
PHYSICAL REVIEW B 111, L161105 (2025)
Letter

Precursors to Anderson localization in the Holstein model: Quantum
and quantum-classical solutions
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We calculate the frequency-dependent mobility of the Holstein polaron in one dimension near the adiabatic
limit using the method based on dynamical quantum typicality, as well as the quantum-classical method. The
agreement between fully quantum and quantum-classical solutions is very good. The most prominent feature
is the appearance of a zero-frequency peak in the mobility, in addition to the displaced peak associated to the
precursors of Anderson localization. The zero-frequency peak cannot be obtained within the phenomenological
transient localization approach, which is often used in a semiquantitative description of charge transport in
quasi-one-dimensional organic semiconductors.
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Introduction. Charge mobility is a key quantity which de-
termines the optoelectronic properties of molecular organic
semiconductors [1–3]. Weak van der Waals forces between
the organic molecules lead to strong lattice thermal fluctu-
ations and the charge transport in pure samples near room
temperature is dominated by electron-phonon scattering. It
is common to distinguish between the local electron-phonon
interaction and its nonlocal part, which are often modeled by
the Holstein and Peierls Hamiltonian, respectively. However,
in many cases the electron-phonon scattering is too strong to
be treated by perturbative methods [4], the charge transport is
in between the band and the hopping limit [5], and a reliable
quantum calculation of the dc mobility is lacking, even within
these two simplified models. The real-frequency calculations
are often restricted to lattices that are not sufficiently large
[6,7], while the effectiveness of the imaginary-axis quantum
Monte Carlo (QMC) calculations [8] is limited by the ill-
defined analytical continuation [9], since a small difference
in the imaginary-time current-current correlation function can
correspond to a substantial difference in conductivity [10–12].

An important insight into the charge transport in
quasi-one-dimensional organic semiconductors is obtained
by the phenomenological transient localization (TL) theory
[4,13]. It starts from the observation that on short timescales,
much smaller than the period of lattice oscillation 2π/ω0,
the ion displacements can be considered as almost static and
randomly distributed (with appropriate probability distribu-
tion). Hence, on these timescales, the charge transport can be
described by the physics of an electron moving thorough the
statically disordered environment. In a model of fully static
disorder, i.e., in the Anderson model (AM), the electron wave
functions would be localized in low dimensions. However,
the phonons are a source of dynamical disorder, causing the
inelastic scattering which breaks the localization at longer
timescales. In the TL approach, which is not restricted to a
particular model, the inelastic scattering is accounted in a
relaxation time approximation through the phenomenological

parameter τin ∼ 1/ω0 which, at long times, modifies the
current-current correlation function corresponding to the
AM, CTL

j j (t ) = CAM
j j (t )e−t/τin , leading to nonzero dc mobility.

The frequency-dependent mobility μ(ω) features a so-called
displaced Drude peak (DDP) [7], which is here a signature
of precursors to the Anderson localization. Its appearance is,
however, a more general phenomenon. DDP is observed in
different physical systems, including some bad metals, and
its origin is a subject of several recent studies [14–17].

Another popular approach to charge dynamics is given
by the quantum-classical (QC) methods [18–20]. Here, the
electron part of the Hamiltonian is treated quantum mechan-
ically, whereas the lattice vibrations are treated classically.
The backaction of the electron to lattice vibrations is usu-
ally included through the Ehrenfest equations. In this case,
the total energy of the system is conserved, but the electron
energy increases with the propagation time. At large times, the
electron energy is not distributed according to the Boltzmann
statistics at temperature T , but instead follows the distribution
corresponding to infinite temperature. This feature has led to
the conclusion that the QC method gives a divergent diffusion
constant D(t ) at t → ∞, implying that it cannot be used to
calculate the dc mobility [4,13]. However, a very recent work
[21] on the one-dimensional (1D) Peierls model for the param-
eter models corresponding to rubrene finds that D(t ) features
an upturn at t ≈ 1/ω0, but reaches a plateau for t ∼ 2π/ω0.
The upturn in D(t ) corresponds to a zero-frequency peak in
the frequency-dependent mobility μ(ω) of width ω0, which is
absent in the TL solution. Furthermore, it was shown that a
similar result for D(t ) can be obtained within the newly de-
veloped mapping approach to surface hopping [21,22] which
conserves the electron energy, giving important support to the
Ehrenfest dynamics result. Still, there are important questions
that have remained open. In particular, how applicable is the
QC approximation? Will the zero-frequency peak appear also
in the fully quantum solution? Does the answer depend on a
specific model and the parameter regime?
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To answer these questions, in this Letter we focus on
the 1D Holstein model, where due to recent methodological
advances, we can find a fully quantum solution representa-
tive of the thermodynamic limit, at least in certain parameter
regimes. Specifically, we will use the method based on dy-
namical quantum typicality (QT) [23] which is complemented
by the publicly available solutions of the hierarchical equa-
tions of motion (HEOM) [11,24,25]. We find very good
agreement with the numerically cheaper QC calculations, both
featuring nonmonotonous diffusion D(t ) with a plateau at
large times. Both the fully quantum and QC solution feature a
zero-frequency peak in μ(ω), apart from the finite-frequency
DDP which appears as a precursor to the Anderson localiza-
tion at a short timescale. Our results, when combined with
those for the Peierls model [12,21], indicate that the zero-
frequency peak in mobility appears both in the models with
local and nonlocal electron-phonon coupling.

Model and methods. The 1D Holstein model is given by the
Hamiltonian

H = − t0
∑

i

(c†
i ci+1 + H.c.)

− g
∑

i

ni(a
†
i + ai ) + ω0

∑
i

a†
i ai. (1)

Here, t0 is the hopping parameter, c†
i (a†

i ) is the electron
(phonon) creation operator, ni = c†

i ci, and we assume a single
electron in the band as appropriate for low doped semicon-
ductors. The electron-phonon coupling constant is denoted
by g, the phonon frequency by ω0, and we also intro-
duce a convenient dimensionless quantity λ = g2/(2ω0t0).
We set t0, h̄, kB, e, and the lattice constant to one.
Within the Kubo linear-response formalism [26–28], the time-
dependent diffusion constant, D(t ) = ∫ t

0 dt ′ Re Cj j (t ′), and
the frequency-dependent mobility,

μ(ω) = 2 tanh
(

βω

2

)
ω

∫ ∞

0
dt cos(ωt )Re Cj j (t ), (2)

are obtained from the current-current correlation function
Cj j (t ) = 〈 j(t ) j(0)〉, where j = it0

∑
i(c

†
i+1ci − c†

i ci+1). The
dc mobility is given by the Einstein relation μdc = D(∞)/T .

We solve the Hamiltonian given by Eq. (1) by the methods
which, in certain parameter regimes, give a numerically exact
result for Cj j (t ) representative of the thermodynamic limit.
The QT method [29,30] is presented in detail in Ref. [23].
Its application is mostly restricted by the computer memory
since the Hilbert space grows rapidly with the total num-
ber of phonons and lattice sites that we take into account.
We use it for intermediate and strong coupling, where one
can eliminate the finite-size effects within available memory.
For the solution at high temperature and for weak coupling,
we use the HEOM results from the literature [24,25]. At
low temperature we need a much longer chain, but for a
weak interaction we can calculate the mobility within the
dynamical mean-field theory (DMFT) [31]. In Ref. [32] we
showed that, rather surprisingly, the DMFT gives nearly exact
single-particle properties within the Holstein model, in an
arbitrary number of dimensions and the corresponding exact
self-energy is nearly local. The bubble term for conductivity
then almost coincides in the HEOM and DMFT solutions [11].

Furthermore, we showed that the vertex corrections to con-
ductivity in the Holstein model vanish in the weak-coupling
limit [11]. That is why the DMFT solution for conductivity is
almost exact in the weak-coupling limit.

In the QC solution the electron dynamics is obtained from a
solution of the Schrödinger equation, while the ion dynamics
is treated classically [18–20]. The electron Hamiltonian is
given by

H el = −t0
∑

i

(c†
i ci+1 + H.c.) − g

√
2ω0

∑
i

xic
†
i ci, (3)

where the displacement operator xi = (1/
√

2ω0)(a†
i + ai ) is

considered as a classical variable. The ion dynamics x(t ) is
treated both within the classical path approximation (CPA)
and the mean-field Ehrenfest method [20,21]. In CPA, the
ions perform harmonic oscillations, xi(t ) = xi(0) cos(ω0t ) +
[ẋi(0)/ω0] sin(ω0t ). Hence, in this case the ion dynamics is
completely determined by the initial ion displacements and
velocities. As we show in Supplemental Material (SM) Sec. I
[33] (see also Refs. [34–39] therein), xi(0) and ẋi(0) should
be taken from the Gaussian distributions with the variance
〈x2

i (0)〉 = 1
2ω0

coth(βω0/2) and 〈ẋ2
i (0)〉 = ω0

2 coth(βω0/2),
respectively. In the mean-field Ehrenfest method the ion dy-
namics is modified by the presence of an electron by the
backaction term −∂/∂xi〈〈ψn(t )|H el|ψn(t )〉〉, where the outer
angle bracket denotes averaging over the Boltzmann fac-
tor. The initial electron wave functions ψn(0) correspond to
the eigenstates of H el with energy En obtained for random
ion displacements and velocities, H el(0)|ψn(0)〉 = En|ψn(0)〉.
Then we use the fourth-order Runge-Kutta method for CPA
or the second-order Verlet method for Ehrenfest dynamics,
using a sufficiently small time step 	t , to calculate ψn(t )
from the time-dependent Schrödinger equation i ∂

∂t |ψn(t )〉 =
H el(t )|ψn(t )〉. The current-current correlation function is then
given by

Cj j (t ) = 1

Z

∑
n,m

e−βEn〈ψn(t )| j|ψm(t )〉〈ψm| j|ψn〉, (4)

which needs to be averaged over many realizations of the
initial ion positions and velocities. The QC equations are
described in more detail in SM Sec. I [33].

Results. We will present the results for ω0 = 1/3 at in-
termediate (λ = 0.5) and weak (λ = 1/8) electron-phonon
coupling, and the results for ω0 = 0.1 at λ = 0.45 and 1.25.

The results for ω0 = 1/3, λ = 0.5 (g = 0.577), and T = 1
are shown in Fig. 1. We start our analysis from the two
well-known limits. The DMFT solution [31,32] neglects the
vertex corrections to conductivity. In this case the current-
current correlation function CDMFT

jj (t ) exponentially goes to
zero [Fig. 1(a)] and the frequency-dependent mobility μ(ω)
assumes a Lorentzian shape [Fig. 1(b)]. Since the self-energy
in the Holstein model is almost local [32], the DMFT solution
practically coincides with the full quantum solution in the
bubble approximation [11]. In the static case, when the ion
vibrations are frozen at their randomly chosen t = 0 positions,
we end up with the AM solution. In this case, CAM

j j (t ) changes
sign and then, following a power law ∝1/t2, goes to zero, such
that the dc mobility μdc = ∫ ∞

0 CAM
j j (t ) = 0.
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FIG. 1. Comparison between different methods of the
(a) current-current correlation function, (b) frequency-dependent
mobility, (c) time-dependent diffusion constant, (d) localization
length, and (e) ensemble-averaged electron kinetic energy for
intermediate electron-phonon coupling.

The qualitative difference which brings the full solution
of the Holstein model is best understood by looking at the
time-dependent diffusion constant D(t ) [Fig. 1(c)]. After the
ballistic regime where D(t ) increases linearly, there is a
plateau in the DMFT solution corresponding to the diffusive
transport. In the AM D(t ) reaches a maximum at time tmax and
then decreases towards zero. tmax increases with the increase
of the localization length. The full solution also features a
decrease in diffusion which is, however, interrupted at time
t ≈ 1/ω0 when D(t ) starts to increase again. This corresponds
to the small positive values of Cj j (t ) for 1/ω0 � t � 2π/ω0

[see the inset of Fig. 1(a)]. The increase in D(t ) causes the
appearance of an additional zero-frequency peak in μ(ω)
[Fig. 1(b)]. The agreement between the QC and quantum QT
and HEOM solutions is excellent up to t � 2π/ω0. For larger
times, D(t ) reaches a clear plateau in QC, while there is a fur-
ther slight increase in the QT and HEOM solutions. We cannot
say if this is due to the finite size of the lattice in a quantum
solution (N = 7 in QT and N = 10 in HEOM). We note that
the QC solution is here obtained on the lattice with N = 200
sites after averaging over 3000 initial ion displacements and
velocities. The backaction term within the Ehrenfest approach
leads to very small differences and we show just the CPA
results in the main text. For details of the QC numerics, see
SM Sec. II [33].

We now discuss a few conceptual issues. First, we note that
for the appearance of both the maximum and the minimum in
D(t ) we need well-separated timescales, tmax being smaller
than 1/ω0. tmax is proportional to the localization length Lloc

in the static case [Lloc(En) = 1/
∑

i |ψ i
n|4, where ψ i

n are the
components of |ψn(0)〉] and at t ∼ 1/ω0 the inelastic electron-
phonon scattering comes into effect. The localization length
[Fig. 1(d)] depends on the eigenstate energy En, while the
states near the lower band edge participate in charge transport
at low and intermediate temperatures. The notion of these two
timescales forms the basis of a popular transient localization
scenario of charge transport introduced by Ciuchi, Fratini,

FIG. 2. (a) Current-current correlation function, (b) time-
dependent diffusion constant, and (c) frequency-dependent mobility
for weak electron-phonon coupling at high (left column) and low
temperature (right column).

and Mayou [4,13]. Yet, the phenomenological TL approach
cannot explain the upturn in μ(ω) for ω < ω0. Within TL,
the correlation function CTL

j j (t ) = CAM
j j (t )e−t/τin exponentially

goes to zero, and D(t ) just goes to a constant for t � 1/ω0.
We note that the increase of the ensemble-averaged electron
kinetic energy 〈Eel(t )〉 [Fig. 1(e)], which is a well-known
artifact of QC dynamics [4], does not significantly influence
CQC

j j (t ) since the timescale of this increase is significantly
longer than the time it takes for Cj j to decay to zero. This
is in agreement with the findings from a very recent QC study
on the Peierls model [21]. Finally, by taking the correlation
functions from Fig. 1 as an example, in SM Sec. II [33] we
demonstrate why it is impossible to reliably extract the dc
mobility just from the imaginary-axis data, which one could
obtain from the QMC calculations.

Next, we examine the influence of the temperature to
charge transport in Fig. 2. We set a weaker electron-
phonon coupling λ = 1/8 (g = 0.288) and consider T = 5
(left column) and 0.5 (right column). At high temperature
[Figs. 2(a1)–2(c1)], the localization length is small [the inset
of Fig. 2(c2)], and the charge dynamics is qualitatively the
same as in Fig. 1: Apart from the DDP at finite frequency,
there is an additional zero-frequency peak in μ(ω). The QC
solution (for N = 100) agrees very well with the quantum
(HEOM) solution (for N = 7) [11,24]. At lower temperature
[Figs. 2(a2)–2(c2)], one needs a longer chain to eliminate
the finite-size effects and the HEOM or QT solution are
not available. Yet, for a comparison we can use the DMFT
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FIG. 3. The same quantities as in Fig. 1 for lower phonon fre-
quency and for an intermediate and strong electron-phonon coupling.

solution, which is in the thermodynamic limit, since we
know that the importance of vertex corrections decreases for
weaker electron-phonon interactions and lower temperature
[11]. DMFT and QC results are in excellent agreement. This is
favored by a slower increase of 〈Eel(t )〉 in the weak-coupling
case (see SM Sec. II [33]). The dynamical disorder is small
at T = 0.5, which corresponds to a large localization length
and tmax. Since tmax > 1/ω0, here we do not observe the TL
phenomenology.

The electron dynamics for a lower phonon frequency
ω0 = 0.1 is presented in Fig. 3. Here, we do not have a fully
quantum solution since one would need a large lattice size and
propagation of the correlation function up to very long times.
Yet, the previous analysis gives us confidence that the QC
approach gives a proper description of the electron dynamics
also for a lower phonon frequency. The results at T = 0.5 for
λ = 0.45 (g = 0.3) and λ = 1.25 (g = 0.5) look qualitatively
the same as in Fig. 1. Most importantly, in the time interval
1/ω0 � t � 2π/ω0 the correlation function assumes small
positive values [Fig. 3(a)], which leads to the upturn in μ(ω)
for ω < ω0 [Fig. 3(b)]. The diffusion constant D(t ) reaches
a plateau at t ∼ 2π/ω0, as before [Fig. 3(c)]. The displaced
peak in μ(ω) is centered at a lower frequency for λ = 0.45
than for λ = 1.25 when in the AM the localization length is
longer [Fig. 3(d)]. We expect that the QC solution is quanti-
tatively better for weaker electron-phonon coupling, when the
increase in the electron kinetic energy in the QC solution is
not substantial by the time that the plateau in D(t ) is reached

[Fig. 3(e)]. The TL solution, which does not feature the upturn
at long times (low frequency), is shown for comparison.

Conclusions. In summary, we performed QC calcula-
tions of charge transport in the 1D Holstein model for two
representative phonon frequencies. Frequency ω0 = 0.1 for
temperature T = 0.5 is appropriate for the modeling of or-
ganic semiconductors such as rubrene, and the results for
ω0 = 1/3 and various g and T are used for a comparison with
fully quantum HEOM [24,25] and QT solutions [23]. The
agreement between these two quantum methods is excellent.
Both methods can propagate the real-time correlation function
up to long times and for lattice sizes which are representa-
tive of the thermodynamic limit. These properties gave us an
opportunity to make detailed comparisons with the QC dy-
namics, which is performed on much longer chains, consisting
of a few hundred lattice sites. For temperatures T � ω0, we
find that the charge dynamics is qualitatively the same, and
quantitatively quite similar to the quantum case. For strong
dynamical disorder, we observe a nonmonotonic diffusion
D(t ). The maximum in D(t ) at short times corresponds to the
displaced Drude peak in μ(ω) as a precursor to the Anderson
localization. At times 1/ω0 � t � 2π/ω0, diffusion increases
before reaching a plateau at t ∼ 2π/ω0. This corresponds to
the upturn in μ(ω) for ω < ω0. This feature appears regardless
of the specific methodology that we used, which gives us
confidence that it is a genuine property of the model. The
zero-frequency peak in μ(ω) does not appear in the TL model
of charge transport [4] which, therefore, underestimates the dc
mobility. Such a peak is also observed in very recent QC cal-
culations in the Peierls model [21]. This indicates that the peak
appears both for local and nonlocal electron-phonon coupling.
Our work overcomes the constraints of a small lattice size in
real-frequency Lanczos calculations or the analytical contin-
uation of the imaginary-frequency data [12] and presents an
explicit comparison between the charge transport in models
featuring quantum and classical phonons.
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I. QUANTUM-CLASSICAL DYNAMICS:
FORMALISM

This Section of the Supplemental Material is presented
for clarity and pedagogical reasons. We follow the
quantum-classical (QC) approach from Refs. [S1–S3].

A. Probability distribution for the phonon
coordinate

We consider just the phonon part of the Hamiltonian
since the electron concentration goes to zero. The
Hamiltonian is given by

H = ω0a
†a. (S1)

By definition, the probability distribution function is
given by

p(x) =
1

Z

∞∑
n=0

e−βnω0 |〈x|ψn〉|2

=
1

Z
〈x|

∞∑
n=0

e−βnω0 |ψn〉〈ψn︸ ︷︷ ︸
≡e−βH

|x〉

=
1

Z
〈x|e−βH |x〉, (S2)

where β = 1
T , Z is the partition function and ψn are

the eigenstates of Hamiltonian (1), i.e. the Hermite
functions. The expression on the right hand side of
Eq. (S2) corresponds to the density matrix of a harmonic
oscillator expressed in the coordinate representation.
The explicit expression for this quantity can be found
in many textbooks [S4–S6], but for the sake of clarity
and completeness, we will here repeat that derivation
following the approach outlined by [S4].

Since p(x) will be normalized at the end of the
calculation, the term 1/Z will be omitted in p(x) from
this point onward. Without normalization, p(x) no
longer holds meaningful information for a single value
of x. Instead, our focus shifts to examining how p(x)
behaves as its argument varies. It can be expressed using
the momentum operator P as follows

p(x+ dx) = 〈x+ dx|e−βH |x+ dx〉
= p(x) + idx〈x|

[
P, eβH

]
|x〉. (S3)

This expression is a consequence of the fact that the
momentum operator P is the generator of translations

|x+ dx〉 = e−idxP |x〉 ≈ (1− idxP ) |x〉. (S4)

The second term in Eq. (S3) could be evaluated
immediately if (some function) of the coordinate operator
X was there instead of the momentum operator. This
holds true because X acts trivially on |x〉. Such a
transformation actually does exist and is given by the
following theorem

Theorem: The following relation always holds

[
P, e−βH

]
= iω0{X, e−βH} th

(
βω0

2

)
, (S5)

where {, } is the anticommutator.

Proof. Starting from the Baker–Campbell–Hausdorff
formula

eBAe−B = A+ [B,A] +
1

2!
[B, [B,A]] + . . . . (S6)

and setting B = −βω0a
†a, A = a, one finds that

e−βω0a
†aaeβω0a

†a = a− βω0[a†a, a]

+
β2ω2

0

2!
[a†a, [a†a, a]] + . . .

= aeβω0 , (S7)

and as a consequence

e−βω0a
†aa = eβω0ae−βω0a

†a, (S8a)

e−βω0a
†aa† = e−βω0a†e−βω0a

†a. (S8b)

The momentum P ∼ a − a† and coordinate X ∼ a + a†

operator will pop out if we rewrite the exponential e−βω0

in Eqs. (S8a) and (S8b) as

eβω0 =
1 + x

1− x
=⇒ x = th

(
βω0

2

)
(S9)
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Eqs. (S8a) and (S8b) become[
1− th

(
βω0

2

)]
e−βω0a

†a a

=

[
1 + th

(
βω0

2

)]
a e−βω0a

†a, (S10a)[
1 + th

(
βω0

2

)]
e−βω0a

†a a†

=

[
1− th

(
βω0

2

)]
a† e−βω0a

†a. (S10b)

Subtracting Eq. (S10b) from Eq. (S10a) and simplifying
the obtained expression, we get

[a− a†, e−βH ] = −{a+ a†, e−βH}th
(
βω0

2

)
. (S11)

By multiplying both sides with −i
√

ω0

2 we arrive at the
final expression[

P, e−βH
]

= iω0{X, e−βH} th

(
βω0

2

)
, (S12)

which proves the theorem. �

Plugging this back into Eq. (S3)

dp(x)

dx
= −ω0th

(
βω0

2

)
〈x|{X, e−βH}|x〉

= −2ω0th

(
βω0

2

)
x p(x), (S13)

we arrive at a well known differential equation whose
solution is the Gaussian

p(x) =
1

σ
√

2π
e−

x2

2σ2 ; σ2 =
1

2ω0
coth

(
βω0

2

)
. (S14)

Since the on-site interaction in the Holstein model is
of the form

Hint = −g(a+ a†)n = −g
√

2ω0Xn, (S15)

where n = c†c, , we see that it can be rewritten as

Hint → εn; ε = −g
√

2ω0X, (S16)

where, ε can also be regarded as random variable.
As a consequence of the fact that the probability
distribution of X follows a Gaussian (see Eq. (S14)), it
can be concluded that ε will likewise exhibit a Gaussian
distribution, centered at zero, with the variance given by

σ2
ε ≡ Var [ε] = 2ω0g

2Var [X] = g2coth

(
βω0

2

)
= 2g2

(
1

2
+

1

eβω0 − 1

)
. (S17)

Therefore, the probability distribution for ε reads as
follows

pε(ε) =
1

σε
√

2π
e
− ε2

2σ2ε . (S18)

B. Kubo formula for a time-dependent
Hamiltonian

Our goal is to calculate the current-current correlation
function for an electron which scatters from classical
vibrations using the Kubo formula for the time-
dependent Hamiltonian. Other quantities, like the time-
dependent diffusion constant and frequency-dependent
mobility, can be directly obtained from the current-
current correlation function. Here we derive the Kubo
formula in the case when the unperturbed (without the
external field) Hamiltonian H0 is time dependent.

The total Hamiltonian is given by

H(t) = H0(t) +H ′(t), (S19)

and we look for the linear response to H ′. Following
Refs. [S7, S8], we assume that at t0 = 0 the electron is
in thermodynamic equilibrium corresponding to a given
static ion displacements, described by the Hamiltonian
H0(0) and the partition function Z = Tr(e−βH0(0)) =
Tr(ρ(0)), with the eigenstates denoted by |n〉. Then,
at t0 = 0 we allow both the classical ion vibrations
(leading to the time-dependent Hamiltonian H0(t)) and
the external field (described by the Hamiltonian H ′(t)).
The eigenstates evolve with time according to

|n(t)〉 = U(t, t0)|n(t0)〉, (S20)

where the time evolution operator U is determined by

i∂tU(t, t0) = H(t)U(t, t0). (S21)

The expectation value of an operator A is given by

〈A〉(t) =
1

Z

∑
n

〈n(t)|A|n(t)〉e−βEn = Tr(ρ(0)A(t)),

(S22)
where A(t) = U(t0, t)AU(t, t0). Alternatively, we can
write that

〈A〉(t) = Tr(ρ(t)A), (S23)

where ρ(t) = U(t, t0)ρ(0)U(t0, t) is the time-dependent
density matrix.

We closely follow the derivation of the Kubo formula
in the standard case when the Hamiltonian H0 is time-
independent [S9]. We first need to define the interaction
picture (with respect to H0(t)), which is done by the
following relation

|n̂(t)〉 = U†0 (t, t0)|n(t)〉, (S24)

where

i∂tU0(t, t0) = H0(t)U0(t, t0). (S25)

The evolution operator in the interaction picture is
defined by the relation

|n̂(t)〉 = Û(t, t0)|n̂(t0)〉, (S26)
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All the quantities in the interaction picture will have a
caret sign. Note that in the stationary case U0(t, t0) =
e−iH0(t−t0). It remains to prove that

i∂tÛ(t, t0) = Ĥ ′(t)Û(t, t0), (S27)

where Ĥ ′(t) = U0(t0, t)H
′(t)U0(t, t0).

Proof. From Eqs. S20 and S24 |n̂(t)〉 =

U†0 (t, t0)|n(t)〉 = U†0 (t, t0)U(t, t0)|n(t0)〉. Therefore,
Û(t, t0) = U†0 (t, t0)U(t, t0). Then,

i∂tÛ(t, t0) = i∂t

(
U†0 (t, t0)U(t, t0)

)
=
(
i∂tU

†
0 (t, t0)

)
U(t, t0) + U†0 (t, t0) (i∂tU(t, t0))

= − (H0(t)U0(t, t0))
†
U(t, t0) + U†0 (t, t0)H(t)U(t, t0)

= −U0(t, t0)†H0(t)U(t, t0) + U†0 (t, t0)H(t)U(t, t0)

= U0(t, t0)† (H(t)−H0(t))U(t, t0)

= U0(t, t0)†H ′(t)U0(t, t0)Û(t, t0)

= Ĥ ′(t)Û(t, t0). �

We are now ready to derive the Kubo formula for
〈A〉(t). For now, we assume that A is time-independent
in the Schrödinger picture. We will use that Û(t, t0) ≈
1− i

∫ t
t0
dt′Ĥ ′(t′). We find

〈A〉(t) =
1

Z

∑
n

〈n(t)|A|n(t)〉e−βEn

=
1

Z

∑
n

〈n|Û†(t, t0)Û†0 (t, t0)AU0(t, t0)Û(t, t0)|n〉e−βEn

=
1

Z

∑
n

〈n|
(

1 + i

∫ t

t0

dt′Ĥ ′(t′)

)
Â(t)

×
(

1− i
∫ t

t0

dt′Ĥ ′(t′)

)
|n〉e−βEn

= 〈Â(t)〉 − i
∫ t

t0

dt′〈
[
Â(t), Ĥ ′(t′)

]
〉 (S28)

The ensemble average is with respect to H0(t0). We set
t0 → −∞ and obtain

δ〈A〉(t) = 〈A〉(t)− 〈Â〉(t) =

∫ ∞
−∞

dt′CRAH′(t, t
′), (S29)

where the retarded response function is equal to

CRAH′(t, t
′) = −iθ(t− t′)〈

[
Â(t), Ĥ ′(t′)

]
〉 (S30)

Hence, everything looks the same as in the case with
time-independent H0. The only difference is that the
ensemble average is taken with respect to H0(t = t0) and
in the time evolution Ĥ ′(t) = U0(t0, t)H

′(t)U0(t, t0) we
cannot simply replace U0(t, t0) by e−iH0(t−t0). We can
also allow for an explicit time-dependence of A(t) in the
Schrödinger picture, as it would be needed for the Peierls
model in the QC approximation.

The frequency-dependent mobility assumes the same
form as for the time-independent H0

µ(ω) =
1− e−βω

2Nω

∫ ∞
−∞

dteiωtCjj(t), (S31)

where

Cjj(t) = Tr
[
j(t)j(0)e−βH0(0)

]
/Z

=
1

Z

∑
n

e−βEn〈n|j(t)j(0)|n〉, (S32)

where Z = Tr(e−βH0(0)) = Tr(ρ(0)), |n〉 are eigenstates
of H0(0) and j(t) = U0(0, t)jU0(t, 0). We omit the
caret sign from now on. In the Holstein model j =

it0
∑
i

(
c†i ci+1 − c†i+1ci

)
. For numerical implementation

we write

Cjj(t) =
1

Z

∑
n

〈n|U0(0, t)jU0(t, 0)j|n〉

=
1

Z

∑
n

〈n|U†0 (t, 0)jU0(t, 0)j|n〉

=
1

Z

∑
n,m

(U0(t, 0)|n〉)† j (U0(t, 0)|m〉) 〈m|je−βEn |n〉

=
1

Z

∑
n,m

e−βEn〈n(t)|j|m(t)〉〈m|j|n〉. (S33)

C. Ehrenfest and CPA equations

In the QC method, we treat the electron dynamics
quantum-mechanically and the phonons are considered
as classical vibrations. The electronic part of the Holstein
Hamiltonian is given by

Hel = −t0
∑
i

(
c†i ci+1 + h.c.

)
−g
√

2ω0

∑
i

xic
†
i ci. (S34)

Here, the ion position operators xi = (1/
√

2ω0)(a†i + ai)
are replaced by the coordinates. If we freeze the ions at
their t = 0 positions, we obtain the Anderson model with
diagonal disorder

Hel(0) = −t0
∑
i

(
c†i ci+1 + h.c.

)
+
∑
i

εic
†
i ci, (S35)

where εi = −g
√

2ω0xi. The disorder distribution is
Gaussian with the variance given by Eq. (S17), σ2

ε =

g2coth
(
βω0

2

)
. The corresponding displacement variance

is 〈x2i (0)〉 = 1
2ω0

coth (βω0/2). To calculate the current-
current correlation function given by Eq. (S33), we need
the time evolution of the eigenstates |n〉 ≡ |ψn(0)〉,
Hel(0)|ψn(0)〉 = En|ψn(0)〉, according to Hamiltonian
(S34)

i
∂

∂t
|ψn(t)〉 = Hel(t)|ψn(t)〉. (S36)
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The electron impact to the ion dynamics can be either
neglected or included through the back-action term in
the mean-field Ehrenfest approach. The first approach,
called classical path approximation (CPA) [S10, S11], is
slightly simpler to implement since the ion dynamics is
completely determined by the initial ion displacements
xi(0) and velocities ẋi(0)

xi(t) = xi(0) cos(ω0t) + (ẋi(0)/ω0) sin(ω0t). (S37)

Analogously to xi(0), the initial velocities are taken from
the Gaussian distribution with the variance 〈ẋ2i (0)〉 =
ω0

2 coth (βω0/2). Then, Eq. (S36) can be solved by the
4th order Runge-Kutta method. We checked that it was
sufficient to take the time step ∆t = 0.05. To decrease
the finite-size effects one can modulate the ion frequency
by a randomly chosen dω0i, see Sec. II B.

In the Ehrenfest approach, the ion dynamics is
modified by the back-action term, which conserves the
total energy of the system. (The electron kinetic energy,
however, changes with time in both approaches.) The
ion equation of motion is given by

ẍi(t) = −ω2
0xi(t)−

∂

∂xi
〈〈ψn(t)|Hel|ψn(t)〉〉, (S38)

where the outer angle bracket denotes the ensemble
average, in the spirit of the mean-field Ehrenfest
approach [S12]. The dynamics does not depend on the
ion mass which we set to one. Then, as in Ref. [S1] for
the Peierls model, by expanding up to the second order
and using the Schrödinger equation, we get

|ψn(t+ ∆t)〉 = |ψn(t)〉 − iHel|ψn(t)〉∆t

−1

2
i
[
Hel(t)ψ̇n(t) + Ḣel(t)ψn(t)

]
∆t2.(S39)

For the Holstein Hamiltonian

Ḣel = −g
√

2ω0

∑
i

ẋic
†
i ci. (S40)

The ion positions are updated using the 2nd order Verlet
algorithm

xi(t+ ∆t) = 2xi(t)− xi(t−∆t) + ẍi(t)∆t
2, (S41)

ẋi(t+ ∆t) =
1

2∆t
[xi(t+ ∆t)− xi(t−∆t)] . (S42)

The same algorithm can be used for a numerical solution
in CPA, where the only difference would be the absence
of back-action term

− ∂

∂xi
〈〈ψn(t)|Hel|ψn(t)〉〉 = 〈〈ψn(t)|g

√
2ω0c

†
i ci|ψn(t)〉〉.

(S43)
In the 2nd order Verlet solution a smaller ∆t step is
needed than in the Runge-Kutta. We checked that
setting ∆t = 0.02 was enough.

II. QUANTUM-CLASSICAL DYNAMICS:
SELECTED ADDITIONAL RESULTS

A. CPA vs. Ehrenfest

The difference between the CPA and the mean-field
Ehrenfest method is small in all parameter regimes that
we studied. As an illustration, Fig. S1 shows the time-
dependent diffusion constant for ω0 = 1/3, λ = 0.5 and
T = 1, for the lattice-size N = 200. The results are
averaged over 3000 initial configurations.

0 20 40 60 80 100
t

0.0

0.2

0.4

0.6

0.8

D(
t)

CPA
Ehrenfest

FIG. S1. Time-dependent diffusion constant in the CPA and
Ehrenfest approach. Here ω0 = 1/3, λ = 0.5, and T = 1.

B. Finite-size effects

In the QC approach one needs a longer chain to
eliminate the finite-size effects in comparison to a
fully quantum solution, where the finite-size effects are
diminished by the inelastic electron-phonon scattering.
The chain-length in the QC solution needs to be much
longer than the localization length (for frozen vibrations).
However, for stronger disorder, we also need a rather
long chain, to properly sample the tails of the disorder
distribution. Typically, we used up to few hundreds of
lattice sites and we averaged over thousands of initial
configurations.

We also note that the QC correlation function and
time-dependent diffusion constant feature small bumps
at the times which are multiple of the period 2π/ω0. To
eliminate this artifact, we modulate a frequency of the
ion i by a small random frequency dω0i, taken from a
Gaussian distribution of standard deviation dω0. Such a
modification leads to a better formed plateau in D(t) for
times t & 2π/ω0, as illustrated in SM Fig. S2. We always
used a modulation dω0 ≈ ω0/10.
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0 20 40 60 80 100
t

0.0

0.2

0.4

0.6

0.8
D(

t)

N = 200, d 0 = 0.03
N = 200, d 0 = 0
N = 30, d 0 = 0.03
N = 30, d 0 = 0

FIG. S2. Time-dependent diffusion constant for the lattice-
sizes N = 200 and 30. The solid lines correspond to
the case when the ion frequencies are modulated by a
random frequency taken from the Gaussian distribution with
a standard deviation dω0 = 0.03. Here ω0 = 1/3, λ = 0.5, and
T = 1.

C. Correlation functions on imaginary axis

Here we show that the difference between the
imaginary-axis correlation functions for the Holstein
model and the corresponding Anderson model is very
small. We explain how such a minuscule difference can
still correspond to a significant difference in dc mobilities.

The imaginary-time correlation function can be
obtained from the frequency-dependent mobility as

Cjj(τ) =
1

π

∫ ∞
−∞

dω
e−τω

1− e−βω
ωµ(ω). (S44)

We note that Cjj(τ) and Cjj(iω) are purely real and
µ(−ω) = µ(ω). In Fig. S3(a) we show Cjj(τ) for QC,
QT, AM and TL solutions for parameters as in Fig. 1 of
main text. The QC, QT and AM curves almost overlap.
Their difference is smaller than 0.01, as shown in panel
(b). The difference with the TL curve is larger due to
the difference in µ(ω) for ω & ω0.

The current-current correlation function in imaginary
frequency can be also easily obtained using the expression

Cjj(iω) =
1

π

∫ ∞
−∞

dν
ν2

ν2 + ω2
µ(ν). (S45)

The corresponding QC, QT and AM curves are shown
in Fig. S3(c). The symbols are shown at the Matsubara
frequencies ωn = 2nπT . Since the dc mobility is equal to
the derivative

µdc =
∂ImCjj(ω)

∂ω

∣∣∣∣
ω=0+

= − ∂ReCjj(iω)

∂ω

∣∣∣∣
ω=0+

, (S46)

it explains how such a tiny difference in Cjj(iωn) at
the Matsubara frequencies can still correspond to a
subtantial difference in dc mobilities.

0.00 0.25 0.50 0.75 1.00

1.0

1.2

1.4

1.6

C j
j(

)

(a)QC
QT
AM
TL

0.00 0.25 0.50 0.75 1.00

0.00

0.02

0.04

0.06

C j
j(

)

(b)

CQT
jj CQC

jj

CQT
jj CAM

jj

CQT
jj CTL

jj

0 5 10 15 20
0.0

0.5

1.0

C j
j(i

)

(c)QC
QT
AM

FIG. S3. (a) Current-current correlation functions in
imaginary time, (b) their difference, and (c) the corresponding
correlation functions in imaginary frequency. Here ω0 =
1/3, λ = 0.5, and T = 1.
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0 100 200 300 400 500
t

2.0

1.5

1.0

0.5

0.0

0.5
E e

l

T=0.5
T=5

FIG. S4. Ensemble averaged kinetic energy for T = 0.5 and
5. Here, λ = 1/8 and ω0 = 1/3.

D. Electron kinetic energy

In the QC approach the ensemble-averaged kinetic
energy,

〈Eel(t)〉 =
1

Z

∑
n

〈ψn(t)|Hel(t)|ψn(t)〉, (S47)

increases with time, which is a well-known artifact of
this method [S13]. Still, from the examples where we
made a comparison with the quantum solution of the
Holstein model, we see that the impact of this artifact
on the diffusion D(t) is not drastic. In Fig. S4 we
show 〈Eel(t)〉 for weak coupling λ = 1/8 and ω0 = 1/3.
At low temperature T = 0.5 the dynamical disorder is
weak, the approach to the long-time limit 〈Eel(t)〉 = 0
is slow, and 〈Eel(t)〉 did not significantly change by the
time 2π/ω0 when the plateau in D(t) is reached. In
this case D(t) quantitatively agrees very well with the
quantum (DMFT) solution (see main text). At T = 5
the dynamical disorder is strong and 〈Eel(t)〉 approaches

much faster to the long time limit. Yet, even in this
case the QC solution is close to the quantum (HEOM)
solution. We note that 〈Eel(0)〉 is larger for T = 5 than
for T = 0.5 since in the former case also the states close
to the center of the band are partially occupied.

E. Strong electron-phonon coupling

The results for ω0 = 1/3, λ = 1 and T = 1, are
shown in SM Fig. S5. Here we used the chain of the
length N = 300 and 3200 initial condition realizations.
As compared to Fig. 1 of main text, here we observe
a quantitative difference in D(t) at longer times. This
could be a consequence of a substantial change of the
electron kinetic energy on the QC classical solution by the
time that the plateau is reached inD(t), as a consequence
of stronger electron-phonon coupling.
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FIG. S5. Comparison between different methods of the
(a) current-current correlation function, (b) frequency-
dependent mobility, (c) time-dependent diffusion constant,
(d) localizaton length and (e) ensemble averaged electron
kinetic energy for strong electron-phonon coupling. Here
ω0 = 1/3, λ = 1, and T = 1.
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