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Cooperative self-assembly is a ubiquitous phenomenon found in natural systems which is used for designing
nanostructured materials with new functional features. Its origin and mechanisms, leading to improved func-
tionality of the assembly, have attracted much attention from researchers in many branches of science and
engineering. These complex structures often come with hyperbolic geometry; however, the relation between
the hyperbolicity and their spectral and dynamical properties remains unclear. Using the model of aggregation
of simplexes introduced by Šuvakov et al. [Sci. Rep. 8, 1987 (2018)], here we study topological and spectral
properties of a large class of self-assembled structures or nanonetworks consisting of monodisperse building
blocks (cliques of size n = 3, 4, 5, 6) which self-assemble via sharing the geometrical shapes of a lower order.
The size of the shared substructure is tuned by varying the chemical affinity ν such that for significant positive ν

sharing the largest face is the most probable, while for ν < 0, attaching via a single node dominates. Our results
reveal that, while the parameter of hyperbolicity remains δmax = 1 across the assemblies, their structure and
spectral dimension ds vary with the size of cliques n and the affinity when ν � 0. In this range, we find that ds > 4
can be reached for n � 5 and sufficiently large ν. For the aggregates of triangles and tetrahedra, the spectral
dimension remains in the range ds ∈ [2, 4), as well as for the higher cliques at vanishing affinity. On the other end,
for ν < 0, we find ds � 1.57 independently on n. Moreover, the spectral distribution of the normalized Laplacian
eigenvalues has a characteristic shape with peaks and a pronounced minimum, representing the hierarchical
architecture of the simplicial complexes. These findings show how the structures compatible with complex
dynamical properties can be assembled by controlling the higher-order connectivity among the building blocks.
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I. INTRODUCTION

Controlled self-assembly of nanoparticles with various
properties has enabled the engineering of wide classes of
materials with new functional features [1]. Among others, the
possibilities of designing and assembling three-dimensional
(3D) structures of colloidal particles have increased signif-
icantly by the discovery of methods for the synthesis of
colloids with controlled symmetries and directional interac-
tions [2]. Further possibilities are opened with cooperative
self-assembly, where the groups of nanoparticles forming
small clusters can join the growing structure [3–7]. These
processes utilize a variety of interparticle forces [8], as well as
geometry-guided self-assembly [9–11]. By varying the build-
ing blocks in different self-assembly processes, the impact
of the system’s architecture on the emergent functionality
in nanostructured materials has been evidenced by experi-
mental investigation, e.g., by the charge transport or spin
diffusion, resulting in the enhanced collective dynamics of the
assembly [1,4–7,9,12]. On the other side, theoretical investi-
gations of the structure-function interdependence have been
greatly facilitated by mapping the assembly onto mathemati-
cal graphs or nanonetworks [13]. In this representation, nodes
can indicate nanoparticles with their geometrical, physical,

and chemical properties, and edges specify the interparticle
interaction or chemical bonding often enabled by their phys-
ical proximity. This representation allows the use of graph-
theory methods to quantify topology and facilitates numerical
modeling, as was done, for example, in the study of charge
transport by single-electron tunnelings in nanoparticle films
[12,14–16], carbon nanotube fillers [17], and others.

On a more global scale, the interplay between the structure
and dynamics is captured by spectral properties of networks
[18,19]. More specifically, spectral analysis of the adjacency
matrix or the Laplacian operator related to the adjacency ma-
trix [20] revealed Fiedler spectral partitioning of the graph and
detection of functional modules or mesoscopic communities
[21,22], hierarchical organization and homeostatic response
[23], the structural changes at the percolation threshold [24],
or the occurrence of assortative correlations between nodes
[25] and the origin and implications of the degeneracy in net-
work spectra [26,27]. A direct relation between the Laplacian
eigenspectrum and the diffusion processes on that network
revealed the role of the small-degree nodes and features of
the return time of random walks [21,28], as well as the
universality of dynamical phase transitions [29] and a deeper
understanding of synchronization on complex networks [30].
In this context, the key quantity that relates the structure
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to the diffusion and synchronization on a network is the
spectral dimension [31–33], which can be determined from
the properties of the Laplacian spectrum.

The complex functional systems often exhibit a hier-
archical architecture and the related hyperbolic geometry.
The underlying higher-order connectivity in these structures
can be modeled with simplicial complexes and describe it
with mathematical techniques of the algebraic topology of
graphs [34–38]. In this context, simplexes are cliques of
different orders q = 0, 1, 2, 3, . . . representing, respectively,
nodes, edges, triangles, tetrahedra, and so on, which are joined
into larger-scale structures. Note that a clique of the order
q contains cliques of the lower orders up to q − 1 as its
faces. The assemblies of cliques can be regarded as topolog-
ical spaces represented by simplicial complexes. Formally, it
holds that in a simplicial complex K, every face of a clique
σ ∈ K also belongs to K, and that a nonempty intersection
of two simplexes σ1, σ2 ∈ K is a face of both of them. In
the context of simplicial complexes, the 1-skeleton consists
of nodes and edges, which is the topological graph that is
accessible to analysis using standard methods of graph theory.
The idea of hierarchical architecture is a center piece in the
development of many modern innovative technologies such
as 3D printing [39]. In the materials science that motivates our
work, such structures are grown by cooperative self-assembly
[1,4,6–8,11,40]. Recently, these processes have been modeled
by attachments of preformatted objects or simplexes [10,41]
under geometric constraints and suitably specified binding
rules and parameters. We also draw attention to several other
contemporary studies [42–47] that show the importance of
simplexes in modeling interactions of higher orders and com-
plex geometry in various physical and biological systems.
Whereas in real complex systems whose structure is de-
tectable from experimental data, the corresponding structure
can be decomposed into simplicial complexes. For example,
in the case of human connectome studied in Refs. [48,49],
these simplicial complexes comprise the inner structure of
brain anatomical modules. The presence of cliques leading to
a hierarchical organization was also found in social network-
ing dynamics [50–52], problems related to traffic dynamics
[53], protein-protein interaction networks [23], and so on.

As mentioned above, the hierarchically organized networks
possess emergent hyperbolicity or negative curvature in the
shortest-path metric, that is, they are Gromov hyperbolic
graphs [54–58]. Recently the graphs with a small hyperbol-
icity parameter δ have been in the focus of the scientific
community for their ubiquity in real systems and applications,
as well as due to their mathematically interesting structure
[55–57,59]. Namely, the upper bound of a small hyperbol-
icity parameter can be determined from a subjacent smaller
graph of a given structure. Generally, it is assumed that both
naturally evolving, biological, physical, and social systems
develop a negative curvature to optimize their dynamics
[42,49,52,60,61]. However, the precise relationship between
the hyperbolicity of a network and its spectral and dynamical
features remains mostly unexplored.

In this paper, we tackle these issues by systematically
analyzing the spectral properties of a class of Gromov
1-hyperbolic graphs, which represent nanonetworks with
different architectures of simplicial complexes. Based on

the model for the cooperative self-assembly of simplexes
introduced in Ref. [41], here we grow several classes of
nanonetworks and analyze their topology and spectral
properties; the monodisperse building blocks are cliques of
the order n = 3, 4, 5, 6 while the geometrical compatibility
tunes their assembly in the interplay with the varying chemical
affinity ν of the growing structure towards the binding group.
Specifically, for the negative values of the parameter ν, the
effective repelling interaction between the simplexes occurs,
while it is gradually attractive for the positive ν. At ν = 0
purely geometrical factors play a role. Our results show that
while the hyperbolicity parameter remains constant δ = 1 for
all classes, their spectral dimension varies with the chemical
affinity ν and the size of the elementary building blocks n.
Moreover, these networks exhibit a community structure when
the parameter ν � 0. The inner structure of these communities
consists of simplicial complexes with a hierarchical
architecture, which manifests itself in the characteristic
spectral properties of the Laplacian of the network.

In Sec. II we present details of the model and parameters,
while in Sec. III we study different topology features of
the considered networks. In Sec. IV we analyze in detail
spectral properties of all classes of these networks for varied
parameters ν and the size of elementary blocks. Section V is
devoted to discussion of the results.

II. SELF-ASSEMBLY OF SIMPLEXES AND THE TYPE
OF EMERGENT STRUCTURES

For the growth of different nanonetworks, we use the
model rules for the cooperative self-assembly [41,62] with
the chemical aggregation of simplexes. Preformatted groups
of particles are described by simplexes (full graphs, cliques)
of different size n ≡ qmax + 1, where qmax indicates the
order of the clique. Starting from an initial simplex, at each
step, a new simplex is added and attached to the growing net-
work by docking along one of its faces, which are recognized
as simplexes of the lower order q = 0, 1, 2, . . . , qmax − 1; see
online demo [63]. For example, a tetrahedron can be attached
by sharing a single node, i.e., a simplex of the order q = 0
with the existing network, or sharing an edge, q = 1, or a tri-
angle, q = 2, with an already existing simplex in the network.
The attaching probability depends both on the geometrical
compatibility of the q-face of the adding simplex with the cur-
rent structure as well as on the parameter ν that describes the
chemical affinity of that structure towards the addition of new
na nodes, where na = qmax − q. More precisely, we have [41]

p(qmax, q; t ) = cq(t )e−ν(qmax−q)

∑qmax−1
q=0 cq(t )e−ν(qmax−q)

(1)

for the normalized probability that a clique of the order qmax

attaches along its face of the order q. Here cq(t ) is the number
of the geometrically similar docking sites of the order q at the
evolution time t . Eventually, one of them is selected randomly.
By varying the parameter ν from large negative to large posi-
tive values, the probability of docking along with a particular
face is considerably changed. For example, for the negative
values of ν, the growing system “likes” new vertices; conse-
quently, a simplex preferably attaches along a shared vertex
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FIG. 1. Aggregates of tetrahedra with strong repulsion, a seg-
ment is shown in the top panel, and the case with strong attraction
resulting in the network with communities indicated by different
colors is shown in the bottom panel.

rather than a larger structure. Effectively, a repulsion between
simplexes occurs; see Fig. 1 top. In the other limit, for a large
positive ν, the most probable docking is along the potentially
largest face, such that an added simplex of the size n shares the
maximum number n − 1 of vertices with the existing struc-
ture; see bottom panel in Figs. 1 and 2. Here the simplexes
in question experience a strong attraction, which gradually
decreases with decreasing ν. For the neutral case ν = 0, the
assembly is regulated by strictly geometrical compatibility
factors Cq(t ), which change over time as the network grows.

In the original model [41], the size of the incoming sim-
plexes is taken from a distribution, whose parameters can
be varied. To reveal the impact of the size of these building
blocks on the spectral properties of the new structure, here
we focus on the networks with monodisperse cliques; in
particular, we investigate separately the structures grown by
aggregation of cliques of the size n = 3, 4, 5, and 6 for contin-
uously varied affinity ν. For comparison, we also consider the
case with a distribution of simplexes in the range n ∈ [3, 6].
As the examples in Fig. 1 and Fig. 2 show, the structure
of the assembly varies considerably with both the size of
simplexes and the level of attraction between them. Notice
that in the case n = 2 the simplex consists of two vertices with
an edge between them resulting in a random tree graph. Here
qmax = 1 and all docking faces are single-vertex sites (q = 0).
Therefore, the probability p(1, 0; t ) = 1 is independent of the
value of the parameter ν. In this work, we consider networks
of different number of vertices N = 1000, 5000, and 10 000.

FIG. 2. The networks of the aggregated cliques of mixed sizes
n ∈ [3, 6] distributed according to ∝ n−2 for ν = 5 (top), and aggre-
gates of triangles for ν = 9 (bottom). The community structure is
indicated by different colors of nodes.

III. TOPOLOGICAL PROPERTIES OF THE ASSEMBLED
NANONETWORKS

The structure of the assemblies strongly depends on the
chemical affinity ν and the size n of the building blocks. For
example, a strong repulsion between cliques enables sharing
a single node, thus minimizing the geometrical compatibility
factor and resulting in a sparse graph (a tree-of-cliques). An
example with the tetrahedra as building blocks at ν = −9 is
shown in the top panel of Fig. 1. However, for extremally
attractive cliques, e.g., for ν = 9, the same building blocks
attach mostly via sharing their largest subgraphs (in this case,
triangles); thus the geometrical constraints play an important
role. This situation results in a dense nanonetwork with a
nontrivial community structure, determined by the modularity
optimization method [64], as shown in the bottom panel of
Figs. 1 and 2. Meanwhile, the modules in the sparse structure
can be recognized as the elementary cliques. Notably, the
presence of a large clique increases the efficiency of building
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TABLE I. Graph measures of the assemblies of cliques of the size n with N ≈ 1000 vertices for three representative values of the affinity
parameter ν: The number of edges E , average degree 〈k〉, and clustering coefficient 〈Cc〉, graph’s modularity mod , diameter D, and ratio of the
hyperbolicity parameter δmax to D/2. Two bottom rows are for mixed clique sizes n ∈ [3, 6] distributed according to ∝ n−α .

bb ν E 〈k〉 〈Cc〉 〈�〉 mod D δmax/D/2

n = 3 −5 1501 2.999 0.766 9.789 0.928 22 1/11
0 1734 3.465 0.741 7.265 0.902 16 1/8

+5 1991 3.982 0.735 4.958 0.861 10 1/5

n = 4 −5 2009 4.61 0.847 8.718 0.927 19 2/19
0 2426 4.852 0.808 6.023 0.895 12 1/6

+5 2984 5.968 0.813 3.23 0.715 8 1/4

n = 5 −5 2514 5.013 0.878 8.89 0.921 19 2/19
0 3182 6.351 0.829 5.01 0.856 11 2/11

+5 3997 7.958 0.850 2.703 0.850 5 2/5

α = 2 +5 2905 5.810 0.820 3.172 0.620 7 2/7
α = 0 +5 3464 6.298 0.844 2.857 0.569 6 1/3

a nontrivial structure, even for a small attractive potential; cf.
Fig. 2 top. We will further discuss the community structure
of these networks in connection with their spectral properties
in Sec. IV. As explained in the Introduction, we analyze the
standard Laplacian operator, which is related to the adjacency
matrix of the graph, i.e., a 1-skeleton of the simplicial com-
plex. (A study of combinatorial Laplacians associated with
higher-order structures remains out of the scope of this work.)
Therefore, we examine the graph’s properties that can be
related to the Laplacian spectra. In Table I we summarize
different graph measures of some monodisperse assemblies
whose spectral properties are studied in Sec. IV. We note
that the self-assembly process of cliques can result in a broad
range of the degree of vertices. Depending on the size of
cliques n � 3, several hubs and a power-law tail can appear
at the sufficiently strong attraction between them [41]. For
illustration, Fig. 3(a) shows the ranking distribution of the
degree for several monodisperse assemblies in the case of
intense attraction. To get an insight into the structure of
the simplicial complexes of these assemblies, we show in
Fig. 3(b), how the population fq of cliques and faces along
different topological levels q varies with the size of the
building block n. For comparison, we also display fq in the
case of the size n ∈ [3, 6] distributed as ∼n−α with a small
number of larger cliques (α = 2) and the statistically similar
number of cliques of all sizes (α = 0).

As mentioned above, the assemblies of cliques possess
a negative curvature in the graph metric space, which im-
plies that they fulfill the Gromov four-point hyperbolicity
criterion [54]. More precisely, the graph G is hyperbolic
iff there is a constant δ(G) such that for any four ver-
tices (a, b, c, d ), the relation d (a, b) + d (c, d ) � d (a, d ) +
d (b, c) � d (a, c) + d (b, d ) implies that

δ(a, b, c, d ) = d (a, c)+d (b, d )−d (a, d )−d (b, c)

2
� δ(G),

(2)

where d (u, v) indicates the shortest path distance. Note that
the difference in (2) is bounded from above by the minimum
distance in the smallest sum dmin ≡ min{d (a, b), d (c, d )}.

Thus, by plotting δ(a, b, c, d ) against dmin for a large num-
ber of 4-tuples, we numerically estimate δ(G) ≡ δmax as the
maximum value observed in the entire graph.

As described in Sec. II, the cliques aggregate by sharing
their faces, i.e., cliques of a lower order, which leads to
some specific properties of the grown structures [41]. In
particular, the order of the simplicial complex cannot exceed
the order of the largest attaching clique. Moreover, theoretical
investigations of these types of structures predict [55–58] that
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FIG. 3. (a) Ranking distribution of nodes i = 1, 2, . . . , 5000 ac-
cording to the decreasing degree. The degree ki of the vertex i
is plotted against its rank ri for different assemblies of cliques of
size n, indicated in the legend, and ν = 9. Stretched exponential
curve approximates the data for the random tree (n = 2), while the
asymptotic power-law decay with the exponent γ is appropriate for
n � 3. (b) The number of simplexes and faces fq at different topology
level q is plotted against q + 1 for the same monodisperse assemblies
of the size n as in the top panel (the same legend applies). The
additional dotted and dashed lines with diamonds are for the mixed
sizes n ∈ [3, 6] with the distribution ∼n−α and two values of α given
in the legend of panel (b).
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hyperbolicity parameter δmax (upper curves, full lines) and 〈δ〉 (lower
curves, dashed lines) against dmin. Thin dotted line indicates the level
δmax = 1.

the upper bound of the hyperbolicity parameter of the graph
differs from the hyperbolicity of the “atoms” of the structure
by at most one unit, that is, δmax = δa + 1. Given that a clique
is ideally hyperbolic (i.e., treelike in the shortest path metric
space), we have δa = 0, which gives δmax = 1 for all clique
complexes grown by the rules of our model. By sampling
up to 109 4-tuples of vertices and computing the graph hy-
perbolicity parameter δ(G) in Eq. (2), we demonstrate that
the hyperbolicity parameter remains δ(G) � 1 for all studied
assemblies. More precisely, while the structure of different
assemblies, as well as their distribution of the shortest-path
distances, varies with the chemical affinity ν, the upper bound
of their hyperbolicity parameter remains fixed in agreement
with the theoretical prediction. In Fig. 4 we show the results
of the numerical analysis for three representative sets of the
assemblies of cliques of different sizes. See also Table I.

IV. SPECTRAL ANALYSIS OF MONODISPERSE
ASSEMBLIES

Spectral dimension ds of a graph, which is defined via
limt→∞

logPii (t )
logt = − ds

2 , characterizes the distribution of return
time Pii(t ) of a random walk on that graph [31,65–67]. The
diffusion type of processes on network is described by Lapla-
cian operators [21,28]. More precisely, for the undirected
graph of N vertices, two diffusion operators are defined, i.e.,
the Laplacian operator with the components

Li j = kiδi j − Ai j, (3)

and the symmetric normalized Laplacian [68]

Ln
i j = δi j − Ai j√

kik j
. (4)

Here Ai j are the matrix elements of the adjacency matrix, ki

is the degree of the node i, and δi j is the Kroneker symbol.

FIG. 5. The lines with different symbols represent the spectral
dimension ds plotted against chemical affinity ν for the aggregates of
monodisperse cliques of sizes n = 3, 4, 5 and a mixture of cliques of
different sizes in the range n ∈ [3, 6]. The bottom line corresponds
to the random tree case n = 2.

The operators defined with Eqs. (3) and (4) are symmetric
and have real non-negative eigenvalues. Both operators have
the eigenvalue λ = 0 with the degeneracy that is equal to the
number of connected components in the network. For the net-
works that have a finite spectral dimension, spectral densities
of both Laplacians scale as P(λ) � λ

ds
2 −1 for small values of

λ. Therefore, the corresponding cumulative distribution Pc(λ)
scales as

Pc(λ) � λ
ds
2 , λ � 1, (5)

and it is suitable [33] for estimating the spectral dimension
ds of the network. Here we analyze the spectral properties of
both Laplacian operators (3) and (4) for the networks grown
with different building blocks and varied chemical affinity ν;
see Figs. 5–7.

We analyze the cumulative spectral density Pc(λ) for the
Laplacian defined by the expressions (3) and (4) to determine
the spectral dimension of the graphs with the adjacency matrix
Ai j . Note that the spectrum is bounded from below, i.e., 0 � λ

for all eigenvalues λ. According to Eq. (5), we estimate ds

for each sample by fitting the data of Pc(λ) for the values
in the range λ � 0.3, as illustrated in Fig. 6. The error bars
are determined by taking the average from different samples
of networks that have 1000 and 5000 nodes. The results
summarized in Fig. 5 show how the spectral dimension of
the corresponding graphs varies with the chemical affinity ν

depending on the size of the elementary building blocks.
As Fig. 5 shows, the impact of the size of the cliques

strongly depends on the way that they aggregate, which
is controlled by the chemical affinity ν. Precisely, for the
sparse structures grown under the considerable repulsion
between cliques when ν < 0, we find that the spectral di-
mension is practically independent of the size of cliques
until the repulsion becomes vanishingly weak. In contrast,
when ν � 0 the spectral dimension increases with the size
of the elementary cliques. Here the attaching cliques can
share their larger faces, thus increasing the impact of the
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geometrical compatibility factor. Remarkably, the spectral
dimension increases with the strength of the attraction be-
tween cliques, which favors sharing increasingly larger faces.
These faces are limited by the size of the elementary cliques.
More specifically, for all ν � 0 values, ds is systematically
larger in the aggregates of tetrahedra than those of triangles.
In both cases we have that ds exceeds the limit of the transient
random walk, ds = 2, for relatively weak attraction between
cliques ν ∼ 1. However, both curves remain below ds = 4 for
the entire range of ν values. Note that ds > 4 is recognized
as the full synchronization condition for the Kuramoto os-
cillators on network [33], whereas, in the region ds ∈ (2, 4],
an entrained synchronization with a complex spatiotemporal
pattern can be expected [33,69]. Even though a quite com-
pact structure is grown by attaching tetrahedrons via their
triangular faces (see bottom panel in Fig. 1), its spectral
dimension remains limited as ds < 4, enabling the complex
synchronization patterns. We find that the limit ds = 4 can
be exceeded when the size of the clique is at least n = 5
and the attraction is considerably large, i.e., ν � 5. In this
situation, the agglomerate consists of 5-cliques sharing many
tetrahedrons as their largest faces. Interestingly, it suffices to
have a few cliques of a large size to grow such agglomerates
that cause the spectral dimension ds � 4. For example, the
mixture shown in the top panel of Fig. 2 with n ∈ [3, 6], where
the population of 6-cliques is only 1/4 of the population of
3-cliques, leads to the spectral dimension shown by the top
line in Fig. 5. Furthermore, Fig. 6 indicates that not only the
spectral dimension but the entire spectrum changes with the
size of the cliques and the chemical affinity, as we discuss in
more detail in the following.

Next, we determine the spectral density of the normalized
Laplacian, defined by (4), by averaging over 10 networks of

size N ≈ 1000 generated for the same values of the model
parameters. Note that the eigenvalues of the normalized
Laplacian are bounded in the range [21,28] λLN ∈ [0, 2].
In Fig. 7 we show the spectral density of the normalized
Laplacian for several representative cases, in particular, for
three different aggregates of tetrahedrons corresponding to the
strong repulsion, vanishing interaction, and strong attraction,
respectively. Also, in panel (e), the spectral distribution is
shown for the case of strong attraction ν = 9 for the cliques
of different sizes n � 3. It should be noted that iso-spectral
structures are observed in the case of the significant repul-
sion between the cliques ν = −9. In this limit, apart from
a structure at small eigenvalues, there is a prominent peak
at λLN = n/(n − 1), i.e., λ = −1 in the adjacency matrix,
indicating the presence of minimally connected cliques. In
contrast, for ν � 0, the attraction between cliques and the
relevance of the geometrical compatibility factors lead to the
appearance of larger simplicial complexes. A peak at λLN = 1,
which is absent in panel (a), starts building at ν = 0, and
gradually increases with the increasing ν, as shown in panels
(c) and (e). The occurrence of the peak at λLN = 1, (i.e., λ = 0
in the corresponding adjacency matrix [20,26,27]) appears as
a characteristic feature of these hyperbolic networks. Accord-
ing to previous studies of scale-free and modular networks
[21,28], this peak can be related to the nodes of the lowest
degrees in the network. In the present study, such nodes are
found in the bottom-right corner of the ranking distribution
in Fig. 3(a). Apart from the random tree case, the appearance
of this peak reflects the fact that with the increased chemical
affinity a broad distribution of degrees occurs with a power-
law tail; cf. Fig. 3(a). Notably, the highest peak is when the
building cliques are of different sizes n ∈ [3, 6], compared
to the monodisperse structure with n = 6. Recently, a more
insightful analysis [26,27] revealed different origins of the
degeneracy in the adjacency matrix that leads to these two
peaks in the spectra. More specifically, this analysis suggests
that the occurrence of substructures of nodes, which are
equally connected to a surrounding structure in the network,
increases the degeneracy of the −1 eigenvalue. Moreover, the
reasons for the degeneracy of the 0-eigenvalue were found
in the nodes duplication, which is known to characterize
the evolution of biological networks, notably demonstrated
in analysed protein-protein interaction networks [26,27]. We
note that such situations often occur in our model by com-
bining simplexes through their shared faces. The two peaks
mentioned above are increasingly more prominent in the case
of larger cliques n for ν > 0, where the dominant docking
events occur via sharing the largest subclique. Similar spectral
properties can be expected for the simplicial complexes grown
by different rules, for example, in the models described in
Refs. [42–47].

A further exciting feature of these spectral densities is
that a characteristic minimum appears between λLN = 1 and
the structure above it. The results in previous investigations
[23] suggest that such minimum in the spectral density is a
signature of the hierarchical organization, as demonstrated by
an artificial network, which also occurs in the protein-protein
interaction network. In the present study, the hierarchical
organization of cliques into simplicial complexes occurring
at ν � 0 has been demonstrated by the algebraic topology
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FIG. 7. Spectral distribution (left column) and the corresponding scatter plots of the eigenvectors v1, v2, v3 of the three lowest nonzero
eigenvalues of the normalized Laplacian (right column) for the aggregates of tetrahedra n = 4 for three different values of the affinity parameter
ν = −9 (a, b), ν = 0 (c), (d), and ν = +9 (e), (f). The bottom panels (g) and (h) are for the random tree structure n = 2, which is independent
of ν. For comparison, we also show the spectra for the cliques of different sizes n = 3, 5, and 6, and the mixture n ∈ [3, 6] in panel (e); the
corresponding lines are explained in the legend. The orientation of each 3D plot in panels (b), (d), (f), and (h) is such that it best depicts the
number and size of different branches of nonzero components of the corresponding eigenvectors.

methods in Ref. [41]. Here we show by the spectral analysis
that these simplicial complexes make the inner structure of
mesoscopic communities, which can be identified by the
localization of the eigenvectors of the lowest nonzero eigen-
values [21]. In the right column of Fig. 7, panels (b), (d), and

(f) show the scatter plot of the three eigenvectors related to the
lowest nonzero eigenvalues corresponding to the aggregates
of tetrahedrons in the left column. In the limit of strong repul-
sion between the cliques, the modularity of the entire structure
is determined by the original cliques; see Figs. 7(a) and 7(b),
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whereas the larger communities with subcommunities appear
for ν � 0 where higher-order connections are increasingly
more effective; cf. panels (d) and (f) of Fig. 7. We can expect
that similar spectral properties can be found in various real-
world networks with the prominent hierarchical organization
mentioned in the Introduction. More precisely, the spectra of
networks representing functional brain connections, protein-
protein interaction networks, as well as various hyperbolic
graphs with cliques emerging from the online social dynamics
can have features qualitatively similar to the ones discussed
above. For completeness, panels (g) and (h) of Fig. 7 show the
case n = 2, exhibiting the spectral density of a typical random
tree structure.

V. DISCUSSION AND CONCLUSIONS

We have studied topological and spectral properties of
classes of hyperbolic nanonetworks grown by the cooperative
self-assembly. The growth rules [41] that can be tuned by
changing the parameter of chemical affinity ν enable us to in-
vestigate the role of higher-order connectivity in the properties
of the emerging structure. Attaching groups of particles are
parameterized by simplexes (cliques) of different sizes which
share a geometrical substructure by docking along with the
growing network. For the negative values ν < 0, the repulsion
among cliques makes them share a single node rather than an
edge or a higher structure. On the other hand, ν � 0 implies
that the geometrical factors and the size of the attaching clique
become relevant. In particular, the higher positive value of
ν implies that a new clique attaches to a previously added
clique by sharing its face of the larger order, thus building a
more compact structure. Mathematically [58], the attachment
of cliques by sharing a face (of any order) leads to simplicial
complexes whose hyperbolicity parameter cannot exceed one.

Our results revealed that, while the hyperbolicity param-
eter remains fixed δmax = 1 across different assemblies, their
topological and spectral properties change with the increased
chemical affinity; see Table I and Figs. 5 and 7. Remark-
ably, the spectral dimension of the structure of strongly
repelled cliques of any size is practically indistinguishable
from the one of a random tree of the same number of ver-

tices. However, the rest of the spectrum is different from
the one of the tree structure; its dominant feature is the
presence of cliques as the prominent network modules. On the
other hand, the compelling attraction between the cliques for
ν � 0 results in the spectral dimension that for all sizes
n � 3 exceeds the limit ds = 2, compatible with the transient
random walk on the network. Further increase of the spectral
dimension with the increased affinity parameter ν strongly
depends on the size of the cliques. Our results suggest that
for a strong attraction with the cliques of size n � 5, the
spectral dimension of the network can exceed the limit ds = 4,
above which the synchronized phase is expected to exist [33].
However, more interesting structures are grown by smaller
cliques or a mixture of different clique sizes with a weak
attraction (small positive values of the parameter ν) allowing
the sharing a variety of clique’s faces. In these cases, we find
that the spectral dimension remains in the range of ds ∈ (2, 4].
These spectral properties are expected to be compatible with
an entrained synchronization [33] or a frustrated hierarchical
synchronization with intricate spatiotemporal patterns [69]. A
detailed analysis of such synchronization patterns on these
graphs as well as potentially superdiffusive processes [70]
remains for future work. Due to their spectral properties,
these structures can be interesting for modeling the complex
dynamics in a variety of biological systems and for poten-
tial applications. In the framework of the cooperative self-
assembly of nanoparticle groups, our analysis shows how the
control of the chemical affinity can lead to complex struc-
tures with different functional properties. Furthermore, the
presented results can be relevant for a deeper understanding of
the functional complexity of many important structures with
built-in simplicial complexes, such as human connectome [49]
and other hierarchically modular networks.
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[62] M. Šuvakov and B. Tadić, Topology of Cell-Aggregated Planar
Graphs, in International Conference on Computational Science,
edited by V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot,
and J. Dongarra, Lecture Notes in Computer Science Vol. 3993
(Springer, Berlin, Heidelberg, 2006), pp. 1098–1105.

[63] M. Šuvakov, M. Andjelković, and B. Tadić, Applet: Simplex
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