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Abstract
The emergence of a Bose-glass region in a quasi one-dimensional Bose–Einstein-condensed gas in a
harmonic trapping potential with an additional delta-correlated disorder potential at zero
temperature is studied using three approaches. Atfirst, the corresponding time-independent Gross–
Pitaevskii equation is numerically solved for the condensate wave function, and disorder ensemble
averages are evaluated. In particular, we analyse quantitatively the emergence ofmini-condensates in
the localminima of the randompotential, which occurs for weak disorder preferentially at the border
of the condensate, while for intermediate disorder strength this happens in the trap centre. Second, in
view of amore detailed physical understanding of this phenomenon, we extend a quite recent non-
perturbative approach towards theweakly interacting dirty boson problem,which relies on the
Hartree–Fock theory and is worked out on the basis of the replicamethod, from the homogeneous
case to a harmonic confinement. Finally, in theweak disorder regimewe also apply the Thomas–
Fermi approximation, while in the intermediate disorder regimewe additionally use a variational
ansatz in order to describe analytically the numerically observed redistribution of the fragmented
mini-condensates with increasing disorder strength.

1. Introduction

The dirty boson problem is defined as a systemof interacting bosons in a randompotential [1]. The combined
effect of disorder and two-particle interaction represents one of themost challenging problems in condensed
matter physics due to the intriguing interplay between localisation and superfluidity. Cold atoms provide a
controlled experimental setup inwhich that fundamental question of interacting bosons in a random
environment can be addressed in both a quantitative and a tunable way.

The earliest relevant experiments, whichwere central formotivating the research of the dirty boson
problem, dealt with superfluidity of thin films of 4He adsorbed in porous Vycor glass in the low-density limit [2].
There it was proven that, despite the presence of disorder, superfluidity can still persist. For ultracold Bose gases
disorder appears either naturally as, e.g., inmagnetic wire traps [3–7], where imperfections of thewire itself can
induce local disorder, or itmay be created artificially and controllably as, e.g., by using laser speckle fields [8–12].
A setupmore in the spirit of condensedmatter physics relies on a Bose gas with impurity atoms of another
species trapped in a deep optical lattice, so the latter represent randomly distributed scatterers [13, 14].
Furthermore, an incommensurate optical lattice can provide a pseudo-randompotential for an ultracold Bose
gas [15–17].

Non-interacting particles in a random environment can be localised provided that the disorder is sufficiently
strong. This phenomenon of Anderson localisation occurs as the particles are repeatedly reflected back in the
randompotential, so interferences yield exponentially localised one-bodywave functions [18]. In one
dimensionAnderson localisationwas experimentally found in an ultracold Bose gas in [11, 17].Within a Bose–
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Einstein condensation (BEC), which is amany-particle interacting system, the presence of disorder causes the
emergence of a newphase besides the superfluid phase (SF), which is called a Bose-glass phase due to the
localisation of bosons in the respectiveminima of the randompotential landscape. This Bose-glass phase
contains no superfluid fraction and is characterised by afinite compressibility, by the absence of a gap, and by an
infinite superfluid susceptibility [1]. Indications for the existence of the Bose-glass phase were found, for
instance, in the experiments of [6, 7, 9, 19]. There it was shownwithin the superfluid phase that an increasing
disorder strength first yields a fragmentation of the condensate due to the formation of tiny BECdroplets in the
minima of the random environment. For a sufficiently strong disorder the condensate then turns out to be
completely destroyed as all bosons are localised in theminima of the randompotential, which represents the
Bose-glass phase. But amore quantitative investigation of that elusive phase is still lacking both from an
experimental and a theoretical point of view.

One of thefirst important theoretical results of the dirty boson problemwas obtained byHuang andMeng in
1992 [20].Within a Bogoliubov theory for a weakly interacting Bose–Einstein condensate it was found that a
weak randomdisorder potential leads to a depletion of both the global condensate density and the superfluid
density due to the localisation of bosons in the respectiveminima of the randompotential [20–31]. Beyond the
weak disorder, a perturbative approachwasworked out in [32, 33], where the impact of the external random
potential upon the quantumfluctuationswas studied in detail. In order to analyse the BEC in the strong disorder
regime, there are, in principle, two complementary non-perturbative approaches. The first starts from the
superfluid phase and ends up in the Bose-glass phase for increasing disorder strength. To this end [34] applies
the randomphase approximation and yields a self-consistent integral equation for the disorder-averaged
particle density, whereas [35, 36]work out a stochastic self-consistentmean-field approach using two chemical
potentials, one for the condensed and one for the exited particles. The second approach starts conversely from
the Bose-glass phase and proceeds towards the superfluid phase for decreasing disorder strength. For instance,
[37, 38]work this out on the basis of a careful energetic analysis, where the disorder turns out to strongly
influence the size, shape, and structure of themini-condensates in theminima of the randompotential.
Furthermore, an order parameter was introduced and applied in the context of aHartree–Fock theory in [39] in
order to describe the possible emergence of the Bose-glass phase.

The localisation due the presence of the disorder in one-dimensional BEC systemswas tackled in the
literature in different directions. For instance, it was shown analytically that the one-dimensional gas of short-
range-interacting bosons in the presence of disorder can undergo afinite-temperature phase transition between
superfluid and insulator [40]. Furthermore, solving numerically and variationally theGross–Pitaevskii equation
of theweakly interacting BEC in aweakly disordered lattice and a speckle potential, the localised BECs are found
to have an exponential tail [41]. Using quantumMonteCarlo simulations it turned out that, surprisingly,
disorder-induced phase coherence could occur [42]. Furthermore, in the context of optical lattices, the quantum
phase diagramof a dirty BEC in one dimensionwas also investigated via differentmethods [1]. [43] proved that
approximative description of all quantumphases can be obtained via the site-dependent decouplingmean-field
approach. Bymeans of the densitymatrix renormalisation group technique, the existence of a critical value of
the disorder strength for the Bose-glass phasewas proven in [44]. In addition, the exact Bose-Fermimapping
demonstrated that the superfluid Bose-glass transition and the general phase diagramof trapped
incommensurate optical lattices can be uniquely determined from finite-temperature density distributions of
the trapped disordered system [45]. Despite all those previous investigations there is still a lack of knowledge
concerning the emergence of the Bose-glass phase and its elusive properties.

In the present paperwe treat a quasi-one-dimensional trapped BEC in a disorder potential both analytically
and numerically. In particular, we focus on the question how the bosons, which are localised in theminima of
the randompotential, are distributedwithin the harmonic confinement. For sufficiently large disorder we even
expect tofind a Bose-glass region in the trap, where the global condensate vanishes and only localised bosons
exist. Note that the corresponding three-dimensional trapped case is treated separately in [46].We startfirst by
describing the underlying BECmodel and by developing aHartree–Fockmean-field theory for theweak
disorder regime and apply it within the Thomas–Fermi approximation to the dirty BEC system in section 2.
However, sincewe study a system that is not fully amenable to the Thomas–Fermi approximation, we also
employ numerical and variational treatment, described in section 3.We solve the correspondingGross–
Pitaevskii (GP) equation of the BECmodel, and then apply a variational ansatz for the intermediate disorder
regime. The results of those three differentmethods are discussed and compared in section 4. For instance, we
find that the density of fragmentedmini-condensates is redistributed for increasing disorder strength.Whereas
for small disorder bosons tend to localise at the border of the trap, for intermediate disorder strength they
concentrate in the trap centre.
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2.Hartree–Fockmean-field theory in 1D

It has been suggested in [22] that aGaussian-correlated disorder potential constitutes an appropriatemodel to
describe realistic random landscapes. Therein the final correlation length corresponds to the average width of
themountains or valleys in the disorder potential. Such aGaussian correlation has been explored inmore detail
both for a BECwith contact as well as dipole-dipole interaction in any geometry [25, 29, 30]. Qualitatively
similar results are obtained for other disorder potentials withfinite correlation lengths as, for instance, laser
speckles [26, 29] and Lorentz correlation [27]. All these studies have in common that disorder effects typically
decrease with increasing correlation length and are, thus,most pronounced for δ-correlation. Therefore, we
restrict ourselves in the following to the case of δ-correlation, to focus on the study of disorder effects.

Themodel of a three-dimensional weakly interacting homogeneous Bose gas in a δ-correlated disorder
potential was studiedwithin theHartree–Fockmean-field theory in [39] by applying the Parisi replicamethod
[47–49]. As a result, the corresponding phase diagram for the occurrence of the superfluid, the Bose-glass, and
the normal phase was determined in the control parameter plane spanned by disorder strength and temperature.
ThisHartree–Fock theory is extended in [50] to a harmonic confinement, and is applied in the following to one-
dimensional systems.

To this end, we consider amodel of one-dimensional harmonically trapped BEC in a δ-correlated disorder
potential with contact interactions between the particles. The corresponding free energy is calculated in
appendix A and is given by equation (A5). It depends on the superfluid order parameter ( )n x0 , which represents
the condensate density, the Bose-glass order parameter q(x), which stands for the density of atoms being
localised in the localminima of disorder potential, and an auxiliary function ( )Q x0 . The self-consistency

equations are obtained by extremizing the free energywith respect to these functions, i.e.,
( )
 =d

d ¢ 0
n x0

,

( )
 =d

d ¢ 0
Q x0

, and
( )
 =d

d ¢ 0
q x

. This yields, togetherwith the particle number equation (A6), four coupled

equations: an algebraic equation for q(x),

( ) ( ) ( )
( )

( )




=
-

q x
D

M
Q x

n x

Q x1
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M

0
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0
3

a nonlinear differential equation for ( )n x0 ,

( ) ( ) ( ) ( ) ( ) ( )



m- + + - - -

¶
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=
⎡
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2
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the equation for the total density n(x), which is sumof the previous two densities,

( ) ( ) ( ) ( )= +n x q x n x , 30

and the auxiliary function ( )Q x0 , which is a solution of the cubic equation

( ) [ ( ) ( )] ( ) ( )


m- + - + + - =
D

Q x gn x V x Q x
M

2
2

0. 40
3

0
2

HereD denotes the strength of disorder, as defined in appendix A.Note that in the clean case (D = 0)
equations (1)–(4) reduce to the standardGross–Pitaevskii theory. Furthermore, for finite disorder strengthD the
homogeneous case, where ( ) =V x 0, is treated semi-analytically in appendix B. There it is shown that increasing
the disorder strengthD yields afirst-order quantumphase transition from the superfluid to the Bose-glass
phase.

For the harmonically trapped case, however, no analytic approach is knownwhich gives the exact solution of
the differential equation (2) even in the absence of disorder. Therefore, we approximate its solution via the
Thomas–Fermi (TF) approximationmethod, which is based on neglecting the kinetic energy. To this end, it
turns out that we have to distinguish between two different spatial regions: the superfluid region, where the
bosons are distributed in the condensate aswell as in theminima of the disorder potential, and the Bose-glass
region, where there are no bosons in the global condensate so that all bosons contribute only to the local Bose–
Einstein condensates. In the following the radius of the superfluid region, i.e., the condensate radius, is denoted
by RTF1, while the radius of thewhole bosonic cloud RTF2 is called the cloud radius.

Within the TF approximation the algebraic equations (1), (3), and (4) remain the same, but the differential
equation (2) reduces to an algebraic relation in the superfluid region:

( ) ( ) ( ) ( ) ( )


m- + + - - =gn x V x gn x
D

Q x2 0. 50 0

Outside the superfluid region, i.e., in the Bose-glass region, equation (2) reduces simply to ( ) =n x 00 . The
advantage of the TF approximation is that nowwe have only four coupled algebraic equations.
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Atfirst we consider the superfluid region. In the TF approximation the dependency on the auxiliary function
( )Q x0 in equation (4) can be eliminated and equations (1), (3), and (5) reduce in the superfluid region to:

˜ ˜( ˜) ˜ ˜ ( ˜)
˜

˜ ( ˜)
( )m- + + - - =n x x n x

D

n x
2 2 0, 62

0
0

˜( ˜) ˜ ˜ ( ˜)
˜ ( ˜) ˜ ( )=

-
q x D

n x

n x D
, 70

0
3 2

˜( ˜) ˜( ˜) ˜ ( ˜) ( )= +n x q x n x , 80

where ˜( ˜) ( )=n x n x n denotes the dimensionless total density, ˜ ( ˜) ( )=n x n x n0 0 the dimensionless condensate
density, ˜( ˜) ( )=q x q x n the dimensionless Bose-glass order parameter, ˜ =x x RTF the dimensionless
coordinate, m̄=n g themaximal total density in the clean case, ˜ ¯m m m= the dimensionless chemical

potential, ˜


= xD
3

3 the dimensionless disorder strength, x = l

R

2

TF
the coherence length in the centre of the trap,

=
W

l
M

the oscillator length, and ¯


= m
W

R lTF
2 the TF cloud radius in the clean case, i.e., whenD= 0. The

chemical potential in the absence of the disorder ( )¯ m w=
w
WNr

a

l

3

2 2

2 3

r
, which provides the energy scale, is

deduced from the normalisation condition (A6) in the clean case.
Inserting equations (7) and (8) into equation (6) gives us one self-consistency equation for the condensate

density in the superfluid region:

˜ ( ˜) ( ˜ ˜ ) ˜ ( ˜) ˜ ˜ ( ˜) ˜ ( ˜ ˜ ) ˜ ( ˜) ˜ ( )m m+ - + - - - + + =n x x n x Dn x D x n x D2 0. 90
3 2

0
2

0
3 2 2

0
2

This equation is of sixth order with respect to ˜ ( ˜)n x0 , whichmakes it impossible to solve analytically.
Therefore, we solve it numerically and insert the result into equations (7) and (8) in order to determine the Bose-
glass order parameter ˜( ˜)q x and the total density ˜( ˜)n x , respectively.

Nowwe come to the Bose-glass region, wherewe have from equation (2) in TF approximation ˜ ( ˜) =n x 00 ,

and equation (3) reduces to ˜( ˜) ˜( ˜)=n x q x . Inserting this into equation (1), we get ( )Q x0 = ( )M

D

1 3
, which

reduces equation (4) to:

˜( ˜) ( ˜ ˜ ˜ ) ( )m= + -q x D x
1

2
3 . 102 3 2

Wealso need towrite down the dimensionless equivalent of the normalisation condition (A6), which reads:

˜( ˜) ˜ ( )
˜

˜

ò =
-

n x xd
4

3
, 11

R

R

TF2

TF2

where ˜ =R R RTF2 TF2 TF denotes the dimensionless cloud radius, and the total density ˜( ˜)n x in equation (11) is the
combination of the total densities fromboth the superfluid region and the Bose-glass region.

Before considering any particular parameter value for our BEC system, we have first to justify using the TF
approximation and determine its range of validity. To this endwe rewrite equation (2) in the clean case, i.e., for
D= 0, and divide it with m̄. This yields:

˜( ˜) ˜
˜

˜( ˜) ( )x
- + + -

¶
¶

=
⎡
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n x1 0. 122

TF

2 2

2

Note that in the clean case the total density coincides with the condensate one. The TF approximation is only

justifiedwhen the prefactor of the kinetic term ( )x
R

2

TF
is small enough, so the kinetic term can be neglected,

which yields

( )x R . 13TF

The corresponding TF results are presented and discussed in section 4. In order to asses their validity, in
particular for large disorder strengths, however, we turnfirst to two other complementary approaches to the
dirty BECproblem.

3.Numerical and variational approach

In this sectionwe start withworking out a numericalmethod that relies on solving theGross–Pitaevskii equation
for an ensemble of realisations of disorder landscape. Furthermore, we also introduce a variational approach,
which is tailored to describe the numerical results analytically.
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3.1. Numericalmethod
Nowwe perform a numerical study for the Bose-condensed gas in one dimension at zero temperature in a
harmonic trapping potential ( ) = WV x M x1

2
2 2. Furthermore, we assume aGaussian-distributed disorder

potentialU(x), which satisfies the conditions

( ) ( )=U x 0, 14

and

( ) ( ) ( ) ( )¢ = - ¢U x U x D x x , 15

where ( )- ¢D x x denotes the correlation function.
A one-dimensional BEC in themean-fieldHartree approximation is given by a generalised time-

independentGross–Pitaevskii equation for the condensate wave function ( )y x :

( ) ( ) ∣ ( )∣ ( ) ( )
m y y-

¶
¶

- + + + =
⎡
⎣⎢

⎤
⎦⎥M x

U x V x g x x
2

0. 16
2 2

2
2

Equation (16) represents a stochastic nonlinear differential equationwhich can not be solved exactly, and,
therefore, we apply a numerical approach. To this endwe havefirst to generate the randompotentialU(x) before
inserting it into equation (16), and then calculate the disorder average overmany realisations ofU(x).

Motivated by Fourier series, a simple ansatz for generating a randomGaussian functionU(x) is performed as
follows. The potential is written as afinite superposition of kxsin and kxcos termswith properly selected
amplitudesAn,Bn, andwave numbers kn [51, 52]:

N

N
( ) ( ) ( )å= +

=

-

U x A k x B k x
1

cos sin , 17
n

n n n n
0

1

whereN denotes the number of terms, which should be large enough in order to obtain a good approximation
for the randompotential. Furthermore, we assume An and Bn to bemutually independent Gaussian random
variables with zeromean, and variance equal toD(0):

( ) ( )d= = =A B A A B B D0, 0 . 18n n n m n m nm

Thewave numbers kn are independent random variables, as well, selected from the probability distribution:

( ) ( )
( )

( )
ò

=
¢ ¢

-¥

¥p k
S k

S k kd
, 19n

n

where S(k)defines the spectral density as the Fourier transformof the correlation function:

( ) ( ) ( )ò=
-¥

¥
-S k x D xd e . 20kxi

In the special case of theGaussian-correlated disorder we have

( ) ( )
( )

pl
- ¢ = -

l
- ¢

D x x
D

2
e , 21

x x 2

2 2

whereλ denotes the correlation length andD the disorder strength. The probability distribution (19) reads in
this case:

( ) ( )l
p

= -l
p k

2
e . 22n

kn
2 2

2

Note that the analytical study in section 2 is done for δ-correlated disorder, but since it is impossible to treat the
δ-correlated disorder numerically, we use theGaussian-distributed disorder (21), which specialises to a δ-
distributed one in the limit l  0, i.e., ( ) ( )d=l D x D xlim .0

In order to numerically generate the correlation function (21)with sufficient accuracy, two numbers have to
be appropriately large enough. Thefirst one is the numberN of terms in equation (17), the second one is the
numberM of realisations of the disorder potential, which are used to evaluate the disorder ensemble average (21).
It can be shown analytically that the error in reproducing the correlation function (21) in the case N  ¥ is of
the order of1 N [52]. All Gaussian-correlated quantities are generated using the Box–Müller algorithm [53].
We insert the generated disorder potential (17) into theGross–Pitaevskii equation (16), and then use aC
computer program that solves the time-independent Gross–Pitaevskii equation in one space dimension in a
harmonic trap using the imaginary-time propagation [54–58]. In this waywe obtain the numerical solution of
the ground-state wave function ( )y x of equation (16) for M = 1000 realisations of the disorder potential and
N = 100 00 terms in equation (17). To this endwe use different values of the disorder strengthD in order to
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cover the range from theweak to the intermediate disorder regime.We have chosen the disorder correlation
length to be l = l0.01 , which is small enough in order to approach the case of δ-correlated disorder.

Performing disorder ensemble averages, we have access to the particle density ( ) ( )y=n x x 2, to the
condensate density ( ) ( )y=n x x0

2, and to the Bose-glass order parameter ( ) ( ) ( )= -q x n x n x0 . In order to
compare the numerical results with the analytical ones obtained in section 2, we use the same rescaling
parameters for all densities, coordinates, chemical potential, and disorder strength, as already explained below
equation (8).

Before discussing the numerical results in detail, we showfirst one typical example in two graphs in figure 1,
where the total density ˜( ˜)n x is plotted for two different values of the disorder strength (solid, green line), showing
the original data for M = 1000 and N = 10000 terms in equation (17).We remark that the resulting density is
fluctuating around aGaussian-like curve. Comparing figure 1(a)withfigure 1(b)we conclude that the
fluctuations are increasingwith the disorder strength. The origin of thosefluctuations is that the M = 1000
realisations of the disorder potential for performing the disorder ensemble average are not sufficient to produce
a smooth curve.One solution of this problemwould be to increase the numberM of the realisations of the
disorder potential, whichwould need longer execution time, especially for the intermediate disorder regime,
where the numerics has to be run for a larger spatial range. Another solution is to extract a continuous smooth
curve that fits best to our data, as it is done infigure 1 (dotted-dashed, red line). Thismethod is applied to all
numerical densities in this paper. Furthermore, from theGaussian fit infigure 1 (dotted, blue line), we remark
that the original data of the total density approach aGaussian form in the intermediate disorder regimemuch
better than in theweak disorder regime. This can be explainedwith the argument that increasing the disorder
reduces effectively the repulsive interaction between the particles [50] and, thus, approaches the case of non-
interacting bosons, where the total density is given by aGaussian.

3.2. Variationalmethod
Since the four self-consistency equations (1)–(4) are obtained by extremizing the free energy (A5), we can apply
the variationalmethod in the spirit of [59–66] to obtain approximate results. In order to be able to compare the
variational results with the analytical and the numerical ones from section 2 and the previous subsection,
respectively, we use the same rescaling parameters already introduced below equation (8) for all functions and
parameters. To this end, we have tomultiply (A5)with the factor ( ¯ )mnR1 TF to obtain:

˜ ˜ [ ˜( ˜) ˜ ( ˜)] ˜ ( ˜) ˜
˜

[ ˜( ˜) ˜ ( ˜)] ˜ ˜ ˜ ( ˜) ˜ ( ˜)

˜ ( ˜) ˜ ˜ ( ˜)[ ˜( ˜) ˜ ( ˜)] ˜ ˜( ˜) ˜ ( ˜)

˜ [ ˜( ˜) ˜ ( ˜)] ˜ ˜ ˜ ( ˜)
( )

 ò m
x

m

= - + - +
¶
¶

- + - +

- + + -
+

- + + + -

⎪ ⎪

⎡
⎣
⎢⎢

⎧⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬
⎭

⎤
⎦
⎥⎥

x q x n x n x
R x

q x n x x DQ x n x

n x DQ x q x n x D
q x n x

q x n x x DQ x

d 2 2

1

2
2 2

2 2
,

23

0
2

0
TF

2 2

2 0
2

0 0

0
2

0 0
0

0
2

0

where ˜ ( ¯ ¯ )  m= nRTF denotes the dimensionless free energy and ˜ ( ˜) ( )¯= mQ x Q x
M0
2

0 .

Motivated by the numerical results presented infigure 1, we suggest the three following ansätze for the
condensate density ˜ ( ˜)n x0 , the Bose-glass order parameter ˜ ( ˜)q x , and the auxiliary function ˜ ( ˜)Q x0 :

˜ ( ˜) ( )˜a= s-n x e , 24x
0

2

˜ ( ˜) ˜ ( ˜) ( )˜g+ = q-q x n x e , 25x
0

2

Figure 1. Spatial distribution of the particle density ˜( ˜)n x : numerical data (solid, green), fitted curve (dotted-dashed, red), andfitted
Gaussian (dotted, blue) for (a) ˜ =D 0.067 and (b) ˜ =D 0.603.
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˜ ( ˜) ˜ ( ˜) ˜ ( ˜)
˜ ( ˜ ) ( )z h=

+
- +Q x

q x n x

D
x , 260

0 2

whereα,σ, γ, θ, ζ, and η denote variational parameters. The parametersα and γ are proportional to the number
of particles in the condensate and the total number of particles, while parametersσ and θ represent thewidth of
the condensate density and the total density, respectively.

Inserting the ansätze (24)–(26) into the free energy (23) and performing the integral yields:

˜ ( ˜ ) ˜ ( )

˜
˜

˜ ˜
˜

( )

˜ ˜
˜

 p
g
q

a
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a
s

m a
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s
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s

g h zq
q

g

h

z m
h
q
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-
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-
+
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h
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⎪
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⎞
⎠⎟

⎛
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⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭
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where ( )K s0 represents themodified Bessel function of the second kind.
The free energy (27)has now to be extremizedwith respect to the variational parametersα,σ, γ, θ, ζ, and η.

Togetherwith the thermodynamic condition
˜
˜
- =
m

¶
¶

4

3
, we have seven coupled equations for seven variablesα,

σ, γ, θ, ζ, η, and m̃ that we solve numerically. From all physical solutionswe select the onewith the smallest free
energy (27), thenwe insert the resulting variational parametersα,σ, γ, and θ into the ansätze (24) and (25) in
order to get the total density ˜( ˜)n x , the condensate density ˜ ( ˜)n x0 , and the Bose-glass order parameter ˜( ˜)q x .

4. Results

The results presented in this section correspond to a dirty BECwith =N 106 atoms of 87Rb, with the s-wave
scattering length = =a a100 5.29 nm0 , where a0 represents the Bohr radius. For the trap frequencies we use
experimentally realistic parameters: the longitudinal frequency is chosen to be pW = ´2 50 Hz, and the radial
one w p= ´2 179 Hzr . For those parameters the longitudinal and the transversal oscillator lengths read

 m= =
W

l 1.52 m
m

and = =
w

l 806.04 nmr m r
, respectively, while the coherence length in the trap centre

in the clean case turns out to be x = 45.6 nm, and the Thomas–Fermi radius reads m=R 50.9 mTF . Regarding
the geometry of the system,we see that the transversal oscillator length ismuch larger than the scattering length,
a lr, but still smaller than the longitudinal oscillator length, <l lr , sowe are indeed in the quasi one-

dimensional regime [67, 68]. If we estimate the value of the dimensionless quantity g = =E E Mg n1D int kin
2

[69], which compares the interaction and the kinetic energy of the system,where the effective 1D interaction
strength is given by =g Ma l2 r

2 2 and n is defined in section 2, we get g = ´ -2 10 11D
7 . This clearly

shows that, for the chosen parameters, our system is in theweakly interacting regime, and that we can describe it
using theHartree–Fockmean-field theory [69]. Furthermore, if we calculate the value of the dimensionless
quantity a = =Mgl al l2 r1D

2 2, as defined in [69], which relates the effective 1D interaction strength g and
the longitudinal trap frequencyΩ, we obtain a = 0.024 11D . Since the condition aN 11D [69] is satisfied,
we see that the system is close to the TF regime. This justifies our approach that, while using the TF
approximation to obtain some analytical results and understand behaviour of the system in general, full
numerical treatment is still necessary in order to describe the properties of 1Ddirty bosons. In particular this will
become obviouswhenwe observe unphysical features of the TF approximation.

Wefirst present results of the TF approximation and afterwards give in parallel numerical and variational
results and compare them.

4.1. Thomas–Fermi results
In section 2we have presented an analytical theory for the dirty boson problem in 1D.Using the above specified
parameter values, we now solve equation (9)numerically. To this endwe select from all its real solutions for
˜ ( ˜)n x0 the physical one, i.e., the onewith the smallest energy, and denote the regionwhere it is non-trivial as a
superfluid region. The Bose-glass order parameter is here determined by equation (7). Thenwe combine the
superfluid region solutionwith equation (10), describing the pure Bose-glass region, inwhich ˜ ( ˜) =n x 00 and
˜( ˜) ˜( ˜)=n x q x . After that wefix the chemical potential m̃ using the normalisation condition (11). The resulting
densities are combined and plotted infigure 2.

The cloud radius R̃TF2 for the system is determined by the condition that the total density vanishes,
˜( ˜ =n R 0TF2 , while the condensate radius R̃TF1 ismaximal value of the coordinate x̃ for which equation (9) still
has a solution, and separates the superfluid region (∣ ˜∣ ˜x RTF1) from the Bose-glass one ( ˜ ∣ ˜∣ ˜<R x RTF1 TF2).
This is illustrated infigure 2 for the dimensionless disorder strength ˜ =D 0.016, wherewe can see that the total
density has a small jump at the condensate radius, while the condensate density exhibits a jump to zero. The

7

New J. Phys. 18 (2016) 063003 TKhellil et al



Bose-glass order parameter ˜( ˜)q x has a double-bump structure, exhibits a jump at the condensate radius, and also
vanishes at the cloud radius, by definition. In the Bose-glass region, the Bose-glass order parameter and the total
density coincide. The jump exhibited by all three densities at the condensate radius is not a physical one, and is
an artefact of the applied TF approximation.

To study the influence of the disorder on the BECproperties, we plot the resulting TF radii infigure 3(a) as a
function of the disorder strength D̃.We see that both cloud and condensate radius coincide in the clean case, as
expected. The condensate radius decreases with increasing disorder strength and vanishes at the critical value
˜ =D 0.143c , whichmarks a quantumphase transition from the superfluid to the Bose-glass phase. This
corresponds to the value ˜ =D 0.333c , whichwas found in the non-perturbative approach of [37, 38] to be the
critical disorder strength, where the Bose-glass phase becomes energetically unstable and goes over into the
superfluid phase. On the other side, the cloud radius R̃TF2 increases with the disorder in the superfluid phase, but
remains constant in the Bose-glass phase at the value ˜ =R 1.256TF2 . Thismeans that beyond the critical disorder
strength D̃c the bosonic cloud is not extending anymore and has amaximal size. The same conclusion can be
deduced from figure 3(b), wherewe depict the fractional number of condensed particles

˜ ( ˜) ˜˜

˜
ò=
-

N N n x xd
R

R
0

3

4 0
TF1

TF1
. Here N N0 equals to one in the clean case, i.e., all particles are in the condensate.

Afterwards it decreases as the disorder strength D̃ increases, until it vanishes at D̃c, marking the end of the
superfluid phase and the beginning of the Bose-glass phase. The fraction of the atoms in the disconnected local

mini-condensates, ˜ ( ˜) ˜ò=
-

Q N q x xd
R

R3

4 TF2

TF2
, behaves conversely. It increases with the increasing disorder until

Figure 2.TF results for the spatial distribution of the total particle density ˜( ˜)n x (dotted, blue), condensate density ˜ ( ˜)n x0 (dotted-
dashed, red), and Bose-glass order parameter ˜( ˜)q x (solid green) for the disorder strength ˜ =D 0.016.

Figure 3.TF results: (a) cloud radius R̃TF2 (dotted, red) and condensate radius R̃TF1 (solid, blue); (b) fractional number of condensed
particles N N0 (solid, blue) and disconnectedmini-condensatesQ/N (dotted, red) as functions of the dimensionless disorder
strength D̃. Both graphs reveal a quantumphase transition from a superfluid (SF) to the Bose-glass phase.
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reaching themaximal value of one at D̃c, then it remains equal to one in the Bose-glass phase since all particles
are stuck in the localminima of the disorder potential.

4.2. Numerical and variational results
Nowwe turn to numerical and variational results obtained using themethods presented in section 3. Figure 4
presents in parallel numerically and variationally obtained densities ˜( ˜)n x , ˜ ( ˜)n x0 , and ˜( ˜)q x for various values of
the disorder strength D̃. Thefirst notable difference compared to TF results is that the condensate and the cloud
radius are not clearly defined, since the densities do not vanish at awell-defined point, but gradually converge to
zero at the respective borders. Therefore, we define the corresponding radii, which, for simplicity, we again
denote by R̃TF1 and R̃TF2, by the conditions ˜ ( ˜ ) e=n R0 TF1 and ˜( ˜ ) e=n RTF2 , where e = -10 4 represents a
conveniently chosen small number. From figures 4(a) and (d)we see that the cloud radius increases with
increasing disorder strength, while themaximal density at the trap centre decreases. Figures 4(b) and (e) show
the same type of behaviour for the condensate, and generally reveal good agreement between the full numerical
and variational results, as for the total density.

The numerically and variationally obtained values of the Bose-glass order parameter are also plotted for
different values of D̃ infigures 4(c) and (f), respectively.While the variational results have similar form as the
total particle density and the condensate density, due to the assumed functional dependence in equations (24)
and (25), the numerical results show completely different behaviour. In theweak disorder regime, the
numerically calculated order parameter ˜ ( ˜)q x reveals a double bump structure and ismaximal at the border of
the condensate, while in the intermediate disorder regime it resembles aGaussian-like form. This redistribution
takes place, according tofigure 4(c), at a disorder strength value between ˜ =D 0.151 and ˜ =D 0.268. Thus, the
main difference between theweak and the intermediate disorder regime is that the local condensates concentrate
at the border of the condensate in the former case, but sit in the trap centre in the latter case. Despite thismarked
difference, using eithermethod yields that thewidth aswell as themaximumof the Bose-glass order parameter
increase with the disorder strength.

In order to obtain further information on the behaviour of the system, we plot infigures 5(a) and (c) the
numerical and variational fractional number of condensed particles N N0 and fractional number of particles in
the disconnectedmini-condensatesQ/N, as functions of the disorder strength, respectively. The condensed
fraction N N0 decreases with the disorder strength and, conversely,Q/N increases,meaning thatmore and
more particles are leaving the condensate with increasing D̃. Unfortunately, the employed numerical algorithm
breaks down for larger values of the disorder strength, and onewould have to use other approaches in this case.
Starting from the disorder strength value ˜ =D 0.393, the variational equations turn out to have only complex
solutions, sowe cannot extract further information about our system for higher disorder strengths using this
approach. Therefore, we focus on the regimes of weak tomoderate disorder.

Numerically and variationally calculated cloud radius R̃TF2 and the condensate radius R̃TF1, as defined in this
subsection, are plotted infigures 5(b) and (d) as functions of the disorder strength, respectively. Both radii are
almost identical in theweak disorder regime, and afterwards both increase linearly with the disorder strength in

Figure 4. Spatial distribution of numerically (top) and variationally (bottom) obtained: (a), (d) total particle density ˜( ˜)n x ; (b), (e)
condensate density ˜ ( ˜)n x ;0 (c), (f)Bose-glass order parameter ˜( ˜)q x , for increasing disorder strengths D̃, from top to bottom in the trap
centre in (a), (b), (d), and (e), and frombottom to top in (c) and (f).
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themoderate disorder regime. Since the appliedmethod breaks down for larger disorder strengths, we cannot
determine if a quantumphase transition exists, and this question remains still open.

4.3. Comparison
Nowwe compare the physical quantities obtained via the three differentmethods: the TF approximation, the
numericalmethod, and the variationalmethod. For the small disorder strength ˜ =D 0.016, the three total
densities ˜( ˜)n x infigure 6(a) agree qualitatively well, but quantitatively the TF-approximated function ˜( ˜)n x is a
better approximation for the numerical total density, especially in the centre of the bosonic cloud, where the
variational result does not agreewell with the numerical one. The same remark can bemade for the condensate
density ˜ ( ˜)n x0 infigure 6(b). For the Bose-glass order parameter ˜( ˜)q x infigure 7(c) the double-bump structure,

Figure 5. (a)Numerical and (c) variational results for the fractional number of condensed particles N N0 (red squares) and fractional
number of particlesQ/N in the disconnected localmini-condensates (blue triangles) as functions of the disorder strength D̃. (b)
Numerical and (d) variational results for the condensate radius R̃TF1 (red squares) and cloud radius R̃TF2 (blue triangles) as functions
of the disorder strength D̃.

Figure 6.A comparison of numerical (solid, red), variational (dotted-dashed, green), andTF-based analytical (dotted, blue) results for
˜ =D 0.016 (top) and ˜ =D 0.386 (bottom) for: (a), (d) total particle density ˜( ˜)n x ; (b), (e) condensate density ˜ ( ˜)n x ;0 (c), (f)Bose-glass
order parameter ˜( ˜)q x .
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which exists in both numerical andTF-approximated results, ismissing in the variational result, which has just a
bell form, as assumed by the variational ansatz. Thismakes again the TF-approximated Bose-glass order
parameter ˜( ˜)q x a better approximation for the numerical one.

For themoderate disorder strength ˜ =D 0.386, the TF-approximated total density ˜( ˜)n x infigure 6(d) is also
a better approximation for the numerical one in the centre of the bosonic cloud, while at the trap borders the
variational approximationwins. According to the TF results shown infigure 3, at the disorder strength value
˜ =D 0.386we are already in the Bose-glass phase, thus, the TF-approximated condensate density ˜ ( ˜)n x0 in
figure 6(e) vanishes. This is not the case for both the numerical and the variational condensate densities, which
are compatible andmatch quite well at trap borders. The variational Bose-glass order parameter ˜( ˜)q x in
figure 6(f) also agrees well with the numerical one and both have the same bell shape, while the TF-approximated
Bose-glass order parameter has a significant deviation, which is expected since the TF approximation breaks
down in themoderate disorder regime.

Infigures 7(a) and (b)we see that the variational and the numerical condensate radius R̃TF1 and cloud radius
R̃TF2 have the same behaviour, namely both increase with the disorder strength. This is in stark contrast to the TF
result, where the condensate radius is found to decreasewith D̃, evenatually leading to a quantumphase
transition at ˜ =D 0.143c . Such a quantumphase transition is predicted only in TF approximation, which is
known to fail formoderate disorder strengths.

The question that still remains to be answered concerns the possible existence of the quantumphase
transition from the superfluid to the Bose-glass phase for large disorder strengths. According to [38], the
disorder has to energetically overcome the interaction in order to yield such a quantumphase transition.
However, numerical and variational results displayed infigure 7(a) suggest that this is not the case neither in the
weak nor in themoderate disorder regime.Onewould have to investigatemuch stronger disorder regime,
employing a different set ofmethods, in order to be able to detect a possible quantumphase transition, which is
beyond the scope of this paper.

5. Conclusions

From the discussion in the previous section, we conclude that the TF approximation yields good results for the
quasi-one-dimensional dirty bosons in theweak disorder regime, which agreewell with the numerical ones,
especially in the centre of the bosonic cloud, where the kinetic energy can be neglected. However, this
approximation breaks down in themoderate disorder regime, and is unable to describe the dirty BEC system
properly. The origin of this failure is the fact that the condition (13) is not fulfilled in themoderate disorder
regime. The coherence length becomes significantly larger aswe increase the disorder strength, especially at the
border of the bosonic cloud, andwhen it becomes of the order of the Thomas–Fermi radius, the TF
approximation breaks down. Furthermore, quantumfluctuations aremore prominent in lower dimensions,
which also restricts the validity range of the TF approximation. On the other side, the variationalmethodwith
the ansätze (24)–(26) turns out to be a good approximation to describe the dirty BEC system in themoderate
disorder regime andworks there better than in theweak disorder regime, especially at the cloud border, where
the Bose-glass region is located. This is due to the fact that a stronger disorder reduces significantly the repulsive
interaction between the particles and approaches the case of non-interacting bosons, where the densities are
Gaussian-like, as in our variational ansätze. Although the variationalmethod breaks down for larger disorder
strengths, it still provides results in an important range of disorder strengths. The combination of applying the
TF approximation for theweak disorder togetherwith the variationalmethod for themoderate disorder covers a

Figure 7.A comparison of numerical (red triangles), variational (green squares), and analytical (solid blue line) results for (a) the
condensate radius R̃TF1 and (b) the cloud radius R̃TF2, as functions of the disorder strength D̃.
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significant range of disorder strengths.With this we can analytically describe the redistribution of the local
disconnectedmini-condensates from the edge of the atomic cloud to the trap centre for increasing disorder
strengths, as obtained fromdetailed numerical simulations.We expect that all these results are useful for a
quantitative analysis of experiments for dirty bosons in quasi-one-dimensional harmonic traps. The problemof
the large disorder strengths still persists with the current approach and remains to be addressed by other
methods.
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AppendixA. Free energy

Herewe briefly summarise themain result of [50], which relies on deriving aHartree–Fock approximation for
the free energy of one-dimensional harmonically trapped dirty bosons. The starting point is the functional
integral for the grand-canonical partition function

∮ ∮ ( )[ ]* *   y y= y y-e , A1,

where the integration is performed over all Bosefields ( ) ( )*y t y tx x, , , , which are periodic in imaginary time
τ, i.e., ( ) ( )y t y t b= +x x, , . The Euclidean action is given in standard notation by

[ ] ( ) ( ) ( ) ( )
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where ( ) = WV x M x 22 2 denotes the harmonic trapwith the trap frequencyΩ,M the particlemass,μ the
chemical potential, and ( ) ( )( ) d- ¢ = - ¢V x x g x xint the contact interaction potential. The interaction coupling
strength w=g a2 r depends on the s-wave scattering length a, which has to be positive in order to obtain a
stable BEC, and the transversal trap frequency wr . Note that the latter has to be large enough, i.e., w Wr , in
order to ensure a quasi-one-dimensional setup [67, 68].

We assume for the disorder potentialU(x) that it is homogeneous after performing the disorder ensemble
average (denoted by ·) over all possible realisations. Thus, the expectation value of the disorder potential can be
set to vanishwithout loss of generality, as defined by equation (14). The disorder correlation function is given by
equation (15), wherewe assume ( ) ( )d- ¢ = - ¢D x x D x x , andD denotes the disorder strength.

Within theHartree–Fockmean-field approximationwith the replicamethod, [50] obtains self-consistency
equations, which determine the particle density n(x) as well as the order parameter of the superfluid ( )n x0 ,
which represents the condensate density, and the order parameter of the Bose-glass phase q(x), which stands for
the density of the particles being condensed in the respectiveminima of the disorder potential.

More precisely, the two order parameters ( )n x0 and q(x) of ourmean-field theory atT= 0 are defined by
following the notion of spin-glass theory [70–72]. On the one hand, the off-diagonal long-range limit of the two-
point correlation function defines the condensate density [73],

( ) ( ) ( ) ( ) ( )
∣ ∣

*y t y tá ¢ ñ = ¢
- ¢ ¥

x x n x n xlim , , . A3
x x

0 0

On the other hand, the Bose-glass order parameter q(x)was introduced in [39] in close analogy to the Edward-
Anderson order parameter of spin-glasses [74] by the off-diagonal long-range limit of the four-point correlation
function,

∣ ( ) ( ) ∣ [ ( ) ( )][ ( ) ( )] ( )
∣ ∣

*y t y tá ¢ ñ = + ¢ + ¢
- ¢ ¥

x x n x q x n x q xlim , , . A4
x x

2
0 0

Note that the validity of equations (A3) and (A4)within theHartree–Fock approximationwas analysed in
detail in [50]. There it is also shown that two- and four-point correlations decay exponentially on a length scale
which can be physically interpreted as the localisation length named after Larkin [37, 75]. A similar exponential
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decay of the one-body densitymatrix in the presence of disorder was found in [1, 31, 76], although in the quasi-
condensed phase a power-lay decay is expected as in the spatially uniform gas [77, 78].

In the one-dimensional case and atT= 0, themean-fieldHartree–Fock theorywith the help of the replica
method leads to the free energy [50]:

}
[ ( ) ( )] ( ) [ ( ) ( )]

( ) ( ) ( ) ( )[ ( ) ( )]

( ) ( )

[ ( ) ( )] ( )
( )



 







ò m

m

= - + - +
¶
¶

- + - W

+ - + +

-
+

- + + + W -

⎡

⎣
⎢⎢⎢

⎧⎨⎩

⎤

⎦
⎥⎥⎥

x g q x n x n x
M x

g q x n x M x

D
Q x n x

g
n x

D
Q x q x n x

D M q x n x

g q x n x M x Q x

d
2

2
1

2

2

2 2
. A5

D

0
2

0

2 2

2 0
2 2

0 0 0
2

0 0

0

0
1

2
2 2

0

Here ( )Q x0 represents an auxiliary functionwithin theHartree–Fock theory. From the thermodynamic relation
- =
m

¶
¶

N we obtain

( ) ( )ò =
-¥

¥
n x x Nd , A6

which defines the particle density n(x). Extremizing the free energy (A5)with respect to ( )n x0 , q(x), and ( )Q x0

yields, togetherwith equation (A6), the self-consistency equations (1)–(4).

Appendix B.Homogeneous case

The simplest case to discuss for dirty bosons is the homogeneous one, where ( ) =V x 0. Since all densities are
spatially constant in the homogeneous case, we drop in this section the x dependency of all densities.With this,
equations (1)–(4) reduce, after eliminatingQ0, to:
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2
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0

( )= +n q n . B30

From equations (B1) and (B3)we get an algebraicfifth-order equation for the condensate fraction n n0 :
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where


= xD
3

3 denotes the dimensionless disorder strength, x =
Mgn2

the coherence length, and

( ) =
M D

1 34

2 the Larkin length [37, 75].

Figure 8 shows how condensate fraction n n0 decreases with increasing the disorder strength D according
to equation (B4). Thus, theHartree–Fockmean-field theory predicts afirst-order quantumphase transition

from the superfluid phase to the Bose-glass phase at the critical value =D 0.185c
6

25

3

5
. This corresponds to

the value =D 1c , that was found in the non-perturbative approach of [37, 38], which investigate at which
disorder strength the Bose-glass phase becomes energetically unstable and goes over into the superfluid phase.
Therefore, we expect that a quantumphase transitionwill also appear in the trapped casewithin the Thomas–
Fermi approximation.

Nowwe checkwhether our results are compatible with theHuang–Meng theory [20–31], where the Bose-
glass order parameter of a homogeneous dilute Bose gas at zero temperature in case of weak disorder regime is
deducedwithin the seminal Bogoliubov theory. The Bose-glass order parameter in one dimension is according
to theHuang–Meng theory proportional to the disorder strength, which yields in dimensionless form

( )=
q

n

D

2
. B5HM

3 2

In ourHartree–Fockmean-field theory the Bose-glass order parameter in case of weak disorder strength
turns out to be:
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( )=
q

n
D . B6w

Thus, from equation (B6)we conclude that our result agrees qualitatively with theHuang–Meng theory. But
quantitatively the comparison of equations (B5) and (B6) reveals that a factor of 23 2 ismissing in our result (B6).
This is due to the fact that theHartree–Fock theory does not contain the Bogoliubov channel, which is included
in theHuang–Meng theory.
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