄ j↓
. As in the field-theoretical descrip-

tion, we differentiate between ↑ and ↓ electrons, N↑ = N↓ =
N/2, where N is the total number of electrons. We can make
the construction totally antisymmetric, i.e., electrons indistin-

gushable in the layer index by considering∑
〈i1,...,iN/2〉

�e(zi1↑, . . . , ziN/2↑, z j1↓, . . . , z jN/2↓)

×| ↑i1 , . . . ,↑iN/2 ,↓ j1 , . . . ,↓ jN/2〉, (A2)

i.e., summing over all partitions of electrons into the two
distinctive groups of ↑ and ↓ electrons. We can see that the or-
bital and pseudospin part are entangled; the expression is not
a direct product of the orbital and pseudospin part. In direct
analogy with the bilayer case, when all electrons participate
in interpairing, we may consider a wave function for equally
populated two LLs, at total filling 1/2, in which composite
fermions pair in the same way as in the bilayer case:

∑
〈i1,...,iN/2〉

Det{ 1

z̄i − z̄ j
}

N/2∏
k<l

(zk − zl )
2z̄i1 · · · z̄iN/2 . (A3)

The wave function corresponds to the case of the LLL ≡
LL0 and the first excited LL, LL1, and the whole expres-
sion requires a projection to those two LLs. In this case, the
Jastrow-Laughlin correlations do not distinguish layer index,
and we can rewrite the wave function in the following way:

�PHPf =
∏
i< j

(zi − z j )
2P f

{
(z̄i + z̄ j )

(z̄i − z̄ j )

}
, (A4)

the same as Eq. (23) in the main text. Here P f denotes the an-
tisymmetrized product (collection) of Cooper pairs described
by (z̄i+z̄ j )

(z̄i−z̄ j )
, of spinless-indistiguishable electrons and we use

P f

{
1

(z̄i − z̄ j )

}
∼

∑
〈i1,...,iN/2〉

Det

{
1

z̄i − z̄ j

}
. (A5)

The factor (z̄i + z̄ j ) in Eq. (A4) corresponds to a triplet
Cooper pairing in the pseudospin (the LL index) language.
In general, the factor z̄ places—modifies and projects—the
single-particle wave function zm exp{− 1

4 |z|2} of the LLL
(lB (magnetic length) =1), m = 0, 1, . . . , Nφ − 1, Nφ is the
number of flux quanta through the system, into the LL1 wave
function zmz̄ exp{− 1

4 |z|2}. Thus we can interpret the presence
of factor (z̄i + z̄ j ) in the Cooper pair description as an ex-
pression of the fact that the center of mass coordinate of the
Cooper pair is in the LL1 (higher LL) with the center of
mass angular momentum equal to zero. Thus, though the z(z̄)
coordinate is affected by translation, the correlations built in
the wave functions are translationally invariant and z̄ acts as
a pseudospin degree of freedom. This is more transparent in
Eq. (A3). If the construction were of the following form:∏

i< j

(zi − z j )
2P f

{
1

(z̄i − z̄ j )

} ∑
〈i1,...,iN/2〉

z̄i1 · · · z̄iN/2 (A6)

(i.e., a direct product of orbital and pseudospin part), the pro-
jection to the two LLs would be effectively a projection to the
LLL of the usual PH Pfaffian construction that would lead to
a compressible state with correlations of a CF liquid [27,28].
The projection of Eq. (A4) may lead to an incompressible
state.
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