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We study structure, eigenvalue spectra, and random-walk dynamics in a wide class of networks with sub-
graphs (modules) at mesoscopic scale. The networks are grown within the model with three parameters
controlling the number of modules, their internal structure as scale-free and correlated subgraphs, and the
topology of connecting network. Within the exhaustive spectral analysis for both the adjacency matrix and the
normalized Laplacian matrix we identify the spectral properties, which characterize the mesoscopic structure of
sparse cyclic graphs and trees. The minimally connected nodes, the clustering, and the average connectivity
affect the central part of the spectrum. The number of distinct modules leads to an extra peak at the lower part
of the Laplacian spectrum in cyclic graphs. Such a peak does not occur in the case of topologically distinct tree
subgraphs connected on a tree whereas the associated eigenvectors remain localized on the subgraphs both in
trees and cyclic graphs. We also find a characteristic pattern of periodic localization along the chains on the tree
for the eigenvector components associated with the largest eigenvalue N“=2 of the Laplacian. Further differ-
ences between the cyclic modular graphs and trees are found by the statistics of random walks return times and
hitting patterns at nodes on these graphs. The distribution of first-return times averaged over all nodes exhibits
a stretched exponential tail with the exponent o=1/3 for trees and o=~2/3 for cyclic graphs, which is
independent of their mesoscopic and global structure.
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I. INTRODUCTION

Complex dynamical systems and network mesoscopic
structure. In recent years a lot of attention has been devoted
to the problem of representing the complex dynamical sys-
tems by networks and investigating their structural and dy-
namical properties [ 1]. These networks often exhibit inhomo-
geneity at all scales, from the local level (individual nodes),
to mesoscopic (groups of nodes) and global network level.
The mesoscopic inhomogeneity of networks may be defined
as topologically distinct groupings of nodes in a range from
few nodes to large modules, communities, or different inter-
connected subnetworks. These subgraphs play an important
role in the network’s complexity along the line from the local
interactions to emergent global behavior, both in the struc-
ture and the function of networks [1,2]. Hence, the charac-
teristic subgraphs can be defined not only topologically but
also dynamically, and different subgraphs appear to charac-
terize different functional networks. In particular, communi-
ties are often studied in social networks [3], topological mod-
ules [4], and characteristic dynamical morifs [5] are found in
genetic interactions and communication networks, whereas
paths and trees appear as relevant subgraphs in the networks
representing biochemical metabolic processes and neural
networks [6]. Chains, representing a special type of motifs,
have been observed in networks of words in books and the
power grid networks [7]. In these examples the mesoscopic
topology is related to dynamics of the whole network. On the
other side, we have multinetworks consisting of a few inter-
connected networks in which the internal structure and pos-
sibly also dynamics might be different [8]. Then the interac-
tion between such diverse networks leads to emergent global
behavior, as for instance in the networks representing inter-
acting ecosystems [9].

Understanding the mesoscopic structure of networks in
both topological and dynamical sense is, therefore, of para-

1539-3755/2009/80(2)/026123(12)

026123-1

PACS number(s): 89.75.Hc, 05.40.Fb, 02.70.—c¢

mount importance in the quantitative study of complex dy-
namical systems. Recently much attention was devoted to
network’s topological modularity, such as community struc-
ture [3,10-15], where a wide range of methods are designed
to find the appropriate network partitioning. Mostly these
methods use the centrality measures (i.e., a topological [10]
or a dynamical [11] flow) based on the maximal-flow-
minimal-cut theorem [16]. Further effective approaches for
graph partitioning utilize the statistical methods of maximum
likelihood [12,13], occurrence of different time scales in the
dynamic synchronization [14] and eigenvector localization
[15] in mesoscopically inhomogeneous structures. In more
formal approaches, the definitions of different mesoscopic
structures in terms of simplexes and their combinations, sim-
plicial complexes, are well known in the graph theory [17].
This approach has been recently applied [18] to scale-free
(SF) graphs and some other real-world networks.

Spectral analysis of networks. Properties of the eigenval-
ues and eigenvectors of the adjacency matrix of a complex
network and of other, e.g., Laplacian matrices related to the
network structure, contain important information that inter-
polates between the network structure and dynamic pro-
cesses on it. One of the well-studied examples is the syn-
chronization of phase-coupled oscillators on networks
[1,14,19,20], where the smallest eigenvalue of the Laplacian
matrix corresponds to the fully synchronized state. The syn-
chronization between nodes belonging to better connected
subgraphs (modules) occurs at somewhat smaller time scale
[14,21] corresponding to lowest nonzero eigenvalues of the
Laplacian, and the positive/negative components of the cor-
responding eigenvectors are localized on these modules
[1,15]. The spreading of diseases [22] and random walks and
navigated random walks [2,23-25] are other types of the
diffusive processes on networks, which are related to the
Laplacian spectra.
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Compared to the well-known semicircular law for the ran-
dom matrices [26], the spectra of binary and structured
graphs have additional prominent features, which can be re-
lated to the graph structure [15,19,27-31]. Particularly, some
of the striking differences found in the scale-free graphs are
the appearance of the central peak or a “triangular form” [27]
and the power-law tail [28,32] in the spectral density of the
adjacency matrix, which is related to the node connectivity.
In the classical paper Samukhin et al. [30] elucidated the role
of the minimally connected nodes on the Laplacian spectra
of trees and uncorrelated treelike graphs. They derived an
analytical expression for the spectral density of the Laplacian
matrix. Other topological features of the graph, particularly
the finite clustering [19] and the presence of modules [15],
have also been found to affect the Laplacian spectra. At-
tempts to classify the graphs according to their spectral fea-
tures were presented recently [31].

In this paper we study systematically the spectral proper-
ties of a large class of sparse networks with mesoscopic in-
homogeneities. The topology of these networks at all scales
may lead to qualitative differences in the spectra both of the
adjacency and Laplacian matrix. Having well-controlled
structure of the networks by the model parameters, we are
able to quantitatively relate the spectral properties of the net-
works to their structure. As explained below, we identify
different regions of the spectra in which certain structural
features are mainly manifested. We further explore these net-
works by simulating the random-walk dynamics on them. We
focus only on two properties of random walks: hitting pat-
terns and first-return-time distribution, which are closely re-
lated to graph structure and spectrum of the Laplacian. In
this way we would like to emphasize deeper interconnections
between the structure and the dynamics of complex networks
and their spectra, features that often remain fragmented in
numerous studies of complex networks.

In Sec. II we represent model of growing networks with
controlled number of modules and their internal structure.
We then briefly study the spectral density of the adjacency
matrix of modular networks in Sec. III. Section IV is devoted
to detailed analysis of the spectra of the normalized Laplac-
ian matrix, which is related to the diffusive dynamics on
these networks. The simulations of random walks on trees
and on sparse modular graphs with minimal connectivity
M =2 is presented in Sec. V. Finally, a short summary and
the discussion of the results is given in Sec. VI.

II. GROWING MODULAR NETWORKS

We first present the model for growing networks with
statistically defined modularity. It is based on the model for
growing clustered scale-free graphs originally introduced in
Ref. [33]. The preferential attachment and preferential rewir-
ing during the graph growth leads to the correlated scale-free
structure, which is statistically similar to the one in real
WWW [33]. Two parameters, o and M as explained below,
fully control the emergent structure. Here we generalize the
model in a nontrivial manner by allowing that a new module
starts growing with probability P,. The added nodes are at-
tached preferentially within the currently growing module,
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whereas the complementary rewiring process is done be-
tween all existing nodes in the network. The growth rules are
explained in detail below.

At each time step # we add a new node i and M new links.
With probability P, a new group (module) is started and the
current group index is assigned to the added node (first node
belong to the first group). The group index plays a crucial
role in linking of the node to the rest of the network. Note
that each link is, in principle, directed, i.e., emanating from
the origin node and pointing to the farget node. For each link
the target node, k, is always searched within the currently
growing module (identified by its group index g;). The target
is selected preferentially according to its current number of
incoming links g;,(k,t). The probability p;;(k,) is normal-
ized according to all possible choices at time ¢,

Ma+ g;,(k,t)

MN, ()a+ Ly (1) ’ M

pin(k’t) =

where Ngk(t) and Lgk(t) stand for, respectively, the number of
nodes and links within the growing module g;. The link i
—k is fixed with the probability a. If o<1, there is a finite
probability 11—« that the link from the new added node i
—k is cut (rewired) and a new origin node n is searched
from which the link n— k established and fixed. The new
origin node n is searched within all nodes in the network
present at the moment 7. The search is again preferential but
according to the current number of outgoing links g,,,(n,?)
[33],

Ma+ q,,,(n,1)
MN@)a+L(t)’

where N(f)=t and L(f) <MN(t) are total number of nodes
and links in the entire network at the moment . Note that the
number of added links is smaller than M for the first few
nodes in the module until M —1 nodes are in the module. We
are interested in sparse networks, for instance, M =2, the
second added node in a new module can have only one link
pointing to the first node in that module. The second link is
attempted once within the rewiring procedure the probability
1 -, otherwise it is not added. It is also assumed that nodes
have no incoming or outgoing links when they are added to
the network; i.e., ¢;,(i,1)=¢,,(i,1)=0. Some examples of the
emergent modular graphs of size N=10* nodes are shown in
Fig. 1. The networks which we consider throughout this pa-
per are:

Ner269 [shown in Fig. 1(b)] is grown with direct imple-
mentation of the above rules with parameters M=2 and P,
=0.006, which gives G=PyN=6 distinct modules, and «
=0.9, leading to 10% links rewired.

Netl61 [shown in Fig. 1(c)] is a scale-free tree with tree
subgraphs, which is grown with the same rules as above and
taking M=1, G=6, and a=1 (no rewiring).

Two additional networks discussed in this appear as trees
with attached modules of different structure. They are grown
in the following way:

(i) Tree with SF modules [shown in Fig. 1(d)] starts
growth as a scale-free tree, i.e., with M=1, a=1, and pref-
erential selection of the target node with the probability

pout(n»t) = (2)
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FIG. 1. (Color online) Examples of modular graphs with N
=1000 nodes and M XN links grown from the model rules for
different values of the control parameters: (a) M=5, P,=0.002, and
a=0.9; (b) M=2, P,=0.006, and «=0.9 (Net269); (c) M=1, P,
=0.006, and a=1 (Netl61); and (d) scale-free tree with attached
modules. Each module contains between 20-50 nodes and its struc-
ture is determined by the growth rules with M =2 and a=0.9. Color/
gray scale of nodes indicates their group index.

atqin(k,t) . . .

Pin(k.)= N5 asrn- A random integer r in the interval [20,50]
is selected and at rth node a module of size r is started to
grow. The module rules are preferential linking and prefer-
ential rewiring within the same module with the parameters
M=2 and a=0.9. Subsequently a new integer r is selected
and the tree resumes to grow for the following r steps, after
which a module of the same size is added and so on. Now
the nodes in the modules are excluded as potential targets for
the resumed tree growth. The relative size of the tree and
modular structure can be controlled in different ways, e.g.,
by the parameter P as above. For the purpose of the present
study we keep full balance between the size of the tree and
total number of nodes included in the modules.

(ii) Tree with cliques is grown as a random tree; i.e., target
node k is selected with probability p;,(k,7)=1/N(z) from all
nodes present at time t. With probability Py a clique of size n
is selected and attached to a randomly selected node. Then
the tree resumes growth and so on.

The structural properties of these networks depend cru-
cially on three control parameters: the average connectivity
M, the probability of new group P,, and the attractivity of
node «. By varying these parameters we control the internal
structure of groups (modules) and the structure of the net-
work connecting different modules. Here we explain the role
of these parameters. Note that for P,=0 no different modules
can appear and the model reduces to the case of the clustered
scale-free graph of Ref. [33] with a single giant component.
In particular, for M=1 and P,=0 and o<1 the emergent
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FIG. 2. (Color online) Ranking distribution (Zipf’s law) of
nodes according to the total node degree ¢g; for networks shown in
Fig. 1(b) (modular) and Fig. 1(c) (tree of trees).

structure is clustered and correlated scale-free network. For
instance, the case a=1/4 corresponds to the statistical prop-
erties measured in the WWW with two different scale-free
distributions for in- and out-degrees and nontrivial clustering
and link correlations (disassortativity) [33]. On the other
hand, for M=1 and P,=0, a=1 a scale-free tree is grown
with the power-law in-degree with the exponent 7=3 exactly.

Here we consider the case Py>0, which induces different
modules to appear statistically. The number of distinct
groups (modules) is given by G~ PyN. By varying the pa-
rameters M and « appropriately, and implementing the link-
ing rules as explained above with the probabilities given in
Egs. (1) and (2), we grow the modular graphs with G con-
nected modules of different topology. In particular for «
<1 the scale-free clustered and correlated subgraphs appear
[cf. Figs. 1(a) and 1(b)]. Whereas for a=1 the emergent
structure is a tree of (scale-free) trees if M=1 [Fig. 1(c)].
Another limiting case is obtained when a=1 and M =2, re-
sulting in a scale-free tree connecting the unclustered uncor-
related scale-free subgraphs. In order to systematically ex-
plore the role of topology both of modules and connecting
networks in the spectral and dynamical properties of sparse
modular graphs, we will study in parallel two network types
shown in Figs. 1(b) and 1(c), referred to as Net269 and
Netl61, respectively.

Note that the growth rule as explained above leads to a
directed graph with generally different connectivity patterns
for incoming and outgoing links. Each module also tends to
have a central node (local hub) through which it is connected
with the rest of the network. The pattern of directed connec-
tions of the nodes within modules and the role of the con-
necting node can be nicely seen using the maximum-
likelihood method for graph partitioning, as shown in our
previous work [13]. For the purpose of the present work, in
this paper we analyze undirected binary graphs, which have
symmetric form of the adjacency matrix and the normalized
Laplacian matrix. Therefore, the total degree of a node g
=¢in+q,. 1S considered as a relevant variable for which we
find a power-law distribution according to

P(g)~q " (3)

In Fig. 2 we show the ranking of nodes according to their
degree for two networks, which are shown in Figs. 1(b) and
1(c). The ranking distribution appears to be broad (Zipf’s
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law) with the exponent 7y, which is related to the exponent in
Eq. (3) with a general scaling relation,

T= ! + 1. (4)
Y

The points in the flat parts of the curves at large connec-
tivity represent the module hubs, which appear to have simi-
lar number of links. In the case of Net269 there are about six
such nodes, whereas in the case of tree of trees two nodes,
hubs of the largest subgraphs, are separated from four other
hubs, and then the rest of nodes. The occurrence of local
hubs changes the overall slope of the curve, compared to the
networks without modules, where one finds analytically y
=1/(1+a) and thus 7=2+« [33,34]. Here we have approxi-
mately y=0.65 for modular network Net269, and y=0.72
for tree of trees, Netl61. According to Eq. (4), 7=2.5 and
7=~=2.4, for these two networks, respectively, suggesting how

the modularity affects the degree distribution.

III. EIGENVALUE SPECTRUM OF GROWING
MODULAR NETWORKS

The sparse network of size N is defined with an N XN
adjacency matrix A with binary entries A;;=(1,0), represent-
ing the presence or the absence of a link between nodes i and
j. For the sparse binary networks the eigenvalue spectral
density of the adjacency matrix is qualitatively different from
the well-known random matrix semicircular law [28]. More-
over, in a large number of studies it was found that the ei-
genvalue spectra differ for different classes of structured net-
works [1,15,19,27-31]. We study the spectral properties of
the adjacency matrix A and the related Laplacian matrix L
(see Sec. IV) of different networks with mesoscopic inhomo-
geneity using the complete solution of the eigenvalue prob-
lem,

AVE= AV (5)

Here the set {\'} denotes eigenvalues and {V*'} a set of the
corresponding eigenvectors, i=1,2,...,N, of the adjacency
matrix A. For the modular networks grown with the algo-
rithms in Sec. II we focus on the effects that the network
mesoscopic structure has on (i) the spectral density, (ii) the
eigenvalues ranking, and (iii) the structure and localization
of the eigenvectors.

As stated above, we use the undirected networks. Thus the
adjacency matrix is symmetric, which is compatible with the
real eigenvalues and the orthonormal basis of the eigenvec-
tor. We use the networks of the size N=1000 and solve the
eigenvalue problem numerically. Particularly, we use the nu-
merical routines in C from numerical recipes [35] for calcu-
lation of eigenvalues and eigenvectors of adjacency matrix
with the precision 1076. The spectral densities are calculated
with a large resolution, typically AN=0.05, and averaged
over 500 networks.

A. Change in the spectrum with network growth

We first demonstrate how the growth of the modular net-
works affects their spectrum and the eigenvector compo-
nents. In Fig. 3 we show the eigenvalues of the growing
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FIG. 3. (Color online) Top: evolution of all eigenvalues )\f‘ of
the adjacency matrix with growth of the modular network. Bottom:
evolution of the components of the eigenvector associated with
leading eigenvalue with network growth. Network parameters: a
=0.9, M=2, and P,=0.008, permitting four modules within N
=500 added nodes. Every tenth step is shown. Brighter/yellow-red
color corresponds to larger centrality.

network with the parameters selected such that four modules
are formed, i.e., at time step 1, 180, 338, and 357. Growth up
to 500 added nodes was shown and the spectrum was com-
puted every ten steps. As the network grows new eigenvalues
appear, with the largest eigenvalue split from the bulk. A
remarkable feature of modular networks is that the additional
eigenvalue splits from the rest of the spectrum when a new
module starts growing. In Fig. 3 (top) three top lines corre-
sponding to such eigenvalues are visible. The forth module is
comparably small. More detailed study of the eigenvalue
spectral density will be discussed below. Here we show how
the components of the eigenvector for the largest eigenvalue
(eigenvector centrality) evolve in the same network.

The eigenvector centrality x; of a node i satisfies the equa-
tion [36]

N
1
Xi= A_E Ajpx;. (6)
)\maxj=l
Hence, in view of Eq. (6) and positivity of the centrality

measures, it appears that different x; are the components of
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. . . A
the eigenvector corresponding to the largest eigenvalue N,

of the adjacency matrix A. In the bottom panel of Fig. 3 we
show in a three-dimensional color plot the evolution of the
components corresponding to the largest eigenvalue of the
growing network described above. In our network modules
are interconnected (a<<1) in what leads to the localization of
the eigenvector on all nodes in the network. However, the
largest component corresponds to the hub of the first module.
When a new module is added to the network, the strongest
component is eventually shared among the hubs of the two
modules. During the growth of the module, however, the
centrality x; of the nodes in that module remains small until
the module grows large enough (cf. Fig. 3).

B. Spectral density of clustered modular networks

We investigate spectral densities of undirected networks
grown with model presented in Sec. II. Our main focus is on
the Laplacian spectra, studied in Sec. IV. Here we briefly
summarize the main features of the spectral density of the
adjacency matrix of our scale-free graphs with the modular-
ity and clustering (see also [37]). In the special case of our
model when Py=0 we have the scale-free networks without
modularity. The spectral density of such networks, in particu-
lar unclustered and uncorrelated networks, which correspond
to our case with a=1, was investigated extensively
[15,19,27-29,31]. Specifically, it was shown that the spectral
density has a characteristic triangular shape and a tale, which
is related to the power-law degree distribution [28,32]. The
largest eigenvalue is separated from the rest of the spectrum
and its position scales with the largest connectivity gp,y of
the hub, as ~Vg,,,« [27]. In Fig. 4 (top) we show the spectral
density of the unclustered (a=1) scale-free networks with
fixed average connectivity M =5 and varied number of mod-
ules. The case G=1 corresponds to the case well studied in
the literature [19,27-29,31]. As the figure shows, for these
types of networks, the central part of the spectrum is not
affected by the modularity (G>1) with other fixed param-
eters. The differences, however, appear in the area of the
largest eigenvalue, as shown in the inset to Fig. 4 (top). The
number of different large eigenvalues increases with in-
creased number of modules, as it was demonstrated in Fig. 3,
which leads to broadening of the peak. At the same time, due
to the fixed number of links M X N, the largest connectivity
is shared between several hubs of the modules, which leads
to the shift of the peak toward lower values.

The internal structure of the modules is changed by vary-
ing the parameter «. In particular, networks with different «
have different degree distribution and for a<<1 a finite clus-
tering coefficient appears, which does not decay with the
network size [33]. In Fig. 4 (bottom) we show the effects of
increased clustering on the spectral density of networks with
fixed average connectivity M =5 and fixed number of mod-
ules G=2. The clustering coefficient for one network with
10% of rewired links is, i.e., ®=0.9, Cc=0.059. For larger
fraction of rewired links (decreasing «) the clustering coef-
ficient increases; for instance for the network with a=0.6 we
find Cc=0.164. As shown in the bottom panel of Fig. 4, the
central part of the spectrum is affected by increased cluster-
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FIG. 4. (Color online) Spectral density of the adjacency matrix
for scale-free networks of size N=1000 and average connectivity
M=5 for: (top) @=0.9 and varied modularity G=1,2,6 modules.
Inset: Part of the spectrum with largest eigenvalues; (bottom) fixed
G=2 and varied parameter of clustering @=1,0.9,0.6, as indicated
by color/type of line. Densities normalized to the maximum of the
reference curve for a=0.9, G=2.

ing of the network. In our model due to the preferential re-
wiring when a <1, the number of triangles attached to hubs
increases, while the peripheral nodes lose links. This contrib-
utes to the increase of the central peak and a decay of the
spectral density away from the central area. The increased
clustering also contributes to a characteristic shape around
the central peak. Note that the random rewiring, which is
often used to increase clustering in uncorrelated scale-free
networks with large average connectivity, M =20 in Ref.
[19], may generate uncontrollable effects.

IV. SPECTRA OF NORMALIZED LAPLACIAN

The Laplacian matrix L related to the adjacency matrix of
the network A is usually defined as

m_
Ly = qi0; — Ajj- (7)

For the dynamics of the random walks on networks other
forms of the Laplacian matrices have been discussed in the
literature [30,31]. Generally, for a random or navigated
walker [38—40] one can define the basic probability p;, for
walker to jump from node i — € in a discrete time unit (one
time step). Then the probability P;;(n) that the walker start-
ing at node i arrives at node j in n steps is given by

Pin)= 2 Pi, -+ Pi,_j- (8)
Iy

Consequently, the change of the transition probability P(n)
in one time step can be written via
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Pyin+1)=Pym=2| 2 py...p

]n Zl"'ln—l

=- E Pi, (n)LGj’ 9)
I, "

n—llln:|(plnj - 5111])

which defines the components of the Laplacian matrix L;; in
terms of the basic transition probability p;; of the walker. For
the true random walk from node i equal probability applies
for all g; links, i.e., p,]—— when the link A;; is present. Thus
the Laplacian matrix suitable for the true random walk on the
network is given by

1

= 8= —Ay, (10)
qi

and satisfies the conservation law for diffusion dynamics on

graph [31]. We consider the symmetrical Laplacian

1
3
Lij= @j—EAij, (11)
1y

which is a normalized version of the Laplacian for the ran-
dom walks [30]. (It can be related with the transition prob-
ability chosen as p;;=7— ) The Laplacian matrix in Eq. (11)

has a limited spectrum 1n the range )\L €[0,2] and an or-
thogonal set of the associated eigenvectors V()\l) i
=1,2,...,N, which makes it suitable for the numerical study.
As already pointed out in Ref. [30], operators (10) and (11)
are connected by a diagonal similarity transformation S§;;
=\ q;. Hence they have the same spectrum [30].

A. Spectral density of the normalized Laplacian of
modular networks

As mentioned above, the spectrum of Laplacian (11) is
bounded within the interval [0, 2] regardless of the size of
network. The maximum value - =2 is found only in bi-
partite graphs and trees. Whereas for monopartite graphs
with cycles the maximum eigenvalue is shifted toward lower
values, depending on the network structure. The main part of
the spectrum is centered around unity. The minimum eigen-
value \:. =0 always exists, and it is nondegenerate if the
graph consists of one connected component. In the case of
modular graphs, which we consider here, each of the mod-
ules tends to behave as an independent network with its own
zero eigenvalue. This may be manifested in the dynamics,
for instance in the appearance of the time scales for partial
synchronization #;~1/\; [14,41], or in the confinement of
the random walk inside the module, which affects the return
times at small scale, as discussed later in Sec. V.

Owing to the weak coupling between these subnetworks,
we find one zero eigenvalue and a number of small eigen-
values 0=\ corresponding to the number of topologically
distinct modules. A typical spectral density of L® of an en-
semble of networks with six modules and the average con-
nectivity M =2 shows the extra peak at small eigenvalues, as
shown in Fig. 5 (middle and bottom). In the sparse graphs
and particularly in trees, the nodes with least number of links
gn,=1 and g,,=2 play a special role in the form of the spec-
trum [28] near the sharp peak in the adjacency matrix at
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FIG. 5. (Color online) Spectral density of the normalized La-
placian for scale-free networks without modules, G=1, and with
G=6 modules for scale-free trees (top) and network with average
connectivity M=2 and a=0.9 (middle). Spectral density of the nor-
malized Laplacian for scale-free network with G=6 modules and
average connectivity M=5 and @=0.9 (bottom). In each case the
network size is N=1000 nodes and averaging is taken over 750
network samples.

N =0. Similar situation occurs at \‘=1, shown in Fig. 5
(top). Furthermore, in the case of trees we find continuous
spectrum up to zero, although network like Netl61 in Fig.
1(c) has treelike topological subgraphs. The topological
modularity does not induce any new features of the Laplac-
ian spectra in tree graphs. In the network Net269 [Fig. 1(b)],
we have 10% of rewired links, which leave as much of the
nodes with ¢g,,=1. Consequently, the central peak occurs, as
shown in Fig. 5 (middle). The presence of cycles, however,
leads to the two symmetrical peaks as well as the extra peak
at small eigenvalues due to the presence of modules, Fig. 5
(middle). Comparison of the spectral densities in Fig. 5
(middle and bottom) suggests that the increase in the mini-
mal connectivity of nodes while keeping the same number of
topological modules; the central part of the spectrum ap-
proaches the one of a random binary graph (with disappear-
ing central peak) and a gap opens between the lower and
central part of the spectrum. The occurrence of the peak at
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FIG. 6. (Color online) Ranking of the eigenvalues for tree of
trees, Netl61 (top) and for modular network with M=2, Net269
(bottom).

the lower part of the spectrum was noticed also in the earlier
studies, for instance, in highly connected network with M
=20 in [19], where rewiring of a large number of links per
node eventually leads to both increased clustering and prob-
ability of a modular structure. In our model, on the contrary,
it is clear that the peak at the lowest part of the spectrum is
indeed related to the topologically distinct modules in cyclic
networks even if the networks are very sparse, i.e., M=2 and
M =5, as shown in Fig. 5 (middle and bottom). The width of
the gap increases with the average connectivity. Also, the
area under the small peak, compared to the central part of the
spectrum increases with the number of distinct modules. For
instance, for M=2 we find (see supplementary material [37])
the relative weight of the small peak increases from 0.144%
at G=2 to 1.53% at G=16 modules.

The spectral densities in Fig. 5 are obtained with en-
semble average over many networks grown with using the
same parameters Py, «, M. For the individual network real-
ization, particularly the Netl61 and Net269 shown in Figs.
1(b) and 1(c), the eigenvalues are shown in the ranking order
in Fig. 6. Within the numerical precision, the central plateau
in the ranking distribution corresponds to the sharp central
peak in the spectral density of an ensemble. It is also clear
that the cyclic Net269 has six lowest eigenvalues (lower
right corner) separated from the rest of the spectrum, and the
largest eigenvalue lies below 2. In the tree network Netl61,
however, the spectrum approaches both ends continuously.
Additional plateau is found at the eigenvalue \*=1.707 107
and symmetrically at \:=0.292 893, corresponding to the
side peaks in the spectral density (see Fig. 5, top).

B. Structure and localization of the eigenvectors

Another prominent feature of the eigenvalue problem of
the Laplacian matrix L is revealed by the structure and the
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FIG. 7. (Color online) Top: eigenvector components, indicated
by five colors/gray scale, for five lowest nonzero eigenvalues of the
normalized Laplacian for the network Net269. Middle: scatter plot
of the eigenvector components for the eigenvalues )\f=0.047 033
and \5=0.038 286 for the network Net269. Bottom: scatter plot of
the eigenvector components for the eigenvalues 7\1L=O.001 08 and
A5=0.000 335 for the tree of trees, Net161.

localization of the components of the eigenvectors. For each
eigenvalue )\iL, i=1,2,...,N, we have an associated eigen-
vector V()\,-L) with the components V,, k=1,2,...,N. A lo-
calization implies that the nonzero components V,# 0 of the
eigenvector coincide with a particular set of geometrically
distinguished nodes on the network. Specifically, for the case
of the cyclic graph, Net269, the eigenvectors associated with
the lowest nonzero eigenvalues appear to be well localized
on the network modules, as shown in Fig. 7 (top). The origin
of such localization of the eigenvectors corresponding to the
lowest eigenvalues has been discussed in the literature [15],
and it is related to the property of the Laplacian. The eigen-
vector corresponding to the trivial eigenvalue N:=0 for the
connected network has all positive components and «™ com-
ponent is proportional to Vg,. When networks consists of G
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(a) )

FIG. 8. (Color online) Localization of the eigenvectors belong-
ing to (top) small eigenvalue A\5=0.004 623 and (bottom) largest
eigenvalue )\ﬁm=2 of the Laplacian on the tree of trees network,

Netl61. Dark (blue)/gray (green) color indicates positive/negative
values of the eigenvector components.

disconnected subgraphs, each of G eigenvectors with \f=0
has nonzero components only for nodes within one module.
If the subgraphs are not fully disconnected, but instead, few
links exist between them, the degeneration of the zero eigen-
value disappears, leaving only one trivial eigenvector and
G -1 approximately linear combinations of the eigenvectors
of the modules. For the orthogonality reasons, these linear
combinations have components of both signs, as opposed to
all positive components of the V(A\:=0) vector. In the case of
well separated modules, the components corresponding to
one subgraph appear to have the same sign, as shown in Fig.
7 for the case of Net269. The more links between subgraphs
exist, the distinction between modules appears fuzzier. The
structure is also seen in the scatter plots in Fig. 7 (middle
and bottom) where the eigenvector components belonging to
two small eigenvalues are plotted against each other. In this
projection each point corresponds to the index of one node
on the network. The separated branches along the lines y
= * ax contain the indexes of the nodes belonging to differ-
ent modules. A similar feature occurs in the case of tree of
trees Netl61, shown in Fig. 7 (bottom). The occurrence of
such patterns related to the network modules is a direct con-
sequence of the localization of the eigenvectors. Conse-
quently, in the absence of the appropriate localization, for
instance in the center of the spectrum, \e=1, the correspond-
ing scatter plot does not exhibit any pattern (not shown).

It is interesting to note that in the case of our tree of trees,
Net161, the localization of the eigenvectors for small A* can
also be observed, shown in Fig. 8(a) in “real space,” al-
though the separation of that part of the spectra is absent for
trees, as discussed above. In addition, we find that the eigen-
vector associated to the largest eigenvalue on trees N5 =2,
also shows a characteristic pattern of localization with a suc-
cession of the positive-negative components along the net-
work chains. The situation is shown in Fig. 8(b). In fact, the
regularity in the localization pattern indicates the bipartitivity
of the tree graph, which is associated with the \:=2. We
find it interesting, that the two partitions within the spectral
analysis are not seen as different “communities” at lower
part of the spectrum, where rather the localization on the
subtrees occurs, as shown in Fig. 8(a).

A scalar measure of vector’s degree of localization is so-
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FIG. 9. (Color online) Number of nodes Nnz carrying a nonzero
eigenvector component VK()\f‘) plotted against the corresponding
eigenvalue )\iL for the normalized Laplacian of the networks: tree of
trees Net161 (top) and cyclic Net269 (bottom).

called inverse participation ratio (IPR) [19], which is de-
fined for any vector V()\iL) by the following expression

S, V(A

L\7_ =Kk "\
RLIVODI= 15 eonT

(12)

Depending on the actual situation, IPR ranges from the mini-
mum value Rp=1%,, corresponding to the eigenvector equally
distributed on all nodes in the network, to the maximum
value R,=1, in the case when the eigenvector has only one
component different from zero. Generally, higher values of
RP[V()\iL)] are expected for better localized eigenvectors in
subsets of nodes on the network. Note that the actual values
of the eigenvector components may vary a lot throughout the
network [see Fig. 7 (top)]. Thus it is interesting to consider
the number of nodes carrying a nonzero (within the numeri-
cal precision) components of the eigenvector (Nnz). In Fig. 9
we show the number of nodes with nonzero eigenvector
components for all eigenvectors of the normalized Laplacian
in modular network Net269 and tree of trees network,
Netl61, plotted against the corresponding eigenvalues )\,-L.
For the tree graph most of the vectors have nonzero com-
ponents along up to 50% of nodes; however, they are not
equally distributed over nodes. In contrast, the eigenvectors
correspond to A'=1.707 107 and symmetrically to \F
=0.292 893 are homogeneously distributed on approximately
100 nodes. For the eigenvalues close to unity (plateau in Fig.
6), the IPR varies between 0.005 and 0.27, but the number of
nodes with nonzero vector component remains close to 300.
In contrast, in the case of cyclic network Net269, most of the
vectors are localized on 50% of the nodes (Fig. 9 bottom).
The exceptions are the lowest eigenvalues, discussed above,
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and N'=1, whose eigenvectors are located at 1/4 of the net-
work.

V. RANDOM WALKS ON TREES AND CYCLIC
MODULAR NETWORKS

The observed differences in the spectra of our modular
networks are also manifested in random-walk dynamics on
them. Many stochastic processes in different fields of science
have been formulated and studied in terms of random walks
[42]. Random walks on networks strictly adhere to the net-
work structure and thus can be used to explore the network
topology at different levels [43-46]. Two fundamental fea-
tures of the random-walk processes, on which we will focus
in the context of the present work, are described by (a) the
number of hits of a random walker to network nodes, related
to network’s transitivity and recurrence; and (b) the distribu-
tion of first-return times, which is closely related to the dis-
tribution of all returns and to the Laplacian spectrum of the
network.

We simulate the random walks on the networks studied
above, Net269 and Netl61, and similar structures, which
contain N=1000 nodes and random walks on each network
perform up to 2 X 10% steps. For improved statistics, the total
number of walker steps consists of 2000 pieces as follows:
first a random walk is started from a node i and when it first
arrives to an in advance randomly selected node j, then a
new target node k is randomly selected, etc. In the simula-
tions we measure the elapsed time Az between two succes-
sive visits of the walker to the same node (first return to the
origin). The times Ar are measured at each node of the net-
work and the distribution P(Af) averaged over all 10° nodes
(origins) and over the ensemble of 2000 walks.

The probability density functions of the return times,
P(Ar) is shown in Figs. 10(a) and 10(b) for different trees
and cyclic networks. In addition, we sampled the time series
of the number of hits of the random walker {&,(¢)} within a
fixed time window of Ty,;y=1000 steps, for each node in the
network i=1,2,...,N. In Fig. 10(a) the results for the first-
return time distribution of the walker to a node is shown for
the case of the random walks on scale-free tree, the tree of
trees and for the tree with cliques. The numerical results
show no significant difference for all kinds of trees (all data
are log binned with a very small base b=1.01). Moreover, for
Ar>1 the data are well fitted with the expression

P(Ar) = B(At)""exp[- (At/a)’] (13)

[shown by full line in Fig. 10(a)], with the exponents 7
=0.23 and 0=0.33 within a numerical error. The presence of
small cliques attached to the tree [network shown in Fig.
1(d)] does not affect the tail of the distribution P(Af) sug-
gesting that long return times are mainly determined by the
tree structure of the underlying graph. Note also that there
are no significant difference between the random walks on
the random tree and the scale-free tree, as well as the tree of
trees [network in Fig. 1(c)]. In one of the early works con-
sidering the diffusion on random graphs [47] the exponent
1/3 for the case of random walk on a tree was derived by
heuristic arguments.
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A similar expression fits the distribution in the case of
random walks on cyclic graphs, however, with different ex-
ponents. The fit suggests the stretching exponent o= 0.66
that is twice larger compared with the case of trees. The
simulations of random walks on various cyclic networks,
also shown in Fig. 10(b), suggest that, within the numerical
accuracy, the tail of the distribution P(A¢) is practically in-
dependent of the size of cycles including triangles. A short
region with very small slope is found in the intermediate part
of the curve, in agreement with Eq. (13) with very small 7.
For short return times A7<< 10 we find tendency to a power-
law dependence as P(Ar)~(Af)~!, which is more pro-
nounced in networks with increased clustering and modular-
ity. For the tree with attached modules, described in Sec. 11
and shown in Fig. 1(d), the tail of return-time distribution
P(At) on this network are also shown in Fig. 10(b): the tail
tends to oscillate between the curves for the trees (long-
dashed line) and the cyclic graphs, with a pronounced cross-
over at short times.

Analysis of the time series {/,(¢)} of the number of hits of
the random walker to each node reveals additional regularity
in the dynamics, which underly the return-time distribution.
In Fig. 10(c) we show the scatter plot of the dispersion a; of
the time series h;(¢) against the average (/,(t)), for each node
i=1,2,...,N represented by a point. As shown in Fig. 10(c),
long-range correlations in the diffusion processes on net-
works lead to a nonuniversal scaling relation [25],

o;=const X {(ht, (14)

where the averaging over all time windows is taken. The
exponent u depends on the network structure and the size of
the time window. The origin of scaling in diffusive processes
on networks has been discussed in detail in [25], and refer-
ences therein. Here we stress the differences of the underly-
ing networks for the fixed time window T'y,;y=1000: we find
m=0.7 and w=0.62 for tree of trees and modular network
Net269, respectively. In this plots the groups of nodes that
are most often visited can be identified at the top-right region
of the plot.

Ranking distribution of the average number of hits {(h;(1)),
at nodes is shown in Fig. 10(d) for the same two representa-
tive networks. Generally, the number of hits of true random
walker to a node is proportional to node connectivity [43],
and thus the ranking distribution is a power law with the
slope y which is directly related to the ranking distribution of
degree in Fig. 2. In the presence of network modularity we
realize the flat part of the curve, representing most visited
nodes. In our modular network, like Net269, these nodes are
roots of different modules. A similar feature can be seen in
the case of tree of trees [top curve in Fig. 10(d)]. However,
closer inspection of the number of hits in time, shown in
three-dimensional plot in Fig. 11, suggests that the most vis-
ited nodes on the trees are not necessarily related to the roots
of the subtrees. Whereas, in the cyclic modular Net269 the
root nodes of each module can be clearly identified as most
visited nodes and are identical to the most connected nodes
in each module.
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FIG. 10. (Color online) Statistics of true random walks on (a) trees and treelike structures and on (b) cyclic modular networks Net269,
Net569, and scale-free network SFM2, all with average connectivity M =2, and for mixed network with 50% of nodes belonging to large
modules and 50% to the connecting tree, shown by thick pale (cyan) line. (c) Dispersion against average of the number of hits time series
for all nodes on two networks: tree of trees, and cyclic network with average connectivity M=2 and six modules, Net269. (d) Ranked
time-averaged number of hits per node (h;) versus node rank r; for two networks as in (c), and for scale-free tree.

VI. CONCLUSIONS

We have presented a model of growing modular networks
in which we tune the structural properties at all scales by
varying the respective control parameters. Specifically, the
parameter P, controls the number of topologically distinct
subgraphs (modules); the parameter « is directly related to
the number of rewired links which, in turn, determine the
clustering inside the scale-free subgraphs and connections
between different modules; the parameter M is the average
number of links per node, which can be varied independently
on the clustering and modularity. The wide class of meso-
scopically inhomogeneous networks grown by varying these
parameters includes the sparse modular graphs with variety
of topological features, both within the modules and at the
level of the connecting network. Two limiting cases are the
interacting scale-free networks with finite clustering and cor-
relations, at one end, and a scale-free tree supporting a large

number of cyclic modules, on the other (see Fig. 1).

We further study the spectral properties of these networks
by focusing on the normalized Laplacian matrix, which is
related to the diffusion (random-walk) processes on these
networks. We have also explored these networks by simulat-
ing random walks on them. The systematic analysis of the
spectra while the network grows and by varying the control
parameters enabled us to point out the role played by a spe-
cific topological property of the network (controlled by dif-
ferent parameter) in their spectra and the dynamics. Two pro-
totype modular networks—tree connecting scale-free tree
subgraphs (Netl161) and the cyclic graph connecting scale-
free clustered subgraphs (Net269), exhibit systematic differ-
ences at the level of spectra and the random-walk dynamics.

Our complete spectral analysis reveals the firm connec-
tion between the structure and spectra. We have found sev-
eral results and also demonstrated clearly how some ex-
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FIG. 11. (Color online) Three-dimensional plot of the temporal
evolution of random walks on tree of trees, Netl61 (top), and on
cyclic modular network, Net269 (bottom). Indexes of nodes are
shown along the vertical axis, while the horizontal axis indicates
130 time windows, each consisting of 1000 time steps. Color code
represents the number of hits of the random walk at the node within

the corresponding time window. Brighter/yellow-red color indicates
larger number of hits.
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pected results for this type of graphs are related to the
structure. Specifically, we point out:

(1) the role of most connected nodes as opposed to the
role of the underlying tree graph;

(2) the role that least connected nodes play in the appear-
ance of the central peak;

PHYSICAL REVIEW E 80, 026123 (2009)

(3) how the increased clustering changes the shape of the
spectrum near the central peak;

(4) the appearance of the extra peak at small eigenvalues
of the normalized Laplacian; in view of our fine tuning of the
structure, this peak is related to the number of distinct mod-
ules even if the graphs are very sparse, as long as they are
cyclic; increased clustering does not affect this peak;

(5) the Laplacian spectra of trees are different, particu-
larly, they do not show extra peak related with the (tree)
subgraphs;

(6) the eigenvector components show the expected pattern
of localization on modules in the case of small nonzero ei-
genvalues of the Laplacian. In spite of the differences in the
spectral density, we find a similar localization pattern in trees
with tree subgraphs. In addition, we find a robust localization
along the network chains of the eigenvectors for largest ei-
genvalue of the Laplacian \:=2, occurring only in trees and
bipartite graphs;

(7) the simulation results for the first-return time distribu-
tion of the random walks, averaged over network nodes, on
different tree graphs exhibits a power law with stretching
exponential cutoff with o= 1/3 in agreement with Eq. (13)
and heuristic arguments [47]; and

(8) when the graph contains cycles, the distribution be-
longs to another class of behavior with twice larger stretch-
ing exponent. The numerical results do not dependent on the
clustering coefficient. The presence of modules and in-
creased clustering affect the behavior at small times, where a
power-law decay occurs before the cutoff.

Our systematic numerical study along the line structure—
spectra—random walks quantifies the relationships between
different structural elements of the network and their spectra
and the dynamics. We hope that the presented results con-
tribute to better understanding of the diffusion processes on
the sparse graphs with complex topology. Potentially, some
of our findings may be used for fine differentiation between
classes of graphs with respect their spectral and dynamical
properties.
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