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Path integral formalism presents the concise and flexible formulation of quantum theories at different 

levels, providing also simple description of many other complex physical systems. Recently introduced 
analytical approach that systematically improves convergence of numerically calculated path integrals of a 
generic theory leads to a significant speedup of Path Integral Monte Carlo algorithms. This is implemented in the 
SPEEDUP code. Here we report on optimization, porting and testing of the SPEEDUP code on new computing 
architectures: latest Intel, and IBM POWER6 and PowerXCell CPUs. We find that the code can be highly 
optimized and take substantial advantage of the features of new CPU types. 

1. Introduction 

Path integral Monte Carlo code SPEEDUP [1] is used for various calculations mainly 
for studies of Quantum Mechanical systems and investigation of global and local properties of 
Bose-Einstein condensates. Porting of this code to new computing architectures will enable its 
use on a broader set of clusters and supercomputer facilities. The purpose of the code 
optimization is to fully utilize available computing resources, eliminating bottlenecks that 
may be located in different parts of the code, depending on the details of hardware 
implementation and architecture of the CPU. In some situations even compiling, linking or 
choosing more appropriate (optimized) libraries can lead to significant reduction in program 
execution times. However, the optimization must be performed carefully and the new code 
has to be verified after each change by comparison of its numerical results with the correct 
reference values. 

In addition to obtaining highly optimized code, the above procedure can be also used 
to benchmark different hardware platforms and to compare their performance on a specific 
application/code. Such application-specific benchmarking, based on the assessment of 
hardware performance for the chosen set of applications, can be also used for the proper 
planning of hardware upgrades of computing centers supporting several user communities. 

 
2. SPEEDUP code  

Functional formalism in quantum theories naturally introduces Monte Carlo 
simulations as a method of choice for numerical studies of relevant physical systems. The 
discretization of the phase space (necessary in any numerical calculation) is already built in to 
the functional formalism through the definition of continuous (path) integrals, and can be 
directly translated into the Monte Carlo algorithm. A detail study of the relationship between 
discretization of different coarseness in the case of a general quantum theory leads to 
substantial increase in convergence of path integral to its continuum limit [2-4]. This study 
resulted in an analytic procedure for deriving a hierarchy of effective actions up to an 
arbitrary level p. We will illustrate the use of higher-level effective actions for calculation of 
the transition amplitude A for a quantum system that evolves from the initial state i to the final 
state f in time T. In the path integral formalism, this amplitude is given as N limit of the 
(N-1)-fold integral expression: 

, 

where SN is the discretized action of the theory and ϵN=T/N is the discrete time step. Using 

naively discretized action, the transition amplitude would converge to its continuum limit as 
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slow as 1/N. Numerical simulations based on the use of effective action of the level p have 
much faster convergence, approaching the continuous limit as 1/Np. The effective discretized 
actions up to level p=18 are implemented in the Path Integral Monte Carlo SPEEDUP code 
[1] in C programming language. It is used for efficient calculation of transition amplitudes, 
partition functions, expectation values, as well as low lying energy spectra. 

The algorithm of a serial SPEEDUP code can be divided to the following steps: 

1. Initialize variables; allocate memory; set input parameters of the model, number of 
time and MC steps, and random number generator (RNG) seed. 

2. Main Monte Carlo loop, which accumulates contributions of sampled trajectories to 
intermediate variables; each loop step consists of the following steps: 

a. Generate trajectory using bisection method [5]. The number of time steps is 
N=2s, where s is the discretization level (input parameter), 

b. Calculate effective action for a generated trajectory and each sub-trajectory 
with smaller discretization level (s-1, ..., 1), 

c. Accumulate variables used to calculate observables and their error estimates at 
each discretization level, 

3. Calculate observables and associated errors by averaging variables accumulated in the 
previous step at each discretization level, 

4. Print the results, deallocate memory and exit the program. 
Parallelization of the above Monte Carlo algorithm is very simple, since each loop 

step 2 is independent. Therefore, the total number of Monte Carlo steps can be easily and 
evenly divided to a desired number of CPU threads or parallel processes (in MPI or in other 
available parallelization environment). 

The SPEEDUP code generates large numbers of random trajectories and relies on the 
MC theory to achieve no correlations between the generated trajectories. This necessitates 
high-quality RNG, able to produce large numbers of uncorrelated random numbers from the 
uniform probability density distribution, in a form suitable for parallel simulation. For the 
SPEEDUP code we have used SPRNG - Scalable Parallel Random Number Generator [6], 
which is verified to satisfy all of the above criteria. SPRNG can generate large numbers of 
separate uncorrelated streams of random numbers, making it ideal for parallel applications. 

 
3. Tested hardware architectures 

The hardware platform used for the testing reported in this paper was IBM 
BladeCenter with 3 kinds of servers within the H-type chassis commonly used in high 
performance computing: 

 HX21XM blade Server based on Intel Xeon technology. It features two Intel Xeon 5405 
processors that run on 2.0 GHz with front side bus of 1333MHZ and level two cache (L2) 
of 12MB with support for Intel SSE2, SSE3, SSE4.1 extensions. Along with standard 
GCC (GNU Compiler Collection) compiler (gcc version 4.1.2), Intel C++ Compiler 
Professional Edition 11.1 by Intel Corporation (ICC) [7] that includes advanced 
optimization, multithreading, and processor support, as well as automatic processor 
dispatch, vectorization, and loop unrolling was used for testing in this paper. 

 The BladeCenter JS22 server is a single-wide, 4-core, 2-socket with two cores per socket, 
4.0 GHz POWER6 [8] SCM processors. Each processor includes 64 KB I-cache and 32 
KB D-cache L1 cache per core with 4 MB L2 cache per core. Processors in this blade 
server are based on POWER RISC instruction set architecture (ISA) with AltiVec, a 
single-instruction, multiple-data (SIMD) extensions. IBM provides XL C/C++ compiler 
solution (XLC) [9] that offers automated SIMD capabilities for application code that can 
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be quite help for programmers. Beside GCC compiler IBM XLC/C++ is used for 
benchmark purposes in this paper. 

 The IBM BladeCenter QS22 is based on 2 multi-core IBM PowerXCell 8i processors, 
based on Cell Broadband Engine Architecture (Cell/B.E.) [10]. The Cell Broadband 
Engine is a single-chip multiprocessor with nine processors specialized into two types: 

1. The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded,  
64-bit RISC processor fully compliant with the 64-bit PowerPC Architecture, 
with the Vector/SIMD Multimedia Extension operating at 3.2 GHz. It is 
intended primarily for control processing, running operating systems, managing 
system resources, and managing SPE threads. 

2. The SPE (Synergetic Processing Element) is core optimized for running 
compute-intensive applications. SPEs are single-instruction, multiple-data 
(SIMD) processor elements that are meant to be used for data-rich operations 
allocated to them by the PPE. Each SPE contains a RISC core, 256 KB 
software-controlled locale storage (LS) for instructions and data, and a 128-bit, 
128-entry unified register file. The SPEs provide a deterministic operating 
environment. An SPE accesses both main memory and the local storage of other 
SPE’s exclusively with DMA commands. They do not have caches, so cache 
misses are not a factor in their performance and programmer should to avoid 
branch intensive code. 

The Cell Broadband Engine has one PPE and eight SPEs. 

Such a heterogeneous multi-core architecture of the Cell CPU requires that a 
developer adopts several new programming paradigms in order to fully utilize the full 
potential of Cell B/E processor. In addition to the GNU tools (including C and C++ 
compilers) which are provided with the Software Developer's Kit for Multicore Acceleration 
[11], one can also use IBM XL C/C++ Compiler [9] for Multicore Acceleration, specialized 
for Cell Broadband Engine solution. 

 
4. Results 

Here we describe the performed optimization and the obtained benchmarking results. 
In all benchmarks in this paper we have executed the code with Nmc=5120000 MC samples 
for the quantum-mechanical amplitude of the quartic anharmonic oscillator with the boundary 
conditions q(t=0)=0, q(t=T=1)=1, with zero anharmonicity and with level p=9 effective 
action. We always used the same seed for SPRNG generator so that the results can be easily 
compared. Section 4.1 gives results for a serial SPEEDUP code on each platform with 
different compilers. These results are later used as a reference in benchmarking and in 
verification of the optimized code. Section 4.2 gives results for SPEEDUP MPI code tested on 
Intel platform and Section 4.3 presents the threaded SPEEDUP code and results obtained with 
Intel and POWER architectures. In Section 4.4 we give results for the Cell SPEEDUP code, 
and in Section 4.5 we compare all obtained results. 

4.1. Serial SPEEDUP code 

For Intel Blade server we compiled the serial code with GCC C compiler using 
optimization flags O1 and funroll-loops which give the best performance (better than the O3 
flag, with or without loop unrolling). Along with GCC, we also used ICC compiler with 
maximal optimization flag O2. 

On POWER6 and Cell Blades the code was compiled with both GCC and IBM XLC 
compilers. On Cell Blade we used the flags O3, funroll-loops, mabi=altivec, and maltivec 
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with GCC, and O5, qaltivec and qenablevmx with XLC. Appropriate versions of GCC and 
XLC binaries were used (ppu-gcc and ppuxlc). On POWER6 Blade the O5 flag was used with 
XLC and O3 and funroll-loops with GCC. Results for serial program testing are presented in 
Table 1. 

 
Table 1. Average time of execution of a serial SPEEDUP code on all tested platforms with 

different compilers 
 

          
Compiler 
Platform 

GCC ICC XLC 

Intel (13760±50) s 
(10160±30) 

s 
- 

POWER6 (17000±10) s - (1900±10) s 

Cell (49410±50) s - 
(14020±20) 

s 
 
 
Table 1 demonstrates the significant increase in the speed of the code when platform-

specific compiler is used. We also see that in this specific case the POWER6 platform in 
combination with the XLC compiler shows order of magnitude improvement in the speed 
compared to the Intel platform. On the other hand, it is clear that Cell version, running only 
on the PPE is no match for other two platforms. Real utilization of the Cell platform can be 
achieved only when SPEs are used. 

 
4.2. MPI SPEEDUP code 

On the Intel Blade multicore, we tested the performance of the SPEEDUP code with 
MPI implementation, compiled with GCC and ICC compliers. The results are shown in Fig. 1.  

 

Fig. 1. Average times of execution of the MPI SPEEDUP code on Intel platform compiled 
with ICC (O2 flag) and GCC (O1 and funroll-loops). The curves give fits to the expected 
dependence A + B / (Number of MPI processes). 

As we can see, the MPI version of the code shows excellent scalability with the 
number of MPI processes. When the number of MPI processes exceeds the number of 
physical cores in the system, the operating system is trying to distribute the load among 
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already fully loaded cores, which creates additional overhead. This implementation gives 
minimal execution time of 1320s. 

 
4.3. Modified SPEEDUP code 

To fully optimize the parallel SPEEDUP code, instead of using MPI API we 
implemented its threaded version using POSIX threads (pthreads). Each thread calculates 
Nmc/Nth of Monte Carlo samples where Nth is the number of threads. Also, some minor 
additional modifications of the code were performed, focusing on specific improvements for 
p=9 effective action. The Intel version was compiled with ICC, while the POWER version 
was compiled with XLC. The obtained numerical results are shown in Fig. 2. 

 

Fig. 2. Average times of execution of the threaded SPEEDUP code on Intel and 
POWER platforms 

With the threaded code we obtained a significant increase in the speed of the code, 
even without implementing specific vector instructions (AltiVec on POWER6 or SSE on 
Intel). Again, POWER6 Blade in conjunction with XLC compiler was faster than Intel Blade. 
However, the relative increase in the speed of threaded code was larger on the Intel platform. 
The minimal execution time was 460s on Intel and 250s on POWER Blade. This gives 
relative increase in the speed of the code of 2.8 (threaded vs. MPI) for Intel and 1.3 (one 
thread vs. serial) for POWER6 platform. 

We also note an interesting scaling issue on POWER6 system. While the threaded 
code scales perfectly on Intel Blade, POWER6 Blade shows strange behavior for even 
number of threads, where execution times are slightly higher than expected. When the code is 
compiled with GCC, the same behavior is observed for odd number of threads. Such throttling 
may be related to low-level hardware details that are not properly implemented in different 
compilers. 

 
4.4. Cell SPEEDUP code 

The heterogeneity of the Cell architecture required the slight rearrangement of the 
SPEEDUP code. We used MPI version of the code as a basis, and modified it so as to separate 
parts that are executed on the PPE and parts that are executed in parallel on SPEs. Our 
implementation was to create a number of pthreads on the PPE that will pass control and start 
execution of the code on the dedicated SPE for each pthread. Each SPE performs 
Nmc/Number_of_SPEs MC steps, running the same code, only with different parameters 
passed by the PPE.  After all SPEs finish their work, the final processing of gathered data is 
done on the PPE. 
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The main problem in a proper porting of the SPEEDUP code to the Cell architecture 
was missing Cell SPRNG code that can be compiled for the SPU. For this reason, we have 
compiled SPRNG for the PPE and performed all RNG operations only on the PPEs. This was 
done in parallel through several pthreads, distributed between both PPU processors of a QS22 
Blade. Each pthread is associated with one of SPEs and synchronizes with it using mailbox 
technique, one of the simplest, hardware based, ways of communication within Cell CPU. The 
PPE mailbox checking is implemented through the interrupt, without active waiting (such as 
polling through the loop). Access to the main memory by all SPEs is realized through the 
Direct Memory Access (DMA) transfers. We have one initial transfer where control data from 
the PPE are received, one final transfer where computation results are sent back to the main 
memory and intermediate transfers of generated random numbers for each MC step. The 
XLC-compiled code was superior in the performance compared to the GCC-compiled code. 
The results for the XLC-compiled code are shown in Fig. 3. 

As we can see, the fact that only PPEs are used for generation of random trajectories 
leads to a saturation of the performance when we increase the number of used SPEs to around 
4. In the ideal case, when PPEs would be able to produce enough random trajectories for all 
SPEs, the simulation execution time would be around 250s, as can be seen in Fig. 3 for the 
code without random number generation). We also tested the code with the communication 
part disabled (no DMA memory transfers). From Table 2 we see that the communication does 
not have significant impact on the execution time and does not represent a bottleneck. To 
confirm this, we tested also the code that only generates random trajectories on PPEs, and 
observed the saturation in its performance at about 750s for the given Nmc number. This 
clearly corresponds to the minimal execution time for the full version of the Cell code in 
Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 3. Average times of execution of the Cell SPEEDUP code (full version) and for the 

code without generation of random numbers 
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Table 2. Average times of execution of the Cell SPEEDUP code without random 

trajectories generation and without PPE-SPE communication 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
Therefore, as we can see, the missing implementation of the SPRNG library was 

limiting factor in fully utilizing the capabilities of all SPEs of the Cell Blade. This would not 
be the case if individual MC step calculation would require more time to complete, since then 
PPEs would be able to generate random trajectories at a sufficient rate. Such situation can be 
easily achieved e.g. if one uses higher effective action level p code. We have demonstrated 
similar situation in Fig. 4, where we have used unoptimized Cell SPEEDUP code, and where 
we observe perfect scaling of the code with the number of SPEs. Note that we used only 5120 
MC samples for these tests since the code is now executed much slower. 

 

 

Fig. 4. Average times of execution of the Cell SPEEDUP code compiled without optimization 

 

4.5. Comparison of hardware performance results 

The overview of the obtained performance results for all tested hardware platforms is 
presented in Table 3. For Intel and POWER6 platform we give the results for the fully 
optimized threaded SPEEDUP code. For the Cell platform we give the minimal obtained 
execution time, as well as the execution time obtained with random trajectories generation 
disabled, which corresponds to the full utilization of all SPEs.  

 

Number 
of SPEs 

No random 
trajectories 
generation 

No 
communicati

on 

1 (4040±5) s (4020±5) s 

2 (2020±5) s (2010±5) s 

4 (1010±5) s (1000±5) s 

6 (675±5) s (670±5) s 

8 (505±5) s (500±5) s 

10 (405±5) s (400±5) s 

16 (255±5) s (250±5) s 
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Table 3. Minimal average execution time per Blade of the fully optimized SPEEDUP code for 
each tested platform 

Intel POWER6 Cell Cell Ideal 

460s 250s 750s 250s 
 

5. Conclusion 

We have ported and optimized Path Integral Monte Carlo SPEEDUP code to three 
different computing architectures (Intel, POWER6 and Cell) and used the obtained code for 
benchmarking of these hardware platforms. For Intel and POWER6 platforms full 
optimization was obtained with the straightforward threaded version of the code, while the 
Cell platform required more complex changes of the code (implementation of separate PPE 
and SPE parts of the code). For benchmarking purposes we have also used different available 
compilers for each of architectures, and our results clearly show that platform-specific 
compilers always give much better performance. 

The SPEEDUP code was most easily optimized on the POWER6 platform, where it 
also achieves superior performance (per Blade server) compared to all other hardware 
platforms. The Cell platform is demonstrated to be able to achieve the same level of 
performance in the case when individual MC steps take more time to complete. In the current 
implementation, due to the missing Cell SPRNG library, SPEEDUP code can fully utilize all 
Cell SPEs only for higher effective action levels p. The Intel platform shows also very good 
performance and excellent scalability, without any glitches for certain (odd or even) number 
of cores, observed on other platforms. 

The plans for further development and testing include porting of SPRNG library to 
SPEs and implementation of platform-specific instructions (vectorization) for each tested 
platform. 
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