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a b s t r a c t

We present an analysis of the empirical data and the agent-based modeling of the
emotional behavior of users on the Web portals where the user interaction is mediated
by posted comments, like Blogs and Diggs. We consider the dataset of discussion-driven
popular Diggs, inwhich all comments are screened bymachine-learning emotion detection
in the text, to determine positive and negative valence (attractiveness and aversiveness)
of each comment. By mapping the data onto a suitable bipartite network, we perform an
analysis of the network topology and the related time-series of the emotional comments.
The agent-based model is then introduced to simulate the dynamics and to capture the
emergence of the emotional behaviors and communities. The agents are linked to posts
on a bipartite network, whose structure evolves through their actions on the posts. The
emotional states (arousal and valence) of each agent fluctuate in time, subject to the current
contents of the posts to which the agent is exposed. By an agent’s action on a post its
current emotions are transferred to the post. The model rules and the key parameters are
inferred from the considered empirical data to ensure their realistic values and mutual
consistency. The model assumes that the emotional arousal over posts drives the agent’s
action. The simulations are preformed for the case of constant flux of agents and the
results are analyzed in full analogy with the empirical data. The main conclusions are
that the emotion-driven dynamics leads to long-range temporal correlations and emergent
networks with community structure, that are comparable with the ones in the empirical
system of popular posts. In view of pure emotion-driven agents actions, this type of
comparisons provide a quantitative measure for the role of emotions in the dynamics
on real blogs. Furthermore, the model reveals the underlying mechanisms which relate
the post popularity with the emotion dynamics and the prevalence of negative emotions
(critique). We also demonstrate how the community structure is tuned by varying a
relevant parameter in the model. All data used in these works are fully anonymized.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The importance of Blogs in overall information and knowledge landscape has been pointed out recently in Ref. [1], as
speedy routes to promote information and get public feedback. Blogs draw their popularity from specific features: fast
communication, wide accessibility, and virtual absence of editorial control. Hence, the massive use of Blogs results in a
large amount of data and, similarly to other online communicationmedia, can lead to new collective phenomena among the
users [2–14]. This places new challenges for both science and the practical use of Blogs: (i) how to quantitativelymeasure the
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impact of blogging, and (ii) how to understand and potentially influence the collective phenomena through the behaviors of
individual bloggers. In this work we attempt to study these aspects of blogging dynamics by using analysis of the empirical
data and theoretical modeling.

Physics of complex systems and, in particular, the statistical physics of social dynamics, are focused on the dynamical
processes in which human collective behaviors emerge from large number of individual actions [5,6,8]. Combining the
concepts of statistical physicswith themachine-learningmethods for the emotion detection in texts ofmessages [15,16], we
have recently performed an analysis of large datasets from BBC blog.com and dig.com portals and determined quantitative
measures of the collective behaviors inwhich the emotions are involved [12,13]. Complementary to ourwork in Refs. [12,13],
where the empirical data are analyzed to extract various complex-systems properties, the present work extends the study
of the blogging dynamics in twoways. We perform the data-driven and theoretical analysis of the processes, underlying the
emergence of the collective emotional behavior of Blog users, within the framework of the agent-based modeling.

The quantitative analysis of users collective behavior in the empirical data from dig.com and BBC blog.com in Refs. [12,13]
is enabled by mapping the high-resolution data onto bipartite networks consisting of users and posts, as two natural
partitions. The idea of bipartite networks also makes the ‘‘firm ground’’ in the present theoretical model, where the agents
interact indirectly over the posts. In addition, we make use of several other features, observed in various empirical data, that
are relevant for designing the dynamic rules of the theoretical model, specifically:

• Universality of user’s behavior related with the action-delay and the presence of the circadian cycles [8,9,6];
• User communities occurring in cyberspace are reminiscent to the ones in real life, however, different time scales and

grouping mechanisms might be involved [9,12,13];
• Quantitative measures of emotions have been introduced in psychology research [17]. In particular, based on Russell’s

multidimensional model of affect [18], each known emotion can be represented by a set of numerical values in the
corresponding multidimensional space. Two fundamental components of emotion, to which we refer in this work, are
the arousal, related to reactivity to a stimulation, and the valence, measuring intrinsic attractiveness or aversiveness to
a stimulation. These components of emotion can be measured in a laboratory based on the related psycho–physiological
and neurological activity [19,20]. Moreover, a systematic association has been recognized [21] between individual
emotional characteristics and word use. The arousal and the valence components of an emotion can be retrieved from a
written text by suitable machine-learning methods, which are being developed for a specific type of data [20,22,16].

Systematic analysis of the patterns of user behaviors and the emotional contents in the texts of comments in the empirical
data from popular Blogs [12] and discussion-driven Diggs [13], suggests that negative emotions (critique) drive the activity
on theseWeb portals. However, themechanismsworking behind this global picture have not beenwell understood. In order
to elucidate the role of emotions in bloggers interactions, and to point out potential parameters and levels where the process
can be controlled, we develop an agent-based model. The agents are communicating their emotions in a bipartite network
environment. The agent’s properties, the rules and the parameters of the model are derived from analysis of the empirical
data of Blogs and Diggs.

Agent-based modeling [5,23,24], where different properties of agents influence their actions, provides a suitable
theoretical framework for numerical simulations of social phenomena. Recently a model for product-review with the
emotional agents in a mean-field environment has been introduced [24], with the agents’ emotional states described by
two state variables. These variables correspond to the psychological values of the arousal and the valence, respectively, in
view of Russell’s two dimensional circumplex model [17,18,25].

In this work we use the agent-based-modeling to explore the emergence of user communities on Blogs, where the
emotional contents are communicated indirectly via comments that they leave on the posts. For this purpose, our emotional
agents are situated on aweighted bipartite network, which consists of the agents (representing the users) and the posts. The
bipartite network appropriately represents the actual situation on Blogs, where by definition, no link between the nodes
of the same partition (i.e., agent-to-agent or post-to-post) is allowed. The weighted links between the nodes of different
partitions represent the number of comments of an agent to the linked post. Motivated by the realistic situation on Blogs,
in our model the network itself evolves over time due to the arrival of new agents and the addition of new posts, and due to
agent’s actions on previous posts of their preference. The emotional state,measured by the arousal and the valence variables,
which are attached to each agent-node, is influenced by time-varying fields, stemming from the posts to which that agent
is linked on the evolving network. We assume that, in analogy to real-life events, the elevated arousal may induce an action
of the emotional agent on a post, according to the rules introduced below in Section 3. In the moment of action on a post, the
agent’s current emotional arousal and valence components are transferred to the comment that the agent leaves on that
post, where it can be experienced by other agents. Thus the fields themselves fluctuate with the network evolution and are
different for each agent, depending on its position on the network. In order to have realistic dynamics, we design the rules
of actions that are motivated by systematic observations of the activity patterns in the empirical data at Blogs and Diggs, as
described below in Section 2. Moreover, the set of parameters that control the dynamics of our model are inferred from the
empirical data of popular discussion-driven Diggs 2.

One of the main objectives of the present work is to analyze the bipartite networks that evolve in the agent-based
model and elucidate the conditions for the user communities to form within the emotion-driven dynamics. By comparing
the results of the model with the corresponding ones computed from the empirical dataset, one can estimate the role of
emotions in the observed users behavior in the related systems. In the following two sections we provide such comparisons
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Fig. 1. Example of temporal patterns of (a) user actions and (b) activity at posts, obtained from the original dataset of discussion-driven Diggs (ddDiggs).
Indexes are ordered by the user (post) first appearance in the dataset. The time is given in minutes (the original data resolution).

by computing several topology and other measures from the empirical data, in Section 2, and from the simulations, in
Section 3. For reasonable comparisons, apart from the model rules the realistic values of the parameters are crucial. In
Section 2 we define several quantities which characterize the empirical system and compute them from the considered
dataset. These quantities are then used as the input parameters in the model. We also describe the methodology of how
such parameters can be computed from any high-resolution dataset, e.g., collected from another Blog site. The remaining
parameters that can not be extracted from the available datasets are considered as free parameters in themodel. In Section 4
we study the effects of varying some of these parameters on the emergent network structure and the related time series.
Section 5 contains a brief summary of the results and discussion.

2. Blogging dynamics and emergent networks from empirical data

The datasets that we use are collected from BBC blog.com and from dig.com. The collection methods and the structure of
the data are described in detail in our previous works [12,13]. For the purpose of this paper it is important to stress that the
considered data have high temporal resolution, information about identity (unique ID) of each user and of each post, and
the precise relationship between the users and their comments-on-posts, as well as full text of all posts and comments. In
addition, the data from dig.com contain information about comment-on-comment. Such information is not available in the
case of BBC blogs data. Therefore, here we mostly focus on a set of the data from dig.com, as a good candidate where we can
study the emergence of collective behavior due to the comment-mediated interaction among users [12,13].

Specifically, we select the subsets of the data which contain information related with the popular posts, i.e., having more
than 100 comments per post, togetherwith all users linked to them. Among these popular postswe select the subset, termed
the discussion-driven Diggs (ddDiggs), on whichmore than 50% of comments represent reply to the commentsmade by other
users. This data consists of NP = 3984 discussion-driven Digg stories, on which NC = 917708 comments are written by
NU = 82201 users [13]. In addition, texts of posts and comments are classified by machine-learning methods with the
emotion classifier, which is designed in Refs. [16,15] and trained at Blog-type texts. Using this emotion classifier, one can
determine one component of the emotion, the valence, in the text of each comment. In the result, all comments in the
considered dataset are designated as carrying either positive or negative emotion valence, or otherwise are neutral [12].
Note that in our network analysis, the emotional content of the comments is considered as an additional property of the
post node to which the comment is addressed, and/or the link between the user and the post, along which the comment is
communicated.

In the analysis of the ddDiggs dataset here we focus on the following features, which are closely related with the agent-
based modeling:

• We study the temporal patterns of events, that motivate the dynamic rules of our model, and
• We define several quantities and extract their realistic values from the dataset, which are then used as the parameters

in the model.

As it will be clear below, apart from its relevance for our agent-based model in Section 3, the present analysis aims for
new features of these empirical datasets, whichwere not studied before. Specifically, this analysis yields several new results,
presented in Sections 2.1 and 2.3, complementing our previous study of this data [12,13].

2.1. Extracting regularities in user behavior on popular posts

From the discussion-driven Diggs dataset, here we analyze the temporal patterns of activity related to both users and
posts. Parts of these patterns are shown in Fig. 1a, b. Each user (post) occurring in that dataset is given a unique index, plotted
along the vertical axis, sorted by the time of its first appearance in the dataset. For each user index, points along the time
axis indicate the times when an activity of that user occurred to any one of the posts. Analogously, the points on the posts’
pattern indicate the times when an activity occurred at that post by any one of the users. Although the users and the posts
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Fig. 2. Snapshots of the connections occurring within three consecutive days between the active users (•) and the active posts (�) of a small community
identified on the discussion-driven Diggs. On the links, the widths represent the number of comments, and overall emotion valence of the comments is
indicated by color: red—positive, black—negative, and white—or neutral. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

are interconnected on the bipartite network, see part of such networks in Fig. 2, their activity patterns are entirely different.
In the post-activity pattern, shown in Fig. 1b, dense points in a narrow time window following the post appearance time
indicate an intensive activity at that post. This might be related with a certain exposure of the posts to users during that time
period. The width of the exposure time window, T0, will be recognized as a relevant parameter in the dynamics. Whereas, a
different type of the dynamics beyond the exposurewindow ismanifested in systematically reduced activity until eventually
the post ceases to be active (expires).

The situation is entirely differentwhen looked at from the point of viewof the users. The pattern of activity of every user is
followed over time, a part of the pattern is shown in Fig. 1a. The user indexes are ordered by the time of their first appearance
in the dataset, hence the top boundary of the plot indicates the appearance of new users, relative to the beginning of the
dataset. The profile of the top boundary shows that new users arrive in ‘‘waves’’, related with the daily cycles. Moreover,
the arrivals of new users boost the activity of previous users, which is manifested in the increased density of points in depth
of the plot below each ‘‘wave’’. This feature of the dynamics is utilized for designing the model rules in Section 3. Some
quantitative measures of the temporal patterns of users and posts in Fig. 1a, b are given in relation to the time-delay and
the lifetime distributions, shown in Fig. 3c, d.

Further regularities of the user activity over posts can be extracted from this empirical dataset. Here we focus on some
properties of user- and post-dynamics that are relevant for our agent-based modeling. The extracted features are shown in
Figs. 2 and 3. In particular, the robust patterns of the blogging dynamics leads to the following conclusions:

• User interests shift daily towards different posts. In Fig. 2 the snapshots of the activity within one user community on
the weighted bipartite network of discussion-driven Digg stories are shown for three consecutive days. The network
is constructed from the subset of the discussion-driven Diggs and keeping only very active users (with more than 100
comments). With the eigenvalue spectral analysis methods [26] three communities on that are identified [13]. For the
Fig. 2 the nodes belonging to one of these communities, g2, which consists of 236 nodes (users and posts) are selected
and then the weighted bipartite subnetworks are constructed for each consecutive day. Thus, the weight of the link in
Fig. 2 corresponds to the number of comments written by the user on the post on a given day, while the color of the link
indicates overall emotional contents of these comments (black—negative, white—neutral and red—positive).

• Universality in the distributions of time-delay of user actions and lifetime of posts. The delay-time distribution P(∆t) is
directly related with the user activity pattern, cf. Fig. 1a: for a given user (fixed user index on y-axis) the delay time
∆t is defined as the distance between two subsequent points along the time axis. The distribution is then averaged
over all users in the dataset. In Fig. 3c we present the delay-time distributions separately for the comments carrying
negative/positive emotion. Upper curves are for the popular Digs dataset, while the lower two curves are for the
emotional comments on popular Blogs. Apart from the comment polarity, the action delay also strongly depends on daily
fluctuations, with themost pronounced peak on the first day (circadian cycles). Note that similar power-lawdistributions
of the time-delay action are found in many other examples of human dynamics [8,27,9]. In the case of posts activity
pattern, the quantity that is of interest in this work (see Section 3) is the lifetime of posts, tp. The lifetime of a post is
given by the distance between the first and the last point on the time axis for a given post index, cf. activity pattern
in Fig. 1b. Considering all posts in the dataset, the distribution of the lifetime of posts P(tp) is constructed, and shown in
Fig. 3d (data are logarithmically binned). The distribution exhibits a peak at approximately 576 time bins, corresponding
to two days of real time, and a power-law tail for longer times. The fitted exponent in that range is 1.12 ± 0.04.

• Popularity of posts varies at large scale. The power-law decay of the P(tp) distribution suggests strong heterogeneity in
the lifetime of posts. Further information that can be inferred from the posts’ activity patterns is the number of events
occurring at a post (post popularity), which is given by the number of points between the appearance of the post and the
last event related to it. For each post two different activity patterns can be identified, asmentioned above, i.e., the activity
within initial T0 time bins, and beyond. The parameter T0 is roughly estimated as the width of the time window, during
which new posts were ‘exposed’ (dense points area in Fig. 1b). It also corresponds to the peak in the lifetime distribution
of posts, that is T0 ≈ 2 days for this dataset. When T0 is fixed, then the probability µ(T0), that a user looks to a post
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Fig. 3. (a) Distribution of g—the fraction of new posts per user, relative to all posts on which that user was active, averaged over all users in the dataset.
(b) Probability µ that a user looks at a post which is older than the specified time window T0 time bins, averaged over all users and plotted against T0 .
(c) Distribution of the time-delay∆t measured inminutes between two consecutive user actionswith positive (red) or negative (black) comments, averaged
over all users in the dataset. Upper two curves are for popular Diggs, lower curves for popular BBC Blogs. (d) Distribution of the lifetime of posts tP , averaged
over all posts in the dataset, time axis in bins corresponds to tb = 5 min of real time. Data in Fig. (c) and (d) are logarithmically binned with small base 1.1.
Straight line indicates slopes, which are explained in the text. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

which is older than T0, can be extracted from the data. Specifically, for each post, this probability is given as the fraction
of points beyond the dense area in the posts’ activity pattern until the post expires, cf. Fig. 1b. Then for the whole dataset
we have µ(T0) =

1
NP

NP
p=1


1
tp

tp
tkp>t0p+T0

1

, where NP is the number of posts, tp is the expiry time of the post p, while

tkp and t0p indicate the moments of the activity at the post p and its creation time, respectively. For the ddDiggs dataset
the parameter µ(T0) is computed by fixing T0 in a range of values, and plotted in Fig. 3b.

• Innovativeness of the users is heterogeneous. In the datawe have full information about every action of each user. Therefore,
by looking at the activity list of a given user, we can determine the fraction g of new posts that the user posted, out of all
posts on which the user were active in the entire dataset. The values appear to vary over time and users. The distribution
P(g) averaged over time and all users in the dataset is shown in Fig. 3a.

As mentioned in the Introduction, these observations about the user behavior over posts are utilized in designing the
rules and parameters of the agent-based model in Section 3. In the remaining part of this section we consider some global
features of the user dynamics in the empirical dataset: (i) the time series of (emotional) comments, and (ii) the structure of
the bipartite network of users and posts that represents connections in the analyzed dataset.

2.2. Prevalence of negative comments on popular posts

Having high temporal resolution data, we can extract fluctuations in the number of comments occurring within a small
time bin. Similarly, we can separate the comments according to their emotional contents, e.g., valence polarity. The time
series of the number of comments N±(t) with positive/negative emotion valence extracted from the considered dataset of
ddDiggs are shown in Fig. 4, where the time bin tbin = 5min is used. Shown also is the time series of the ‘‘emotional charge’’,
defined as the difference Q (t) = N+(t) − N−(t) at each time bin. As the Fig. 4 shows, the dataset of popular Diggs exhibits
an excess of comments with negative emotion valence! Similar features are found in the data of Blogs [12,13]. Whereas,
the communication dialogs in the social network MySpace are found to be dominated by positive emotion valence [28]. It is
therefore challenging for the theoretical models to unravel the mechanisms that lead to the prevalence of negative emotion
in the blogging dynamics. We address this question within the agent-based modeling in Section 3.

Relatedwith the user activity [13], the time series of the number of emotional comments in the discussion-driven popular
Diggs data exhibit a fractal structure superimposed to the daily cycles, as shown in Fig. 4. The power-spectrum of 1/νφ-type,
shown in the upper panel in Fig. 4, and the peak corresponding to the daily periodicity. The power spectrum is correlated over
the range of frequencies below certain threshold indicated by the arrow,which correspond to times above approximately 2 h
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Fig. 4. Time series (lower panel) and their power-spectra (upper panel) of the number of comments N±(t) carrying positive emotion (red) and negative
emotion (black), and the time-series of ‘‘charge’’, Q (t) = N+(t)−N−(t), of the emotional comments (cyan). Straight lines indicate slopes in the correlation
regions, described in the text. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

in the time domain. The horizontal line in the range of higher frequencies (shorter times) indicates thewhite noise spectrum.
Smooth curves obtained by logarithmic binning are shown with open symbols. The slopes of the correlated parts of the
spectrum (indicated by the straight lines) are estimated as φ = 0.98 ± 0.08 for negative comments and φ = 0.86 ± 0.08,
for the positive comments, in the range [12:2146] of the frequency index. The correlation coefficient is −0.86. The time
series of charge fluctuations appear to be very weakly correlated.

2.3. Structure of bipartite networks from the empirical data of Diggs

The high-resolution data in which we have full information about users’ IDs and their comments on identified posts,
are mapped onto bipartite networks with the users, as one partition, and posts (and comments), as the other partition. As
discussed in detail in Refs. [9,12,13], upon mapping these networks are then analyzed either as monopartite projections or
compressed weighted bipartite networks, in which the weighted links represent the number of comments of a given user
to a linked post. For the purpose of this work, the network mapping of the subset of the popular discussion-driven Diggs is
considered. For completeness, we also consider the topology measures obtained from the complete dataset (i.e., including
the unpopular posts, and the popular postswhich remained outside the discussion-driven dataset).We focus on the topology
measures as the degree distributions of eachpartition and themixing patterns of theweighted bipartite representation of the
dataset. These quantitativemeasures of the topologywill be compared laterwith the ones from the simulation in Section 3.2.

The results of the topology analysis are given in Fig. 5a, b. The degree distributions appear to be specific for nodes
in each partition, a feature also found in some other bipartite networks representing the empirical data of techno-social
interactions [29]. Specifically, the broad distributions for user-nodes and for post-nodes are dominated by different type of
cut-offs. They can be approximated by the followingmathematical expressions: the power-lawwith the exponential cut-off

P(qu) = Cuq−τ
u e−λqu; (1)

for the user-node degree qu, and a q-exponential distribution with a power-law tail above the threshold degree σ ,

P(qp) = Cp


1 +

qp
σ

θ

; (2)

for the post-node degree qp. Note that the observed differences in the degree distributions reflect the statistical diversity in
the role that the nodes of each partition play on the network.

The data are fitted with the mathematical expressions in Eqs. (1)–(2) using Maximum-Likelihood Estimator (MLE)
methods. All fits passed the χ2-goodness test. For the complete dataset (all-data), the best fit parameters are estimated
as follows: τ = 1.454 ± 0.005, λ = 0.00279 ± 0.00004, for the user-degree distribution. While θ = 6.5 ± 0.1 and
σ = 480 ± 20, for the the distribution of posts degree (fitted range ∈ [10, 1000]). Note that in the case of popular posts,
the distribution of post-degree does not contain the posts of low degree (strength), by definition. Whereas, for the users
attached to these popular posts the distribution of user-degree exhibits the same exponent, τ = 1.454±0.05, and a shorter
cut-off 1/λ, with λ = 0.011 ± 0.002.
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Fig. 5. The degree distribution of user-nodes (⃝) and post-nodes (�) of the network of popular discussion-driven Diggs, panel (a), and the network
assortativity measures, panel (b). Shown are also the respective quantities computed from the whole dataset, including the posts with normal popularity,
indicated by ‘‘all data’’ in the Legend. Fits according to expressions (1) and (2) and explained in the text, are shown by dotted and dashed lines, respectively.

The (dis)assortativity is a topology measure related with the link correlations in a node’s near neighborhood on the
network. When averaged over all nodes, it may result in a systematic trend in the node linking pattern. In particular, the
trend can be either assortative, where linking occurs between the nodes of similar degree, or disassortative, linking with
dis-alike nodes, or none. On the bipartite network, the node neighbors are by definition the nodes of the other partition.
Therefore, two types of assortativity measures are defined, depending on whether they are looked at from the user-nodes
(‘‘perUser’’) or from the post-nodes (‘‘perPost’’). In particular, we have computed the network-average degree of the post
nodeswhich are linked to the user of a given degree, and vice versa, the average degree of the user nodes linked to the post of
a given degree. The results are shown in Fig. 5, top panel. In analogy to the degree distributions, we have also computed the
assortativitymeasures for the complete set of data (includingunpopular andnon-discussionDiggs). These results suggest the
mixing patternwith slight dis-assortativity of the post-nodes: the popular posts contain links to userswho are on averagenot
the most active users. The same trend is found in less popular posts until the degree drops below ∼25, corresponding to the
inflection point of the post-degree distribution. On the other hand, the user-linking pattern shows virtually no assortativity
(the slope of the curve is close to zero), which suggests that on average users link equally to all kinds of posts.

In the following section wewill introduce an agent-basedmodel of blogging, where the agents’ actions on posts will give
rise to the bipartite network of a similar structure.

3. Agent-based model of emotional blogging

Following Ref. [24], we assume that the individual emotional state (arousal and valence) of each agent can be described
by two nonlinear equations, which are the subjects of the environmental fields. For our system on bipartite networks, the
arousal and the valence are associated with each user-node(!) and their values, kept in the intervals ai(t) ∈ [0, 1] and
vi(t) ∈ [−1, 1], are updated according to the following nonlinear maps (case (a)-applies if ∆ti < 1, case (b)-otherwise):

ai(t + 1) =


(1 − γa)ai(t) + [ha

i (t) + qha
mf (t)](d1 + d2(ai(t) − ai(t)2))(1 − ai(t)) (a)

(1 − γa)ai(t) (b)
(3)

and

vi(t + 1) =


(1 − γv)vi(t) + [hv

i (t) + qhv
mf (t)](t)(c1 + c2(vi(t) − vi(t)3))(1 − |vi|) (a)

(1 − γv)vi(t) (b)
(4)

where i = 1, 2 · · ·NU(t) indicates the index of user node and t-the time bin. The coefficients d1, d2 and c1, c2 characterize
the maps themselves, while the network environment effects appear through two types of fields: the local fields ha

i (t) and
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hv
i (t), and themean fields ha

mf (t) and hv
mf (t). Note that the local fields h

a
i (t) and hv

i (t) vary not only in time but also from user
to user, depending on their connections on the network, and due to the evolution of the network itself (see details below).
Whereas, the mean fields ha

mf (t) and hv
mf (t)may act on a larger number of users, while also fluctuating in time. In our model

they steam from currently active posts and, thus, may be seen by all users who are attached to these posts. The mean fields
indicate how the overall activity moves through posts, as a kind of ‘‘atmosphere’’ at the Blog site. The contribution from the
mean fields in our model is taken with a fraction 0 ≤ q ≤ 1, which is varied as a free parameter in Eqs. (3) and (4), and it is
added to the contributions from the local fields.

The fields ha
i (t) and ha

mf (t) in Eq. (3), which affect user i’s arousal at step t + 1, are determined from the posts in the
currently active part of the network, C (t, t − 1), along the links of that user. Specifically,

ha
i (t) =


p∈C (t,t−1)

AipaC
p (t)(1 + vi(t)vC

p (t))
p∈C (t,t−1)

AipnC
p (t)(1 + vi(t)vC

p (t))
; ha

mf (t) =


p∈C (t,t−1)

aC
p (t)

p∈C (t,t−1)
nC
p (t)

, (5)

where aC
p (t) and vC

p (t) are the total arousal and the average valence of the post p calculated from the comments in two
preceding time steps, while nC

p (t) is the number of all comments posted on it during that time period. Aip represents the
matrix elements of the network, i.e., Aip > 0 if user i is connected with the active post p, while Aip = 0 if there is no link
between them at the time when the fields are computed. Note that such links may appear later as the system evolves. In
Eq. (5) the individual arousal fields ha

i (t) ismodified by (dis)similarity in user’s actual valence, vi(t), and the valence of recent
comments on the post, vC

p (t).
Regarding the valence fields in Eq. (4), we take into account contributions from the positive and the negative comments

separately, while the neutral comments do not contribute to the valence field. Depending on the current emotional state of
the agent, positive and negative fields can lead to different effects [24], in particular, a positive (negative) state will be
influenced more with a negative (positive) field, and vice versa. Here we assume that both components influence user
valence, but with different strengths according to the following expression:

hv
i (t) =

1 − 0.4ri(t)
1.4


p∈C (t,t−1)

AipN+
p (t)

p∈C (t,t−1)
AipNemo

p (t)
−

1 + 0.4ri(t)
1.4


p∈C (t,t−1)

AipN−
p (t)

p∈C (t,t−1)
AipNemo

p (t)
, (6)

where the valence polarity of the user i is given by ri(t) =
vi(t)
|vi(t)|

, and N±
p (t) is the number of positive/negative comments

written on post p in the period [t − 1, t]. The normalization factor Nemo
p (t) is defined as Nemo

p (t) = N+
p (t) + N−

p (t). The
mean-field contributions to the valence steam from the entire set of currently active posts C (t, t − 1), and are independent
of how users are linked to them:

hv
i,mf (t) =

1 − 0.4ri(t)
1.4


p∈C (t,t−1)

N+
p (t)

p∈C (t,t−1)
Nemo
p (t)

−
1 + 0.4ri(t)

1.4


p∈C (t,t−1)

N−
p (t)

p∈C (t,t−1)
Nemo

p (t)
. (7)

However, themean-field effects are perceived individually by each user, depending on the polarity ri(t) of the user’s current
valence. Note that in the Eqs. (6)–(7) the prefactor 0.4 multiplying the indicator of the positive/negative valence ri(t), is an
arbitrary value chosen to interpolate between the extreme cases 0 and 1, and away from the fully symmetrical situation
with the prefactor 0.5.

3.1. Dynamic rules and control parameters

Theoretical modeling of the complex behavior on the Blogs faces very tough requirements. In this section, the rules of
agents interactions on the network are formulated in view of user behavior on real Blogs and Diggs and the observations
from the quantitative analysis of the related empirical data. In particular, the dynamic rules and parameters of our model
are motivated by the temporal patterns in Fig. 1a, b and the properties summarized in Figs. 3. Moreover, additional features
of the ddDiggs data, shown in Figs. 2 and 4, suggest the dynamics with dominance of the negative emotions and with user’s
focus systematically shifting towards different posts. In the implementation of the model rules, we also make use of some
general features of human dynamics, i.e., the occurrence of circadian cycles and delayed action to the events, mentioned in
the Introduction, and assume that the arousal drives an action, as commonly accepted in the psychological literature.

The rules are implemented in the C++ code as follows. The system is initializedwith typically 10 Users who are connected
to 10 Posts, to start the lists of the exposed and the active posts and the prompted and the active users. Then at each time
step:
• The system is driven by adding p(t) new users (note the correspondence of one simulation step with one tbin = 5 min of

real time); Their arousal and valence are given as uniform random values from ai ∈ [0, 1], vi ∈ [−1, +1], then updated
with the actual mean-field terms. By the first appearance each user is given a probability g ∈ P(g) to start a new post.
The new users are then moved to the active user list;
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Table 1
Control parameters of the agent-based model of emotional blogging.

Local maps Agents & posts properties Driving

c1 = d1 = 1a tP ∈ P(tP )b ⟨p(t)⟩ = const = 6b

c2 = 2.0a ∆t ∈ P(∆t)b q = 0.4a

d2 = 0.5a T0 = 576 tbinsb a0 = 0.5a

γ = 0.05a µ(T0) = 0.05bg ∈ P(g)b

a Values within theoretical limits.
b Values inferred from the empirical data, cf. Figs. 1 and 3.

• The emotional states for all present users are relaxed with the rate γ , according to the second row in the Eqs. (3) and (4);
• The network area C (t, t − 1) of the active posts is identified as a post on which an activity occurred in two preceding

time steps; then the lists of active users is updated from the users linked to these posts, as follows:
– Users linked to the active posts are considered as exposed to the posted material and decide when they will act on it,

i.e., they are given new delay-time from the distribution P(∆t); All users whose current delay time ∆t < 1tbin are
prompted for update the emotional states according to the first rows in Eqs. (3) and (4), with their actual network
fields computed from the Eqs. (5)–(7). An updated user is moved to the active user list with the probability a0ai(t)
proportional to its current arousal, else it gets a new delay time ∆t ∈ P(∆t);

• Every active user:
– adds a new post with the probability g or otherwise comment to one of the exposed posts, which are not older than T0

steps; Users are linked to posts preferentially with the probability pp(t) =
0.5(1+vC

p (t)vi(t))+Nc
p (t)

p[0.5(1+vC
p (t)vi(t))+Nc

p (t)]
, depending on the

number of comments on it Nc
p(t) and the valence similarity;

– and with probability µ comments a post which is older than T0 steps. The post is selected preferentially according to
the negativity of the charge of all comments on it, with (properly normalized) probabilities pj,old(t) ∼ 0.5 + |Qj(t)|, if
the charge is negative, else pj,old(t) ∼ 0.5; Lifetimes of the posts are systematically monitored (already expired posts
are not considered);

– Current values of the valence and arousal of the user are transferred to the posted comment or the new post; User is
given a new delay-time ∆t ∈ P(∆t); New posts are given lifetime tP ∈ P(tP).

• Delay-time ∆t for all other users is decreased by one. Time-step closes with updating the lists of the exposed and the
active posts, and the lists of the exposed and the prompted users.

According to the above dynamic rules of the model, one can identify the parameters which control the dynamics at
different levels. In particular, we use the following parameters, distributions or time-series which characterize the local
maps, the agent’s and post’s properties, and the driving conditions. They are summarized in the Table 1.

A comment regarding the parameters is in order at this point (see alsomore discussion in Section 4,where the simulations
for varied parameters are carried out). As stated in the Introduction, most of the parameters of the agent’s dynamics can be
inferred from high-resolution data, such as our dataset of Diggs. The numerical values of the parameters of themodel, which
are inferred from the empirical data of ddDiggs, are listed in the Table 1 and the distributions P(g), P(∆t) and P(tP) are shown
in Fig. 3. Strictly speaking, the values of the control parameters will depend on the empirical dataset considered. Specifically,
the parameters as the lifetime of posts, tP , and users inclination to posting new posts, g , as well as the probability of choosing
an old post, µ(T0), strongly depend on the dataset. Note also that they might have hidden inter-dependences in view of the
nonlinear process underlying the original dataset. For instance, if on a certain Blog site users are more inclined towards
posting newmaterial, which would yield increased probabilities of large g , then the lifetime of posts may decline, resulting
in a steeper distribution. Therefore, it is important to derive these parameters from the same dataset in order to ensure their
mutual consistency. Although our model works for a wide range of parameter values, here we keep the parameters extracted
from the empirical data of the popular discussion-driven Diggs in order to enable a comparison of the results to the largest
possible extent.

In contrast to the above empirical values of the parameters, the relaxation rate of the arousal and the valence γ and the
parameters d1, d2, c1, c2 of the maps in Eqs. (3)–(4) can not be extracted from this type of empirical data. In the simulations
these parameters are kept within theoretical limits [30]. Specifically, the nonlinear maps in Eqs. (3)–(4) have fixed points,
respectively in the area a ∈ [0, 1] and two fixed points v ∈ [−1, 0] and v ∈ [0, 1]. The position of these fixed points
depends on the values of the parameters and the coupled fields [ha

i (t) + qha
mf (t)] and [hv

i (t) + qhv
mf (t)]. The theoretically

reasonable parameters are then those for which the fixed points of the maps do not fall at the border of the available phase
space for typical values of the fields. By examining the fluctuations of the fields in our simulations, we set the acceptable
values of these parameters, which are listed in Table 1. Note that choosing nonzero values c1, d1 only contributes to the
field calibration, therefore we can set them to unity. The case with zero values for c1, d1, on the other hand, would lead to a
different situation, where the fields can affect an agent state only via the nonlinear terms, which we think is unrealistic.

3.2. Simulation results: the case with constant flux of agents

In this paper we restrict the discussion to the case where the flux of agents is constant in time. Note that for the
comparison with the empirical data, the time step of the simulations corresponds to one time bin of the real data. We keep
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Fig. 6. Left: an example of the emergent bipartite network with agents (•) and posts (�) after the first 128 simulation steps. The weighted links represent
the number of comments, while their color indicates overall emotion valence: red (positive), black (negative), and white (neutral). Right: a part of the
larger network obtained after 4032 time steps in the simulations when the parameter q = 0 (see Section 4), and projected onto agent partition. For better
vision shown are only agents with the strengths larger than 3 which belong to three smaller communities identified on this network. The weights of the
links, indicated by gray scale, represent the common number of posts per pair of the agents. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. Simulation results obtained for the system of the emotional agents is driven by adding a constant number of agents ⟨p(t)⟩ = 6 per time step:
time-series of the number of comments and charge (a) and their power-spectra (b). Degree distributions of agent-nodes and post-nodes, P(qu) and P(qp)
with the fit lines according to the expression (1) and (2), are shown in panel (c) and the related assortativity measures in panel (d).

the time units in bins of 5 min of the driving signal p(t), which gives the value of the average ⟨p(t)⟩ users per time bin, given
in the Table 1. Other possibilities can be easily implemented intomodel rules, see Ref. [30]. In order to compare the dynamics
of the emotional agents with the results observed in the empirical data in Section 2, in the simulations we sample the same
quantities relatedwith (i) fluctuations of the agent’s activity in time, and (ii) the network structure that emerges through the
actions of the agents. The simulation results are then analyzed in full analogy with the empirical data. For the illustration,
the bipartite network that emerges in the initial 128 steps is shown in Fig. 6. The simulations are extended till 16,384 time
steps, corresponding to roughly 57 days of real time. The results of the analysis of the simulated data are summarized in
Fig. 7(a–d).

The simulated time series of the number of comments made by the agents at every time step, and the emotional charge
of these comments are given in Fig. 7(a). As the figure shows, in the process of the agents linking to the posts, the excess
negative charge sets in after some initial fluctuations, and remains negative for a very long time. In this way the model
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dynamics reflects the global feature of the user-activity on posts, observed in the analysis of the empirical data in Section 2.
Furthermore, despite the absence of the circadian cycles, which are present in the empirical time series, the simulated
time series also exhibit a fractal structure. The power spectra of these time series are shown in Fig. 7(b). In the range of
frequencies indicated by the straight line in Fig. 7(b), the temporal correlations of the type 1/νφ can be seen, similar to the
ones observed in the empirical data in Section 2. The exponentφ = 1.29±0.10 is the best fit of the slope in the range [2:128]
of the frequency index. Whereas, white noise signal is found for ν > 128 large frequencies (short times), corresponding to
φ = 0. Hence, the system’s internal dynamics is capable of building a certain cooperative behavior over large temporal
scales, despite the absence of correlations in the external inputs.

Nextwe analyze the network of agents andposts that emerges after long simulation times. The initial stage of the network
evolution is shown Fig. 6. The multiplicity (weight) of the links indicate the number of comments of the agent to the post,
and the color of the link, as explained in the caption to Fig. 6, indicates the cumulative emotion valence of all comments
along the link in the preceding period. According to the model rules, the network evolves with the addition of agents and
the addition of posts, and with the addition of new links, or increase of the widths of old links between the agents and
previously existing posts. As the Fig. 6 shows, at the network level the amount of positive (red) links is well balanced with
the negative (black) ones in the initial stage of the network growth, which is in agreement with the initial part of the time
series of charge in Fig. 7(a). The dominance of negative (black) links sets-in in the later stages of the network evolution.
The structure of the network grown within 16,384 time steps is analyzed. The degree distributions of the agent- and the
post-partition are shown in Fig. 7(c) and the corresponding assortativity measures in Fig. 7(d). The distributions for the
agent-degree and post-degree are fitted with the same expressions as the ones in the case of empirical data, Eqs. (1) and (2),
respectively. Apart from the cut-off values, the distributions are reasonably close to the ones obtained from the empirical
data. The fits with the MLE method give the parameters γ = 1.546 ± 0.017 and λ = 0.11 ± 0.07 for the agent-degree
distribution, and θ = 5.78 ± 0.06 and σ = 84 ± 2, for the post-degree distribution. Moreover, the assortativity results
exhibit the same tendencies (for the respective degree larger than 10) as the corresponding measures in the empirical data.

4. Effects of varied parameter values

In the driven nonlinear dynamics of the interacting agents in our model, the control parameters are an essential part
of the story. Varying the control parameters may influence the outcome global states in different ways. In this section we
explore how the topology of the network is changed by varying one of the key driving parameters—the fraction q ∈ [0, 1]
of the mean-field contribution to the agent’s emotion state. But before presenting the simulation details, we would like to
briefly comment on all other model parameters, which are listed in the Table 1.

The parameters marked by (b) in the Table 1 have their realistic values for that particular dataset and the time window
where the data are collected. As mentioned above, the set of these parameters (i) have the values determined in an
experimental system, therefore they can not be considered as free parameters; (ii) their values are mutually consistent, in
view of possible interdependences, as in the caseµ(T0), which is clear by definition, but other hidden dependencesmay also
occur. For instance, for a given set of users, the user’s inclination to posting new posts, g , may affect the distribution of the
lifetime of posts by keeping the same level of activity. Similarly, if the delay-time distributions aremore flat, the average level
of the agent’s activity would increase, which may lead to increased connectivity of the network by fixed distribution of the
lifetime of posts. Therefore, these parameters should not be varied independently. When new empirical data is considered,
the whole set of the parameters need to be computed in order to ensure their consistent values. In Section 2 we have shown
how these parameters can be computed from any high-resolution dataset.

The remaining parameters, marked by (a) in the Table 1, can not be estimated from the available empirical data gathered
at Blog sites. For determining their ‘‘natural’’ values in a real user system, one would need additional information, which can
be obtained by targeted social psychology measurements. On one side, these parameters concern the psychology profile of
the Blog users (i.e., the local map parameters c2, d2, γ ), and on the other, the estimation of the overall ‘‘atmosphare’’ on the
Blog (q, a0), which may affect the users behavior. To our knowledge, results of such measurements with Blog users are not
currently available. Therefore, these parameters appear as free parameters in the model. In the simulations their values are
kept within theoretical limits, given the mathematical formulation of the model. Specifically,

• c2 > 0 and d2 > 0 are the nonlinearity parameters of the maps, which characterize each individual agent. We keep their
values such that for the typical values of the fields the fixed point of themapdoes not fall at the corners of the allowed area
of the phase space [30]. For simplicity, we assume equal parameters for all agents (maps). Further distinction between
the agents is possible when (c2, d2) are varied form agent to agent. For such purposes, however, one would also need
a more clear guide from psychology. Note that theoretically the upper limit of the parameters is not fixed, however, as
soon as c2 (or d2) is too large, the map reaches quickly its fixed point, where it tends to stay (apart from the relaxation).
To avoid such unrealistic situations for typical field fluctuations in our model, these nonlinearity parameters are kept in
the range [0.5, 4].

• γ is another parameter for which no empirical data are currently available. It is also related to the nonlinear maps in
that it affects each step by retracting the mapped point back towards zero. When this relaxation rate is too big, the map
would reach zero practically after each time step, which we think is not realistic for the emotional discussions that our
model aims to describe. Otherwise, if the rate is too small, the relaxationwould take long time, which appears unrealistic
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Fig. 8. Community structure detection in the case when the mean-field is absent, q = 0 (left), and when the whole interaction is due to mean-field, q = 1
(right).

when compared with the temporal patterns of the user activity in Fig. 1. In this situation the agents’ arousal would keep
large values for a long time, making them more active on average than the users of the comparable dataset. Namely,
the computed average time between user actions in the empirical data is approximately 674 min, which includes also
average waiting times. Thus, in the simulations we take a plausible value γ = 0.05, which corresponds to characteristic
relaxation time 1/γ = 20 time bins, i.e., 100 min in real time. Again, a targeted measurement of the emotion relaxation
would be necessary to estimate this parameter for a given user community. Possible differences between users in this
respect can be also implemented in our model.

• a0 is a parameter by which one can tune ‘‘responsivity’’ of the environment. Theoretically, it scales the arousal effects at
the individual agent level. In the collective states this will be manifested in a fuzzy lower bound of the arousals by which
the actions took part. We think that this is more natural than introducing a sharp threshold when the arousal induces
the action. Cf. examples of the circumplex maps in our work in Ref. [30].

4.1. Tuning the community structure

The above discussed parameters control the individual emotion dynamics of each agent. Thus their effects on the global
states may be primarily manifested in the phase space of the emotion variables. Different effects are expected when one
of the parameters which modifies the driving modes of the system is varied, cf. Table 1. Here we simulate the system’s
behavior for different values of the parameter q—which measures the fraction of mean-field contribution in boosting the
agent’s emotional state. By definition, the mean-field varies with time, depending on what part of the network was recently
active, and it acts equally to all currently active agents. In this case the effects are manifested on the measurable quantities
that characterize the collective states, as we demonstrate in the remaining part of this section.

In the case studied in Section 3we considered the parameter q = 0.4,whichmeans that 40% of the influence on an agent’s
emotional state is due to the ‘‘mean-field’’ part (i.e., from all recently active posts), while the remaining 60% is due to posts
directly connected with the agent. According to the model rules, both types of fields steam from the recently active posts,
i.e., in time window of two time steps (ten minutes of real time). The motivation to consider such balanced contribution
from individual fields and the mean field, is to closely match the situation in the empirical data of the discussion-driven
Diggs, where more than 50% of the user actions are comment-to-comment.

In the model the balance between individual and global fields can be modified by changing the parameter q. In order to
understand the nature of these two contributions, here we first consider two limiting cases: q = 0, corresponding to the
situationwhere the dynamics is driven by the local contacts alone, and q = 1,where themean-field dominates. Sporadically,
such extreme situations may occur on real Blogs. An example corresponding to q = 1 is the case with externally-driven
dynamics,wheremanyusers comment the samepost (or fewposts),with very little discussion among each other. Depending
on the emotion expressed in the original post, the individual comments can get negative as well as positive emotion. This
kind of events at a given post arewell represented by a star-like network structure, as found in previouswork [12]. The other
extreme, q = 0, may be found in the situation when a group of users gets engaged in mutual discussion, with even shifting
the subject away from the original post. Such group discussions can often get critical (negative emotion dominates), while
the entire community may still have balanced emotions. More realistic situations are thus in between these limiting cases.
Therefore, a finite value q ∈ (0, 1) between these two limits is more realistic to describe the Blog dynamics by the model.

Our simulations in this section show how the mean-field affects the mechanisms leading to the collective behaviors
and the occurrence of communities on the network. The results are summarized in Figs. 8–10. In the limit q = 0, agent’s
communications driven by their local fields leading to the diversity among agents, which results in the community structure
shown in Fig. 8 (left). Whereas in the limit of strong mean-field, Fig. 8 (right), such diversity is lost, consequently we find
that all agents tend to belong to the same community.

Further interesting results are found in correlations between the mean-field fraction q and the range of fluctuations of
the activity (the number of comments) and the emotion polarity of the comments. In Fig. 9 the largemean-field contribution
q = 1 reduces the range of fluctuations in the number of comments (note that the lower bound is 6, in view of adding 6 new
agents every time step). While, in the q = 0 limit, the range of fluctuation is larger. At the same time, the presence of mean-
field facilitates appearance of the excess negative charge. In Fig. 9 (right) a stationary time series of negative charge settles
after initial fluctuations. In the absence of the mean-field q = 0, however, the charge of the comments at the level of whole
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Fig. 9. (a) Time-series of the number of comments Nc(t) (upper/black line) and their charge Q (t) (lower/red line) in the case when the mean-field is
absent, q = 0, and (b) their power spectrum; (c) and (d) the corresponding time series and their power spectrum when the whole interaction is due to
mean-field, q = 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Comparison of varied fraction q of the mean-field on the time series and the emergent network properties. Panel (a) shows an example of initial
time series with the fluctuations in the fraction of negative comments for four different values of q = 0.8 (red line), 0.6 (green), 0.4 (blue) and 0.2 (pink).
(b) Agent-strength ranking distribution, (c) post degree distribution, and (d) mixing patterns per post, for three values of the parameter q as indicated. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

system remains well balanced with fluctuations around zero, cf. Figs. 9 (left). Note that these time series also have different
power spectra, as shown in the top panels in Figs. 9. After having balanced fluctuations in the beginning of the simulations,
the charge polarity breaking in ourmodel occurs dynamically when the network grows large enough. The strongmean-field
part when q . 1 contributes to homogenization of the agent’s communities, thus reducing the diversity of their emotion
fluctuations. In conjunction with the local fields, e.g., when q = 0.4, 0.6, the agent’s diversity is larger leading to local
communities which are often linked to some post-node hubs. Due to the agent’s preference towards negative comments,
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such hubs can have a large negative charge, promoting the community growth [30]. In over 90% of the simulation runs
performed with different series of random numbers we obtain a negative share at the level of the whole network. This
mechanism, however, does not exclude the situation with the majority of positive comments to occur as a collective effect,
which we find in less than 10% of the runs. As shown in Fig. 10(a), a typical fraction of negative comments (compared
to the number of all comments) at the level of the whole system increases when q → 1. However, the fluctuations are
stronger in the situations where true competition between themean-field and the local fields is behind the network growth
mechanisms, for instance when q = 0.4 and 0.6. In these cases the local fluctuations of the emotion charge are linked with
the occurrence of the communities.

The activity of agents is affected by increased mean-field contribution to agent’s emotion dynamics. The above results of
the community structure and the fluctuations in the number of comments are in agreement with reduced diversity among
agents at strong mean-fields, which is also observed in the emergent network structure. In 10(b) we show how the agents
ranking distribution is changed with increased q values. In contrast to the agent’s linking pattern, the posts-partition of
the network has a similar structure for different q-values. As shown in 10(c, d), the strength distribution of posts, as well
as the mixing patterns plotted ‘‘per-post’’, exhibit qualitatively similar functional dependences when the fraction q of the
mean-field is varied.

5. Conclusions

In this work we have investigated the blogging dynamics by using two approaches: (i) analyzing the high-resolution
empirical data from popular Diggs, and (ii) introducing an agent-based model with the rules and parameters closely related
with the sameempirical data. Our focuswas on the emergence of the emotion-driven collective behaviors onDiggs, Blogs and
similar Web portals where the user interaction is mediated by the posts. For this purpose, we selected a set of the empirical
data related with discussion-driven popular posts, which might be the best candidate where the emotion plays a role in
the collective behavior. In the agent-based model, among other properties, the agents have emotion (arousal and valence),
which play a key role in their actions. Both the empirical and the simulated data are analyzed in parallel, i.e., using the
same quantitative measures defined within the statistical physics of complex systems. Thus the quantitative comparisons
between the model and the real system are made possible, which facilitates the estimation of the role of the emotion in
the the nonlinear dynamics of the real system. A brief summary of the results indicating the occurrence of the collective
behaviors is given below. Furthermore, themodel provides insight into themechanisms underlying the collective behaviors
and the ways to influence them.

Our main findings, when the parameters are kept at their ‘‘native’’ values extracted from the empirical data, provide a
qualitative agreement between the simulated agents system and the real bloggers. In particular, in the
• time series of the emotional comments we find the appearance of the long-range temporal correlations with 1/νφpower

spectrum, antipersistence and the occurrence of the excess negative charge, similar to the real data;
• topology of the emergent bipartite network in several quantitative measures, the exponents of the related degree

distributions, mixing patterns, and the mesoscopic structure with the communities, are found in qualitative agreement
with the ones obtained in the real system. The observed quantitative differences can provide a measure of the role of
other user properties, which are not taken into account by the emotional agents.

• mechanisms of prevalence of negative comments are revealed through themodel dynamics, which can not be inferred from
the empirical data analysis.

We further demonstrate how the community structure can be tuned via varying the balance between the global influence
(e.g., due to an external event) affecting all agents, and the local events individual to each agent on the network. This
balance in our model is controlled by the fraction q ∈ [0, 1] of the mean field contribution to the agent’s emotional state.
While local fields induce diversity among the agents, leading to the occurrence of different communities, increased mean-
field fraction tends to homogenize the agents. Consequently, they eventually tend to belong to one community. This also
facilitates keeping the negative charge of the emotional comments, once its polarity is dynamically broken. Although the
parameter q can not be estimated directly from the information contained in the considered empirical data, the comparison
of the system’s behavior, as explained above, suggests that the right balance of the local andmean fields in the real system is
such that it allows strong fluctuations, dominance of the negative charge and the occurrence of communities. For instance,
such situations are found in our model for q = 0.4 and 0.6, studied above.

In conclusion, parallel analysis of the high-resolution empirical data and the agent-based modeling with the parameters
closely related to that data, demonstrates that the emergent collective behavior of the users acting at popular posts is to a
large extent driven by their emotional behaviors. Through themodel we gain an insight into underlyingmechanisms (i) how
such emotional actions of individual agents lead to an emergent collective state with the communities, and (ii) the role of
the excess negative emotion in it. We further provide the ways to affect the community formation by tuning the ratio of the
local and the global influence on the emotion of individual agents. From the point of view of network theory, this is a unique
model where a stable and controllable community structure can be obtained with the (bipartite) network growth rules
which are not related with the topology features of the linking nodes, but with their emotion dynamics. We also provide a
systematic methodology to extract the consistent set of parameters of the model from a given set of high-resolution data.
In this way the model can be used for predictions of potential collective emotional behaviors of users on the Blog site, from
which the data are collected.
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