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It is generally accepted that the dynamical mean field theory gives a good solution of the Holstein model,
but only in dimensions greater than two. Here, we show that this theory, which becomes exact in the weak
coupling and in the atomic limit, provides an excellent, numerically cheap, approximate solution for the
spectral function of the Holstein model in the whole range of parameters, even in one dimension. To
establish this, we make a detailed comparison with the spectral functions that we obtain using the newly
developed momentum-space numerically exact hierarchical equations of motion method, which yields
electronic correlation functions directly in real time. We crosscheck these conclusions with our path
integral quantum Monte Carlo and exact diagonalization results, as well as with the available numerically
exact results from the literature.
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The Holstein model is the simplest model that describes
an electron that propagates through the crystal and interacts
with localized optical phonons [1]. On the example of this
model, numerous many-body methods were developed and
tested [2]. The Holstein molecular crystal model is also very
important in order to understand the role of polarons
(quasiparticles formed by an electron dressed by lattice
vibrations) in realmaterials [3]. This is still a very active field
of research fueled by new directions in theoretical studies
[4–12] and advances in experimental techniques [13].
The Holstein model can be solved analytically only in

the limits of weak and strong electron-phonon coupling
[14–16]. Reliable numerical results for the ground state
energy and quasiparticle effective mass were obtained in the
late 1990s using the density matrix renormalization group
(DMRG) [17,18] and path integral quantum Monte Carlo
(QMC) methods [19], and also within variational appro-
aches [20–22]. At the time, numerically exact spectral
functions for one-dimensional (1D) systems were obtained
onlywithin the DMRGmethod [17,18]. Themain drawback
of the QMC method is that it gives correlation functions in
imaginary time and obtaining spectral functions and dy-
namical response functions is often impossible since the
analytical continuation to the real frequency is a numerically
ill-defined procedure. Interestingly, at finite temperature the
spectral functions were obtained only very recently using
finite-T Lanczos (FTLM) [23] and finite-T DMRG [24]
methods. All these methods have their strengths and weak-
nesses depending on the parameter regime and temperature.
As usually happens in a strongly interacting many-body
problem, a complete physical picture emerges only by
taking into account the solutions obtained with different
methods.
The hierarchical equations of motion (HEOM) method is

a numerically exact technique that has recently gained

popularity in the chemical physics community [25–28].
It has been used to explore the dynamics of an electron
(or exciton) linearly coupled to a Gaussian bosonic bath.
Within HEOM, we calculate the correlation functions
directly on the real time (real frequency) axis [29].
Nevertheless, the applications of the HEOM method to
the Holstein model [30–34] have been, so far, scarce
because of the numerical instabilities stemming from the
discreteness of the phonon bath on a finite lattice.
Along with numerically exact methods, a number of

approximate techniques have been developed and applied to
the Holstein model [35–38]. The dynamical mean field
theory (DMFT) is a simple nonperturbative technique that
has emerged as amethod of choice for the studies of theMott
physics within the Hubbard model [39,40]. It can also be
applied to the Holstein model giving numerically cheap
results directly on the real frequency axis [41]. This method
fully takes into account local quantum fluctuations and it
becomes exact in the limit of infinite coordination number
when the correlations become completely local. It was
soon recognized [42,43] that the DMFT gives qualitatively
correct spectral functions and conductivity for the Holstein
model in three dimensions. In low-dimensional systems the
solution is approximate as it neglects the nonlocal correla-
tions and one might expect that the DMFT solution would
not be accurate, particularly in one dimension. Surprisingly,
to our knowledge, only the DMFT solution for the Bethe
lattice was used in comparisons with the numerically exact
results for the ground state properties in one dimension
[20,44]. The quantitative agreement was rather poor, sug-
gesting that the DMFT cannot provide a realistic description
of the low-dimensional Holstein model due to the impor-
tance of nonlocal correlations [16,20,44].
In this Letter, we present a comprehensive solution of the

1D Holstein model: (i) We solve the DMFT equations in all
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parameter regimes. At zero temperature we find a remark-
able agreement of the DMFT ground state energy and
effective mass with the available results from the litera-
ture in one, two, and three dimensions. (ii) For interme-
diate electron-phonon coupling, we obtain numerically
exact spectral functions using the recently developed
momentum-space HEOM approach [45]. For strong cou-
pling we calculate the spectral functions using exact
diagonalization (ED). We find a very good agreement with
DMFT results and therefore demonstrate that the DMFT is
rather accurate, in sharp contrast to current belief in the
literature. (iii) We crosscheck the results with our QMC
calculations in imaginary time. Overall, we demonstrate
that the DMFTemerges as a unique method that gives close
to exact spectral functions in the whole parameter space of
the Holstein model, both at zero and at finite temperature.
Model and methods.—We study the 1D Holstein model

given by the Hamiltonian

H ¼ −t0
X

i

ðc†i ciþ1 þ H:c:Þ

− g
X

i

niða†i þ aiÞ þ ω0

X

i

a†i ai: ð1Þ

Here, c†i (a
†
i ) are the electron (phonon) creation operators,

t0 is the hopping parameter, and ni ¼ c†i ci. We consider
dispersionless optical phonons of frequency ω0, and g
denotes the electron-phonon coupling parameter. t0, ℏ, kB,
and lattice constant are set to 1. We consider the dynamics
of a single electron in the band. It is common to define
several dimensionless parameters: adiabatic parameter
γ ¼ ω0=2t0, electron-phonon coupling λ ¼ g2=2t0ω0, and
α ¼ g=ω0. These parameters correspond to different physi-
cal regimes of the Holstein model shown schematically in
Fig. 1(a).
In order to obtain reliable solutions in the whole para-

meter space, we use two approximate methods and three
methods that are numerically exact. In the Holstein model,
the DMFT reduces to solving the polaron impurity problem
in the conduction electron band supplemented by the self-
consistency condition [41]. The impurity problem can be
solved in terms of the continued fraction expansion, giving
the local Green’s function on the real frequency axis (see
Ref. [41] and Supplemental Material (SM) [46], Sec. I, for
details). A crucial advantage of the DMFT for the Holstein
model is that it becomes exact in both the weak coupling
and in the atomic limit, and that it can be easily applied in
the whole parameter space both at zero and at finite
temperature. The DMFT equations can be solved on a
personal computer in just a few seconds to a few minutes
depending on the parameters. On general grounds, the
DMFT is expected to work particularly well at high
temperatures when the correlations become more local
due to the thermal fluctuations [47,48]. We will compare
the DMFT with the well-known self-consistent Migdal

approximation (SCMA) [49], which becomes exact only in
the weak coupling limit; see Sec. II of SM [46].
We have recently developed the momentum-space

HEOM method [45] that overcomes the numerical insta-
bilities originating from the discrete bosonic bath. Within
thismethodwe calculate the time-dependent greaterGreen’s
function G>ðk; tÞ, which presents the root of the hierarchy
of the auxiliary Green’s functions. The hierarchy is, in
principle, infinite, and one actually solves the model by
truncating the hierarchy at certain depth D. The HEOM are
propagated independently for each allowed value of k up to
long times (ω0tmax ∼ 500). The propagation takes 5 to
10 hours on 16 cores per momentum k. The discrete
Fourier transform is then used to obtain spectral functions
without introducing any artificial broadening. Numerical
error in theHEOMsolution can originate from the finite-size
effects since themethod is applied on the latticewithN sites,
and also from the finite depthD. We always useN andD, as
given in SM [46], which correctly represent the thermody-
namic limit. Generally, for larger g we need smaller N and
largerD. This is why the EDmethod with a small number of
sites could be a better option in the strong coupling regime.
The EDmethod can be used more efficiently after the initial
Hamiltonian is transformed by applying the Lang-Firsov
transformation; see SM [46], Sec. III.
In the QMC method, we calculate the correlation func-

tion CkðτÞ ¼ hckðτÞc†kiT;0 in imaginary time. The thermal

(a)

(b) (c)

FIG. 1. (a) Schematic plot of different regimes in the ðγ; λÞ
parameter space. The white (black) circles correspond to para-
meters for which both HEOM and QMC (just QMC) calculations
were performed. The DMFT results are obtained in practically
whole space of parameters. (b) Comparison of the DMFT and
DMRG (taken from Refs. [17,20]) renormalized electron mass at
T ¼ 0. (c) Comparison of the ground state energy from the
DMFT and the global-local variational approach (taken from
Ref. [20]) at T ¼ 0.
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expectation value is performed over the states with zero
electrons and ckðτÞ ¼ eτHcke−τH. We use the path integral
representation, the discretization of imaginary time, and
analytical calculation of integrals over the phonon coor-
dinates. We then evaluate a multidimensional sum over the
electronic coordinates by a Monte Carlo method. This
method is a natural extension of early works where such
approach was applied just to thermodynamic quantities
[50–52]. Details of the method are presented in Ref. [45].
Results at zero temperature.—In Fig. 1(b), we show the

DMFT results for the electron effective mass at the bottom
of the band,m�=m0 ¼ 1 − dReΣðωÞ=dωjEp

(where ΣðωÞ is
the self-energy), over a broad range of parameters covering
practically the whole parameter space in the ðγ; λÞ plane.
We see that the mass renormalization is in striking agree-
ment with the DMRG result [17,20] that presents the best
available result from the literature. Small discrepancies are
visible only for stronger interaction with small ω0. A
similar level of agreement can be seen in the comparison
of the ground state (polaron) energy Ep in Fig. 1(c). Here,
the results obtained with variational global-local method
[20,21] are taken as a reference. While the agreement in the
weak coupling and in the atomic limit could be anticipated
since the DMFT becomes exact in these limits, we find the
quantitative agreement in the crossover regime between
these two limits rather surprising, having in mind that the
DMFT completely neglects nonlocal correlations. It is also
interesting that this was not observed earlier. The only
difference from the standard reference of Ciuchi et al. [41]
is that we applied the DMFT to the 1D case, as opposed to
the Bethe lattice. This is, however, a key difference.
Otherwise the DMFT provides only a qualitative descrip-
tion of the Holstein model [3,16,20,44,53]. From the
technical side, the only difference as compared to the case
of the Bethe lattice is in the self-consistency equation. For
obtaining a numerically stable and precise solution, it was
crucial to use an analytical expression for the self-
consistency relation (see Sec. IB in SM [46]). We have
also calculated the effective mass for two- and three-
dimensional lattices (see Sec. IC in SM [46]) and the
agreement with the QMC calculation from Ref. [19] is
excellent. This was now expected since the importance of
nonlocal correlations decreases in higher dimensions. A
comparison with the Bethe lattice effective mass is illus-
trated in SM [46], Sec. ID.
The next step is to check if the agreement with the

numerically exact solution extends also to spectral func-
tions. Typical results at k ¼ 0 are illustrated in Fig. 2. We
note that at T ¼ 0 the DMFT quasiparticle peak is a delta
function (broadened in Fig. 2), while satellite peaks are
incoherent having intrinsic nonzero width. In HEOM, the
peak broadening due to the finite lattice size N and finite
propagation time tmax is generally much smaller than the
Lorentzian broadening used in the insets of Figs. 2(a)–2(d).
The weights of the DMFT and HEOM quasiparticle peaks

correspond to the m0=m� ratio. The satellite peaks are also
very well captured by the DMFT solution in all parameter
regimes. For g ¼ 1 we can see two small peaks in the first
satellite structure of the HEOM solution. We find very
similar peaks also in the DMFT solution when applied on a
lattice of the same size, which is here equal to 10 (see SM
[46], Sec. IV). Hence, we conclude that these peaks are an
artefact of the finite lattice size. In the strong coupling
regime ω0 ¼ 1, g ¼ 2, the DMFT is compared with ED
since the thermodynamic limit is practically reached for
N ¼ 4; see SM [46], Sec. IV. Here, we notice a pronounced
excited quasiparticle peak [22,23] whose energy is below
Ep þ ω0. This peak,which consists of a polaron and a bound
phonon, is also very well resolved within the DMFT solu-
tion. For parameters in Fig. 2(d) the lattice sites are nearly
decoupled, approaching the atomic limit ðt0 ≪ g;ω0Þ, when
the DMFT becomes exact (see Sec. V in SM [46]). For a
comparison, we show also the SCMA spectral functions. As
the interaction increases, the SCMA solution misses the
position and the weight of the quasiparticle peak and the
satellite peaks are not properly resolved. Further compar-
isons of zero temperature spectral functions are shown in
Sec. VI of SM [46].
Results at finite temperature.—Reliable finite-T results

for the spectral functions of the Holstein model have been
obtained only very recently using the FTLM [23] and
finite-T DMRG methods [24]. Here, we calculate the
spectral functions using HEOM or ED and compare them
extensively with the DMFT. The results are crosschecked
using the QMC results in imaginary time.
Typical results for the spectral functions are shown in

Fig. 3, while additional results for other momenta and other

(a) (b)

(c) (d)

FIG. 2. (a)–(d) Integrated HEOM, DMFT, SCMA, and ED
spectral weight, IðωÞ ¼ R

ω
−∞ dνAkðνÞ, for k ¼ 0 and T ¼ 0. The

insets show comparisons of the spectral functions. IðωÞ is
obtained without broadening, whereas AðωÞ is broadened by
Lorentzians of half-width η ¼ 0.05.
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parameters are shown in Sec. VII of SM [46]. We see
that for T > 0 the satellite peaks appear also below the
quasiparticle peak. The agreement between the DMFT and
the HEOM (ED) spectral functions is very good. The
agreement remains excellent even for g ¼ 2 where the
electrons are strongly renormalized m�=m0 ≈ 10, which is
far away from both the atomic and weak coupling limits,
where the DMFT is exact. A part of the difference between
the DMFT and the HEOM (ED) results can be ascribed to
the small finite-size effects in the HEOM and ED solutions,
as detailed in SM [46], Sec. IV. In accordance with the
presented results, it is not surprising that the self-energies
are nearly k independent, as shown in SM [46], Sec. VIII.
It is also instructive to examine the difference between
the SCMA and DMFT (HEOM) solutions. For moderate
interaction [Figs. 3(a) and 3(b)], the weight of the SCMA
quasiparticle peak is nearly equal to the DMFT (HEOM)
quasiparticle weight, and the overall agreement of spectral
functions is rather good. This is not the case for stronger

electron-phonon coupling [Figs. 3(c)–3(h)] where the
SCMA poorly approximates the true spectrum.
We observe that for g ¼ ffiffiffi

2
p

and k ¼ π the DMFT and
HEOM satellite peaks are somewhat shifted with respect to
one another; see Figs. 3(c) and 3(d). This is the most
challenging regime for the DMFT, representing a crossover
(λ ¼ 1) between the small and large polaron. Nevertheless,
the agreement remains very good near the quasiparticle peak
for k ¼ 0, which will be the most important for transport in
weakly doped systems. In order to gain further confidence
into the details of the HEOM spectral functions for g ¼ ffiffiffi

2
p

,
we compare them with the available results obtained within
the finite-T DMRG and Lanczos methods. We find an
excellent agreement, as shown in Figs. 4(a) and 4(b).
The DMFTand HEOM results are crosschecked with the

path integral QMC calculations. The quantity that we
obtain in QMC is the single electron correlation function
in imaginary time, which can be expressed through the
spectral function as CkðτÞ ¼

R
∞
−∞ dω e−ωτAkðωÞ. Typical

results are illustrated in Figs. 4(c) and 4(d), while extensive
comparisons are presented in Sec. IX of SM [46]. At T ¼
0.4 we can see a small difference in CπðτÞ between the
DMFT and QMC (HEOM) results. At T ¼ 1, both for
k ¼ 0 and k ¼ π, the difference in CkðτÞ is minuscule, well
below the QMC error bar, which is smaller than the symbol
size. This confirms that nonlocal correlations are weak.
Similarly, as for the spectral functions, the SCMA corre-
lation functions show clear deviation from other solutions.
We, however, note that great care is needed when drawing
conclusions from the imaginary axis data since a very small
difference in the imaginary axis correlation functions can
correspond to substantial differences in spectral functions.

(a) (b)

(c) (d)

(e)

(g)

(h)

(f)

FIG. 3. (a)–(h) Spectral functions at T > 0 for k ¼ 0 and k ¼ π.
In panels (e)–(f) only the ED results are broadened by Lorent-
zians of half-width η ¼ 0.05, while all the curves are broadened
in (g)–(h) with the same η. All insets are shown without
broadening.

(a) (b)

(c) (d)

FIG. 4. (a), (b) Comparison of DMFT, HEOM, and finite-T
DMRG and FTLM (taken from Ref. [24]) spectral functions at
T ¼ 0.4. All the lines are here broadened by Lorentzians of half-
width η ¼ 0.05. (c), (d) DMFT, QMC, HEOM, and SCMA
imaginary time correlation functions at T ¼ 0.4 (T ¼ 1 in the
insets). Here, g ¼ ffiffiffi

2
p

, ω0 ¼ 1.
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Conclusions.—In summary, we have presented a com-
prehensive solution of the 1D Holstein polaron covering all
parameter regimes. We showed that the DMFT is a
remarkably good approximation in the whole parameter
space. This approximation is simple, numerically efficient,
and can also be easily applied in two and three dimensions.
We successfully used momentum-space HEOM and ED
methods for comparisons with the DMFT spectral func-
tions both at zero and at finite temperature. The compar-
isons showed an excellent agreement between the spectral
functions in most of the parameter space. For parameters
that are most challenging for the DMFT, a very good
agreement was found around k ¼ 0 and a reasonably good
agreement was obtained at larger values of k. All of the
results are crosschecked with the imaginary axis QMC
calculations and with the available results from the liter-
ature. Both the DMFT and HEOM methods are imple-
mented directly in real frequency, without artificial
broadening of the spectral functions. This will be crucial
in order to calculate dynamical quantities and determine a
potential role of the vertex corrections to conductivity by
avoiding possible pitfalls of the analytical continuation,
which we leave as a challenge for future work.
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Here we present numerical results that complement the
main text and we also show some technical details of
the calculations. The Supplemental Material is orga-
nized as follows. The DMFT for the Holstein polaron
is briefly reviewed in Sec. I. Numerical implementation
of the DMFT self-consistency loop is presented in detail
and it is used to calculate the mass renormalization in
one, two and three dimensions and for the Bethe lattice
as well. In Sec. II the self-consistent Migdal approxi-
mation is briefly reviewed and used as a benchmark for
the DMFT in the weak-coupling limit. Sec. III presents
the ED method. In Sec. IV we investigate how the re-
sults depend on the chain length N and on hierarchy
depth D. Sec. V examines the DMFT solution close
to the atomic limit. Additional DMFT, SCMA, ED
and HEOM results for the spectral functions at T = 0
and T > 0 for various parameter values and for differ-
ent momenta k are shown in Secs. VI and VII, respec-
tively. The k-dependence of the self-energies is shown in
Sec. VIII. A detailed comparison of the DMFT, HEOM
and QMC correlation functions is presented in Sec. IX.
Sec. X presents a numerical procedure that was used
for the calculation of the integrated spectral weight. In
Sec. XI we show that the different definitions of spectral
functions used by various methods are all in agreement.

I. DMFT FOR THE HOLSTEIN POLARON

The DMFT solution for the Holstein polaron on the
infinitely-connected Bethe lattice was presented by
Ciuchi et al. in 1997 [S1]. Interestingly, to our knowl-
edge, this method has not been so far implemented on
a finite-dimensional lattice. Details of the implementa-
tion in 1d and in arbitrary number of dimensions are
the main content of this Section.

A. Physical content of the DMFT approximation

The DMFT was developed in the early 1990’s in the
context of the Hubbard model [S2] and has since signif-
icantly contributed to our understanding of the systems
with strong electronic correlations [S3]. The DMFT is a
non-perturbative method that fully takes into account
local quantum fluctuations. It becomes exact in the

FIG. S1. DMFT self-consistency loop.

limit of infinite coordination number [S2], while it can
be considered as an approximation in finite number of
dimensions that keeps only local correlations by assum-
ing that the self-energy Σ(ω) is k-independent.

In practice, the DMFT reduces to solving the (An-
derson) impurity problem in a frequency dependent
Weiss field G0(ω) that needs to be determined self-
consistently. The bare propagator (Weiss field) G0(ω)
is responsible for the electron fluctuations between the
impurity and the reservoir (conduction bath). On-
site correlation is taken into account through the self-
energy. The connection with the lattice problem is
established by the requirement that the impurity self-
energy Σimp(ω) is equal to the lattice self-energy Σii(ω)
(while the nonlocal components Σij(ω) are equal to zero
within DMFT) and that the impurity Green’s func-
tion Gimp(ω) is equal to the local lattice Green’s func-



2

FIG. S2. First few DMFT Feynman diagrams of the self-
energy in the expansion over G0.

tion Gii(ω) = 1
N

∑
kGk(ω). The DMFT equations are

solved iteratively as shown schematically in Fig. S1. For
a given bare propagator G0 an impurity solver is used
to obtain the self-energy, and then the self-consistency
is imposed by the Dyson equation. The subscripts for
the impurity and the local lattice Green’s function are
omitted since these two quantities coincide when the
self-consistency is reached.

The DMFT solution for the Holstein polaron follows the
general concepts introduced for the Hubbard model with
an important simplification which comes from the fact
that we consider the dynamics of just a single electron.
We briefly review some key aspects and for details we
refer the reader to Ref. [S1].

The self-energy for the polaron impurity, which is cou-
pled to the reservoir by the bare propagator G0(ω), can
be simply expressed in a form of the continued-fraction
expansion (CFE), which is in a sharp contrast with the
Hubbard model where the numerical solution of the An-
derson impurity model is the most difficult step. Here,
the self-energy at T = 0 is simply given by

Σ(ω) =
g2

G−1
0 (ω − ω0)−

2g2

G−1
0 (ω − 2ω0)− 3g2

G−1
0 (ω−3ω0)−...

(S1)
(For a derivation and generalization to T > 0 see
Ref. [S1].) This expansion has an infinite number of
terms and in practice it needs to be truncated. In order
to understand which condition needs to be fulfilled for a
truncation, we will look at the diagrammatic expansion
of the self-energy.

For a single electron (i.e. in the zero density limit) the
Feynman diagrams of the self-energy consist of a single
electron line accompanied by the lines that describe the
emission and the absorption of phonons. There are no
bubble diagrams and hence there is no renormalization
of the phonon propagator. As an illustration, a dia-
grammatic expansion over G0(ω) up to the order g4 is
shown in Fig. S2. These diagrams are included if we
keep the terms up to the second stage in the CFE.

There are two important implications from this dia-
grammatic expansion. First, if we keep in the expansion
terms up to the order g2N then only the phonon states
|n〉 with n ≤ N appear as intermediate states. There-
fore, since the importance of the multiphonon effects

can be estimated by the parameter α2 = g2/ω2
0 [S4], we

need to keep N � α2 terms in the CFE. Second, we
see that the vertex corrections (involving the phonons
on the same site in the real-space representation [S5])
are included in the DMFT solution. This should be
contrasted with the self-consistent Migdal approxima-
tion (SCMA) which completely neglects the vertex cor-
rections in the self-energy. However, we note that one
should be careful in making a direct comparison to the
SCMA, since the DMFT diagrams are expanded using
G0, unlike the SCMA.

B. Numerical implementation of the DMFT loop

We will now discuss step by step the self-consistency
loop shown in Fig. S1. The DMFT loop starts by guess-
ing the solution for the free propagator G0(ω). Better
guesses lead to fewer number of iterations, so depend-
ing on the parameter regime we take G0(ω) to be either
the Green’s function in the Migdal approximation (S20)
or the Green’s function in the atomic limit (S25), since
both of these expressions are analytically known. They
correspond to the cases of very weak coupling and van-
ishing hopping, respectively. Next, the self-energy Σ(ω)
is calculated using the impurity solver (S1) and its gen-
eralization to finite temperatures [S1]. In practice these
are implemented using the recursion relations, which at
finite temperature read as:

Σ(ω) = G−1
0 (ω)−G−1(ω), (S2a)

G(ω) =

∞∑
n=0

(1− e−ω0/T )e−nω0/T

G−1
0 (ω)−A(0)

n (ω)−B(0)
n (ω)

, (S2b)

A(p)
n (ω) =

(n− p)g2

G−1
0 (ω + (p+ 1)ω0)−A(p+1)

n (ω)
, (S2c)

B(p)
n (ω) =

(n+ p+ 1)g2

G−1
0 (ω − (p+ 1)ω0)−B(p+1)

n (ω)
, (S2d)

A(n)
n (ω) = 0, B(∞)

n (ω) = 0. (S2e)

Quantities A
(p)
n and B

(p)
n are determined recursively,

starting from (S2e) and going back to (S2d) and (S2c).
Then, G(ω) is calculated using (S2b), which enables us
to use Dyson Eq. (S2a) to obtain Σ(ω). For T = 0
the equations simplify and the self-energy can be writ-

ten as Σ(ω) = B
(0)
0 (ω), which coincides with Eq. (S1).

The physical interpretation of the quantities in Eq. (S2)
is the following: G(ω) is the interacting Green’s func-

tion of the impurity. The quantity A
(0)
n (ω) is just a

finite fraction that takes into account the emission of
phonons. Similarly, B

(0)
n (ω) is an infinite continued

fraction, which takes into account the absorption of

phonons. The infinite fraction B
(0)
n (ω) can be calcu-

lated accurately even if we truncate it B
(N)
n (ω) = 0,
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taking N to be a number much larger than α2. The
infinite series (S2b) can also be truncated by using the
number of terms nmax � T/ω0 [S1].

Next step in the DMFT loop is calculating the local
Green’s function of the lattice using the self-energy Σ(ω)
from the impurity solver. It is calculated as

G(ω) =

∫ ∞
−∞

ρ(ε)dε

ω − Σ(ω)− ε
, (S3)

where ρ(ε) is the noninteracting density of states. This
integral is convergent since we are integrating below the
complex pole ε = ω − Σ(ω), as a consequence of the
causality Im Σ(ω) < 0. However, numerical instabilities
can arise due to the fact that the complex pole can be
arbitrarily close to the real axis. Hence, the numeri-
cal integration of Eq. (S3) requires additional care. In
Sec. I B 2 we present a numerical procedure which solves
this problem. However, in the 1d case these numerical
instabilities are completely avoided since Eq. (S3) ad-
mits an analytical solution, as shown in Sec. I B 1.

Following the DMFT algorithm from Fig. S1, we now
calculate the next iteration of the free propagator using
the Dyson equation

Gnew
0 (ω) = [G−1(ω) + Σ(ω)]−1. (S4)

We check if |Gnew0 (ω)−G0(ω)| < εtol (for each ω), where
εtol is the tolerance parameter that we typically set to
εtol ∼ 10−4 or smaller. If this condition is satisfied, the
DMFT loop terminates and Σ, G0 and G are found.
Otherwise, Gnew

0 is used in the impurity solver and the
procedure is repeated until convergence is reached.

After the DMFT loop has been completed, we can use
the calculated self-energy Σ(ω) to find the retarded
Green’s function of our original problem

Gk(ω) =
1

ω − Σ(ω)− εk
. (S5)

The spectral function is then simply given by

Ak(ω) = − 1

π
ImGk(ω). (S6)

1. Self-consistency equation for the local Green’s function
in one dimension

Let us now show how the local Green’s function (S3)
can be analytically evaluated in a 1d system with near-
est neighbor hopping t0. The noninteracting density of
states reads as

ρ(ε) =
θ(4t20 − ε2)

π
√

4t20 − ε2
, (S7)

where θ is the Heaviside step function. Equation (S3)
can be rewritten using the substitution ε = 2t0 sinx

G(ω) =
1

4t0π

∫ π

−π

dx

B − sinx
, (S8)

where we introduced

B = (ω − Σ(ω))/2t0. (S9)

Additional substitution z = eix leads us to

G(ω) = − 1

2t0π

∮
C

dz

(z − z+)(z − z−)
, (S10)

where this represents the counterclockwise complex in-
tegral over the unit circle C and z± = iB±

√
1−B2. In

order to apply the method of residues, we first need to
find out if z± are inside the complex unit circle |z| = 1.
Causality implies that Im Σ(ω) < 0 which means that
ImB > 0. In this case one can show that |z+| < 1 and
|z−| > 1, which means that only the pole at z+ gives a
non-vanishing contribution to the Eq. (S10)

G(ω) =
−i

2t0
√

1−B2
=

1

2t0B
√

1− 1
B2

. (S11)

In Eq. (S11) we wrote the solution in two ways. They
are completely equivalent in our case when ImB > 0,
but can otherwise give different results. Since B can be
arbitrarily close to the real axis, it is important to en-
sure additional numerical stability by requiring that the
expression for G(ω) satisfies that the ImB = 0 solution
coincides with the solution in the limit ImB → 0. This
is not satisfied by the expressions in Eq. (S11), but it
can be achieved by combining their imaginary and real
parts

G(ω) = Re
1

2t0aB
√

1− 1
B2

+i Im
−i

2t0a
√

1−B2
. (S12)

2. Self-consistency equation for the local Green’s function
in arbitrary number of dimensions

Here we present a numerical procedure for the calcu-
lation of the local Green’s function (S3) for arbitrary
density of states ρ(ε), that completely eliminates the
potential numerical singularity at ε = ω−Σ(ω). This is
particularly important since the techniques presented in
Sec. I B 1 fail when the dispersion relation even slightly
changes. It is also relevant in the higher-dimensional
systems where the density of states is not necessarily
analytically know.
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Let us suppose that the self-energy and the density
of states are known only on a finite, equidistant grid
ω0, ω1...ωN−1, where ∆ω = ωi+1 − ωi. Further, sup-
pose that the density of states is vanishing outside some
closed interval [D1, D2] and that the grid is wide enough
so that there are at least a couple of points outside
that closed interval: ρ(ω0) = ... = ρ(ω3) = 0 and
ρ(ωN−1) = ... = ρ(ωN−4) = 0. These are quite general
assumptions that are always satisfied in the systems we
are examining. The local Green’s function can now be
rewritten as

G(ω) =

N−2∑
i=0

∫ ωi+1

ωi

dε
ρ(ε)

ω − Σ(ω)− ε
. (S13)

At each sub-interval [ωi, ωi+1] the density of states is
only known at the endpoints, so it is natural to approx-
imate it using a linear function

ρ(ε) = ai + bi(ε− ωi), (S14)

where ai = ρ(ωi), bi = (ρ(ωi+1) − ρ(ωi))/∆ω. Intro-
ducing a shorthand notation ξ = ω−Σ(ω), we evaluate
Eq. (S13) analytically

G(ω) =

N−2∑
i=0

bi(ωi − ωi+1)

+

N−2∑
i=0

ai [ln(ξ − ωi)− ln(ξ − ωi+1)]

+

N−2∑
i=0

bi(ξ − ωi) [ln(ξ − ωi)− ln(ξ − ωi+1)] .

(S15)

The first line is just a telescoping series that is vanishing

N−2∑
i=0

bi(ωi − ωi+1) = ρ(ω0)− ρ(ωN−1) = 0. (S16)

The last two lines in Eq. (S15) can be transformed by
shifting the indices i+1→ i, taking into account that a
few boundary terms are vanishing and using the identity
ai − ai−1 = (ωi − ωi−1)bi−1

G(ω) =

N−2∑
i=0

ρ(ωi+1)− 2ρ(ωi) + ρ(ωi−1)

∆ω

× (ω − ωi − Σ(ω)) ln (ω − ωi − Σ(ω)) . (S17)

This expression now has no numerical instabilities. This
is most easily seen from the fact that it has the form
x lnx which is well defined even in the limit x → 0,
where it vanishes. Of course, the results were obtained
by using the linear interpolation of the density of states.
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FIG. S3. (a) Continuous-time QMC (taken from Ref. S6)
vs. DMFT mass renormalization in 1d, 2d and 3d, with
ω0 = 1. (b) Comparison of the DMFT mass renormalization
on different lattices.

This is completely justified if ρ(ε) is smooth or has
finitely many cusps. However, the presence of van Hove
singularities in ρ(ε) may require some special analytical
treatment around them.

C. Effective mass in 1d, 2d and 3d

The DMFT mass renormalization is calculated in one,
two and three dimensions. These are then compared
to the continuous-time path-integral quantum Monte
Carlo (QMC) results from Ref. S6. In that paper it was
noted that the numerical accuracy of the QMC method
is 0.1%− 0.3%. The results are presented in Fig. S3(a).

We note that the definition of λ and γ is slightly different
than the one we gave in the main text. Here

λ =
g2

ω0W/2
; γ =

ω0

W/2
, (S18)

where W/2 is the half bandwidth. This coincides with
our previous definition in 1d, but gives an extra normal-
ization in higher dimensions.
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FIG. S4. 1d vs Bethe DMFT local spectral functions.

D. Comparisons with the Bethe lattice results

In the main text we emphasized that the misconception
about the validity of the DMFT in 1d appeared since
only the DMFT results on the Bethe lattice were used in
comparisons with other methods [S7, S8]. In this section
we illustrate why such comparison is inappropriate.

The main difference in practical implementation, com-
pared to 1d, can be ascribed to the self-consistency con-
dition for the Bethe lattice (corresponding to the semi-
elliptic density of states) which can be formulated using
a simple algebraic equation [S1]

G0(ω) =

(
ω − (W/2)2

4
G(ω)

)−1

. (S19)

In Fig. S3(b) we compare the DMFT mass renormaliza-
tion on different lattices using the same half-bandwidth.
There is a clear discrepancy between the 1d and the
Bethe lattice results, in accordance with the already
mentioned earlier works.
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FIG. S5. 2d vs Bethe DMFT local spectral functions.

The Bethe lattice lacks a dispersion relation since it
has no translational symmetry. Therefore in Fig. S4
we compare only the local spectral functions A(ω) =
− 1
π ImG(ω) = − 1

π Im 1
N

∑
kGk(ω) of the Bethe and 1d

lattice. For small couplings, the spectral functions re-
semble the noninteracting density of state and we find
a large discrepancy, as shown in panels (a) and (b). In
contrast, close to the atomic limit in Fig. S4(f) spectral
functions become more alike. We note that the regimes
at panels (c)-(f) are the same as in Fig. 3 from the main
text.

It is rather surprising that there is a striking agreement
between the effective mass for 2d and the Bethe lattice
as shown in Fig. S3(b), even though the noninteracting
density of states are different, Fig. S5(a). Interestingly,
we can see from Fig. S5 that the local spectral functions
become very similar already for moderate interactions.
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II. WEAK-COUPLING LIMIT

In this section we introduce the self-consistent Migdal
approximation (SCMA) and use it as a benchmark for
the DMFT in the weak-coupling limit, where SCMA is
exact. More importantly, we can examine a deviation
of SCMA from DMFT for stronger couplings, which is
shown in the main text and in the following sections of
the SM.

A. Migdal approximation

The Migdal approximation [S9], as shown in Fig. S6,
is defined by taking into account only the lowest order
Feynman diagram in the perturbation expansion of the
self-energy.

FIG. S6. Feynman diagrams of the self-energy in the Migdal
approximation

Due to its simplicity it can be evaluated analytically

Σk(ω) = g2(b+ 1)S(ω − ω0) + g2b S(ω + ω0), (S20)

where b ≡ b(ω0) = (eω0/T − 1)−1 and

S(ω) = (ω2 − 4t20)−1/2 for ω > 0,

while the solution for ω < 0 can be obtained by noting
that ImS(ω) and ReS(ω) are symmetric and antisym-
metric functions, respectively. However, this solution
is accurate only for very small coupling g. For larger
coupling a much better solution is obtained within the
self-consistent Migdal approximation.

B. Self-consistent Migdal approximation

FIG. S7. Feynman diagrams in the SCMA approximation.

In the SCMA, free fermionic propagator from Fig. S6 is
replaced with the interacting propagator, as shown in
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Fig. S7. The corresponding equation for the self-energy
can be written as

Σk(ω) = g2(b+ 1)G(ω − ω0) + g2bG(ω + ω0), (S21)

where G(ω) = 1
N

∑
kGk(ω) is the local Green’s func-

tion. Equation (S21) needs to be solved self-consistently,
since the Green’s function can be expressed in terms of
the self-energy (via the Dyson equation).

Using the expansion with respect to the free propagator,
the formal solution for the self-energy can be written as
an infinite series of non-crossing diagrams, as shown in
Fig. S7. We see that the first term represents the Feyn-
man diagram in the Migdal approximation. It is thus
not at all surprising that the SCMA range of validity is
much larger than the one-shot Migdal approximation.

We note that the SCMA self-energy is momentum-
independent, which follows from Eq. (S21), making this
method numerically cheap.

C. DMFT vs. SCMA in the weak coupling limit

A comparison of the DMFT and SCMA spectral func-
tions in the weak coupling limit is shown in Fig. S8.
Results almost fully coincide. As the electron-phonon
coupling increases, the SCMA spectral functions starts
to deviate from the exact solution, as we see from the
main text and from the remaining part of the Supple-
mental Material.
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III. STRONG COUPLING: EXACT
DIAGONALIZATION

In the strong coupling regime we can approach the solu-
tion in the thermodynamic limit by using a small num-
ber of lattice sites. In SM Sec. IV we show that for
g = 2, ω0 = 1 we are close to thermodynamic limit by
considering a chain of just N = 4 sites. In this case
we can reach a solution using the exact diagonalization
(ED). In the following we describe our implementation
of the ED method.

We calculate the spectral function by diagonalizing
the Holstein Hamiltonian in the space spanned by the
vectors Uc†i |n1n2 . . . nN 〉, where ni is the number of
phonons at site i ∈ {1, . . . , N}, satisfying

∑
i ni < nmax,

while U is the unitary operator of the Lang-Firsov trans-
formation [S10] given as

U = e
g
ω0

∑
i c
†
i ci(ai−a

†
i). (S22)

Both N and nmax need to be increased until convergence
is reached. The spectral function is then calculated as

Ak(ω) =
1

Zp

∑
p

e−βEp
∑
e

δ(ω + Ep − Ee)| 〈p|ck|e〉|2,

(S23)
where |p〉 denotes purely phononic states, the energy of
which is Ep, |e〉 denotes the states with one electron and
arbitrary number of phonons, the energy of which is Ee
and Zp =

∑
p e
−βEp is the phononic partition function.

We found that convergent results for the spectral func-
tion when g = 2, ω0 = 1, N = 4 could be obtained
for nmax = 16. The results are shown in Figs. S16-
S21, as well as in Figs. 2(b) and 3(e)-(f) of the main
text. The spectral functions at k points different than
k = 2π

N i, i ∈ {0, . . . , N − 1} were obtained by employing
so-called twisted boundary conditions, that is by chang-
ing the terms in the Hamiltonian t0c

†
i ci+1 → t0e

iφc†i ci+1

and t0c
†
i+1ci → t0e

−iφc†i+1ci. The spectral function ob-
tained from such a modified Hamiltonian corresponds
then to the spectral function at k + φ.
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IV. FINITE-SIZE EFFECTS AND HEOM
DEPTH

The numerically exact HEOM, QMC and ED methods
are implemented on a 1d lattice of length N . Results
which are representative of the thermodynamic limit can
be obtained by taking large enough N . Furthermore,
the hierarchy of HEOM needs to be truncated using
sufficient depth D. In the ED method the number of
phonons in the Hilbert space need to be specified. All
of these parameters should be as large as possible, but
the practical numerical implementation is restricted by
the available computer memory. Finite-N and finite-D
analysis was performed in all parameter regimes where
we have HEOM results. In Figs. S9, S10, and S11 we
briefly illustrate such analysis in the intermediate and
strong coupling regime.

The optimal value of D strongly depends on the interac-
tion strength and temperature. For large interaction we
need large D since many phonon states are populated
even at T = 0. Similarly, larger temperature also re-
quires larger HEOM depth. As illustrated in Fig. S9(a)-
(b), for ω0 = 1, g = 1 the convergence is nearly reached
already for D = 6. For g =

√
2 (Fig. S10(a)-(b)), we

need slightly larger D. However, in the strong-coupling
regime for g = 2 we need much larger D, and from a
comparison with the ED results for N = 4 in Fig. S11
we can conclude that the HEOM result has rather well
converged only for D = 17. We can also observe that the
results at k = 0 typically converge faster with respect
to D than the results at k = π.

The value N for which the spectral functions correspond
to those in the thermodynamic limit also depends on the
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D = 6

N = 6
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FIG. S9. Finite-N and finite-D effects in the HEOM
method at intermediate coupling ω0 = 1, g = 1, T = 0,
which is the same regime as in Fig. 2(a) of the main text.
Here we use Lorentzian broadening with η = 0.05.
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0.4
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FIG. S10. Finite-N and finite-D effects in the HEOM at
intermediate coupling ω0 = 1, g =

√
2, T = 0, which is the

same regime as in Fig. 2(c) of the main text. Here we use
Lorentzian broadening with η = 0.05.

parameter regime: for larger interaction g and for higher
T the chain length N can be smaller, while for smaller g
and lower T we need larger N . In panels (c) and (d) of
Figs. S9 and S10 we see that for intermediate coupling
there is some difference in spectral functions for N = 6
and N = 10 (N = 8). At k = 0 it is particularly visible
in the first satellite structure for g = 1. Remarkably,
the DMFT on a finite lattice N = 6 (N = 10) pre-
dicts very similar satellite structure as HEOM for the
same N . This indicates that the correct satellite peak
in Fig. 2(a) of the main text should be closer to DMFT,
while HEOM results have some artefacts because of the
finite lattice size. On the other hand, for g = 2 it is
enough to set N = 4, as we now demonstrate.

It is very efficient to analyze the finite-size effects us-
ing the DMFT applied on a finite system with N sites.
This is very simple to implement in the DMFT loop.
The only difference is in the self-consistency equation:
instead of the integral over the density of states, the lo-
cal Green function is obtained as an average over the k
vectors

G(ω) =
1

N

N∑
i=1

Gki(ω). (S24)

We can see from Fig. S12 that there is very little dif-
ference between N = 4, N = 6 and thermodynamic
limit for g = 2, ω0 = 1. We showed only the results
for T = 0.4, but we checked that the conclusions re-
main true even for T = 0. Therefore, setting N = 4 in
HEOM and ED calculations is enough. This left enough
computer memory to use large D = 17 in HEOM calcu-
lations. Then all three methods give very similar spec-
tral functions as seen in Fig. S11.

Fig. S13 shows the DMFT finite-size effects close to the
atomic limit, both for the spectral function Ak(ω) and
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for the self-energy Σ(ω). The spectral functions are not
strongly N -dependent. On the other hand, the details
of the self-energy are much more sensitive to finite-size
effects. Finite N results show a kind of a stripe pattern,
while N =∞ results are smoother.
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FIG. S11. Finite-N and finite-D effects in the strong cou-
pling regime ω0 = 1, g = 2, T = 0.4, which is the same
regime as in Figs. 3(e)-(f) of the main text. ED spectral func-
tions (N = 4) are shown using Lorentzian broadening with
η = 0.05, while other methods are shown without broaden-
ing. DMFT results are in thermodynamic limit.
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FIG. S13. DMFT finite-size effects close to the atomic limit
ω0 = 3, g =

√
12, T = 1
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V. ATOMIC LIMIT

Here we investigate the DMFT solution close to the
atomic limit. For decoupled sites (t0 = 0), using the
Lang-Firsov transformation [S4, S10], the Green’s func-
tion at T = 0 is given by

G(ω) =

∞∑
n=0

α2ne−α
2

n!

1

ω − nω0 − Ep + i0+
, (S25a)

and at T > 0

G(ω) =

∞∑
n=−∞

In

(
2α2

√
b(b+ 1)

)
ω − nω0 − Ep + i0+

e−(2b+1)α2+nω0/2T .

(S25b)
Here Ep = −g2/ω0 is the ground-state energy, In are
the modified Bessel functions of the first kind and
b ≡ b(ω0) = (eω0/T − 1)−1. We see that the atomic
limit spectrum consists of a series of delta functions at
a distance ω0 from each other. At T = 0 the lowest
energy peak is at ω = Ep, which corresponds to the
ground-state (polaron) energy. At finite temperatures
more delta peaks emerge even below the polaron peak.

The integrated DMFT spectral weight at T = 0 is
shown in Fig. S14 and compared to the exact atomic
limit. It was calculated using the numerical procedure
introduced in Sec. X. I(ω) features jumps at frequencies
where A(ω) has peaks and the height of those jumps is
equal to the weight of the peaks. Nonzero hopping in
the DMFT solution introduces small momentum depen-
dence of Ik(ω), which is why Fig. S14 shows the result
averaged over all momenta. A more detailed comparison
is presented in Table S1. It shows the numerical values
of the DMFT I(ω) at the positions of delta peaks (for a
given k and averaged over many k) in comparison with
the analytical t0 = 0 result from Eq. (S25a). These
delta peaks, positioned at nω0 + Ep, have the weights

equal to α2ne−α
2

/n! for n = 0, 1 . . .

For T > 0, the peaks are located both below and
above Ep. The DMFT spectra averaged over k
are shown in Fig. S15. They have a characteris-
tic fork-shaped form at low T , which is the con-
sequence of the 1d density of states. The weight
of the peaks are very close to the analytical re-
sult In(2α2

√
b(b+ 1))e−(2b+1)α2+nω0/2T . These spec-

tral weights, averaged over momenta k, are given in Ta-
ble S2.

2 1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

I(
)

0 = 1
  g = 1
  T = 0

Atomic limit
DMFT t0 = 10 5

DMFT t0 = 0.05

FIG. S14. DMFT integrated spectral weight for t0 = 0.05
(shaded) and t0 = 10−5 (red dashed line) averaged over all
momenta, I(ω) = 1

N

∑
k

∫ ω
−∞Ak(ν)dν, in comparison to the

exact t0 = 0 result (blue solid line).

TABLE S1. Integrated spectral weight I(ω) for ω0 = 1,
g = 1 at T = 0. The exact atomic limit corresponds to
t0 = 0.00. For t0 = 10−5 the DMFT solution has no k-
dependence within the specified accuracy. We denote the k-
values to be ’av.’ if the answer is averaged over all momenta.

k
t0

ω −2 −1 0 1 2 3

0.00 0.00 0.37 0.74 0.92 0.98 1.0
all 10−5 0.00 0.37 0.74 0.92 0.98 1.0
av. 0.05 0.00 0.37 0.73 0.92 0.98 1.0
0 0.05 0.00 0.40 0.76 0.94 0.99 1.0
π/2 0.05 0.00 0.37 0.74 0.92 0.98 1.0
π 0.05 0.00 0.33 0.71 0.91 0.98 0.99

3 2 1 0 1 2 30
5

10
15
20
25
30
35

A(
)

T = 0.4
T = 0.6
T = 0.8
T = 1.0
T = 1.2
T = 1.4
T = 1.6

FIG. S15. DMFT spectral functions A(ω) = 1
N

∑
k Ak(ω)

for ω0 = 1, g = 1, t0 = 0.05, at several temperatures.
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TABLE S2. Spectral weights of the peaks located at ω =
nω0 + Ep for n = −2,−1, 0, 1, 2, 3. The DMFT spectra,
obtained for t0 = 0.05, are averaged over k. The atomic
limit values (t0 = 0.00) are obtained from the analytical
formula. Here ω0 = 1, g = 1.

T
t0

ω −2 −1 0 1 2 3

0.4 0.00 0.03 0.34 0.35 0.19 0.07 0.02
0.4 0.05 0.03 0.34 0.34 0.18 0.07 0.02
0.6 0.00 0.06 0.30 0.33 0.19 0.08 0.02
0.6 0.05 0.06 0.30 0.33 0.19 0.08 0.02
0.8 0.00 0.09 0.27 0.30 0.19 0.09 0.03
0.8 0.05 0.09 0.27 0.30 0.19 0.09 0.03
1.0 0.00 0.10 0.25 0.28 0.19 0.09 0.04
1.0 0.05 0.10 0.25 0.28 0.19 0.10 0.04
1.2 0.00 0.11 0.23 0.26 0.19 0.10 0.04
1.2 0.05 0.11 0.23 0.26 0.19 0.10 0.04
1.4 0.00 0.12 0.21 0.24 0.19 0.11 0.05
1.4 0.05 0.12 0.21 0.24 0.19 0.11 0.05
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VI. SPECTRAL FUNCTIONS AT T = 0:
ADDITIONAL RESULTS

Spectral functions and integrated spectral weights at
T = 0 for k = 0 are shown in Fig. 2 of the main text.
In Figs. S16 - S18, we show the results for additional
momenta. We note that the integrated spectral weight
was calculated without broadening, using the numerical
scheme described in Sec. X. The spectral functions are
shown with a small Lorentzian broadening η,

Aη(ω) =
1

π

∫ ∞
−∞

dν
ηA(ν)

η2 + (ω − ν)2
, (S26)

We see that there is a very good agreement between
DMFT and HEOM/ED results. In every regime where
HEOM was implemented, we checked that the results
were well converged with respect to the lattice size N
and the maximum hierarchy depth D. These values are
shown in Table S3.

We note that the HEOM/ED method imposes the peri-
odic boundary conditions on a finite lattice. This means
that the HEOM/ED spectral functions are available
only for a discrete values of momenta, unlike the DMFT
which is calculated in the thermodynamical limit. Re-
sults for additional k-values are obtained using twisted
boundary conditions.
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no broadening. The insets show spectral functions with
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FIG. S18. Integrated spectral weight at T = 0 with
no broadening. The insets show spectral functions with
η = 0.05 Lorentzian broadening. Every panel is calculated
for k = π.

TABLE S3. Lattice size N and the maximum hierarchy
depth D used in the HEOM calculations which correspond
to Figs. S16-S18 and Fig. 2 from the main text.

Parameters N D
ω0 = 1 g = 1 10 6

ω0 = 1 g =
√
2 8 7

ω0 = 3 g =
√
12 6 9
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VII. SPECTRAL FUNCTIONS AT T > 0:
ADDITIONAL RESULTS

Spectral functions for k = 0 and k = π, shown in Fig. 3
of the main text, are supplemented with the results for
different k in Fig. S19. Overall, the agreement of DMFT
and HEOM/ED spectra is very good which confirms
that the nonlocal correlations are not pronounced. Re-
sults for different temperatures are shown in Figs. S20
and S21. We checked that the HEOM results are well
converged with respect to lattice size N and maximum
hierarchy depth D. The values of N and D, used in the
calculations, are shown in Table S4.

TABLE S4. Lattice size N and the maximum hierarchy
depth D used in the HEOM calculations which correspond
to Figs. S19 - S21 and Fig. 3 from the main text.

Parameters N D
ω0 = 1 g = 1 T = 0.7 10 6
ω0 = 1 g = 1 T = 1 10 6

ω0 = 1 g =
√
2 T = 0.4 8 8

ω0 = 1 g =
√
2 T = 0.6 8 7

ω0 = 1 g =
√
2 T = 0.8 8 7

ω0 = 1 g = 2 T = 0.4 4 17

ω0 = 3 g =
√
12 T = 1 6 9

It is common to present the spectral functions as color
plots in the k−ω plane. In Fig. S22 we show the DMFT
color plot for parameters as in Figs. S19 - S21. For com-
parison purposes, in Fig. S23 we also show the DMFT
color plot for the same parameters as in the finite-T
Lanczos results from Fig. 2 of Ref. [S11]. Small differ-
ence in DMFT vs. Lanczos method color plots is due to
the more pronounced peaks in the DMFT spectra.
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FIG. S19. HEOM, DMFT, SCMA and ED spectral functions
for different parameters. On the left panels π/4 ≤ k ≤
π/3, whereas π/2 ≤ k ≤ 3π/4 on the right. The integrated
spectral weight is presented in the insets without broadening.
In panels (g) and (h) Lorentzian broadening with η = 0.05
is used for all spectral functions, while only ED is broadened
in (e) and (f) using the same η.
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FIG. S20. HEOM, DMFT, SCMA and ED spectral functions
for different parameters. On the left panels k = 0, whereas
k = π on the right. The integrated spectral weight is pre-
sented in the insets without broadening. The Lorentzian
broadening with η = 0.05 is used only for ED spectral func-
tions.
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ED spectral functions.
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FIG. S22. The DMFT spectral functions Ak(ω) for param-
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all plots.
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FIG. S23. The DMFT spectral functions Ak(ω) for param-
eters as in Fig. 2 of Ref. [S11]. The same color coding is used
in all plots.



17

VIII. HEOM SELF-ENERGIES

The results for the spectral functions, as well as for
the effective mass and ground state energy, have shown
that the DMFT gives an excellent approximate solu-
tion of 1d Holstein model in the whole parameter space.
This indicates that the self-energy is approximately lo-
cal which we explicitly demonstrate in this Section.
Since Σk(ω) = Σ−k(ω) we will show only the results
for k ≥ 0.

In Fig. S24 we present the HEOM and DMFT self-
energies in the intermediate coupling regime. Panels
(a) and (b) of Fig. S24 show that the self-energies are
nearly local, whereas the DMFT solution interpolates in
between. The self-energy is approximately local also for
g =
√

2, Fig. S24(c)-(d). There is a visible discrepancy
only at higher momenta, which reflects in a shift of the
spectral functions with respect to the DMFT solution
in Fig. 3d of the main text.

The results for the strong coupling are presented in
Fig. S25. The DMFT solution for ImΣ falls to zero
between the peaks, as opposed to the HEOM solution
where such behavior is observed only for the first few
peaks. This is why, for the sake of clarity, the DMFT
self-energy is omitted. This is consistent with Fig. S11
where the HEOM results feature the dips, while DMFT
solution has gaps. Nevertheless, the presented HEOM
results are enough to conclude that the self-energy is
nearly local. This is particularly important conclusion
since these parameters correspond to strongly renormal-
ized effective mass, m∗/m ≈ 10.

The regime close to the atomic limit is investigated in
Fig. S26. Panels (c) and (d) show that the results are
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coupling.
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FIG. S26. Panels (a) and (b) show HEOM and DMFT self-
energies close to the atomic limit ω0 = 3, g =

√
12, T = 1.

Panels (c)-(d) show the same HEOM results as in (a)-(b)
but shifted for different values of momenta k.

nearly local, but have a kind of stripe pattern, unlike the
DMFT solution which is in thermodynamic limit. This
is here just a consequence of the finite-size effects, as
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shown in Fig. S13. As discussed in Sec. IV, even though
the finite-size effects are visible as stripes in the self-
energies, they will not significantly affect the spectral
functions. This is why we see a very good agreement
between the DMFT and N = 6 HEOM spectral func-
tions in panels (g) and (h) of Fig. 3 in the main text.
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IX. CORRELATION FUNCTIONS

Here we present a detailed comparison between QMC,
HEOM and DMFT correlation functions. The QMC
correlation function is defined by

Ck(τ) = 〈ck(τ)c†k〉T,0, (S27)

where ck(τ) = eτHcke
−τH and 0 ≤ τ ≤ 1/T . In

Sec. XI D we proved the following relation

Ck(τ) =

∫ ∞
−∞

dω e−ωτAk(ω). (S28)

Eq. (S28) can now be used to check whether the spec-
tral functions that we calculated using other methods
are consistent with the QMC results. A calculation of
the spectral functions from the QMC data would as-
sume an analytical continuation which is an ill-defined
procedure, particularly problematic when the spectrum
has several pronounced peaks. Therefore, we have to
settle for a comparison on the imaginary axis.

Fig. S27 shows the imaginary time QMC, DMFT and
HEOM correlation functions and their deviation from
the QMC result, for parameters as in Fig. 4 of the main
text. We see that the deviation is very small, the rel-
ative discrepancy being just a fraction of a percent at
T = 1. The discrepancy between the DMFT and QMC
increases at lower temperatures when the nonlocal cor-
relations are expected to be more important, but it re-
mains quite small even at T = 0.4. As we can see, the
DMFT gives better results at k = 0 than at k = π.

In Fig. S28 we present the correlation function compari-
son over a broad set of parameters. The DMFT, HEOM
and QMC are in excellent agreement, with the relative
discrepancy of the order of one percent for τ ∼ 1/T .
The SCMA results are also included for comparison.

From Eq. (S28) we see that the correlation function
unevenly treats different frequencies from the spectral
function. Because of the exponential term, it takes into
account low-frequency contributions with much larger
weight. Thus, the correct DMFT and HEOM predic-
tions about correlation function reveal that the low-
frequency parts of the corresponding spectral functions
behave appropriately and fall off fast enough. This is
very important property for calculating quantities where
the low-frequency part gives large contribution to the
result, which would be the case for optical conductivity.

Let us now estimate how much a Gaussian centered at
frequency a,

AGk (ω) =
W

σ
√

2π
e−

(ω−a)2

2σ2 , (S29)

would contribute to the correlation function. Here W
is the spectral weight and σ is the standard deviation
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FIG. S27. DMFT, HEOM and QMC correlation functions
for ω0 = 1, g =

√
2 at k = 0 and k = π at several tem-

peratures. The right panels show the relative discrepancy
between DMFT and HEOM results with respect to QMC.

of the Gaussian. This could model a tiny peak present
due to the noise, or a real physical contribution. The
corresponding part of the correlation function CGk can
be singled out since Eq. (S28) is linear in Ak. It can be
evaluated analytically, giving

CGk (τ) = We
σ2τ2

2 −aτ . (S30)

We see that the spectral weight contributes linearly,
while the position of the delta peak contributes expo-
nentially (note that a can be negative). The width of
the Gaussian σ, as well as the imaginary time τ , are
quadratic inside the exponential. Hence, Eq. (S30) ex-
plicitly shows that precise calculation of the correlation
function requires very accurate spectral functions at low
frequencies. Even a small error or noise can produce a
completely wrong result. Reliable comparison of Ck(τ)
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was made possible only due to the high precision of both
DMFT and HEOM calculations.
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X. TECHNICAL NOTE: NUMERICAL
CALCULATION OF THE INTEGRATED

SPECTRAL WEIGHT

We describe a numerical scheme for calculating the in-
tegrated spectral weight. Integrated spectral weight is
defined as

Ik(ω) =

∫ ω

−∞
Ak(ν)dν, (S31)

where Ak(ν) is the spectral function. Straightforward
numerical integration of Eq. (S31) can sometimes lead
to the conclusion that the spectral sum rule Ik(∞) = 1
is violated. This happens because the numerical repre-
sentation of Ak(ν) on a finite grid does not detect the
possible presence of delta function peaks without intro-
ducing artificial broadening. This is why our numeri-
cal scheme calculates Ik(ω) directly from the self-energy
Σ(ω).

Let us suppose that the self-energy data
{Σ0,Σ1...ΣN−1} are known on a grid {ω0, ω1...ωN−1}.
The integrated spectral weight can then be rewritten as

Ik(ωl) = − 1

π
Im

∫ ωl

−∞

dν

ν − Σ(ν)− εk

≈ − 1

π
Im

l−1∑
q=0

∫ ωq+1

ωq

dν

ν − Σ(ν)− εk
. (S32)

The delta peaks in Eq. (S32) occur whenever our subin-
tegral function is (infinitely) close to the singularity, i.e.
when ImΣ(ν)→ 0− and ν − ReΣ(ν)− εk ≈ 0. These
are most easily taken into account by using the linear
interpolation of the denominator in Eq. (S32) and eval-
uating the integral analytically

Ik(ωl) ≈ −
1

π
Im

l−1∑
q=0

∫ ωq+1

ωq

dν

ν − εk −
[
Σq + Σ′q(ν − ωq)

]
= − 1

π
Im

l−1∑
q=0

1

1− Σ′q
ln

[
ωq+1 − εk − Σq+1

ωq − εk − Σq

]
,

(S33)

where Σ′q = (Σq+1 − Σq)/(ωq+1 − ωq). In the last line
of Eq. (S33) we used that lnx − ln y = ln(x/y), which
holds since ImΣq < 0 (for every q).

In the limit when ∆ωq = ωq+1 − ωq is small, Eq. (S33)
predicts that the contribution which corresponds to the
interval (ωq, ωq+1) is equal to

1

1− Σq+1−Σq
ωq+1−ωq

≈ 1

1− ∂ωΣ
, (S34)

if the interval contains a delta peak, whereas it is

− 1

π
Im

[
∆ωq

ωq − εk − Σq

]
(S35)

otherwise. The analytical result for the contribution of
the delta peak coincides with Eq. (S34), while Eq. (S35)
is exactly the term we would get using the standard Rie-
mann sum. Having in mind that the Riemann sum ap-
proach is completely justified in the absence of delta
peaks, we conclude that the integration scheme pre-
sented in Eq. (S33) is perfectly well-suited for the cal-
culation of the integrated spectral weight.
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XI. TECHNICAL NOTE: EQUIVALENCE OF
SPECTRAL FUNCTIONS FROM DIFFERENT

DEFINITIONS

Throughout this paper we compared spectral and cor-
relation functions obtained with various methods. Each
method uses different definition of the spectral func-
tion. The purpose of this Section is to show that all
of them are equivalent in the case we are considering,
which is a single electron in a system. We also present
the relation which connects the spectral function with
the imaginary-time correlation function obtained from
QMC calculation.

A. Spectral function from greater Green’s
function

In the HEOM method, the most natural starting point
is the greater Green’s function [S12]

G>k (t) = −i
〈
ck (t) c†k

〉
T,0

. (S36)

Here ck and c†k are the electron annihilation and creation
operators, while

ck (t) = eiHtck (0) e−iHt.

The notation 〈. . .〉T,0 denotes the thermal overage over
the space of states containing zero electrons

〈x〉T,0 =

∑
p 〈p|e−Hph/Tx|p〉∑
p 〈p|e−Hph/T |p〉

=
1

Zp

∑
p

〈p|e−Hph/Tx|p〉 .

(S37)
Here |p〉 denotes the states containing no electrons and
arbitrary number of phonons, Hph is purely phononic
part of the Hamiltonian and Zp is the phononic partition
function. The spectral function is now defined as

Ak (ω) = − 1

2π
ImG>k (ω) , (S38)

where

G>k (ω) =

∫ ∞
−∞

dt eiωt G>k (t) . (S39)

These expressions can be cast into explicit form using
the Lehmann spectral representation (using the basis of
energy eigenstates H|n〉 = En|n〉)

G>k (t) =
−i
Zp

∑
p,e

e−Ep/T eiEpt 〈p|ck|e〉 e−iEet 〈e|c†k|p〉 ,

(S40)
where |e〉 denotes the states containing one electron and
an arbitrary number of phonons. The spectral function

can now be obtained by taking the Fourier transform of
previous expression and using Eq. (S38)

Ak (ω) =
1

Zp

∑
p

e−Ep/T
∑
e

δ (ω + Ep − Ee) | 〈p|ck|e〉|2 .

(S41)

B. Spectral function from retarded and
time-ordered Green’s function

In the DMFT/SCMA, we can start from the time-
ordered Green’s function [S1] with just a single electron
inserted into the system

Gk(t) = −i〈Tck(t)c†k〉T,0. (S42)

As in the case of the greater Green’s function, here we
average only over the phonon degrees of freedom. This
means that (S42) gives nonvanishing contribution only
for t > 0

Gk(t) = −iθ(t)〈ck(t)c†k〉T,0. (S43)

In our case of a single electron in the system, this co-
incides with the retarded Green’s function. Ref [S1]
explains in detail how is this connected to the polaron
impurity problem. Now, the spectral function can be
obtained as

Ak(ω) = − 1

π
ImGk(ω), (S44)

where

Gk (ω) = lim
ε→0+

∫ ∞
−∞

dt ei(ω+iε)t Gk (t) . (S45)

Let us now check whether the definitions of spectral
functions from Secs. XI A and XI B are in agreement
with one another. This can be easily checked by utilizing
the Lehmann spectral representation

Gk (t) =
−iθ (t)

Zp

∑
p,e

e−Ep/T ei(Ep−Ee)t | 〈p|ck|e〉|2 .

(S46)
The spectral function is now obtained by performing
the Fourier transform, using Eq. (S44) and the Plemelj-
Sokhotski theorem Im limε→0+

1
x+iε = −πδ (x). We ob-

tain the result which coincides with (S41). Furthermore,
these results also coincide with Eq. (S23). This confirms
that all of these approaches are consistent with one an-
other.
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C. Spectral function from grand canonical
ensemble

It is also quite common to work within the grand canon-
ical ensemble, not restricting ourselves explicitly to a
single electron in a system. Here we use the usual defi-
nition of the retarded Green’s function

Gk (t) = −iθ (t)
〈{
ck (t) , c†k

}〉
T
, (S47)

where

ck(t) = eiKtcke
−iKt, (S48)

K = H − µN and N being the electron number oper-
ator. The notation 〈. . . 〉T denotes the average value in
the grand canonical ensemble and {, } is the anticommu-
tator. The spectral function is obtained by substituting
Gk (t) from (S47) into Eqs. (S45) and (S44). A more
explicit form can be obtained using the Lehmann spec-
tral representation (using the basis of energy eigenstates
K|n〉 = Kn|n〉)

Ak (ω) =
1

Z

∑
n1n2

e−βKn1

[
| 〈n1|ck|n2〉|2 δ (Kn1

−Kn2
+ ω)

+
∣∣∣ 〈n1|c†k|n2〉

∣∣∣2 δ (Kn2
−Kn1

+ ω)

]
,

(S49)

where Z = Tr
(
e−βK

)
is the partition function. Let us

now consider what happens in the case we are interested
in, which is the zero density limit. This corresponds to
µ→ −∞.

We note first that the dominant terms in the partition
function Z in this limit are from the states with zero
electrons

Z =
∑
n

e−βKn =
∑
p

e−βKp = Zp. (S50)

The states containing a larger number of electrons in-
troduce an additional term eβµN which is exponentially
small when µ → −∞. Consequently, we have shown
that Z from Eq. (S49) is the same as Zp from Eq.
(S41) in the limit µ→ −∞.

Next, we consider the sum in Eq. (S49). Due to the
e−βKn1 factor, the dominant contribution to the sum
over n1 comes from the states |n1〉 containing zero elec-
trons. The states containing a larger number of elec-
trons introduce an additional term eβµN which is ex-
ponentially small when µ → −∞. Therefore, the sum
over n1 in Eq. (S49) can be replaced by a sum over p,
where |p〉 denote the states containing no electrons. The

second term containing 〈n1|c†k|n2〉 in Eq. (S49) is then

zero, while the first term containing 〈n1|ck|n2〉 is differ-
ent from zero only when |n2〉 is the state containing one
electron. The sum in Eq. (S49) then reads as

Ak (ω) =
1

Zp

∑
p,e

e−βKp | 〈p|ck|e〉|2 δ (Kp −Ke + ω) ,

(S51)
We further note that the last equation can be also ex-
pressed in the form

Ak (ω − µ) =
1

Zp

∑
p,e

e−βEp | 〈p|ck|e〉|2 δ (Ep − Ee + ω) .

(S52)
The right hand side in previous equation coincides with
Eq. (S41). This proves that the spectral function within
the grand canonical formalism needs to be considered in
the limit µ→ −∞ and also the result needs to be shifted
Ak(ω) → Ak(ω − µ) if we want our result to coincide
with Eq. (S41).

All of these results give us to flexibility to work within
different formalisms knowing that all of them give the
same result. Hence, we proved that the definitions of
spectral functions within HEOM, DMFT, SCMA and
ED are all in agreement.

D. Relation between the spectral function and
imaginary-time correlation function

In QMC we calculate the quantity

Ck(τ) = 〈ck(τ)c†k〉T,0, (S53)

where

ck(τ) = eτHcke
−τH . (S54)

Again, using the Lehmann spectral representation in
Eq. (S53) we get

Ck(τ) =
1

Zp

∑
p,e

e−βEp | 〈p|ck|e〉|2eτ(Ep−Ee). (S55)

By performing straightforward integration, one then
finds from Eqs. (S41) and (S55)

Ck(τ) =

∫ ∞
−∞

dω e−ωτAk(ω). (S56)

This proves Eq. (S28), which connects the correlation
functions from QMC with spectral functions, obtained
from other methods.
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